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Abstract—Real-time edge-cloud video analytics systems have
been widely used to support such applications as traffic counting,
surveillance, autonomous driving, Metaverse, etc. In such a
system, the edge and the cloud cooperatively conduct model
inference of the video frames captured by the camera of the edge,
using a trained DNN model of the video analytics application.
The edge conducts initial analytics on the video frames to a split
layer of the DNN model; and then sends intermediate results to
the cloud for follow-up analytics. In this paper, we show that an
attacker can perform reconstruction attacks to the intermediate
results; and private information of the raw video frames, e.g., a
plate number of a car, can be leaked.

In this paper, we present Preva, a new Privacy preserving
Real-time Edge-cloud Video Analytics system. The core idea of
Preva is to conduct image transformation on the video frames, as
preprocessing, prior to the video frames starting the edge-cloud
video analytics process, so that during edge-cloud video analytics,
the intermediate results will not leak private information under
attack. We design a policy-based video-frame transformation
scheme. Given the resource constraints of the edge, Preva ensures
high accuracy in the final video analytics results and minimizes
privacy leakage in any split layer. We present a formal privacy
analysis and we show that Preva can guarantee privacy leakage
under the reconstruction attacks of both outsider attackers
and insider attackers. We evaluate Preva through three video
analytics applications and we show that Preva outperforms
existing systems for 64.4% in analytics accuracy and 59.2% in
privacy leakage.

I. INTRODUCTION

Recently, video analytics systems have been widely devel-
oped to support such applications as traffic counting, surveil-
lance, autonomous driving, Metaverse, etc. According to di-
verse application requirements, video analytics systems can
be classified into edge-side video analytics systems [1], edge-
cloud video analytics systems [2], pre-stored video analytics
systems [3], etc. In this paper, we study edge-cloud video
analytics systems, where the edge and the cloud coopera-
tively conduct model inference on the video frames collected
by the camera of the edge, using the CNN model of the
video analytics application, e.g., a YOLO model trained for
pedestrian detection. The edge conducts initial analytics on
the video frames to a split layer of the CNN model and
sends the intermediate results of this split layer to the cloud
for follow-up analytics. Edge-cloud video analytics systems
allow workload offloading from the resource-constrained edge
devices to the cloud. They have been widely deployed in
the industry. For example, Microsoft Split-brain [4] supports
traffic counting using a CNN model MobileNet [5]. The

Microsoft Azure Stack Edge conducts analytics of the initial
layers of the MobileNet model, and the rest layers are analyzed
in the Microsoft Azure Cloud Server.

In an edge-cloud video analytics system, the intermediate
results may be hijacked during unreliable edge-cloud commu-
nication. In this paper, we show that an attacker can perform
reconstruction attack [6], a prominent attack on video analytics
currently, on such intermediate results. A reconstruction attack
can inverse the intermediate results back to their input status,
e.g., through an adversarial neural network decoder [7]. As
such, private information in the raw video frames, e.g., a plate
of a car, can be leaked.

Establishing trusted execution environment (TEE) [8] or
video frame encryption [9] is not viable in resource-
constrained edge-cloud systems. There are systems that add
noise to the intermediate results [10][11] or develop new
privacy-preserving DNN models for video analytics. We will
show that the former does not work well if the split layer
is in the lower/initial layers of the DNN model and the
latter has to give up well-established DNN models and lacks
backward compatibility. Another straightforward approach is
to directly protect private information, e.g., the plate of a car,
human faces. Existing computer vision technologies have been
developed to directly protect certain objects or attributes, by
replacing [12], blurring [13], etc. However, it requires the set
of sensitive objects to be priorly agreed [14]. In this paper,
we focus on the privacy preserving of general video analytics
applications. That is the whole video frame is considered
sensitive. Our privacy is related to attacks, i.e., the video frame
should not be leaked under reconstruction attacks.

In this paper, we propose to leverage image transforma-
tion technologies [15] to preprocess the video frames in
the edge, prior to the edge-cloud video analytics process.
Image transformation [9][16] have been developed for image
augmentation [17], style transform [18], etc. For example, one
can transform the human being in an image into a cartoon
figure [19]. In the computer vision community, image transfor-
mation has also been used to transform sensitive information.
Nevertheless, how to integrate such technologies into resource-
constrained edge-cloud video analytics systems, and how to
protect the split layer are challenging. Balancing the accuracy
of the video analytics results and the privacy leakage in a split
layer requires careful design.

In this paper, we develop Preva, a new privacy-preserving
edge-cloud video analytics system that can take the comput-



ing and communication resources into consideration and can
ensure high-accuracy video analytics as well as minimize the
privacy leakage under reconstruction attacks. Preva made two
important design choices:

First, we develop a new policy-based transformation scheme
for video frames. In a policy-based transformation scheme, an
image is transformed by a set of policy; a policy can be a
change of the color distribution from black to white, or an
inversion of the image polarization. We call the policy set
in our system the PrevaPolicy. Policy-based transformation
has much smaller resource requirements and becomes viable
for edge-cloud systems. When a video frame is transformed
by the PrevaPolicy; the subsequent edge-cloud video analytics
can output intermediate results that can sustain reconstruction
attacks. To generate PrevaPolicy, we design a new neural net-
work model PrevaNet, and a new adversary training method
to train the PrevaNet model. Finally, we develop a resource-
aware algorithm that given PrevaNet, a video frame, and the
resource constraints of an edge device, generates PrevaPolicy
for this frame that, after the transformation of this frame, the
final analytic results of this frame can maintain high accuracy
and the privacy leakage at the split layer can be minimized.

Second, generating a PrevaPolicy for each video frame
brings about non-trivial computing workloads. We observe
that adjacent video frames are similar in the sense that we
can generate one PrevaPolicy and reuse it for a number of
adjacent frames. To this end, we develop a new algorithm to
determine the frames that PrevaPolicy can be reused.

We formally analyze and show that Preva can guarantee
privacy leakage under reconstruction attacks. We analyze two
types of attackers: outsider attackers which can only access the
intermediate results and insider attackers which can pretend to
be an edge and thus access both the intermediate results and
the PrevaNet model. We show that as the privacy leakage of
the transformed video frame is minimized by PrevaPolicy, the
privacy leakage of the original video frame is guaranteed.

We evaluate Preva on three representative video analytics
applications, namely Face Classification [20], Video Objects
classification [21] and Driver Behavior Recognition [22]. We
compare three state-of-the-art video analytics systems and
show that Preva significantly outperforms existing systems
in both privacy leakage and analytics accuracy. Specifically,
Preva can increase video analytics accuracy by 25.4%-64.4%
and reduce privacy leakage by 10.3%-59.2%.

The contribution of the paper can be summarized as:
• We analyze the reconstruction attacks on edge-cloud

video analytics systems and the limitation of existing
schemes (Section II). We develop Preva, a new privacy-
preserving edge-cloud video system that can provide
high-accuracy video analytics and minimize privacy leak-
age (Section III).

• We develop a formal analysis of the privacy guarantee
of Preva under reconstruction attacks of both outsider
attackers and insider attackers (Section IV).

• We evaluate Preva with three video analytics applications,
and Preva outperforms state-of-the-art systems in both
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Fig. 1: Real-time edge-cloud video analytics system with
reconstruction attack.

analytics accuracy and privacy protection. (Section V).

II. BACKGROUND AND MOTIVATION

A. Background
A real-time edge-cloud video analytics system receives

videos from an edge camera and conducts video analytics
through a DNN model inference for real-time feedback,
e.g., traffic counting. Edge devices are usually resource-
constrained. Thus, an edge-cloud video analytics system of-
floads the video analytics workloads to the cloud. More
specifically, both the edge and the cloud have the DNN model
for inference. One such system is Microsoft Split-Brain [4]
as shown in Fig. 1. It conducts vehicle counting on a 720p
traffic camera in real-time, e.g., typically 30 frames per second.
In this system, they first apply a communication-computation
tradeoff algorithm to determine the split layer of the analytics
model, according to the input mobile device computation
resource and network bandwidth on the Execution Controller.
The Execution Controller partitions the analytics model into
edge and cloud models and sends them to Edge-side Analytics
Executor and Cloud-side Executor, respectively. In Edge-side
Analytics Executor, the input video frames are sent to the edge
model for inference and output the intermediate results. The
intermediate results are generally the feature maps sent to the
cloud for cloud-side analytics.

Reconstruction Attack. With the broad deployment of
video analytics applications in the edge-cloud video analytics
system, reconstruction attacks emerge. Reconstruction attacks
use a reconstruction model to reconstruct the original image.
Specifically, a reconstruction attack can take an intermediate
result of an NN model during inference as input and recon-
structs/recovers the raw image. Fig. 1 shows an example where
the image (i.e., a man’s face) is recovered from intermediate
results. Precisely, there are two operations of a reconstruction
attack. The attacker first trains a reconstruction DNN model
by minimizing the distance between the reconstructed and the
raw image. Then, the attacker hijacks the intermediate result
of an analytics model and takes it as input to reconstruct the
raw image with the trained reconstruction DNN model. There
are many reconstruction models, e.g., Linear-based [6], GAN-
based [23], Likelihood Maximization [24], etc. Reconstruction
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Fig. 2: Reconstructed images from model noise injection
methods.

models have different levels of reconstruction capability, which
is evaluated as the deviation between the reconstructed image
and the original image. The deviation is measured by certain
metrics, e.g., MSSIM [25], PSNR [26]. Many works have
shown that a reconstruction attack can achieve high attack
accuracy where the deviation metrics between the recovered
image and the original image is up to 96% [6].

B. Motivation

We conduct a reconstruction attack on edge-cloud systems.
The reconstruction model is a commonly used Auto-Encoder
as in [6]. We study how likely an attacker can reconstruct
a video frame from the intermediate results of the split
layer. We study a vanilla edge-cloud system without a pro-
tection mechanism and state-of-the-art systems, Shredder [27],
NoPeek [28]. Shredder applies a noise injection method. More
specifically, Shredder trains a noise distribution for a target
split layer; and adds such a noise layer into the CNN model
for model inference; so that the CNN model can produce
the intermediate results with the noise layer that can defend
against reconstruction attacks.

We adopt the edge-cloud video analytics system setup
as follows. An AWS DeepLens camera runs on the edge,
and the CNN model VGG-19 [29] trained with the Fairface
dataset [20] is applied in the system for video classification.
Typical multi-scale structural similarity metrics MSSIM [25],
PSNR [26] are utilized to measure the privacy leakage degree.
We perform a reconstruction attack on the 2nd (lower layers),
6th, 10th, and 15th (higher layers) layer of the VGG-19 model.

The performance of the reconstruction attack is shown in
Fig. 2. We see the vanilla edge-cloud system (No protection)
fails to protect the privacy of the input image in all attacked
layers, as the reconstructed images are at least 65% similar to
the original image. We also see the privacy leakage computed
by MSSIM of Shredder is 0.82, 0.83, 0.81, and 0.68 at
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Fig. 3: Policy-based transformation.

the 2nd, 6th, 10th, and 15th layer, respectively, when the
classification accuracy is about 87%. To achieve 0.67 average
privacy leakage, the classification accuracy of Shredder drops
to 47%. Similar results can be observed from NoPeek.

We see that Shredder is less effective in the lower layers of
the CNN model. This has been observed and stated in [30][28].
Intrinsically, the information in lower layers is more original
to the raw image; e.g., a lower layer contains face characters of
the raw image, whereas the information in a higher layer has
been embedded into analytics results, e.g., the recognition of
gender. To this end, the reconstruction attack becomes much
easier in lower layers.

C. Potential Approaches: Policy-based Image Transformation

In this paper, we study whether we can protect privacy in
an arbitrary layer. Our idea is to conduct a transformation to
the raw image and then conduct edge-cloud video analytics.
Such an approach intrinsically transforms the privacy-sensitive
features to privacy non-sensitive features, e.g., a human face
to a cartoon face, and thus is layer independent.

Image Transformation has been extensively explored in
the computer vision community. There are several image trans-
formation approaches, such as pixel-level transformation [9],
GAN-based transformation [16], and policy-based transforma-
tion [15]. The Pixel-level and GAN-based approaches train a
transformation CNN model that will be used in the inference
phase to transform a raw image into a transformed image that
can protect privacy. The policy-based approach trains a model
to generate a policy set that will be used in the inference phase
to transform a raw image into a transformed image that can
protect privacy.

The transformation CNN models of the pixel-level and
GAN-based approaches are used in data centers for raw
image transformation. They are complex. For example, the
CycleGAN model in [31] is 454.6GFLOPs to process an image
with 512x512 resolution.

The policy-based approach can be more practical to edge-
cloud video analytics, as a policy set instead of a CNN model
is used to transform the raw image into a transformed image
in the inference phase.

Policy-based Image Transformation is a two-step trans-
formation solution guided by transformation policies as shown
in Fig. 3. Specifically, a transformation policy is a set of basic
image operations with a certain length in order. The operations
are supported by Pillow Image Library [32], including rotate,
contrast, posterize, etc., with a magnitude value. There are two
steps in Policy-based transformation. First, it predicts a certain
length transformation policy by a neural network model based
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on extracted features of input images. Second, it performs
the image operations of the predicted transformation policy
onto the input images step-by-step. Since the prediction of the
transformation policy is a classification problem that selects an
appropriate policy from finite image operations, it requires a
much simpler neural network architecture than the direct trans-
formation methods, i.e., Pixel-based and GAN-based methods.
Furthermore, the computation cost of performing policy is
extraordinarily light and ignorable.

III. PREVA DESIGN

A. Overview

We first present the challenges and a solution overview
on integrating the policy-based image transformation into
resource-constrained edge-cloud video analytics systems to
achieve high analytics accuracy and minimize privacy leakage.
There are two challenges:

• Transformation of a video frame: As said, we need
a policy set, PrevaPolicy, to transform a video frame.
We need PrevaPolicy to be appropriate in the sense that
when it is used in frame transformation, its resource
requirements can be supported by edge devices. To gen-
erate PrevaPolicy, we develop an adaptive CNN model
structure (Section III-B) that the number of layers can
be elastically changed when it is used in the PrevaPolicy
generation. We call it the PrevaNet model. We develop
an adversarial model training method to train PrevaNet.
Finally, we develop a resource-aware algorithm, Pre-
vaPolicy Generation (PPGen), that given PrevaNet, a
video frame, and the resource constraints of an edge
device, generates PrevaPolicy for this frame that, when
performing a transformation on this frame, high accuracy
of the final analytic results can be maintained and privacy
leakage can be minimized.

• Transformation of a video stream: Generating a Pre-
vaPolicy for each frame in a video stream consumes
significant computing resources. Since adjacent frames
are similar, we can reuse PrevaPolicy. We develop an
algorithm, PrevaPolicy Reuse (PPReuse) (Section III-C),
to determine the frames in a video stream where the
PrevaPolicy can be reused.

Video analytics in Preva: As shown in Fig 4, When
Preva performs video analytics of a video stream, a frame
will first be processed by PPReuse. If a new PrevaPolicy
is needed, the frame will then be processed by PPGen to
generate a PrevaPolicy for this frame. This frame will then
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be transformed by the PrevaPolicy. Finally, this frame will
start edge-cloud video analytics, e.g., through a YOLOv3 [33]
model for traffic counting of this frame. We will show that
Preva can guarantee privacy (Section IV), and our evaluation
shows that Preva achieves high accuracy in various resource
settings (Section V).

Threat Model: We assume that the cloud is curious but
honest, and the potential attacker (cloud/third parties) is com-
putationally unbounded. For data privacy, the edge devices
locally process the raw video frames with the edge analytics
model before sending the intermediate result to the cloud for
further processing. Before attacking, the attacker can access
the video analytics model in advance, so that he can input its
own images into this analytics model to obtain intermediate
results, which can then be used to train a reconstruction model.
During attacking, the attacker is assumed to be able to hijack
the intermediate result of the target victim edge and recover
the raw video frames from the intermediate result with the
well-trained reconstruction DNN model mentioned above.

B. PrevaPolicy Generation for a Video Frame

There are two phases for PrevaPolicy generation. The first
phase is PrevaPolicy model training, and a CNN model is
designed and offline trained to output appropriate PrevaPolicy,
which can not only achieve low privacy leakage and high
analytics accuracy but also satisfy the latency requirement
of the video analytics task. We call this model the PrevaNet
Model. The second stage is PrevaPolicy model serving, given
the edge-side resource configurations, apply PrevaNet on a
video frame to generate a PrevaPolicy specifically for this
frame. In the following, we first introduce the structure design
of the PrevaNet model, then present its adversarial training
process, and finally demonstrate the workflow of the PrevaNet
model serving.

1) PrevaNet structure design: The transformation policy
generator is intrinsically a multi-class classifier that can choose
a proper PrevaPolicy for the input video frame. Since the gen-
erator executes in edges with heterogeneous and constrained
computation resources, we need to design a classification CNN
model that can dynamically adjust the number of executed
layers of the generator in the inference phase to achieve the
latency requirement.

There are several adaptive DNN models in literature de-
signed for resource-constrained scenarios. For example, the
iBranchy model [34], the FlexDNN model [35], and the
BranchyNet model [36]. We choose to use the BranchyNet
model as our base structure because it enables selective exe-



cution of DNN via proper early-exit control. To dynamically
fit the heterogeneous computation resource of different edges,
we develop the PrevaNet model by revising the BranchyNet
model with more fine-grained exit points.

The architecture of the PrevaNet is shown in Fig. 5. The first
three layers of PrevaNet are a convolution layer, a batch norm
layer, and a max-pooling layer. Then, a sequence of 15 Res-
Blocks is followed. Each ResBlock contains two convolution
layers and a ReLu activation layer. Six exit points are added to
the output of the 4th, 6th, 8th, 10th, 12th, and 15th ResBlock,
respectively. Each exit point consists of 2 full-connected layers
and outputs the logits of class probabilities with the softmax
activation layer. With this architecture, we can achieve elastic
PrevaPolicy generation, where edges with fewer computation
resources can finish the PrevaPolicy generation at the front
exit point, and edges with more computation resources can
generate the PrevaPolicy with more layers and complete the
generation at the last exit point.

2) PrevaNet adversarial training: We develop an adversar-
ial training method to train PrevaNet in the cloud. The goal
of the PrevaNet is to search for the optimal policy from the
transformation policy set for each input frame. Such a policy
should satisfy two requirements: i) to guarantee analytics
accuracy that the transformed video frame should maintain
similar analytics accuracy as the original video frame, ii)
to minimize privacy leakage that the attacker is not able to
reconstruct the original video frame from the intermediate
result of the transformed video frame.

Analytics accuracy guarantee: We first define accuracy
score to measure whether the candidate transformation policy
can preserve the analytics accuracy. We expect to have an
efficient and accurate criterion to judge the accuracy impact
of each transformation policy on the analytics model. Inspired
by the technique proposed in [15] that can evaluate the
correlations between the local linear map and the neural
network performance without training, we adopt this technique
to calculate the accuracy score of the transformation policy.
Specifically, we prepare a mini-batch of data samples {x}Ni=1

and transform it to {x̂}Ni=1 with the candidate transformation
policy T . We first calculate the Gradient Jacobian matrix as
below:

J =
(

∂f
∂x̂1

, ∂f
∂x̂2

, · · · ∂f
∂x̂N

)⊤
. (1)

Then we compute its correlation matrix:

(ΣJ)i,j =
(CJ)i,j√

(CJ)i,i · (CJ)j,j

, (2)

where CJ = (J − 1
N

∑N
n=1 Ji,n)(J − 1

N

∑N
n=1 Ji,n)

⊤. Let
σJ,1 ≤ · · · ≤ σJ,N be the N eigenvalues of ΣJ . Then our
accuracy score of transformation policy T is given by

Sacc(T ) =
1

N

N−1∑
i=0

log (σJ,i + ϵ) + (σJ,i + ϵ)
−1

, (3)
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Fig. 6: The architecture of the adversary reconstructor.

where ϵ is set as 10−5 for numerical stability. With this
accuracy score, we can quickly filter out policies that incur
unacceptable performance degradation to the analytics model.

Transformation Policy Set. We consider the transformation
policy library adopted by AutoAugment [17] which con-
tains 50 various image transformation functions, including
rotation, shift, inversion, contrast, posterization, etc. Certain
transformation policies introduce large-scale perturbations to
the input video frame, which can impair analytics accuracy.
For example, when the analytics task is objection detection,
the model can get accurate results when applying a rotation
transformation policy on the input image. To satisfy the first re-
quirement of PrevaPolicy, we search the transformation policy
library and filter out unacceptable policies which significantly
impair the analytics accuracy. Specifically, we calculate the
accuracy score of each policy with Equation 3, and the policy
is removed from the set if the value is less than the threshold
γ; otherwise, the policy remains in the set. Therefore, we can
obtain a transformation policy set in which all policies can
guarantee the accuracy of the analytics task.

Privacy leakage minimization: Our goal is to choose the
PrevaPolicy that can minimize the accuracy of the adversary
reconstruction model. The attacker can apply any neural
network architecture in the adversary reconstruction model
design. We adopt the most powerful reconstructor [6] as
the adversary reconstructor, and the architecture is shown
in Fig. 6 which is composed of several convolution layers.
The adversary reconstruction model is trained to optimize
the quality of the reconstructed video frame x̂ as close as
the original video frame x.We leverage Multi-scale Structural
Similarity (MSSIM) [25] to evaluate the performance of the
reconstruction model, which can be expressed as:

LRec = 1−MSSIM(x̂, x). (4)

The MSSIM value ranges between 0 and 1. The higher
the MSSIM value is, the better quality of the reconstructed
video frame. Consequently, the attacker aims to solve the
optimization problem below:

θRec = argmin
θRec

LRec, (5)

where θRec is the parameter of the adversary reconstruction
model. On the contrary, to defend against the reconstruction
attack, the PrevaNet should output the PrevaPolicy that can
minimize the privacy leakage of the transformed video frame
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xT . The adversary reconstruction model is trained to make
each reconstructed frame x̂ similar to the transformed frame
xT but different from the original frame x. Therefore, the loss
function of PrevaNet can be expressed as below:

LGen = MSSIM(x, x̂)−MSSIM(xT , x̂). (6)

Since the intermediate result of each split layer is different, the
attacker needs to train different reconstructors θkRec for each
split layer k. Suppose there are M split layers, to minimize
the privacy leakage of all the split layers, the PrevaNet can be
trained as:

θGen = argmin
θGen

M∑
k=1

(MSSIM(x, x̂k)−MSSIM(xT , x̂k)),

(7)
where θGen is the parameter of the PrevaNet.

The PrevaNet is trained offline in the cloud with the public
dataset. As shown in Fig. 7, the adversarial training includes
two stages. In the first stage, we optimize the adversary recon-
struction model by simulating an attacker, and the parameters
of PrevaNet are fixed. In the second stage, we train the
PrevaNet to defend against the reconstruction attacker while
the parameters of the adversary reconstructor are unchanged.
We iteratively performed these two stages until PrevaNet
converged.

3) PrevaNet model serving: The trained PrevaNet is dis-
tributed to the edge to serve for PrevaPolicy generation.
Since the computation resources of each edge are constrained,
we need to decide the exit point of PrevaNet to maximize
the accuracy of the generated PrevaPolicy under the latency
constraint of the edge. We first model the accuracy of the
PrevaNet in serving and then introduce the latency constraint
of the edge. Finally, we formulate the PrevaNet exit point
selection problem and design an algorithm to solve it.

PrevaNet accuracy in serving. The accuracy of PrevaNet
in serving is determined by the number of executed layers. In
PrevaNet, each exit points correspond to a different number
of executed layers, and thus leads to different accuracy of the
output generated PrevaPolicy. Suppose the parameters of the
trained PrevaNet is θ∗Gen, and it has P exit points. For the
exit point p, the accuracy of the output PrevaPolicy is defined
as up. Let w = {w1, . . . , wP } be the indicator of whether
the exit point is selected, and the exit point p is chosen to

output the PrevaPolicy when wp = 1, otherwise wp = 0.
Since only one exit point can output the PrevaPolicy, we have∑P

p=1 wp = 1. Therefore, the PrevaNet accuracy Uedge in
serving can be expressed as below:

Uedge =

P∑
p=1

wpup. (8)

PrevaNet latency constraint in edge. When serving on
the edge, the execution of PrevaPolicy generation leads to
the latency of PrevaNet. The execution time of PrevaPolicy
generation is determined by the number of executed layers
of the PrevaNet, which corresponds to the exit points of the
PrevaNet. Suppose the computation resource of the edge is
C GFLOPS, and the required computation resource for exit
point p is cp GFLOP. Thus, the execution time of PrevaNet
for exit point p is tp =

cp
C , and the PrevaNet latency TGen can

be expressed as in below:

TGen =
P∑

p=1

wptp. (9)

Since the video analytics task has latency requirements, the
PrevaNet latency should satisfy this requirement. Suppose the
upper bound of the PrevaNet latency is Tmax, we have

TGen ≤ Tmax. (10)

Problem formulation. Given the PrevaNet model θ∗Gen,
video frame I, and edge computation resource C, we need
to determine exit point w to maximize the accuracy Uedge of
PrevaNet in serving under the latency constraint (10). As such,
our PrevaNet exit point selection problem is formulated as
in below:

max
w

Uedge

s.t. TGen ≤ Tmax,
P∑

p=1

wp = 1,

wp ∈ {0, 1}, ∀p = 1, . . . , P.

(11)

To solve this problem, we design a simple greedy algorithm
as shown in Algorithm 1. The main idea is to search all
the possible solutions and choose the solution which has the
maximum PrevaNet accuracy. Since the searching space is
relatively small, we can find the optimal solution in polynomial
time. Once the exit point of PrevaNet in the edge is deter-
mined, we feed the video frame to the PrevaNet and obtain
the PrevaPolicy.

C. Enhancing PrevaPolicy Generation for a Video Stream

PrevaPolicy generation for each frame consumes non-trivial
computation resources. For a video stream, we attempt to
further reduce the PrevaPolicy generation latency by reusing
the generated PrevaPolicy. To achieve this, we develop an
algorithm called PPReuse to determine the frames in a video
stream where the PrevaPolicy can be reused.



Algorithm 1: Resource-aware PrevaPolicy Generation
(PPGen)

Input: θ∗Gen, I, C, Tmax.
Output: w:output branch indicator of PrevaNet, OPreva:

PrevaPolicy of video frame I.
1 w← {1, 0, 0, . . . , 0}, Uedge ← Uedge(w, θ∗Gen);
2 for p = 1, 2, . . . , P do
3 wp = 1;
4 U ← Uedge(w, θ∗Gen), T ← TGen(w, C);
5 if Uedge < U and T <= Tmax then
6 Uedge ← U,w← w;
7 else
8 wp = 0;

9 OPreva ← PrevaNet(I, θ∗Gen,w);
10 Output w, OPreva;

In a video stream, the adjacent video frames are similar.
Intuitively, a generated PrevaPolicy can be reused until a large
frame difference is detected. To achieve this, we need to detect
each frame with a frame difference metric. A representative
list of image features has been used by the CV community
to detect frame differences, and these features can be grouped
into low-level features and high-level features in terms of the
amount of computation required for extraction [2]. Low-level
features such as pixel, edge or area differences can be observed
directly from raw images. In contrast, high-level features, such
as Scale-Invariant Feature Transform (SIFT) and Speeded Up
Robust Features (SURF), require multiple computation steps
on raw video values for more semantic information extraction.
Since the computation resource of the edge is restricted, we
adopt low-level features to measure the frame difference. Edge
and Area features are two commonly used low-level features
in computer vision. Suppose the images in time t and t −
1 are It and It−1,respectively. Edge feature captures frame
differences diffE in the contours of objects in a frame and
can be calculated as below:

diffE(It, It−1) = Edge(It)− Edge(It−1), (12)

where Edge is edge function. Area features capture frame
differences diffA in areas, and can be calculated as below:

diffA(It, It−1) = Area(It)−Area(It−1), (13)

where Area is the area function. Both features have their own
advantages. The edge feature shows an excellent response to
moving objects, and even minor movement of objects can lead
to a high difference value. Area feature performs better for
detecting new arriving objects, and a new item entering the
video frames signifies a new region of motion, resulting in a
significant difference value.

We adopt edge and area features in Preva to detect frame
changes. Specifically, we combine both features and define the
frame changes Diff as follows:

Diff(It, It−1) = α · diffE(It, It−1) + β · diffA(It, It−1),
(14)

where α and β are two scaling factors. With the defined frame
difference metric, each frame first calculates the difference
value with the latest frame. The PrevaPolicy is required to
generate for the current frame if the difference value is greater

Algorithm 2: PrevaPolicy Reuse (PPReuse)
Input: Predefined threshold α, β,Γ. At time t, Input Raw Frame It.
Output: Protected Frame Io

1 for t = 1, 2, 3, ..., T do
2 I ← downsampling(It);
3 I ← NTSC(I);
4 Obtain Edge difference: diffE = Edge diff(I, Isaved);
5 Obtain Area difference: diffA = Area diff(I, Isaved);
6 if α · diffE + β · diffA > Γ then
7 Request new PrevaPolicy: Pt ←PrevaNet(It);
8 for all operation p ∈ Pt do
9 Apply operation It = p(It);

10 Update Isaved = I, Psaved = Pt;
11 else
12 for all operation p ∈ Psaved do
13 Apply operation It = p(It);

14 Output Io = It;

than a threshold Γ. The threshold Γ is particularly predefined
based on the finetuning adjusting during our experiments.

The PPReuse algorithm is summarized in Algorithm 2. We
first downsample the shape of the frame to 128 × 128 to reduce
the execution time and transfer the RGB-color image into
grayscale with the NTSC formula [37]. Then, we compute
the frame difference with the saved frame. If the difference
value exceeds the threshold, a new PrevaPolicy is required to
generate and apply to the current frame. The current frame
and the new PrevaPolicy are saved for processing the next
frame. Otherwise, the current frame will be transformed with
the saved PrevaPolicy.

IV. PRIVACY ANALYSIS

We now analyze the privacy leakage of the Preva system.
We first formally model the system, privacy leakage, and
policy-based transformation. We then analyze two types of
adversaries: (1) one that can only hijack intermediate results
without knowledge of whether the edge device has conducted
protection mechanisms, e.g., our transformation scheme; we
call it an outsider attacker; and (2) one that not only hijacks
intermediate results but also accesses PrevaNet. It is possible
since the adversary can pretend to be an edge device and
participate in the Preva system; thus, it can obtain the PrevaNet
while trying to hijack the targeted victim edge device, and we
call it an insider attacker.

A. Preva Modeling

k-split Video Analytics Neural Network Model: Con-
sider a neural network-based video analytics model f(θ∗)
with trained parameters θ∗ consists of m layers and θ∗ =
(θ∗(1), θ∗(2), . . . , θ∗(m)). Suppose f(·) is a composition of m
functions, i.e. f = f1◦f2◦. . .◦fm , where, fi represents the i-
th layer and the corresponding parameter is θ∗(i). To reach the
latency requirement of an edge-cloud video analytics system,
the analytics model is split into two parts from k-th layer. We
define the k-split video analytics model as f = fk

L◦fk
R, where

fk
L = f1◦. . .◦fk executes in the edge and fk

R = fk+1◦. . .◦fm
executes in the cloud, respectively, and the output of fk

L is sent
from the edge to the cloud for the following execution.
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Fig. 8: Visual comparison of transformed and reconstructed
frame examples by Preva, outsider and insider attackers.

Privacy Leakage: The privacy information of the edge
input can be inferred through being reconstruction attacked.
Given the output of fk

L as z = fk
L(x), the attacker attempts

to discover an input x̂, such that the corresponding output of
fk
L is very close to z. This can be formulated as the following

optimization problem:

x̂ = argmin
x̂

∥fk
L(x̂)− z∥, (15)

where ∥ · ∥ is a norm for measuring the distance between
the two outputs. We define the privacy leakage Pk of a k-
split neural network as the similarity between the reconstructed
input x̂ and the original input x, that is,

Pk = MSSIM(x̂, x) (16)

where MSSIM(·) is the Multi-scale Structural Similarity
metric for images. The higher the similarity, the higher the
privacy leakage.

Policy-based Transformation: A policy T is composed by
a set of n transformation functions T = t1 ◦ t2 ◦ . . . ◦ tn.
Each input x can be transformed to xT = T (x) with a
transformation policy T . We intend to transform the input
before feeding it into the analytics model, and the output
of fk

L is changed from z = fk
L(x) to zT = fk

L(T (x)).
This leads to not only a change to the privacy leakage as
P̂k = SSIM(x̂T , x), where x̂T is reconstructed based on zT ,
but also a change to the accuracy of the analytics result as
L̂ = L(f(x̂T )), where L is the loss function of the analytics
model.

B. Privacy Analysis

The privacy leakage mainly depends on the similarity be-
tween the reconstructed frame and the original frame, and the
reconstructed frame is determined by the attacker model. We
consider two types of attackers: the outsider attacker and the
insider attacker. Specifically, we assume that both attackers
have unlimited computing resources and can fully access the
intermediate results of the target edge device. Moreover, the
insider attacker can buy (or collude with) one edge and then
own a trained PrevaNet, which can be leveraged in its attacks.
We analyze the privacy guarantee of Preva with these two
attackers in the following.

1) Outsider Attacker: The attacker reconstructs the input
of the target edge with the intermediate results of this edge.
Analysis. In this attack, the attacker ignores the existence
of the transformation policy generator and attempts to train
a reconstruction model with the intermediate results of the
target edge directly. Let θa be the reconstruction model of the
attacker, and it can be derived by the following optimization
problem:

θa = argmin
θa

∥h(zT , θa)− x′∥, (17)

where x′ ∈ Dtrain is the training sample, and h(·, θ) is the
reconstruction model. When the attacker is strong enough(i.e.,
with a strong neural architecture and enough training data), the
reconstructed input h(zT , θa) can approximate the transformed
input x̂ with high confidence, and the upper bound on the
privacy leakage in this attack is in below:

P̂k ≤ MSSIM(xT , x). (18)

This implies that the maximum privacy leakage is determined
by the difference between the transformed and original frames.
Since the transformation policy T is generated to minimize the
privacy leakage of the original input, the attacker cannot infer
the sensitive information from the transformed input and the
privacy of the target edge is guaranteed.

2) Insider Attack: The attacker reconstructs the input of the
target edge with the intermediate results of this edge and the
specific PrevaNet of other colluded edges.
Analysis. In this attack, the attacker can leverage the specific
PrevaNet model g(·, θc) of the concluded edge and train a
reconstruction model θa by minimizing the distance between
the reconstructed input and original input with the following
optimization problem:

θa = argmin
θa

∥g−1(h(zT , θa), θc)− x′∥, (19)

where g−1(·, θc) is the reverse of the PrevaNet in the con-
cluded edge. Similarly, with enough computing resources and
strong neural architecture, the attacker can reconstruct the
original input transformed by g(·, θc) with high confidence,
and the upper bound on the privacy leakage in this attack is
in below:

P̂k ≤ MSSIM(g−1(x, θc), x). (20)

This implies that the maximum privacy leakage is determined
by the difference between the PrevaNet of the concluded edge
and the target edge. Since the PrevaNet in serving varies as the
heterogeneous resources of different edges, the attacker cannot
infer the sensitive information of the input in the target victim
edge with a different PrevaNet model and the privacy of the
target edge is also guaranteed.

3) Experiments: We implement these two attackers to
verify our analysis. The video analytics model is a Mo-
bileNetv3 [5] for the driver behavior recognition, and the test
video frames are from the Statefarm [22], a Driver Behavior
Recognition Video dataset. The outsider attacker is trained
with a small number of input and intermediate result pairs ob-
tained through the edge analytics model. The insider attacker is



TABLE I: The Application Specifications.

Application Facial
Classification

Video Object
Classification

Driver Behavior
Recognition

Analytics Model ResNet50 [38] VGG-19 [29] MobileNetv3 [5]
Frames Resolution 224p 720p 1080p

Frame Size 4.33KB 28.5KB 42.5KB
Delay Requirement 100ms 40ms 33.33ms

Frame Rate 10FPS 25FPS 30FPS
Dataset Fairface [20] ILSVRC2015 [21] StateFarm [22]

trained with the PrevaPolicy generated by the PrevaNet and the
training pairs of the outsider attacker. Both attackers recover
the raw input frames from the intermediate results of the 4th
layer of MobileNetv3, and the results are shown in Fig. 8. The
original column is the raw video frame, and the Preva column
shows the transformed video frame based on the PrevaPolicy.
Outsider attacker and insider attacker columns present the
reconstructed video frames. We can see both attackers cannot
successfully reconstruct the raw video frames, and the privacy
of the raw video frames is well protected.

V. EVALUATION

A. Experimental Setup

We evaluate Preva on an edge-cloud simulation environment
we build. For edge devices, we use Amazon AWS DeepLens,
a widely used smart camera alongside an Intel Atom CPU
with 8GB memory running Ubuntu OS-16.04 LTS. For the
cloud, we use a workstation server with an Nvidia RTX
3090 powerful GPU and an AMD Ryzen 9 5900X CPU
running on Ubuntu 18.04 LTS. The edge devices and the
cloud communicate through a wired network cable, and the
bandwidth is controllable by a python script.
Applications and datasets.We use three representative video
analytics applications to evaluate Preva: 1) Facial Classifica-
tion (FC) which predicts the gender of humans from images
of Fairface [20] dataset, 2) Video Object Classification (VOC)
which predicts the categories of objects in ILSVRC2015 VID
video dataset [21], and 3) Driver Behavior Recognition (DBR)
which recognizes the behavior of driver from Statefarm [22]
Driver Behavior recognition video dataset. Detailed specifica-
tions of each video analytics application are shown in Table I.
Baselines. We compare Preva with three state-of-the-art edge-
cloud analytics systems, which are open-source and widely
used as benchmarks. In addition, we also implement a no-
protection setup named Vanilla to serve as the lower bound of
privacy protection performance.
• Vanilla (No-Protection): It is a non-privacy-preserving

edge-cloud video analytics system developed on Microsoft
Rocket System with a greedy algorithm to select the split layer
based on the bandwidth restriction.
• Deep Private-Feature Extraction (DPFE) [11] : The

privacy protection mechanism of DPFE is to train a private-
feature extractor by modifying the analytics model topology
and re-training all the model parameters.
• Arden [10]: A lightweight privacy-preserving mechanism

consisting of arbitrary data nullification and random noise
addition is introduced in Arden to achieve differential privacy
of edge-cloud video analytics system.

• Shredder [27]: It learns additive noise distributions that
significantly reduce the information content of communicated
data while maintaining the inference accuracy to protect the
privacy of the edge-cloud video analytics system.
Evaluation Metrics. We evaluate the performance of Preva
and baselines from three aspects: privacy leakage, analytics
utility, and latency. To assist the measurement, we choose the
following three metrics:
• Privacy Leakage Metric: Our system takes a certain

reconstruction model as an input. Therefore, in our evaluation,
we take the state-of-the-art GAN-based model GMI as our
system input, as presented in [23]. It inverts the intermediate
results to the input frame for each application. Multi-scale
Structural Similarity (MSSIM) [25] is adopted to quantify the
privacy leakage between the reconstructed frame and raw input
frame. Specifically, it conducts multiple scales through mul-
tiple steps of sub-sampling. It has been shown to outperform
Structural Similarity (SSIM) on the different subjective frames,
especially video datasets [39]. The MSSIM between frame x
and y is computed as follows.

MSSIM(x, y) = [Lm(x, y)]αM ·
∏M

j=1[Cj(x, y)]
βj · [Sj(x, y)]

γj (21)

where M is the time of down-sampling resolution, i.e., j = 1
represents the original inputs. L(x, y), C(x, y), S(x, y) are the
Luminance, Contrast and Structure similarity between frame
x and y, respectively.
We also adopt another common metric for deviation between
frames, peak signal-to-noise ratio (PSNR) [26], to quantify
the privacy leakage between the reconstructed frame and raw
input frame. The PSNR between frame x and y is computed
as follows.

PSNR(x, y) = 20 · log10(MAX)− 10 · log10(MSE) (22)

where MAX is the maximum possible pixel value of the
frame, i.e., 255, and MSE, mean square error, measures the
average numerical difference between pixels from x and y.
The reconstructors can achieve an average MSSIM of about
0.94 to attack the vanilla analytics model.
• Analytics Utility Metric: We utilize different metrics to

measure the utility of different analytics applications. For
Application FC, the utility metric is the average accuracy of
gender predictions from humans faces frames, computed as
g
t%, where s is the number of correct prediction gender and
t is the total number of validation datasets. For Application
VOC, we choose average top-5 accuracy as the utility metric,
which means any of the analytics model’s top-5 highest proba-
bility prediction match with the expected answer is considered
as a correct prediction. We compute it as l

t%, where s is the
number of correct predictions and t is the total number of
validation datasets. For Application DBR, the utility metric is
considered as the proportion of correctly predicted categories
among all possible drivers’ behaviors, computed as b

t%, where
s is the number of correct predictions and t is the total number
of drivers behaviors.
• Latency Miss Rate: Since our system takes bandwidth as an

input factor, it is deployed on top of a network with bandwidth,
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Fig. 9: Comparison of the privacy leakage in different privacy protection systems when the video analytics model of each
application is split at different layers.
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(f) Application DBR measured by PSNR

Fig. 10: Comparison of the tradeoff between privacy and utility in different privacy protection systems.

i.e., {100K,500K,1M,5M}Bps. In practice, however, a network
has no hard guarantee on its bandwidth. The bandwidth can
occasionally be smaller. Thus, latency miss rates (LMR) can
occur. It is typical to use LMR as a metric to evaluate how
significant the designed systems are. For example, ACCM-
PEG [40], AWStream [41] using real-world bandwidth dataset
with bandwidth dynamics. We quantify the latency miss rate
by the percentage of the video analytics tasks that do not meet
the latency requirement of a video analytics application with
respect to the total video analytics tasks.
PreveNet Training specifications. We use Adam optimizer
with an initial learning rate of 0.001 and exponential decay
for PrevaNet training. The training-validation division rates in
datasets are 85%-15%, 85%-15%, and 80%-20% for FC, VOC
and DBR, respectively, and the training batch size is 512.

B. Overall Performance

1) Improvement of Privacy Protection: For Preva and base-
lines, we evaluate the privacy leakage from different split
positions of a video analytics model in each application. The
experimental results are shown in Fig. 9. Since the number of
layers in different analytics models is various, we normalize
split positions to the relative position of an analytics model,
i.e., split position 50% is the position of the middle layer of a
model. For Vanilla, the privacy leakage is very high when split
in the front 75% layers and naturally decreased when split in

the last 25% layers. Therefore, we focus on the privacy leakage
of different baselines when split in the front 75% layers of the
analytics model. For Application FC, as shown in Fig. 9(a), we
observe that Preva outperforms baselines, especially when split
in the front 12.5% layers, and the privacy leakage is reduced by
about 60.3%, 40.3%, 29.4%, and 26.2% compared to Vanilla,
DPFE, Arden, and Shredder, respectively. Similar results can
be found in the other two applications, as shown in Fig. 9(b)
and Fig. 9(c). Remarkably, when split at the front 12.5%
layers, Preva outperforms baselines, with the privacy leakage
reduced up to 11.03% in application VOC and up to 32%
in application DBR. Therefore, Preva improves the privacy
protection performance against the reconstruction attack in all
split layers. The underlying reason is that Preva transforms
the input frames before performing the video analytics task,
making it difficult for the attacker to reverse the intermediate
result of the transformed frames to the original raw frames.

2) Improvement of Privacy and Utility Tradeoff: The over-
all analytics accuracy and privacy leakage in different applica-
tions under different protection systems are shown in Fig. 10.
The privacy leakage is counted on average when the analytics
model is split at all layers. For application FC as shown in
Fig. 10(a), the average accuracy of Vanilla is about 95.5% with
0.9 MSSIM privacy leakage. DPFE and Arden achieve 51.7%
and 55.3% accuracy with 0.76 and 0.71 MSSIM, respectively.
Shredder achieves a lower privacy leakage with about 0.43
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Fig. 11: Comparison of the latency miss rate in different privacy protection systems under various bandwidth conditions.
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Fig. 12: The component analysis for Adversarial Training
(AT) and Transformation Policy Set Selection (TPPS).
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Fig. 13: The component analysis for PrevaNet Exit Point
Selection.

MSSIM, but it suffers a high degrading accuracy of about
65.5%. Preva outperforms DPFE, Arden, and Shredder, with
the average analytics accuracy improved 43.9%, 40% and
29.0%, respectively, and the privacy leakage reduced 59.2%,
56.3%, and 27.9%, respectively. Compared to Vanilla, Preva
sacrifices 3.4% of average accuracy but reduces 65.6% of
privacy leakage. Similar results also shown in Fig. 10(b)
and Fig. 10(c) for application VOC and DBR. Specifically,
Preva outperforms baselines with an improvement of average
analytics accuracy up to 64.4% in VOC and 39.1% in DBR,
and with a reduction of privacy leakage up to 50.7% in VOC
and 55.9% in DBR. We also measure the privacy leakage
by PSNR, and observe similar privacy leakage reduction and
analytics accuracy improvement to that by MSSIM as shown in
Fig. 10(d)-(f). Specifically, Preva outperforms baselines with
a reduction of privacy leakage up to 46.42% in FC, 43.9%
in VOC and 49.7% in DBR, respectively. All the previous
results prove that Preva not only has better privacy protection
performance but also guarantees analytics accuracy in an
acceptable range. The main reason is that Preva transforms
the input frame with PrevaPolicy, which minimizes privacy
leakage in all split layers and guarantees analytics accuracy.

3) Improvement of Latency Miss Rate: Since latency is an
essential requirement for edge-cloud video analytics systems,
we measure the latency miss rate of a video stream in Preva
and baseline privacy protection systems. This evaluation is
performed under 4 different network bandwidths, ranging from
100KBps to 5MBps, and the results are shown in Fig. 11.
When the maximum bandwidth is 100KBps, for application
FC, all the privacy protection systems, including Preva, have
highly similarly latency miss rates at about 76.5%-82.5%.
However, Preva outperforms the baseline systems in appli-
cation VOC and DBR, and the latency miss rate is reduced
by about 63.1% and 96.6%, respectively. A similar result is
observed when the bandwidth is 500KBps bandwidth. The
underlying reason is that the dataset of application FC is

an image dataset, and the similarity of adjacent frames is
low; thus, Preva can not reuse the generated PrevaPolicy
to improve the efficiency, while application VOC and DBR
analyze a video stream dataset and the adjacent frames can
reuse the generated PrevaPolicy to reduce the latency miss
rate. When the bandwidth is increased more than 1MBps,
Preva outperforms all baselines in these three applications,
with a reduction of latency miss rate in about 36.4%, 36.4%,
and 81.1% for application FC, VOC, and DBR, respectively.
Particularly, when the bandwidth reached 5MBps, Preva out-
performs all systems with a latency miss rate reduction up to
95% in all applications. These results mainly benefit from the
PrevaNet design that the privacy protection of all split layers
is guaranteed, and Preva can flexibly choose the split layer to
reduce latency based on the edge resources.

C. Component Analysis Study

In this section, we explore the impact of the internal compo-
nents of Preva for a better understanding of their contributions.

1) Impact of PrevaNet Training: There are two components
to obtain the PrevaNet: Transformation Policy Set Selection
(TPPS) and Adversarial Training design (AT). To take a
closer look at the contribution of each component, we first
implemented two breakdown versions of Preva: 1)NO-TPPS
is a sub-version of Preva without selecting the transformation
policies by accuracy score defined in Equation (3), and it
randomly selects several policies from the transformation
policy library [17]. 2)NO-AT is a sub-version of Preva without
adversarial training. The adversary reconstruction model is
static and trained only based on the intermediate results pairs
obtained from Vanilla. Fig. 12 shows the results of average
analytics accuracy and privacy leakage with different protec-
tion systems. For the NO-TPPS system, the analytics accuracy
decreases by about 21.3%, and the privacy leakage increases
by at least 12.9% compared to Preva. It leads to the fact
that TPPS can significantly improve the analytics accuracy of
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Fig. 15: The component analysis for different image transformation approaches.

Preva while reducing privacy leakage. The underlying reason
is that the TPPS component filters out the policies that can
vastly reduce the analytics accuracy. For NO-AT system, it
presents a similar analytics accuracy and significantly higher
privacy leakage compared to Preva. Specifically, in application
FC, both NO-AT and Preva achieve about 91.7% analytics
accuracy, while the privacy leakage of NO-AT increased by
at least 66.7% compared to Preva. Therefore, Adversarial
Training plays a vital role in the privacy protection of Preva.

2) Impact of PrevaNet Exit Point Selection: We design an
experiment to investigate the influence of exiting PrevaNet at
different exit points. For example, as shown in Fig. 5, there
are 6 available exit points. We compare the average analytics
accuracy and privacy leakage MSSIM on applications FC,
VOC and DBR. It can be seen from Fig. 13(a) that, in FC,
the accuracy is slightly improving from 85.4%-95.9% with the
increasing execution layers of analytics models. The privacy
leakage is floating in a small range as the findings in Fig. 13(b)
from 0.28-0.33. We also observe similar results in VOC and
DBR. These observations reveal that the reduction of execution
layers will degrade the performance of the PrevaNet, but the
influence is very small and can be accepted.

3) Impact of PrevaPolicy Reusing: We implement Preva
sub-versions without the PPReuse algorithm (Preva-NO-
PPReuse) to see how the PPReuse algorithm improves the
performance of Preva in a video stream. The evaluation is
deployed in the aforementioned three applications, and the
results are shown in Fig. 14. For application FC, Preva-
NO-PPReuse achieves similar analytics accuracy and privacy
leakage compared to Preva. However, it significantly increases
the latency miss rate by nearly 37 times. Similar results can be
found in VOC and DBR. Particularly, in application DBR, the
latency miss rate of Preva-NO-PPReuse is about 90 times more
than Preva. These results indicate that the PPReuse algorithm
can vastly reduce latency miss rate at the cost of acceptable
privacy leakage, especially in the scenario that a sequence of

adjacent frames is similar in a video stream.
4) Impact of Image Transformation Approaches: To better

illustrate the choices of image transformation approaches, we
introduce an experiment to prove that the policy-based trans-
formation is the most appropriate for privacy-preserving in
Preva. We implemented two state-of-the-art transformation ap-
proaches, including 1) Pixel-based Transformation (PET) [9],
and 2) GAN-based Transformation (GT) [16] based on Cycle-
GAN [31]. Fig. 15(a-c) shows the average analytics accuracy,
privacy leakage and average resource cost of different image
transformation approaches in Application FC, VOC and DBR,
where the average resource cost of each frame is calculated as
the GFLOPs/Frame. Specifically, for analytics accuracy, Preva
outperforms PET by up to 0.52 times and achieves a similar
value to GT. For privacy leakage, GT performs the best, and
Preva is a little more than GT, with about 0.13 times. However,
the resource cost of GT is significantly more than Preva,
which increased by 19 ∼ 81 times, and it indicates that GT
is not applicable in resource-constraint edges. Taking all this
into consideration, the policy-based transformation approach
is the most appropriate choice, which can provide low privacy
leakage and guarantee analytics accuracy when performed in
resource-stringent edge devices.

VI. RELATED WORK

Our study falls into the category of privacy protection in
edge-cloud video analytics systems using computer vision
technologies. We present related work in edge-cloud video
analytics systems, computer vision mechanisms, and recent
privacy-protection video analytics systems.

Edge-cloud video analytic systems are one type of video
analytics system. The edge is the video source, and the edge
will conduct (part of) video analytics for real-time response or
for privacy protection. With stringent resource constraints, the
studies on edge-cloud video analytics systems emphasized the
schemes to accelerate system performance while maintaining



high accuracy. There are hardware acceleration schemes, by
boosting edge-side GPU [42], using FPGA [43], applying new
wireless network controller [44], etc. There are algorithm stud-
ies on splitting the DNN model inference between the edge and
the cloud [45][46]. There are systems developed to adapt to
dynamics in network throughput [47], video contents [48][49],
etc. Edge-cloud systems have been developed in industry, in-
tegrating research algorithms and technologies, e.g., Microsoft
Split-brain [4], Amazon Kinesis [50], Huawei [51], etc.

Preva takes the computing and network resource constraints
into the video frame transformation development. Preva em-
phasizes protecting the reconstruction attacks at the split
layer, the key vulnerability of the edge-cloud video analytics
system. Preva can integrate advanced performance acceleration
methods developed in the edge-cloud video analytic systems.

Computer vision mechanisms in image privacy protec-
tion have been developed with attempts to modify or remove
the sensitive information in an image. Existing mechanisms
can be classified according to the way in which an image
is modified [52]: (1) filtering, e.g., blurring or pixelating [53],
(2) encryption, e.g., Advanced Encryption Standard (AES) has
been used [54][55], (3) face de-identification, e.g., alter a face
region through replacing real faces with synthetic ones [56],
(4) object removal, e.g., by removing the interest objects and
reconstructing missing parts to create a seamless image, and
(5) object replacement, e.g., a stick figure or a silhouette, to
replace the protected object in an image. Many technologies
have been developed to support these mechanisms, such as
image transformation, blurring, inpainting [57], etc.

This study emphasizes how to enhance edge-cloud video
analytics systems for privacy protection. We leverage computer
vision technologies, yet we ensure viable systems where the
technologies can be integrated under system constraints.

Privacy-preserving video analytics systems has attracted
increasing attention. According to where the protection mech-
anisms are performed, we can classify existing works into
privacy-preserving cloud video analytics systems and edge-
related video analytics systems. Cloud video analytics sys-
tems answer queries on analytics results. The attacks are
membership inference attack [58], attribute attack [59], etc.,
which are less likely reconstruction attacks for raw video
frames. Cloud system has abundant computing resources and
thus can afford computation-intensive solution approaches. For
example, Visor [8] designs a secure framework with hybrid
TEE. PECAM [39] applies generative adversarial networks
(cycleGAN) to hide sensitive information.

Our study falls into the category of privacy-preserving edge-
cloud video analytics systems. Here, the edge is the data
owner, and the cloud only assists video analytics related
computation. Reconstruct attacks are the common attacks in
this scenario. One approaches is to inject noise [10][11]to the
intermediate results, e.g., Shredder [27] and NoPeek [28]. As
discussed, noise injection methods may be less effective in
the lower layers of the DNN model. Another approach is to
redevelop/retrain the video analytics DNN model into a new
privacy-preserving DNN model, e.g., DeepObfuscator [60].

These methods require the edge-cloud video analytics systems
to be updated with new models, which may bring about
backward compatibility problems. Preva complements these
approaches with privacy-preserving image transformation prior
to edge-cloud video analytics.

VII. CONCLUSION

This paper presented Preva, a new privacy-preserving edge-
cloud video analytics system. Preva can protect the privacy
of the model inference of edge-cloud video analytics systems
from reconstruction attacks, a common attack that hijacks
the communications of the intermediate results between the
edge and the cloud and reconstructs sensitive raw video
frames. Existing privacy-preserving methods are limited in
the scenarios where the lower layers of the DNN model
are difficult to protect (e.g., adding noise methods), or they
require the edge-cloud video analytics systems to update their
DNN models, which brings about backward compatibility
issues (e.g., methods redeveloping new privacy-preserving
DNN models). Intrinsically, Preva adds carefully designed
video frame transformation to transform frames prior to edge-
cloud video analytics. Preva can thus easily work with existing
DNN models, and Preva can protect any intermediate results
of split layers of the DNN model from both outsider and
insider attackers. Preva is designed to be resource-efficient
for resource-constrained edge devices, and it maintains high
analytics accuracy with minimized privacy leakage.
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