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Abstract—With the advances of the information and communications technology, and smart meters in particular, fine grained user

electricity usage of households is available for analyzing electricity usage behaviors. The information makes it possible for utility

companies to provide differentiated user services from the time-of-use perspective, i.e., different pricing for users based upon when

and how users consume power. In this paper, we present a methodology on differentiated user services based on extracted

characteristic consumer load shapes (usage profiles as a function of time) from a large smart meter data set. We identify distinct user

subgroups based upon their actual historic usage patterns, which are represented by the proposed electricity usage distributions. Since

the big electricity user data cover millions of users and for each user the data are multi-dimensional and in fine-time granularity, we thus

propose a sublinear algorithm to make the computation of the differentiated user service model efficient. The algorithm requests an

input of only a small portion of users, and a sublinear amount of the electricity data from each of these selected users. We prove that

the algorithm provides performance guarantees. Our simulated evaluation demonstrates the effectiveness of our algorithm and the

differentiating user service model.

Index Terms—Smart meter, load profile, classification, sublinear algorithm

Ç

NOMENCLATURE

d1 confidence parameter for AlgoPercent()
d2 confidence parameter for DisTest()
�1 error bound parameter for AlgoPercent()
�2 error bound parameter for DisTest()

pi expectation of Pifxg
S scale indicator set representing time instants
fmðpmÞ bill charge for typicalmth type user
m1 number of users to be sampled in AlgoPercent()
m2 number of data points to be sampled in DisTest()
Pifxg benchmark distribution for ith type of users
zm;n binary class indicator for nth user andmth type

1 INTRODUCTION

Facing the increasing concern on energy conservation all
over the world, the power grids are currently undergoing
substantial changes and upgrades. One important objective
of the future grids is to provide a more customized elec-
tricity supply and pricing approach that is suitable for dif-
ferent types of users. In many current markets, electricity

is charged only by the amount of electricity used; without
considering the time pattern a user consumes electricity or
discriminating the peak or off-peak hours. We call this cur-
rent pricing a fixed-price service.

Such a fixed-price service has been adopted for decades.
The development of smart meters makes it possible for the
utility company to analyze users’ behaviors, and therefore
has the chance to offer load shape based pricing, referred as
differentiated user services, i.e., pricing approaches that differ
based upon when and how users consume electricity. With
differentiated user services, the users can benefit from more
choices to control their energy consumption and manage its
cost. The utility company can also achieve better demand
side management brought by these user behavior-oriented
services and enjoy cost reduction when purchasing power
in the peak hour from independent power providers in the
wholesale power market.

Supported by the UH Electric Power Analytics Consor-
tium, we investigate such differentiating user service model
in this paper. We first conduct a trace study on user electric-
ity usage. Multi-dimensional data of time and usage are col-
lected by the smart meters installed for about 2 millions of
households around Houston Area every 15 minutes for
three years. Our initial analysis on a small portion of the
data set reveals that users have different electricity usage
patterns. This forms the basis showing that differentiated
user services are possible. We also observe that the power
usage behaviors of users are most represented by their elec-
tricity usage distributions. To characterize the electricity
usage distributions of different set of users, we develop
benchmark distributions. We then formulate a differentiat-
ing user service model for a utility company. The model
establishes a theoretical profit computation for the utility
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company. Such computation is based on the benchmark dis-
tributions and their associated different cost of power at
peak versus non-peak times. The complexity comes from
the big data side: for each user, there is a large amount of
historical data; meanwhile, there are a numerous number of
users in the real smart meter dataset. To efficiently solve the
big data problem, we propose a sublinear algorithm for fast
computation of the differentiating user service model. Our
algorithm computes quality-guaranteed answers using a
subset of data. More specifically, our algorithm only needs
to input a small portion of users, and for each of these users,
only a sublinear number of their electricity data. As a result,
we substantially reduce the amount of data needed; and the
computation of the differentiating user service model
becomes possible. We prove that our computed results have
performance guarantees. In particular, the results fall in the
user defined error bounds with high confidence.

In summary, the main contributions of this paper are: we
propose a differentiated user services model that computes
the theoretical profit gain for the utility company based on
different types of users; such differentiating user service
model is based on analyzing a large amount of real world
smartmeter data. Successful implementation of the differenti-
ating user service model faces a big data problem brought by
the size of the underlying data set. We propose a novel algo-
rithm which only processes a sublinear amount of data. We
prove that our algorithm provides performance guarantees.

The remaining part of the paper proceeds as follows. In
Section 2, we discuss the related work. In Section 3, we pres-
ent a data trace study and clarify how we characterize the
users by their electricity distributions. Section 4 is devoted
to the differentiating user service model. We also show that
the complexity to compute the model is non-trivial. We
then develop a novel sublinear algorithm in Section 5 and
prove its performance bounds. In Section 6, we evaluate our
algorithms through simulation, and finally, we conclude
our paper in Section 7.

2 RELATED WORK

The emergence of smartmeters [1] allows utility companies to
understand the electricity usage of users in fine-granularity.
Smartmeters are usually integrated in the advancedmetering
infrastructure (AMI) [2] which also consolidates communica-
tions, software applications and data exchange interfaces.
Ultimately, these become part of the smart grid networks [3],
as illustrated in Fig. 1. There are good references, e.g., [4], on
the problems and applications of smart grid [5].

Many studies investigate user behaviors and pricing
strategies that deviate from the fixed price strategy. A fuzzy
C-means clustering is investigated in [6] to disaggregate
and learn energy consumption patterns from smart meter
data. Day-ahead prices, user reactions and dynamic adjust-
ments are studied in [7]. A model is developed in [8] to
characterize the dynamic evolution of supply, demand, and
market clearing prices under real-time pricing. A model
with only one supplier and multiple users is studied in [9].

Big data is a popular studied topic recently [10]. The chal-
lenge comes from volume of the data and the variety of the
data. The work in [11] describes a benchmark toolkit called
IoTAbench for IoT Big Data scenarios. Authors in [12]

examine smart meter analytics from a software performance
perspective. Among many approaches, the sublinear algo-
rithm [13] is a new paradigm to solve various big data prob-
lems. The essence of sublinear algorithm is to use a small
portion of the data to compute results with guarantees.
More specifically, the output of the sublinear algorithm is
an approximation to the optimal result. As compared to
approximation algorithms, which implicitly indicates that
the approximation succeeds for 100 percent times, sublinear
algorithms output an approximation with a ð1� dÞ percent
(e.g., 95 percent) confidence to succeed. Such sacrifice in
confidence makes sublinear possible.

Sublinear algorithms enjoymany studies from the theoreti-
cal point of view. Given a big data trace, sublinear algorithms
have been developed to check the quantile of the data [14],
whether the data stream is periodic, etc. One study related to
our paper is [15], where sublinear algorithms are developed
to check whether two distributions are close with certain con-
fidence parameters. However, the algorithm is not suitable for
our user classification task due to its inherent nature that the
confidence parameters remain undetermined under some
conditions. Hence, we propose our novel sublinear algorithm
to overcome this drawback.

3 THE USER ELECTRICITY USAGE BEHAVIOR

AND A DATA TRACE STUDY

In this section, we first propose a model to characterize user
electricity usage patterns. We then use real user data to vali-
date our model.

In this paper, we classify users according to their electric-
ity usage distribution. A distribution in this paper is defined
as a probability density function of a continuous/discrete
random variable, which describes the likelihood for this
random variable to take on a given value. We admit that
there are many ways to characterize a user; for example, the
total or average electricity he/she consumes in a month, the
peak hour electricity usage in week days, etc. We believe
the electricity usage distribution can more accurately char-
acterize a user because a distribution provides a full spec-
trum of the user electricity usage.

Formally, let set S be an element set from the set T indicat-
ing time instants. In otherwords, T is the set of daily sampling
frequency or sampling time mark at different scales. In this
paper, T ¼ ft1; t2; t3g with t1 ¼ f0; 15; 30; . . . ; 1;425ming,

Fig. 1. Advanced metering infrastructure (AMI) system in smart grid.
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t2 ¼ f0; 1; . . . ; 23 hourg and t3 ¼ f1 dayg. Let x be amulti-dim-
ensional random variable representing the daily electricity

usage of a user, such that x 2 <DðSÞ, DðSÞ 2 Z and S 2 T ,
where DðSÞ is the dimension of x at the scale S with
DðSÞ ¼ CardðSÞ. S is called the scale indicator. Based on the
daily usage pattern x of the user, we define the feature ref-
erred as “usage distribution” to characterize a user’s behavior
from the statistical point of view as the following:

Definition 1. The electricity usage distribution Pfxg at scale S is

a distribution on the daily electricity usage x, where x 2 <DðSÞ.

Given the historical recordings of one-dimensional ran-
dom variable x, the electricity usage distribution Pfxg can
be approximated using the empirical distribution/histo-
gram. For multi-variate case where DðSÞ > 1, Pfxg can be
estimated by assuming a certain structure (for instance
Multi-variate Gaussian distribution) and fitting the parame-
ters based on the dataset. From our trace data, we find that
though the exact electricity usage of each household differs,
many households share the same distribution. This becomes
the basis for our classification. To represent the electricity
usage distribution of each category, we choose to use a
benchmark distribution. Formally, a benchmark distribu-
tion is defined as:

Definition 2. A benchmark distribution is an electricity usage
distribution Pfxg which corresponds to the prototype of a
group of users sharing similar electricity usage patterns. It has
the expectation p ¼ Efxg with fixed values derived from real

data statistics, satisfying p 2 <DðSÞ, DðSÞ 2 Z and S 2 T ,
such that each of pi, i ¼ 1; . . . ; DðSÞ is a fixed value.

We now validate the electricity usage distribution, and
the benchmark distribution. In Fig. 2, we show an illustra-
tion of different average daily usage patterns of two bench-
mark distributions at scale S ¼ t2. As can be seen, there are
differences in peak hours and peak usage between the two
benchmark distributions. In our real data analysis, it is also
discovered that even though some users’ average daily
behaviors are similar (i.e., similar peak hours and peak
usage), their usage distributions are quite different. At scale
S ¼ t2 ¼ f0; 1; . . . ; 23 hourg, through the histogram analysis

on real data variate-wisely, it is revealed that each of the 24
variates conforms approximately to a Gaussian distribu-
tion. The users shared with similar average daily behaviors
may end up with close Gaussian means but different var-
iances in each dimension. All these demonstrate that using
distribution to classify users is reasonable. In order to clas-
sify users by their electricity usage distributions, we take
advantage of the benchmark distributions that are prede-
fined by the utility company. We will detail the method in
the next section.

4 DIFFERENTIATED USER SERVICES: THE MODEL

AND BIG DATA CHALLENGE

4.1 An Overview

Many works nowadays study pricing strategies for utility
companies [16], [17]. The overall model can be abstracted as
follows. For the following discussion, let us assume that one
objective of a power marketer is to maximize its potential
profit from its customer base. The profit equals its revenue
minus its cost. The revenue of a utility company depends
on its pricing strategy (sometimes also called as pricing coef-
ficient), i.e., the unit price for electricity. For a fixed price
strategy, the unit price for a unit electricity at any time, for
any household is fixed. Newly proposed pricing strategies
have dynamic unit price according to different situations.
For example, the pricing strategy in [16] is implemented as
a quadratic cost function of energy usage at each hour. This
kind of increasing, convex cost function is reported by the
literature to be a suitable model for thermal generators; and
the pricing strategy in [17] is expressed as piecewise linear
functions whose pricing coefficients stay as different con-
stant values in different time intervals within 24 hours.

In this paper, we introduce a differentiating user service
model that seeks to classify customers based upon their
characteristic usage as defined by historic usage distribu-
tion. To operationalize this model, the utility must 1) clas-
sify different users (by setting benchmark distributions);
and 2) set different pricing coefficients for different users.
Clearly, both factors influence the revenue of the utility
company. Here, we try to limit the scope of our study where
we assume that these two factors are given. These two fac-
tors can be determined by certain optimization criteria [18],
gaming with other utility companies [19], or other external
concerns of the utility company [1].

With these two factors, we present a differentiating user
service model for the utility company to compute its reve-
nue and profit in Section 4.2. We observe that such compu-
tation is itself non-trivial because it involves big data. We
analyze the data complexity of this model in Section 4.3. In
Section 5, we will develop sublinear algorithms that can effi-
ciently conduct such computation.

4.2 The Differentiating User Service Model

We now formally present our differentiated user services
model. Our differentiating user service model has three ele-
ments: 1) A set of benchmark distributions fP1fxg;
P2fxg; . . . ; Pifxgg; i ¼ 1; . . . ; L with corresponding expecta-

tions fp1;p2; . . . ;pig where L is the total types of users.
These expectations are used for the utility company to spec-
ify a pricing plan; 2) pricing coefficients: the unit pricing

Fig. 2. Illustrative example of different average daily usage patterns of
two benchmark distributions.
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rate (dollar=kw� h) for different types of users; and
3) power cost coefficients: the utility company needs to pay
for buying the electricity from the power plants. We denote
the user type indicator as the binary scalar zm;n: zm;n ¼ 1 if
the nth user is in themth category with benchmark distribu-
tion Pmfxg and expectation pm; zm;n ¼ 0 otherwise. The user
type indicator zm;n can be obtained via classification based
on the electricity usage distribution Pfxmg of the mth user
and the given benchmark distributions, which will be elabo-
rated in the next section. Assume now the user type indica-
tors are known, we have the total bill gain G of the utility
company as

G ¼
XN
n¼1

XL
m¼1

zm;nfmðpmÞ; (1)

where variable N stands for the number of users and func-
tion fmðpmÞ stands for the bill charge for the typicalmth cate-
gory/type user. For simplicity and consistency, we will refer
to themth user type as type pm for the rest of this paper.

To ease the presentation, we simplify our differentiating
user service model and set L ¼ 2, i.e., we only consider two
types of users in this paper. For the L > 2 case, the differen-
tiating user service model can be easily extended in a simi-
lar way. The total bill gain of the utility company is then

G ¼
XN
n¼1

ðz1;nf1ðp1Þ þ z2;nf2ðp2ÞÞ: (2)

To transform (2) into a concise form, we have

G ¼ a �N � f1ðp1Þ þ b �N � f2ðp2Þ; (3)

where the coefficients a and b indicate the percentage of

type p1 and type p2 users among the total population,
respectively. As can be seen, coefficients a and b are func-
tions of user type indicators zm;n. Hence, a and b are depen-
dent on the classification results based on the electricity
usage distributions Pfxmg of each user and the given bench-
mark distributions.

Given two types of users, we accordingly model two
types of pricing plans for the individual bill, referred as the
flat plan and the dynamic plan, respectively

flat plan: ~fF ðp1Þ ¼ cf
XDðSÞ

i¼1

p1i ; (4)

dynamic plan: ~fDðp2Þ ¼ cp
X
i2P

p2i þ co
X
j2Pc

p2j : (5)

Vectors p1 and p2 are the associated expectations of
benchmark distributions P1fxg and P2fxg, respectively. The
fixed coefficient cf represents the pricing rate dollar=kw� h

for the flat plan, and cp and co regulate the pricing rate for
the dynamic cluster where the peak usage and off-peak
usage are charged, respectively. The set P is a set of peak-
hour time mark at the scale S (S 6¼ t3) and Pc is the comple-
ment of P which satisfies Pc ¼ S � P.

Considering the fact that some p2 type users may actu-

ally prefer the flat plan or some p1 type users incline to
accept the dynamic plan, we denote the fixed probability

factor af as the probability of p1-type choosing the flat plan,

and ad as the probability of p1-type choosing the dynamic

plan. Also, we denote bf as the probability of p2-type choos-

ing the flat plan and bd as the probability of p2-type choos-
ing the dynamic plan. There are many other approaches to
model this kind of users’ reaction or preference towards the
provided various pricing schemes: for example, authors in
[20] model the users’ reaction as binary values conditioned
on some constraints; in [7], the users’ preference is
expressed in the functional form with tunable parameters.
Since modeling users’ preference is not the focus of this
paper, we use the fixed-real-valued parameters instead.

Hence, the complete individual bill for a p1-type user is

f1ðp1Þ ¼ af ~fF ðp1Þ þ ad ~fDðp1Þ; af þ ad ¼ 1: (6)

The complete individual bill for a p2-type user is

f2ðp2Þ ¼ bf ~fF ðp2Þ þ bd ~fDðp2Þ; bf þ bd ¼ 1: (7)

We also investigate the expense that the utility company
incurred on buying the power from the power plants. Since
the electricity market charges differently at peak hours and
off-peak hours, we model the expense as

E ¼
XN
i¼1

ap
X
j2P

xij þ ao
X
j =2 P

xij

0
@

1
A: (8)

The fixed coefficients ap and ao represent the pricing rates in
the unit of dollar=kw� h corresponding to the peak usage
and off-peak usage, respectively. The value xij indicates the
electricity consumption of the ith input user data point at
time dimension j. So far, we have fully developed the

expression of the net profit Ĝ as

Ĝ ¼ G� E ¼ a �N � f1ðp1Þ þ b �N � f2ðp2Þ

�
XN
i¼1

ap
X
j2P

xij þ ao
X
j =2 P

xij

0
@

1
A:

(9)

As stated before in this section, the percentage coeffi-
cients a and b are the output results of user classification,
which will be further elaborated in the next section. The rest

parameters fp1;p2g and u ¼ fN; cf ; cp; co; af ; ad; bf ; bd; ap; aog
are determined by the utility company.

4.3 Model Analysis and the Big Data Challenge

We now look into the computation of the differentiating
user service model. The expected profit comes from two
ends: 1) the expected number of users belonging to each
groups, and 2) within each group, the expected number of
users adopting differentiated user services and the expected
number of users remaining in the fixed-price services. In
our model, the percentage of different groups of users, a
and b, is computed at the first step as an output of classify-
ing users. The expected total profit of a utility company is
then calculated with given pricing coefficients and power
cost coefficients, the two key parameters in our model. We
are particularly interested in the percentage values because
they can be utilized for quick estimation of the bill income
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without bothering to calculate each user’s power consump-
tion in the big data setting. Moreover, the percentage values
serve as the feedback indicator from users. By comparing
the percentage values of different years, the utility company
can gather the feedback information on how the users adjust
their usage behaviors so that the company may update the
current pricing plans in the dynamic fashion.

To compute a and b, we need to classify users by compar-
ing the electricity usage distribution of each user to the bench-
mark distribution. To simplify the notation for given two user
types in total, we use binary variable zi as the user type indica-
tor for the ith user instead of previously used zm;n. Hence,

the computation is calculated as a ¼ 1
N

PN
i¼1 zi and b ¼

1
N

PN
i¼1ð1� ziÞ ¼ 1� a. zi is determined via user classification

zi ¼
1; DisðPfxig; P1fxigÞ � DisðPfxig; P2fxigÞ,
0; DisðPfxig; P1fxigÞ > DisðPfxig; P2fxigÞ.

�
(10)

P1fxig and P2fxig represent the benchmark distributions of

p1-type and p2-type, respectively. The function Disð�Þ is the
closenessmeasure between two distributions, andwe choose
the function Disð�Þ to be the L-2 distance1 [21] between the
two given distributions.We are particularly interested in dis-
covering the percentage for the reason that once the new
pricing plans are offered to all the users, the utility company
may learn the feedback of user reaction by analyzing the cur-
rent percentage values and compare them to the historical
ones. In this way, the percentage values provide the utility
companywith the guidance on adjusting pricing.

Note that a straightforward computation of (9) needs to
evaluate each user; and for each user to compute the L2 dis-
tance of his/her distribution and the benchmark distribu-
tion, the computation needs to access each data of the user.
In Table 1, we show a few illustrative examples of the
amount of data need to be processed, given the number of
users mu, and the number of data points md of numerical
discrete electricity usage distribution each user has at scale
S ¼ t2 ¼ f0; 1; . . . ; 23 hourg.

We would like to remind that, as discussed in Section 4.1,
such computation needs to be executed many times if it is
part of an optimization where different benchmark distribu-
tions, and different price coefficients are evaluated. We thus
develop a much more efficient computation approach
through a novel sublinear algorithm in next section.

5 THE PROBLEM AND SUBLINEAR ALGORITHMS

5.1 The Problem and Algorithm Sketch

Our objective is to know the percentages of p1 and p2 so that
we can compute the total income of the utility company. We

have shown in the previous section that the complexity is
high. We also note that the complexity comes from the big
data collecting complexity, not the computational complex-
ity. To this end, we propose a novel sublinear algorithm
where we substantially reduce the amount of sampled data
needed in computation and obtain quality outputs. We first
formally define the algorithm quality we use in this paper.

Definition 3 Algorithm Quality. We measure accuracy in
terms of the absolute deviation of the computed answer â from
the exact answer a. We assume that such deviation is less than
�. In addition, this deviation does not exceed in most cases; for
example, only d percent such deviation exceeds � and d is small.
More precisely, we would like to have that Pr½jâ� aj � �� � d.
Here we refer to � as the accuracy parameter and d as the confi-
dence parameter.

We now present the sketch of our algorithm develop-
ment. Our objective is that given the quality parameters �; d,
we use a subset of data to compute a;b and we guarantee
the results are within �; d.

In our algorithm development, we split the output qual-
ity parameters � and d into �1, d1, and �2, d2. We first develop
two sub algorithms AlgoPercent() and AlgoDist(), each of
which is itself a sublinear algorithm. AlgoPercent() samples
a subset of users, and for each user use his/her full electric-
ity data. It guarantees �1, d1. AlgoDist() applies to a single
user and sample a subset of his/her electricity data. It guar-
antees �2, d2. Finally we develop an overall algorithm for
distributed service model computing AlgoDSMC() that call
AlgoPercent() and AlgoDist() as sub functions. AlgoDSMC
() guarantees � and d. In what follows, Section 5.2 develops
AlgoPercent(), Section 5.3 develops AlgoDist(), and Section
5.4 develops AlgoDSMC().

5.2 Sublinear on Percentage

The objective is to use a small portion of users to determine
the percentage of p1-type and p2-type users. Since our pro-
posed algorithm does not require the information of all
input users, we refer to this property as “sublinear on
percentage”. Our proposed algorithm is referred as Algo-
Percent(), taking �1 and d1 as the parameter, and all the user
data X as the input. �1 specifies an error bound for the out-
put estimated â, while d1 means indicates the confidence/
probability of success that the error bound can be main-
tained. Instead of computing over the total N users, Algo-

Percent() first sub-samples m1 > � log d1
2�2

1

users. The user

type classification is then performed on each one of the m1

users to obtain the percentage of p1 and p2 users, respec-
tively. AlgoPercent() is summarized in the Algorithm 1.

Algorithm 1. AlgoPercentðX; �1; d1Þ
Sub-samplem1 out ofN users.
Perform user classification and compute â as illustrated in (10).

Recall that zi is the user type indicator defined in Section
4.3. We assume that zi are independent and define Y ¼PN

i¼1 zi, where N is the total number of users. Assume the

percentage of p1-user among the population is a. We have

a ¼ 1
N E½Y �. Since zi are all independent, E½zi� ¼ a. Let

TABLE 1
Examples of the Amount of Data Need

to Be Processed in GB Unit

(mu,md) (2� 105, 8,760) (2� 106, 8,760) (2� 106, 17,520)

Data(GB) 14.016 140.16 280.32

1. Other distance measures can be chosen for the closeness measure
Disð�Þ as well. However, we choose L-2 distance for fast computation
reason.
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L ¼
Pm1

i¼1 zi, where m1 is the total number of users we sam-

pled. Let L ¼ 1
m1

L. The next proposition says that the expec-

tation of the sampled set L is the same as the expectation of
all set. Using these notations, we then have the following
proposition associated with AlgoPercent(). It is straightfor-

ward to see that L is the unbiased estimator of a. Based on

this, we show that m1 > � log d1
2�2

1

is the constraint that is

required to maintain the �1 error bound.

Proposition 1. Given �1; d1, to guarantee that we have a proba-

bility of 1� d1 success that the percentage of p1-type users will
not deviate from the true a for more than �1, the number of

users we need to sample must be at least � log d1
2�2

1

.

Proof. By the Hoeffding Inequality, which provides an
upper bound on the probability that the sum of random
variables deviates from its expected value, we have

Pr½L� E½L� � ��1� � e�2�2
1
m1 ;

Pr½L�E½L� � �1� � e�2�2
1
m1 ;

Pr½jL� E½L�j > �1� � e�2�21m1 :

Therefore, recall that L is the unbiased estimator of a, we
have

Pr½jL� aj > �1� ¼ Pr½jL�E½L�j > �1� � e�2�2
1
m1 :

To make sure that e�2�2
1
m1 < d1, we need to have

m1 > � log d1
2�2

1

. tu

5.3 Sublinear on Distribution

In this section, we will introduce one existent sublinear algo-
rithm, based on which our proposed modified sublinear
method will be elaborated afterwards. Sublinear algorithms
can be regarded as one branch of approximation algorithms
with confidence guarantees. The term“sublinear” is tradition-
ally interpreted as an algorithm runs in sublinear time or com-
plexity. However, in this paper, we point out that “sublinear”
can also be used to indicate the algorithm uses oðNÞ samples
in space, whereN is the total number of input elements.

The objective is that for each user, we use a sublinear num-
ber of samples from its electricity data distribution to deter-
mine whether the user belongs to the category of p1 or p2. We
call this algorithm AlgoDist(). The distribution of the user
behavior is denoted as Pfxgwhich is a 24-dimensional distri-
bution at the scale S ¼ t2. We provide the heuristic sampling
method to deal with the 24-dimensional distributions. In
details, the user distribution is comparedwith the benchmark
distribution by AlgoDist() on one dimension at a time for
totally 24 times (corresponding to 24 hours per day). If the dis-
tribution passes the closeness test by the AlgoDist() for at least
12 times, it is then regarded as close to the compared bench-
mark distribution.As a result, the user is classified as the com-
pared type. Since there are two defined types of users, the
proposed AlgoDist() only compares the testing user distribu-

tionwith the p1-type benchmark. If the closeness test fails, the
user is automatically classified as the other type.

The distribution of one dimensional random variable can
be expressed as the histogram in the discretized fashion, with
the bin size denoted as d. We denote the set SP ¼ f1d; . . . ; ndg
as the sample space of the distribution. We assume that the
separated distribution under the investigation is discrete dis-
tribution over the n elements in the set SP. Moreover, the dis-
tribution is assumed to be represented by a vector p ¼
ðp1; . . . ; pnÞwhere pi is the probability of sampling the ith ele-
ment in the set SP. Given a benchmark distribution in the
probability vector form as q ¼ ðq1; . . . ; qnÞ, we want to test
whether the distribution p is close enough to q in the L2-dis-
tance. The traditional way is to compute the whole distribu-
tion in the L2-distance. However, it suffers from the heavy
computation which is unacceptable in the big data analysis.
Inspired by [15], we propose a novel modified sublinear algo-
rithm based on the original sublinear algorithm. The key idea
of the original sublinear algorithm is that by using the sam-
pling, we can repeatedly draw a much smaller portion of all
the users. Within the smaller portion of users, each distribu-
tion of user behavior is again repeatedly sampled in a smaller
portion of the entire distribution. This kind of sampling is
also applied to the benchmark distribution at the same time.
Two metrics are proposed to measure the closeness between
the distributions: 1) the collision probability is defined as the
probability that a sample from each of p and q yields the
same element and is equal to p� q; 2) the self-collision of p
and that of q are defined similarly as p� p andq� q, respec-
tively. The complete DistTestðp;q;m2; �2; d2Þ is a realization
from the original sublinear method [15] and summarized as
in Algorithm 2 (the related proof can be found in [15]). Note
that in our application, the error parameter �2 serves as the
classification criteria: if the L2-distance two testing distribu-

tions are within �2, the testing user is classified as the p1 type;

otherwise, the testing user is classified into the p2 type.
From [15], it is proved that the error and confidence fac-

tors of DistTest() are guaranteed by the following theorem:

Theorem 1. Given �2; d2 and distributions p and q, the DistTest
() of testing closeness passes with the probability at least 1� d2
if jjp� qjj � �2=2 while it passes with the probability less than
d2 if jjp� qjj > �2. The running time of the DistTest() is

Oð��4
2 logð1=d2ÞÞ.

Algorithm 2. DistTestðp;q;m2; �2; d2Þ Based on L2-
Distance Test

for i ¼ 1; 2; . . . ; Oðlogð1=d2ÞÞ do
Let Fp ¼ a set ofm2 samples from p.
Let Fq ¼ a set ofm2 samples from q.
Let rp be the number of pairwise self-collisions in Fp.
Let rq be the number of pairwise self-collisions in Fq.
Let Qp ¼ a set ofm2 samples from p.
Let Qq ¼ a set ofm2 samples from q.
Let spq be the number of collisions between Qp and Qq.
Denote r ¼ 2m2

m2�1 ðrp þ rqÞ.
Denote t ¼ 2spq.
if r� t > m2

2�
2
2=2 then

then reject, i.e., consider the two distributions are
different.

Reject if the majority of the iterations reject, accept otherwise.
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The main drawback of directly employing the original
sublinear algorithm in classification is that the confidence of
the classification output remains undetermined when the
L2-distance of the testing distribution p and the benchmark
distribution q is truly in the interval ½�2=2; �2� according to
Theorem 1. Based on the original sublinear algorithm
DistTestðp;q;m2; �2; d2Þ as indicated in the Algorithm 2, we
propose a novel modified sublinear algorithm to overcome
this drawback and give the complete confidence estimates.

Follow the previous assumptions, let pi be the power usage
distribution corresponding to the ith user, 8i ¼ 1; 2; . . . ; N .
Suppose the classification by comparing a set of user elec-

tricity usage distributions fpig with q outputs two labels

with the label 1 indicating user type (class) 1 whose pi is

close to q; the label 2 indicating user type (class) 2 whose pi

is away to q. We call the proposed modified sublinear algo-
rithm AlgoDistðÞ and summarize it as in Algorithm 3. The
underlying philosophy of designing Algorithm 3 is to call
DistTest() twice but with different parameters �2 and 2�2,
respectively, which help to get rid of the interval of undeter-
mined confidence. Each time we call DistTest(), the classi-
fied labels of the output are retained partially. Both results
are then merged with some treatment to the overlapped
labels, in order to obtain a complete and consistent labeled
result. The idea is illustrated in Fig. 3.

Algorithm 3.Modified Sublinear Algorithm AlgoDistðpi;
q;m2; �2; d2Þ Based onDistTestðÞ
for i ¼ 1; 2; . . . ; N do
Step1 : Employ AlgoDistðpi;q;m2; �2; d2Þ and obtain the
classification results as fLabelSet1g.
Step2 : Employ AlgoDistðpi;q; m2; 2�2; d2Þ and obtain the
classification results as fLabelSet2g.
Step3 : Keep the labeled 1 in fLabelSet1g and reject all the
labeled 2.
Step4 : Keep the labeled 2 in fLabelSet2g and reject all the
labeled 1.
Step5 : Combine the retained labels into fLabelSet3g; If the
same user is both labeled as 1 in fLabelSet1g and labeled
as 2 in fLabelSet2g, his/her label is randomly determined
as either 1 or 2 in fLabelSet3g.
Step6 : Output fLabelSet3g as the final classification
results.

The algorithm accuracy of AlgoDistðÞ, i.e., the classifica-
tion accuracy, is given by the following Lemma 1:

Lemma 1. Given �2; d2 and distributions fpig and q, the AlgoD-
ist() of classifying users is based on the L2-distance criteria:
label user as 1 if jjpi � qjj � �2; label user as 2 if jjpi�
qjj > �2. And the classification accuracy is at least 1� 2d2. In
addition, Pr½labeled as 1jtrue 1� � ð1� 2d2Þ and Pr½labeled
as 2jtrue 2� � ð1� 2d2Þ.

Lemma 1 essentially further develops the discussion in
Theorem 1. In Theorem 1, the implicit underlying user
group with �2=2 � jjp� qjj � �2 is not discussed. However,
in Lemma 1, all users are taken into consideration. The
proof of Lemma 1 is given in the appendix.

5.4 The Overall Algorithm

In this section, we derive the overall algorithm quality �; d of
AlgoDSMC() and its sufficient condition. Since the overall
objective is to estimate a, it is straightforward to see that the
overall algorithm quality is � ¼ �1 and d ¼ d1. Given the
parameters, �1; d1; �2; d2, for the sub-algorithms, �1 and d1 are
passed to the AlgoPercent(�1; d1). Within the AlgoPercent
(�1; d1), the small number of users, m1 is sampled from the
entire input users. For each one of the m1 users, the AlgoD-

ist(Pfxig, p1, m2, �2; d2) is called where Pfxg corresponds to
the distribution of the testing one user out of them1 users.

In AlgoPercent(�1; d1) with given error and confidence
parameters, we compute that the sub-sampling number of

users needs to be at least m1 ¼ � log d

2�2
1

, under the assumption

that AlgoDist(Pfxig, p1, m2, �2; d2) gives 100 percent correct
classifications. However, given the error and confidence
parameters �2; d2, the AlgoDist() again utilizes the sublinear

algorithm and may misclassify a p1 user into p2-type. This
means that AlgoDist() will not give 100 percent correct clas-
sifications, which nullifies the previous assumption made
when analyzing AlgoPercent(�1; d1) due to the cascading
relationship between AlgoPercent() and AlgoDist(). Then
we have to modify the parameter settings of AlgoPercent()
by taking the property of AlgoDist() into consideration. As
a result, the subsample number m1 has to be modified in
order to maintain � ¼ �1; d ¼ d1.

We derive the constraint for the subsample number m, in
order to make the probability of the failure of the overall
algorithm, Pr½jâ� a	j � ��, bounded by d.

Theorem 2. Given �; d for the overall algorithm quality, �2; d2 for
AlgoDist() and suppose d2 is small enough such that � > 6d2,
to guarantee that we have a probability of 1� d success that the

percentage of p1-type users will not deviate from the true a for

more than �, i.e., Pr½jâ� aj � �� ¼ Pr½jL� aj � �� � d, the
number of users we need to sample must be at least

m � � log d

2ð��6d2Þ2
.

Proof. Denote p11 ¼ Pr½x 2 v1jx 2 c1� as the probability
that user x is truly label 1 user and has been classified as
label 1. Similarly, define p21 ¼ Pr½x 2 v1jx 2 c2� as the
probability that user x is truly label 2 user and has been
classified as label 1. By Lemma 1, we have 1� p11 � 2d2
and p21 ¼ 1� p22 � 2d2. Follow the discussion in Section
5.2 and Lemma 1, we have

E½L� ¼ 1

N

XN1

i¼1

p11 � 1þ
XN2

j¼1

p21 � 1
 !

¼ ap11 þ ð1� aÞp21:

Fig. 3. Illustration of the underlying philosophy of designing Algorithm 3.
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Therefore,

jL� E½L�j ¼ jL� aþ að1� p11 þ p21Þ � p21j;

jL� E½L�j � jL� aj � jað1� p11 þ p21Þj � jp21j;

jL� E½L�j � jL� aj � aj1� p11j � ajp21j � jp21j;

jL� E½L�j � jL� aj � a � 2d2 � a � 2d2 � 2d2;

jL� E½L�j � jL� aj � 6d2:

Hence, given jL� aj � �, it is sufficient to say that

jL� E½L�j � �� 6d2, which implies

Pr½jL� aj � �� � Pr½jL� E½L�j � �� 6d2�:

Denote ~� ¼� �� 6d2 > 0, by the Hoeffding Inequality,
we have

Pr½jL� E½L�j � ~�� � e�2~�2m:

To ensure that e�2~�2m � d, we need to have

m � � log d

2~�2
:

That is,

m � � log d

2ð�� 6d2Þ2
:

If this holds and using L as the estimator of a, then

Pr½jâ� aj � �� ¼ Pr½jL� aj � �� � d:

tu

5.5 Extension to Multiple User Types

Given that there are many types of users in real residential
consumption data, we address the extension of current
methods on two user types to multiple user types that are
larger than two classes in this section. The idea is similar to
the one-versus-rest method widely utilized in multi-class
classification problems. Recall that we perform user classifi-
cation according to (10) for the two user types case. Given
L > 2 as the number of total user types, we estimate the
population proportion ak; k ¼ 1; . . . ; L for each one of the
user types in turn. Accordingly, the classification rules in
(10) have been modified as

zk ¼
1; DisðPfxig; PkfxigÞ ¼ minjDisðPfxig; PjfxigÞ,
0; otherwise,

�
(11)

where j takes values as j ¼ 1; . . . ; L. Through this manipula-
tion, it is straightforward to see that the multi-type classifi-
cation problem has been transformed in the original two
user types problem (i.e., one user type as the current under
testing kth user type and the other one as the combination
of all the rest user types), which can be solved by the same
method as previously described.

6 EVALUATION

In this section, we evaluate our proposed differentiating
user service model and associated algorithms. The evalua-
tion is done in a desktop computer equipped with eight cen-
tral processing units of Intel(R) Core(TM) i7-4770 CPU of
3.40 GHz. The software used for evaluation is Matlab. Due
to the nondisclosure agreement, all results are computed
from the simulated data that are generated according to the
real data analysis. The proposed algorithms can be directly
applied to real data without modification. Note that our
sublinear algorithm has already provided a theoretical
bound. We thus primarily investigate the relationship
among the number of data we need to process, the errors
and confidence interval. More specifically we evaluate:

1) The relations among the number of sub-samples m,
m2 and the error � and confidence d;

2) The proposed algorithm accurately estimates of a

value within an acceptable error bound;
3) The differentiated user services model performs bet-

ter than the traditional single rate fixed-price
approach; In addition, analyzing the impact brought
by the factor a and total user numberN ;

4) The proposed sublinear algorithm significantly
reduces the computation load.

We evaluate the proposed differentiated user services
model and the sublinear algorithm at scale S ¼ t2 ¼
f0; 1; . . . ; 23 hourg. The evaluation data set is simulated
based on the real data analysis and similar to the generation
procedure of the benchmark distributions. According to the
data trace study in Section 3, we simulate the dataset based
on Gaussian distributions. Specifically, we first generate the

benchmark distribution of p1-type user similarly as the
Household one plotted in Fig. 2 in Section 3. The total num-
ber of users is set to N ¼ 100;000. a is varying from 0.1 to

0.8. The usage distribution of one p1 user is generated in

this way: 1) each dimension of p1 (recall that p1 is the corre-
sponding expectation of the benchmark distribution of

p1-type, as defined in Section 4.2) is added with a random
Gaussian noise drawn from Gaussð0; 0:5Þ, resulting in a

noisy vector ~p1; 2) generate a sequence of random variables
~k1i ; i ¼ 1; . . . ; 24 that conforms to the Gaussian distribution

Gaussð~p1i ; 0:1Þ respectively; 3) form the vector ~y ¼ ð~k11;
. . . ; ~k124Þ as one instance of daily usage that belongs to the

p1-type user; 4) repeat 2) and 3) for 365 times and obtain the
set of vectors f~yg that represents the usage distribution of

the p1 user. Finally, we repeat the procedure from 1) to 4)

for a�N times and obtain the data points of p1-type users.

The p2-type users are simulated in the same fashion except
that the Gaussian noise conforms to Gaussð0; 0:1Þ and their
user number is b�N .

For objective 1), we use the data set generated with
N ¼ 100; 000 and a ¼ 0:7. The parameters �1 ¼ 0:05,
d1 ¼ 0:05, d2 ¼ 0:005 and �2 ¼ 0:5 are fixed. Then we vary
m2 for m ¼ 2;000; 3;000; 10;000; 15;000. We define the esti-
mation error as the absolute value of the difference between
the estimated â and the true a. By inputting the data set and
the parameters into our proposed sublinear algorithm, we
obtain the results shown in Fig. 4. As can be seen, as the
sub-sample number m2 grows larger, the estimation error
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generally becomes smaller, which is consistent with the
spirit of the sublinear methods: the more we sub-sample,
the more precise results we will obtain. However, the speed
of ameliorating the result to become closer to the true value
is much slower than the increase speed of the required sub-
samples: if we want to further reduce the error that is
already small, we need to pay much more price, i.e., giving
a much larger step of increments form2.

For objective 2), the total number of users is set to
N ¼ 100; 000. a is varying from 0.1 to 0.8. We fix the param-
eters for the AlgoPercent() and AlgoDist() as: �1 ¼ 0:05,
�2 ¼ 0:5, d1 ¼ 0:05, d2 ¼ 0:005, m ¼ 50; 000, m2 ¼ 60. Notice
that under this parameter setting, the overall algorithm
quality is � ¼ �1 ¼ 0:05 and d ¼ d1 ¼ 0:05. The data sets are
then input into our overall algorithm. The estimated results
are shown in Fig. 5. As can be seen, our algorithm estimates
the a values precisely within the error bounds throughout
all the simulated values. The maximum absolute error per-
centage is 1.42 percent, and the minimum absolute error
percentage is 0.10 percent. And the subsamples used are
only 50 percent of the total users. Moreover, we have tested
our proposed L2 distance for closeness measurement
against other possible solutions for closeness test, such as

the Kullback-Leibler (KL) divergence and Kolmogorov-
Smirnoff (KS) tests. Using the same simulated dataset and
the same parameters for the algorithms, we have obtained
the results shown in Fig. 6. As can be seen, all the estimated
a values using the three different measurements are within
the error bounds, which demonstrates the suitability of
using KL divergence and KS tests. However, it is worth to
note that both KL divergence and KS tests require all input
distribution data involved in the computation, while our
proposed sublinear methods based on L2 distance only
requires a small portion of the input data and hence, are
more efficiency in the sense of computation.

In addition, we also test our proposed extended method
for multiple user types with total number of user types
L ¼ 3. We set the proportions of 1st, 2nd and 3rd user
types as a1, a2 and a3, respectively. a1 is varying from 0.1
to 0.8, a2 is varying from 0.7 to 0, and a3 is stayig 0.2. We
simulate these three user populations and fix the same
parameters �1, �2, d1, d2, m, and m2 for the AlgoPercent()
and AlgoDist() as used in two user types case. The esti-
mated results are shown in Fig. 7. As can be seen, the
estimated a values for all user types are within the
error bounds and the absolute error is very small. This

Fig. 4. Estimation errors jâ� aj versus sub-sampling number m2 from
the entire distribution.

Fig. 5. Estimated a values versus simulated true a values.

Fig. 6. Estimated a values versus simulated true a values via different
closeness measurements: L2 distance, KL divergence, and KS tests.

Fig. 7. Estimated a values versus simulated true a values for the three
user types case.
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demonstrates the efficiency of our extension methods for
multiple user types that are larger than 2.

For objective 3), we first investigate how the proportion
of different types of users impact on the net profit. Using
the data sets generated in the objective 1) with different a
values, we set the parameters of the proposed differentiated
user services model as: N ¼ 100; 000, cf ¼ 1, cp ¼ 3, c0 ¼ 0:8.
af ¼ 0:1, ad ¼ 0:9, bf ¼ 0:8, bd ¼ 0:2, ap ¼ 2 and ao ¼ 0:5.
These parameters are chosen with a reference to the real
electricity markets and bills. According to electricity usage
patterns during the past years in Houston, the peak hour set
is P ¼ f10; 11; 12; 18; 19; 20; 21 hourg. The estimated a values
are input into our differentiated user services model. To
compare our model with the other two traditional pricing
plans, we choose cf ¼ 1 to be the pricing factor that applies
to all the users uniformly for the pricing plan referred as the
fixed price service. We also choose cp ¼ 3 and c0 ¼ 0:8 for
the plan that charges users uniformly but with varying price
at peak and off-peak hours, referred as the differentiated
charge. The experiment results are shown in Fig. 8, where
three mechanisms of pricing are explained: (1) charging uni-
formly according to usage regardless of time/hour when
the usage happens (referred as fixed price service); (2)
charging according to usage but with different rates at peak
versus off-peak hours (referred as differentiated charge); (3)
charging according to different types of user (referred as
our proposed differentiating user service). It can be seen

that the proposed model favors over the p1-type users who
generally use more power especially during the peak hours

and bring more profits. The differentiated charge obtains
the highest profits because it forces all the users to pay
much more money at the peak hours, which is usually not

suitable for the p2-type users. Fig. 8 indicates that: fixed
price service is inefficient in the sense of static pricing; dif-
ferentiated charge is inefficient in the sense of over charging
(certain types of user would not accept this kind of service);
differentiating user service is a reasonable pricing com-
pared with the rest two. The profits and percentage analysis
can be further utilized in the future to evolve into an
advanced dynamic model with dynamic pricing factors,
from which the reactions of users can be revealed.

For objective 4), we compare the computation load for
direct computation with the proposed sublinear algorithm
under some different parameter settings specified in the
objective 1). Taking the repeating procedure in AlgoDist()
into account, the overall amount of data needed to be proc-
essed by the proposed sublinear algorithm is expressed as

2�m�m2 � 24� logð 1
d2
Þ � 8, while the direct computation

of entire data needs to process N � 365� 24� 8. In the
objective 3), N ¼ 100; 000, d2 ¼ 0:005, m2 ¼ 10; 15; 20; 25;
30; 35, and m varies as m ¼ 2;000; 3;000; 10;000; 15;000. We
render the numerical computation load in Table 2, where
the second column corresponds to the direct computation
and the 3rd to 6th columns correspond to the proposed
algorithm with some specific parameter settings of ðm;m2Þ.
As can be seen from the table, the proposed sublinear algo-
rithm greatly reduces the computation load at the price of
acceptable estimation error on the percentage a as indicated
in the objective 3). We also investigate the numerical com-
putation load by considering the minimum amount of data
required in the computation of proposed sublinear methods
with varying parameters and given fixed input data. Sup-
pose we have N ¼ 100; 000 users and therefore 7.008 GB
data as input, we vary the parameters �1, d1, d2 and fix
�2 ¼ 0:5 (�2 is problem-oriented and data-driven. In our
application, it is set according to the distance between the
two benchmark distributions) to see what is the minimum
amount of data involved in the computation of proposed
sublinear methods in order to guarantee performance. We
render the numerical computation load in Table 3 as a func-
tion of parameters �1, d1 and d2. As can be seen in Table 3,
the smaller error bounds and larger confidence impose
more computation load for our algorithms. Moreover, the
error bound parameter �1, which is highly related to the sub-
sampled number of usersm, is the major factor that influen-
ces the computation load, compared with the rest two
factors. Another interesting observation can be found in the
first row of Table 3 that even if the parameters change to
have higher confidence, i.e., smaller d2, the required data to

Fig. 8. Net profits from the differentiated user services versus net
profits from non-differentiated user services with varying proportion of
user types.

TABLE 2
Comparison of the Amount of Data (GB Unit) Needed to Be

Processed Between Direct Computation and Proposed Sublin-
ear Algorithm with Different Parameter Settings of ðm;m2Þ

m;m2 m ¼ N ¼ 105 ð2;000; 10Þ ð2;000; 20Þ ð2;000; 35Þ
Data(GB) 7.008 0.041 0.081 0.142

m;m2 ð3;000; 10Þ ð3;000; 20Þ ð3;000; 30Þ ð2;000; 35Þ
Data(GB) 0.061 0.122 0.183 0.214

m;m2 ð104; 10Þ ð104; 20Þ ð104; 30Þ ð104; 35Þ
Data(GB) 0.204 0.407 0.610 0.712

TABLE 3
Minimum Amount of Data (GB Unit) Involved in the Computation

of Proposed Sublinear Methods as a Function of (�1, d1, d2)

�1; d1; d2 (0.05,0.05,0.006) ð0:05; 0:05; 0:001Þ
Data(GB) 0.2402 0.0328

�1; d1; d2 ð0:05; 0:005; 0:001Þ ð0:01; 0:05; 0:001Þ
Data(GB) 0.0581 3.9732
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be processed is less. This is so because the smaller d2 indi-
cates higher confidence of the success of the classification
algorithm AlgoDist(). As a consequence, we no longer need
to sample as many users as before to guarantee the overall
algorithm, as indicated in Theorem 2. To further demon-
strate the computational efficiency of the proposed sublin-
ear methods, we also investigate the amount of data (GB)
that is reduced by employing our algorithms instead of
direct computation on the original 7.008 GB input data.
First, we fix the parameters �2 ¼ 0:5 and d2 ¼ 0:001, and plot
the reduced data in GB unit by varying the confidence
parameter d of overall algorithm (note that d ¼ d1 as dis-
cussed before). The results are shown as in Fig. 9 with dif-
ferent overall error bound �. We then fix the internal
parameters �2 ¼ 0:5 and d2 ¼ 0:001, and plot the reduced
data in GB unit by varying the error bound parameter � of
overall algorithm (note that � ¼ �1 as discussed before). The
results are shown as in Fig. 10 with different overall confi-
dence �. As can be seen from both Figs. 9 and 10, if the confi-
dence or the error bound is relaxed, our proposed method
can reduce larger amount of data involved in computation.
Another discover is that the error bound will influence the
reduced data more gently while the impact of the confi-
dence parameter saturates fast as d increases. This provides

a guidance in practice that if we aim to reduce the computa-
tion load, there is no need to relax the confidence too much.

7 CONCLUSION

In this paper, we investigated a differentiating user service
model for electricity usage. The model is based on an analy-
sis of a real smart metering data trace where we observed
that there exists various usage patterns among the power
energy customers. One key problem of a differentiating user
service model is that the model computation faces a huge
amount of data. There is a large number of customers, and
for each customer, his/her electricity usage pattern is repre-
sented by long period and multi-dimensional data. As a
result, the complexity for a differentiate service model is not
in the sense of computation, but in big data. We developed a
novel sublinear algorithm where we use a sublinear amount
of data and we guarantee a small error bounds and a given
confidence. We demonstrated by both theoretical proofs and
trace-driven evaluations that our algorithm can effectively
reduce the amount of data to be processed to a range that is
reasonable for the state-of-the-art computing capability.

APPENDIX A: PROOF OF LEMMA 1

Proof. Assume there are N1 users who are truly label 1
users, i.e., whose power usage distribution satisfies

jjpi � qjj � �2 and N2 users who are truly label 2 users

with jjpi � qjj > �2. The total N ¼ N1 þN2 users’ power

usage distributions fpig are then input to AlgoDistðÞ for
classification. Denote Pr½x 2 v1; x 2 c1� as the joint proba-
bility that user x is truly label 1 user (i.e., x 2 c1) and has
been correctly classified as label 1 (i.e., x 2 v1) by AlgoD-
ist(). Denote its power usage distribution as p. According
to Step 1 of Algorithm 2 and Theorem 1, we have

Pr½x 2 v1; x 2 c1� ¼ Pr½x 2 v1; jjp� qjj � �2=2�
þPr½x 2 v1; �2=2 < jjp� qjj � �2�;

(12)

Pr½x 2 v1; x 2 c1� � 1� d2

þPr½x 2 v1; �2=2 < jjp� qjj � �2�;
(13)

Pr½x 2 v1; x 2 c1� � 1� d2: (14)

Meanwhile, we have

Pr½x 2 v1; x 2 c2� � d2: (15)

Therefore, in the fLabelSet1g produced by Step 3 of
Algorithm 2, there are at least N1ð1� d2Þ correctly
labeled users and at mostN2d2 falsely labeled users. Like-
wise, considering Step 2 of Algorithm 2 and Theorem 1,
we have

Pr½x 2 v1; jjp� qjj � 2�2� � d2; (16)

Pr½x 2 v2; jjp� qjj � 2�2� � 1� d2; (17)

Pr½x 2 v2; jjp� qjj � 2�2�
þ Pr½x 2 v2; �2 � jjp� qjj � 2�2� � 1� d2;

(18)

Pr½x 2 v2; jjp� qjj � �2� � 1� d2; (19)

Fig. 9. Reduced data amount (DB) versus overall confidence parameter d.

Fig. 10. Reduced data amount (DB) versus overall error bound
parameter �.
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Pr½x 2 v2; x 2 c2� � 1� d2: (20)

Meanwhile, we have

Pr½x 2 v1; x 2 c1� � 1� d2; (21)

Pr½x 2 v2; x 2 c1� � d2: (22)

Therefore, in the fLabelSet2g produced by Step 4 of
Algorithm 2, there are at least N2ð1� d2Þ correctly
labeled users and at mostN1d2 falsely labeled users.

Now consider situation of overlapped labeled users in
Step 5 of Algorithm 2. Given that the value of d2 is usu-
ally very small, i.e., high confidence of the classification
results, the worst case of the overlapped labeled users
are: N1ð1� d2Þ correctly labeled-as-1 users in the
fLabelSet1g completely contain N1d2 falsely labeled-as-2
users in the fLabelSet2g; and N2ð1� d2Þ correctly
labeled-as-2 users in the fLabelSet2g completely contain
N2d2 falsely labeled-as-1 users in the fLabelSet1g. To
express this using the set notations, we define two sets
that are obtained in the fLabelSet1g produced by Step 3
of Algorithm 2

V11 ¼ fxjx 2 c1; x 2 v1g; (23)

V12 ¼ fxjx 2 c2; x 2 v1g: (24)

Then we have

fLabelSet1g ¼ V11 þV12; (25)

CardðV11Þ � N1ð1� d2Þ; (26)

CardðV12Þ � N2d2: (27)

Define two sets that are obtained in the fLabelSet2g
produced by Step 4 of Algorithm 2

V21 ¼ fxjx 2 c1; x 2 v2g; (28)

V22 ¼ fxjx 2 c2; x 2 v2g: (29)

Then, we have

fLabelSet2g ¼ V21 þV22; (30)

CardðV21Þ � N1d2; (31)

CardðV22Þ � N2ð1� d2Þ: (32)

Define

DV1 ¼ fxjx 2 V21; x 2 V11g; (33)

DV2 ¼ fxjx 2 V22; x 2 V12g: (34)

Define two sets that are obtained in the fLabelSet3g pro-
duced by Step 5 of Algorithm 2

V1 ¼ fxjx 2 c1; x 2 v1g; (35)

V2 ¼ fxjx 2 c2; x 2 v2g: (36)

Then, according to the Algorithm 2, we have

V1 ¼ V11 �V11

\
V21; (37)

V2 ¼ V22 �V22

\
V12: (38)

The worst case happens when V21 
 V11 and V12 
 V22,
and thus,

V11

\
V21 ¼ V21; (39)

V22

\
V12 ¼ V12: (40)

Therefore, we have

minCardðV1Þ ¼ minCardðV11 �V21Þ
¼ minCardðV11Þ � maxðV21Þ

¼ N1ð1� d2Þ�N1d2 ¼ N1ð1� 2d2Þ:
(41)

Similarly, we have

minCardðV2Þ ¼ N2ð1� 2d2Þ: (42)

Hence,

Pr½labeled as 1; true 1� � ð1� 2d2Þ; (43)

Pr½labeled as 2; true 2� � ð1� 2d2Þ: (44)

The worst case of correctly labeled users in the final
result fLabelSet3g are

minCardðV1Þ þminCardðV2Þ
¼ N1ð1� 2d2Þ þN2ð1� 2d2Þ:

(45)

In the worst case, the accuracy is

minCardðV1Þ þminCardðV2Þ
CardðfLabelSet3gÞ ¼ ðN1 þN2Þð1� 2d2Þ

N

¼ 1� 2d2: (46)

So the classification accuracy is at least 1� 2d2. tu
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