
Gemini: a Real-time Video Analytics System with
Dual Computing Resource Control

Rui Lu∗, Chuang Hu†, Dan Wang∗, Jin Zhang§
∗The Hong Kong Polytechnic University {csrlu, csdwang}@comp.polyu.edu.hk

†Wuhan University hchuchuang@gmail.com Corresponding Author
§Southern University of Science and Technology zhangj4@sustech.edu.cn

Abstract—Edge-side real-time video analytics systems recog-
nize spatial or temporal events (e.g., vehicle counting) in a
video stream. To meet the delay requirement, existing systems
in smart edge cameras conduct video preprocessing to filter out
unnecessary frames and model inference using appropriately
selected neural network (NN) models. Video preprocessing is
instruction-intensive computing (IIC) and executed by the CPU of
the edge camera, and model inference is data-intensive computing
(DIC) and executed by the GPU of the edge camera.

In this paper, we show that the analytics accuracy of existing
systems can largely vary in fields. The root cause is that
video analytics applications have different contents, which result
in dynamic IIC and DIC workloads. Unfortunately, intelligent
cameras in fields have fixed CPU and GPU resources and cannot
effectively adapt to workload dynamics. We develop Gemini,
a new real-time video analytics system enhanced by a dual-
image FPGA. The newly developed dual-image FPGAs can be
pre-configured with two FPGA images with a key advantage
of negligible image switching time. We thus pre-configure one
CPU image and one GPU image and elastically multiplex the
dual CPU-GPU resources in the time dimension. The Gemini
system design requires both hardware and software revisions.
We overcame a challenge that the application development on
different dual-image FPGAs is hardware-dependent. We develop
a new abstraction of hardware functions to make the Gemini
system hardware-agnostic. It is also a challenge to adapt to the
dynamic workloads and optimize video analytics accuracy. We
develop a bandit learning approach to capture content dynamics
and conduct dual computing resource control. We implement
Gemini and show that Gemini can improve the analytics accuracy
to 90.35%. We further evaluate Gemini by a case study where
we use Gemini to support an intrusion detection application, and
Gemini shows consistent high analytics accuracy.

I. INTRODUCTION

Video analytics systems nowadays support many appli-
cations such as video surveillance, vehicle counting, traffic
control, self-driving, and others. These systems feed video
frames into a pre-trained neural network (NN) model (e.g.,
vehicle counting) and conduct model inference. In this paper,
we study edge-side real-time video analytics systems, where
videos are generated in edge-side smart cameras and the video
analytics are conducted in the edge for real-time response
and/or privacy protection. There are orthogonal research direc-
tions where video analytics is conducted on pre-stored videos
[1], or the real-time videos are sent to the cloud for cloud
or edge-cloud analytics [2] [3]. The hardware used for edge-
side video analytics systems are smart cameras such as AWS
DeepLens [4], with a CPU and a GPU. Typical edge-side

video analytics systems include Microsoft Rocket [5], Amazon
Rekognition [6], Canon Milestone [7], and others.

A real-time video analytics system needs to achieve high
video analytics accuracy while satisfying delay requirements.
To face limited edge-side resources, existing systems have
an execution pipeline to preprocess video frames to filter out
unnecessary frames or to extract only the Region of Interest
(ROI) in a frame. When sending the preprocessed frame
to model inference, existing systems will select appropriate
NN models that best balance the model inference accuracy
and delay. In this execution pipeline, the computing work-
loads of video preprocessing, which involve a large number
of searching, sorting, matching operations, are instruction-
intensive computing (IIC) and are executed in the CPU of the
edge camera. The computing workloads of model inference,
which involve simple operations but on a large amount of data,
are data-intensive computing (DIC), and the DIC workloads
are executed in the GPU of the edge camera.

When using real-time edge-side video analytics systems in
fields, we observe that the analytics accuracy of the systems
can greatly vary. We take Microsoft Rocket (vehicle counting)
as an example (details in §II-B). The analytics accuracy at
dawn time is 85.7%, and it drops to 65.2% at rush hours.
We observe that at dawn time with fewer vehicles, 82% of
frames can be filtered and only 18% of frames are fed to model
inference. When it comes to rush hours, only 27% of frames
can be filtered and 86% of frames are fed to model inference.
The video applications have contents, e.g., Dawn Time and
Rush Hours, and different contents can result in dynamic IIC
and DIC workloads that most of these content changes are
in minute-level. Unfortunately, the CPU/GPU resources are
fixed in field cameras. This limits the potential to adapt to the
workloads and optimize the video analytics accuracy, as we
often see that one of the CPU/GPU has reached its maximum
capacity, yet the resource utilization of the other is still low.

In this paper, we propose Gemini, a new real-time video
analytics system enhanced by a dual-image FPGA. An image
in FPGA is a bit file to configure every Logic Unit to the target
functions. The newly developed dual-image FPGA, e.g., Intel
Max10, Xilinx Artix-7, etc., can pre-store two or more images
in the FPGA image flash and switch them with negligible
switching time. The dual-image FPGA has a key advantage
over current FPGAs on the reconfiguration time, which can
take minutes. Moreover, we can alternatively choose the image

switching address to enable more than two images stored on
FPGA by simply modifying the source codes. Thus, we can
pre-configure CPU images and images and switch them in
runtime. As a result, we can have elastic CPU-GPU computing
resources by multiplexing the dual computing resources in the
time dimension.

To develop a new edge-side real-time video analytics system
with the benefits of dual-image FPGAs, we need both hard-
ware and software revisions. We face three unique challenges.

First, dual-image FPGAs have many variants developed
by different vendors, e.g., Intel Max10, Xilinx Artix-7. The
programming development of FPGAs is hardware-dependent,
i.e., a video analytics application developed on one type of
FPGA cannot be portable to a different type of FPGA. To solve
this problem, we analyze a set of video analytics applications.
We abstract the commonly used FPGA functions and develop
a new logic view of hardware functions. Different dual-image
FPGAs can register into the Gemini system through adapter-
s/drivers to support these functions. Thus, Gemini decouples
video analytics applications from specific FPGA hardware,
allowing the applications to be hardware-agnostic.

Second, there are great communications between the smart
camera microprocessor and the FPGA for video data. Yet the
performance of the two processors can mismatch; leading to
one processor idle during data transmission. We develop an
asynchronous data transfer mechanism, where the two pro-
cessors write/read data into a shared memory asynchronously
without blocking the other. This achieves high-throughput
microprocessor-FPGA communications.

Third, it is a challenge to adapt to the contents of a video
analytics application and its dynamic IIC and DIC workloads,
to optimize the video analytics accuracy given the dual com-
puting resources. We observe that it is difficult to explicitly
model the application workload dynamics, and then optimize
the dual computing resources. We thus seek a learning-based
approach. We develop a bandit-based algorithm: bandit learn-
ing is particularly suitable since the workloads depend on the
video analytics application, not on the action choices of the
computing resource control algorithm.

We implement a Gemini prototype. We evaluate Gemini
using real video trace-based experiments on two represen-
tative video analytics applications. We show that Gemini
significantly outperforms existing video analytics systems. We
develop a case study where we use our prototype to support
an intrusion detection application deployed in a laboratory for
more than 8 hours. This study shows the end-to-end operations
of Gemini in field and its consistent high accuracy.

In summary, the contributions of this paper are:
• We show through a measurement study that the accuracy

of existing real-time video analytics systems (§II-B) can
greatly vary in fields. We investigate the root causes of
such a phenomenon.

• We develop Gemini (§III−§IV), a new real-time video
analytics system enhanced by a dual-image FPGA. We
present a set of hardware and software designs. Gemini
can adapt to video analytics application workload dy-

Frame
Filtering

Background
Substraction

Object
Cropping

Frame Filtering/ ROI Extraction

Resized

Frame

Video

Model

Library

Frame

Index:76

Object type:

Track

Position: 124,198

Size: 64

......

Index:02

Object type:

Track

Position: 124,135

Size: 64

...

Analytics

Results

Preprocessed

Frames

Model Selection

Model Inference

Index:01

Object type:

Track

Position: 124,135

Size: 64

......

Resolution Selection

Execution Configuration

Selected Model

Fig. 1: The real-time video analytics pipeline.

namics and optimize the accuracy with dual computing
resource control.

• We implement Gemini (§V I) and evaluate Gemini with
real-world video traces. We present a case study (§V II),
showing the end-to-end operations of Gemini in field.

II. MOTIVATION AND APPROACH

A. Background on real-time video analytics

Real-time video analytics systems perform analytics on pre-
trained neural network (NN) models to recognize spatial or
temporal events (e.g., vehicle counting, object tracking [8])
in a video stream with latency requirements. An example is
Microsoft Rocket [5]. One application atop the Rocket system
is Microsoft Vision Zero [9], where NN models are pre-trained
for vehicle counting of the City of Bellevue.

To meet the delay requirements, e.g., the Vision Zero
application typically requires processing 25 frames per second
(fps), a real-time video analytics system preprocesses a frame
and selects an appropriate NN model for model inference
of this frame to optimize the analytics accuracy and latency.
Fig. 1 depicts the execution pipeline. First, there is an execu-
tion configuration module, which includes a video resolution
selection sub-module to resize the resolution of this frame
by resolution selection algorithms [10], and an NN model
selection sub-module to select an NN model that best balances
the analytics accuracy and delay by model selection algorithms
[11]. Second, this frame will be sent to a frame filtering/ROI
extraction module to filter out this frame if it does not contain
relevant information by filtering technologies [12], and/or to
extract Region of Interest (ROI) from this frame through
background subtraction and object cropping technologies [13].
Finally, this preprocessed frame and the selected NN model
will be sent to a model inference module to execute analytics
and output results.

In the fields, the hardware of a real-time video analytics
system commonly consists of a smart camera enhanced with
an edge device equipped with a CPU and a GPU. For example,
Microsoft Vision Zero used a Webcam camera, with Azure
Stack Edge with Intel Xeon CPU and NVIDIA T4 Tensor
Core GPU. The microprocessor in the camera can conduct
the lightweight execution configuration module and resize
the frame into the appropriate resolution. This frame is then
sent to the CPU to execute frame filtering/ROI extraction,
which is computation-intensive since it requires a large amount
of searching, sorting, matching operations when comparing
frames. The computation is instruction-intensive computing
(IIC) suitable for a CPU to process. There are some NN-
based RoI apporaches, however they are heavy-weight and, to

(a) Dawn Time (b) Rush Hours (c) Midnight

Fig. 2: The analytics results of Vision Zero application.

TABLE I: Measurement results
Parameters

& Utilization Dawn Time Rush Hours Midnight

#vehicles per frame 7 23 11
Filtering Rate 82% 27% 64%

Resolution 540p 480p 1080p
Model RetinaNet [16] TinyYOLO [14] SSD300 [15]

CPU Utilization Rate 62% 48% 100%
GPU Utilization Rate 99% 97% 76%

the best of our knowledge, less used in the edge. Finally,
this frame is sent to the GPU for model inference, which
is again computational intensive. The computation is data-
intensive computing (DIC) suitable for a GPU to process,
so we consider all the NN-based methods are DIC tasks and
others are IIC tasks.

B. Motivation

We conduct a measurement study on real-time video ana-
lytics systems to show that the analytics accuracy can signifi-
cantly vary in fields and investigate the root causes.

Measurement Setup. We measure the Microsoft Rocket
system with the Vision Zero application on an AWS DeepLens
camera with Intel Atom CPU and Intel Gen9 GPU1. The rocket
system runs the built-in filtering algorithm [9], and the config-
uration algorithm [10] to select video resolutions from {144,
280, 540, 720, 1080}p and the NN model from pre-trained
models of TinyYOLO [14], SSD300 [15], RetinaNet [16], and
YOLOv3 [17]. For the video dataset, we use the video captured
by the traffic cameras in the city of Bellevue [18] that contains
24 hours video streams of 38GB in a 25fps video frame rate.

Accuracy Dynamics and Causes. Fig. 2 shows the ana-
lytics results at Dawn Time, Rush Hours and Midnight. We
observe that the accuracy varies: at Dawn Time (Fig. 2(a)),
the accuracy is 85.7%; at Rush Hours (Fig. 2(b)), the accuracy
reduces to 65.2%; and at Midnight, the accuracy is 63.6%.

We investigate the root causes of the accuracy dynamics.
Table I shows the number of vehicles, the frame filtering rate,
the selected video resolution, the selected NN model, and the
CPU/GPU utilization rate. We observe that the number of
vehicles varies in different periods of a day. It leads to various
frame filtering rates, the selected video resolutions and NN
models. For example, when the number of vehicles was 7, 23,
and 11 per frame, the frame filtering rates were 82%, 27%,
and 64%, respectively. Intuitively, a greater number of vehicles
in a video stream will increase the differences between two

1Azure Stack Edge is currently not available in our country; we thus use
AWS DeepLens, which is comparable with Azure Stack Edge.

TABLE II: The analytics accuracy of three contents under
different CPU and GPU resources.

Resource Dawn Time Rush Hours Midnight
CG-10%-90% 96.9% 69.2% 68.5%
CG-20%-80% 95.5% 84.3% 75.0%
CG-30%-70% 93.1% 64.0% 69.7%
CG-40%-60% 82.6% 66.1% 89.2%
CG-50%-50% 78.4% 61.7% 75.9%

adjacent frames, leading to fewer frames to be filtered. At
Dawn Time, the optimal video resolution and NN model
selected were 540p and RetinaNet. Here, the CPU and GPU
utilization rates were 62% and 99%. At Rush Hours, the frame
filtering rate dropped to 27%. It means that a greater number
of frames (73%) were fed to the GPU, and the GPU workloads
increased. To meet the delay requirement, the video resolution
decreased to 480p, and a small TinyYOLO model was used,
leading to the low accuracy. Here, the GPU utilization was
97%, and the CPU utilization was only 48% since a low
resolution reduces the filtering computation workloads on the
CPU. At Midnight, the frame filtering rate was 64%. The video
resolution and NN model were 1080p and SSD300. Here, the
CPU and GPU utilization rates were 100% and 76%; this is the
optimal configuration yet the GPU utilization is only moderate.

These measurements show that applications have contents,
e.g., Dawn Time, Rush Hours, and Midnight; and different
contents can result in dynamic IIC and DIC workloads. Un-
fortunately, the CPU/GPU resources are fixed in field cameras.
This limits the potential to adapt to the workloads and optimize
video analytics accuracy, as we can see that one of the
CPU/GPU has reached its maximum capacity, yet the resource
utilization of the other is still low.

C. Dual-image FPGA and Potential Approach

An FPGA consists of an array of reconfigurable logic blocks
and can be reconfigured to different customized functions. The
FPGA reconfiguration can take minutes to complete, making
it difficult to be used in runtime. Recent FPGA developments
lead to a brand new dual-image FPGA, which allows two
different images to be stored in the user flash memory (UFM)
and support fast switching with negligible switching time
(˜9ms for Intel Max10). With a dual-image FPGA, we can
pre-store a CPU image to support IIC workloads and a GPU
image to support DIC workloads. We can then make elastic
CPU/GPU resources possible by multiplexing the two images
in the time dimension, i.e., by adjusting the FPGA time
allocated to the CPU image and the GPU image.

We now study the potential of a dual-image FPGA. We
configure an Intel Max10 FPGA to support Vision Zero.
We divide the FPGA time into one-second periods, and we
implement an FPGA time allocation strategy, where in each
period, x% and y% of the FPGA time are allocated to the
CPU image and GPU image; denoted as CG-x%-y%. Table II
shows the analytics accuracy of Dawn Time, Rush Hours
and Midnight under different CG-x%-y%, indicating different

Workload

Adaptation

 Controller

Preprocessed Frame

Frame Filtering/

ROI Extraction
Model

Inference
Resized
Frame

Selected
Model

CPU-GPU
Time Partition

Video

Model

Library

Analytics
Results

Microprocessor FPGA

System

Monitor

Frame

Models

Resource Utilization & Analytics Accuracy

Fig. 3: The Gemini System.

CPU/GPU resources. We observe that there are choices for
high accuracy (bold red values in Table II) in each content.

Intuitively, we can develop a new real-time video analytics
system enhanced by a dual-image FPGA where the system can
optimize the analytics accuracy by resource allocation through
x, y, as well as system configuration on video resolutions and
NN models to adapt to the contents.

III. DESIGN OVERVIEW

A. The Gemini System

We now present Gemini, a new real-time video analytics
system enhanced by a dual-image FPGA. The system hardware
consists of a smart camera2 and a dual-image FPGA.

Gemini (see Fig. 3) has a System Monitor to monitor the
current and historical system states on resources and analytics
accuracy. The core of Gemini is a Workload Adaptation
Controller which takes the dynamics of analytics accuracy
(which can reflect potential content changes) and system states
to compute the optimal resource configuration to process this
frame, i.e., the CPU-GPU time partition of the FPGA, the
video resolution and the NN model. This video frame is
resized to the appropriate resolution and then sent to the
FPGA, which will first switch to the CPU image to execute
Frame Filtering/ROI Extraction. The FPGA will then switch
to the GPU image and take the preprocessed frame and the
selected NN model to execute Model Inference.

B. Challenges and Key Design Choices

Gemini introduces both hardware and software revisions
of an edge-side real-time video analytics system. We thus
face three unique challenges. From the FPGA hardware to
the workload adaptation controller, they are:

Challenge 1: Dual-image FPGAs have different types, e.g.,
Intel Max10, Xilinx Artix-7, and the programming develop-
ment is hardware-dependent, making it difficult for a video
analytics application to be portable across different FPGAs.

Design 1: A new abstraction of hardware functions
to make the Gemini system FPGA hardware-agnostic.
Specifically, we analyze a set of existing representative video
analytics applications. We abstract the commonly used FPGA
functions and develop a new logic view of hardware functions.
Different dual-image FPGAs can register into the Gemini

2The smart camera is general. In this paper, we assume a basic camera,
e.g., a Raspberry Pi Zero camera with an ARM11 microprocessor. It can also
be an upscale camera with extra fixed CPU and GPU resources. We can take
these resources as constant factors into optimization; and all our results hold.

system through adapters/drivers to enable the new FPGA func-
tions. In this way, video analytics programming development
is decoupled from hardware programming development, and a
video analytics application can be portable across the Gemini
system enhanced by different dual-image FPGAs.

Challenge 2: There are large data communications between
the microprocessor and FPGA; yet the performance of the two
processors is mismatched. One processor will be idle during
data transmission, leading to significant resource wastes.

Design 2: An asynchronous data transfer mechanism
for microprocessor-FPGA communication. We design an
asynchronous data transfer mechanism where the camera
microprocessor and the FPGA write/read data into a shared
memory asynchronously. This can unblock the processors from
undertaking other computing workloads.

Challenge 3: Video analytics applications have different
contents, leading to dynamic IIC and DIC tasks and workloads.
It is a challenge to optimize the video analytics accuracy given
the dual computing resources of a dual-image FPGA to adapt
to the contents and the dynamic IIC and DIC workloads. Note
that both IIC and DIC tasks can be run on CPU or GPU if the
system utilization is low. However, running IIC tasks on GPU
is much less efficient. One of the design goals is not to run
IIC tasks on the GPU mode or DIC tasks on the CPU mode.

Design 3: A bandit learning approach for elastic dual
computing resource control. We consider it difficult to
explicitly model the contents and the workload dynamics to
allocate resources to optimize the analytics accuracy. We thus
seek a learning-based approach to predicts the workloads of
IIC tasks and DIC tasks; and leverages the elastic resources of
the dual-image FPGA to support these tasks. Our problem is
intrinsically a control optimization problem, and the solution
falls into a reinforcement learning (RL) algorithm. We argue
that Bandit Learning is a suitable class of learning algorithms
as compared to other regular RL algorithms. This is because
RL algorithms learn the state-action pairs, i.e., the states
should be affected by the control actions. In our problem,
the workloads rely on the contents (e.g., rush hours) but are
not affected by the resource allocation actions (e.g., FPGA
time partition). However, a great challenge of applying bandit
learning to our application is materializing the components
(e.g., arms, agents, rewards, actions) of bandit learning.

IV. GEMINI DESIGN

A. A Decoupled Design to Make the System FPGA Hardware-
Agnostic

Dual-image FPGAs have many variants, e.g., Intel Max10,
Xilinx Artix-7, etc. Due to their differences in low-level
specifications, e.g., the number of pins and their instruction
sets, programming on different FPGAs is tightly coupled to
each type of FPGA.
An example of FPGA-dependent programming: We take
the implementation of an image switching function as an ex-
ample. Image switching is to program the specified image into
the FPGA logic units for executing the functions implemented
in the image.

TABLE III: Analysis of four representative video analytics applications and their required hardware support.
Video Analytics Applications Reducto [12] FFS-VA [19] FCN-rLSTM [20] Faster-RCNN [21]Function

Abstraction Function Name Description BC Fil Inf BC Fil Inf BC BS CBB Inf BC CBB Inf
FPGA ON() Turns on or awake FPGA. ✓ ✓ ✓ ✓
FPGA OFF() Turns off FPGA. ✓ ✓ ✓ ✓
FPGA INIT() Initializes FPGA. ✓ ✓ ✓ ✓

Hardware
Setup

FPGA SLEEP() Switches FPGA to sleep mode. ✓ ✓ ✓ ✓
IMG UPLOAD CPU() Uploads a CPU image into FPGA UFM. ✓ ✓ ✓ ✓ ✓
IMG UPLOAD GPU() Uploads a GPU image into FPGA UFM. ✓ ✓ ✓ ✓
IMG SWITCH CPU() Switches to CPU image on FPGA UFM. ✓ ✓ ✓ ✓ ✓

Image
Management

IMG SWITCH GPU() Switches to GPU image on FPGA UFM. ✓ ✓ ✓ ✓
DATA WR() Writes in data onto external memory. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DATA RD() Reads in data onto external memory. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IIC TASK PROCESS() Executes IIC task on external memory. ✓ ✓ ✓ ✓ ✓

Data
Processing

DIC TASK PROCESS() Executes DIC task on external memory. ✓ ✓ ✓ ✓ ✓

BC: Basic Controls. Fil: Filtering. Inf : Inference. BS: Background Subtraction. CBB: Cropping Bounding Box.

1 module SWITCH_IMG(input clk, input [67
:0] in, output [15:0] res,output
BOOT_SEL, output CFG_SEL);

2 assign SLAVE_IMAGE = IMAGE0;
3 wire [15:0] RD_ADDR;
4 assign [3:0] WR_ADDR = [35:32] in;
5 assign [31:0] DATA = [67:36] in;
6 altera_dual_boot adb(.clk(clk),.img(

SLAVE_IMAGE),.data(DATA),.write
(WR_ADDR),.read(RD_ADDR),.
boot_sel(BOOT_SEL),.cfg_sel(
CFG_SEL));

7 assign res = read;
8 endmodule

Fig. 4: FPGA image switching codes
of Intel Max10

1 module SWITCH_IMG(input clk, input [63
:0] in, output [31:0] res);

2 assign IMG0_ADDR = [15:0] in;
3 assign IMG0_SIZE = 42230;
4 wire [31:0] RD_ADDR;
5 assign [15:0] WR_ADDR = [31:16] in;
6 assign [31:0] DATA = [63:32] in;
7 xilinx_rcv_read xdbr(.clk(clk), .

data(DATA), .read(RD_ADDR));
8 xilinx_rcv_write xdbw(.clk(clk),.

write(WR_ADDR),.addr(IMG0_ADDR)
,.size(IMG0_SIZE));

9 assign res = RD_ADDR;
10 endmodule

Fig. 5: FPGA image switching codes
of Xilinx Artix-7

1 def Reducto_Filter_Acc(img,
frame1,frame2):

2 if FPGA_STATUS!=ON:
3 FPGA_ON()
4 IMG_UPLOAD_CPU(img)
5 IMG_SWITCH_CPU()
6 DATA_ADDR,size=DATA_WR(frame1)
7 _,SIZE=DATA_WR(frame2)
8 RES_ADDR=IIC_TASK_PROCESS(

DATA_ADDR,SIZE)
9 result=DATA_RD(RES_ADDR)

10 FPGA_SLEEP()
11 return result

Fig. 6: Reducto filtering codes using
Gemini hardware functions

Fig. 4 shows the Verilog code of image switching in Intel
Max10. Line 2 loads the image file IMAGE0 to the image
area. Max10 stores the images in fixed memory areas, named
master/slave image areas. Here, the image is stored into the
slave image area (SLAV E IMAGE); Line 3-5 initiate the
write/read parameters. The setups here are the read width is
set to 16 bits, the write width is set to 4 bits, the maximum
data width allowed to read/write an image in FPGA is set to
32 bits. Line 6 reads the image from the slave image area
and writes the image into the FPGA logic unit supported by
a module (altera dual boot) from Intel. Max10 completes
this procedure by sending signals to pre-defined output pins.
Specifically, it sends signal 1 to pin BOOT SEL, signal 0
to pin CFG SEL.

Fig. 5 shows the Verilog code of switching to image
IMAGE0 in Xilinx Artix-7. Line 2-3 assign the storage mem-
ory address and the image size (42230 bytes) of IMAGE0.
This differs from Intel Max10 since Intel Max10 stores the
image in a fixed image area, while Xilinx Artix-7 stores images
in the dynamically allocated memory area. Line 4-6 initiate
the write/read parameters to set up the read width and the
write width. Compared to Intel Max10, the values of read and
write width are different due to the difference in the width
of the data line in these two types of FPGAs. Line 7-8 read
the image from memory and write the image into the FPGA
logic units. Here, Xilinx Artix-7 completes this procedure with
a read module(xilinx dual boot read) and a write module

(xilinx dual boot write) from Xilinx.
Hardware function abstraction: This example is a simple
illustration that FPGA programming is hardware-dependent,
yet video analytics applications only need the computing
resources of the FPGAs. To solve this problem, we develop a
new logic abstraction of hardware functions. This can decouple
the video analytics application development and the FPGA
hardware development, allowing applications to be agnostics
to the dual-image FPGA specifics.

To develop a proper hardware function abstraction, we care-
fully analyze four representative video analytics applications,
Reducto [12], FFS-VA [19], FCN-rLSTM [20], Faster-RCNN
[21]. We examine the common hardware functions needed
to support these applications. Table III shows a summary.
We find that we can categorize the computing functions of
the four video analytics applications into: 1) basic controls,
2) filtering, 3) interference, 4) background subtraction, and
5) cropping bounding box. Their requirements on hardware
functions can be categorized into: 1) Hardware Setup functions
that control the FPGA states such as On/Off/Sleep mode; 2)
Image Management functions that manage the images of the
FPGA, and 3) Data Processing that handles the data in the
FPGA. We develop the detailed hardware functions in each
category, and we show their descriptions in Table III.

To illustrate how the abstraction can help application devel-
opment, we use the implementation of the filtering function
of Reducto as an example, where we can directly write

Python codes, see Fig. 6. The filtering function computes the
differences of two frames and filters out the one if the value
of differences is less than a predefined threshold. Specifically,
Reducto filtering turns the FPGA on (Line 2-3), uploads the
CPU image that implements the filtering function to the user
flash memory (UFM) of FPGA (Line 4), switches to the CPU
image (Line 5), transfers the frames to the FPGA (Line 6-
7), executes the IIC CPU to filter frame (Line 8), returns the
filtering results (Line 9) and turns the FPGA off (Line 10).

B. An Asynchronous Data Transfer Mechanism for
Microprocessor-FPGA Communication

An asynchronous data transfer mechanism. In a video
analytics application, data need to be transmitted between
the host microprocessor and the FPGA. Specifically, each
constructs a sender thread and a receiver thread to establish a
communication connection. The sender thread consumes clock
cycles to send data, and the receiver thread consumes clock
cycles to receive data. The sender/receiver threads will block
the opposite processor until transmission completion to ensure
communication correctness.

This mechanism performs poorly if the clock frequencies of
the microprocessor and the FPGA mismatch: the fast processor
idles. For example, a typical microprocessor, e.g., STM32f1
has a usual clock frequency of 64MHz [22], and the clock
frequencies of Intel Max10 and Xilinx Artix-7 are 300MHz
and 500MHz, respectively. The clock idling waste is non-
trivial, i.e., as much as four-fifths of the FPGA clock cycles
can be wasted for STM32f1 and Max10.

We design a new data transfer mechanism where the micro-
processor and the FPGA transfer data by writing/reading an
external shared memory in an asynchronous manner. Specif-
ically, after one processor writes the data into this shared
memory, an interrupt will be triggered to the other processor
to read the data. After finishing reading, the processor will be
released for other computing tasks.
Discussion on the design choice. Our design on the asyn-
chronous data transfer mechanism for microprocessor-FPGA
communication is principally pragmatic. Our rationale is to
eliminate resource waste in the microprocessor-FPGA com-
munication without incurring large overheads.

There are other methods to handle the frequency differences
between two processors, e.g., frequency scaling [23], fre-
quency virtualization [24], and CPU multiplexing [25]. These
software-based methods work for high-capacity CPUs, but
are heavy for low-capacity MCUs. There are also hardware-
based methods. For example, we can add parallel interfaces
to FPGA, e.g., DRAM, the AXI bus, and PCI Express. With
high-capacity communication physical lines, these interfaces
can solve the capacity mismatch. However, hardware revision
would require a new customized FPGA design.

C. A Bandit Learning Approach For Elastic Dual Computing
Resource Control

1) Problem Formulation: We consider a video analytics
application stream consisting of consecutive frames with a

frame rate of f . For each frame, we need to select the
resolution and the NN model as well as the CPU-GPU time
partition of the FPGA, so that the delay constraint is satisfied,
the system completes processing a frame before the next frame
comes, and the analytics accuracy maximized. Formally, Let
vi ∈ V be the resolution variable and mi ∈ M be the NN
model variable for frame i, where V and M are the set
of resolutions and NN models. Let T IIC

i (vi) denote the IIC
processing time of frame i given vi. Let TDIC

i (vi,mi) denote
the DIC processing time of frame i given vi and mi. Let D
be the delay constraint. We have:

T IIC
i (vi) + TDIC

i (vi,mi) ≤ D (1)

Let tCi be the FPGA times allocated to CPU image for
supporting IIC workload of frame i. Let tGi be the FPGA
times allocated to GPU image for supporting DIC workload
of frame i. tCi and tGi are decision variables to be optimized.
We have:

tCi + tGi ≤ 1

f
(2)

T IIC
i (vi) ≤ tCi ∧ TDIC

i (vi,mi) ≤ tGi (3)

Let A(vi,mi) be the analytics accuracy of frame i. Our
objective is to maximize A(vi,mi).

The Dual Computing Resource Control Problem: given
the video frame i, the frame rate f , the set of video resolutions
V , the set of pre-trained models M, and the delay requirement
D, subject to delay constraint (1) and FPGA time constraints
(2) (3), determine the FPGA times allocated to CPU image tCi
and GPU image tGi , the resolution vi and the model mi for
frame i, to maximize the analytics accuracy A(vi,mi).3

2) Problem Analysis: Video analytics applications have
contents, and different contents result in dynamic IIC and DIC
workloads. For example, the number of frames fed to the GPU
depends on how many frames are left unfiltered, which further
depends on whether the frames contain relevant information of
the video analytics task. It is difficult to explicitly model the
content and the workload dynamics of video analytics tasks.

We thus seek a learning-based approach. Our problem falls
into an optimization control problem. There are two major
categories of learning algorithms, reinforcement learning (RL)
and bandit learning (which can also be categorized into RL,
yet we emphasize its differences from RL). At a high level,
RL is commonly used for a control problem where the control
actions have a direct impact on future states, and RL learns
the state-action interactions. Bandit learning is widely used
for a control problem where the emphasis is to learn the
statistical outcomes of the adjustment strategies. For example,
in a slot machine, the bandit learns the statistic outcomes (i.e.,
the expected differences) of the arms by pulling the arms.

3An edge camera can have additional fixed CPU and GPU resources.
In such cases, we can develop a problem P2 by replacing eq. (3) with
T IIC
i (vi) ≤ tCi + t′Ci ∧TDIC

i (vi,mi) ≤ tGi + t′Gi , where t′Ci and t′Gi be
the additional CPU time and GPU time to process frame i. It is easy to verify
that P2 is equivalent to the Dual Computing Resource Control Problem.

CPU Resource
Utilization

GPU Resource
Utilization

Frame Rate

Context
Action Space

CPU-GPU Time

Partition of FPGA

Video

Resolution

NN

Model

144p

280p

360p

1080p

... arm

Bandit Agent

Reward

Delay Requirement

Estimated
Bandwidth

Fig. 7: The workflow of the bandit algorithm.

In a nutshell, bandit learning repeatedly observes a context,
chooses an action, and observes the reward for the selected
action. Bandit learning is suitable for applications where the
contexts change smoothly [26]. This matches video analytics
applications well, e.g., in a vehicle counting application, the
traffic intensity changes smoothly as compared to the video
analytics task rate [12]. Bandit learning requires fewer data
and less computational power, and it is widely used in a large
number of applications [27].

3) The Bandit-based Computing Resource Control Algo-
rithm: To exploit the bandit learning to solve the dual
computing resource control problem, we first present the
problem into the contextual multi-bandit framework, and then
design a Bandit-based Computing Resource Control (BCRC)
algorithm. In a contextual multi-bandit problem (Fig. 7), a
bandit agent needs to make a sequence of decisions. At each
time t ∈ {1, 2, . . . , T}, the agent observers different context
ut and different arms at. It then chooses an action, i.e., which
arm at to pull. A reward rt,at will be given based on ut and
at, with the rewards of other arms unknown. Let A denote the
arm set. Let xt,a ∈ Rd denote the feature vector capturing all
the available side information, including selected features of
the current context ut and the arm at.

In our problem, a context ut has four dimensions: the CPU
resource utilization rate hC

t , the GPU resource utilization rate
hG
t , the delay requirement dt and the frame rate ft. The

agent can choose an action at at each time t, which has three
features: the CPU-GPU time partition of the FPGA, the video
resolution vt, and the NN model mt.

The system parameter configrurations in BCRC are (1)
the CPU-GPU time partition of the FPGA, (2) the video
resolution, and (3) the NN models. The NN models are discrete
in nature. We discretize the video resolution, e.g., in our case
study in Section VII, it is 144, 280, 540, 720, 1080, and the
FPGA time that ten predefined discrete levels for CPU:GPU-
10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10.
This is the action space of our bandit algorithm. Such dis-
cretization is pragmatic in general, e.g., we can discretize in
finer granularity, yet it achieved good performance in practice.

We define the reward rt as the observed analytics accuracy
after the action. Since we cannot directly get the analytics
results and ground truth once it goes online, we apply the
uncertainty of the analytics results instead, which shows how
uncertain they are in their predictions. The lower uncertainty
indicates a higher probability of correct analytics.

One may want to simply make a decision to maximize

the reward. Without sufficient exploration, however, this
exploitation-based strategy can result in an arbitrarily bad
outcome: our agent can be trapped in a local optimum and
continuously select sub-optimal arms without exploring better
solutions. Therefore, we must carefully balance exploration
and exploitation. We design a bandit-based computing re-
source control algorithm to achieve a good balance between
exploration and exploitation and has a good efficiency with
low complexity. The idea is to choose the arm with the highest
upper confidence bound (UCB) instead of choosing the arm
with the highest mean reward. Specifically, we model the
expected reward of an arm a has a linear relationship with
its feature vector xt,a ∈ Rd, and can be represented as

E[rt,a|xt,a] = x⊤
t,aθ

∗
t . (4)

where θ∗
t ∈ Rd, ||θ∗

t || ≤ 1, is a weight vector representing the
accuracy model parameter to be learned online.

We use a LMMSE estimator to estimate θt. Specifically, let
Dt ∈ Rm×d and ct ∈ Rm are the input samples of the feature
matrix and the corresponding reward vector at the round t,
respectively, where m is the number of samples and d is the
feature dimension. By applying the Bayesian Gauss-Markov
Theorem, the estimated coefficient θt at round t is derived as

θ̂t = (D⊤
t Dt + Id)

−1D⊤
t ct, (5)

where Id is a d-dimension identity matrix. The covariance
of the estimation error At above is

At = D⊤
t Dt + Id (6)

Following the proof in [28], we know that the we know that
for any δ > 0, α = 1+

√
ln(2/δ)/2, with probability at least

1− δ we have

|x⊤
t,aθ̂a − x⊤

t,aθ
∗
a| ≤ α

√
x⊤
t,aA

−1
t xt,a. (7)

where α is a hyperparameter to balance exploration and
exploitation: the larger α, the more emphasis on exploration,
and vice versa. Accordingly, the UCB of the estimated reward
for selecting arm a at round t can be computed as

st,a = θ̂
⊤
a xt,a + α

√
x⊤
t,aA

−1
t xt,a (8)

where At = D⊤
t Dt + Id. Then, the arm selection rule at

round t can be written as

at = arg maxa∈A st,a (9)

Finally, we describe the flow of our BCRC algorithm in
Algorithm 1. We first initialize all UCB of all arms (Line 1–
2). At each time t, we compute the estimated coefficient θ̂t and
the covariance of the estimation error At according to Eq. (5)
and Eq. (6) respectively based on the observed current context
and the features of all arms (Line 4–7). Then we compute the
UCB of all arms (Line 8–9) and output the most appropriate
arm at with the highest UCB (Line 10).

Fig. 8: Gemini prototype.

Intel Max10

Intel Max10

CPU Image

Altera Dual

Configuration

GPU Image

SW1

SW2

CONFIG_SEL

RU_nCONFIG

Intel Max10

Intel Max10

CPU Image

Altera Dual

Configuration

GPU Image
CONFIG_SEL

RU_nCONFIG

Relay0

Relay1

I/O
 In

terface

M
C

U

(a)

(b)

Fig. 9: Enhancement to FPGA Image
Switching.

Configuration

File
Function 1

Block

SRAM
Hardware

Function

Load

0x0200

0x1300

...

Function 2

Block

Function N

Block

Function Block 1

Function:

data_load

Address: 0x0200

Field 1: 100 B

Field 2: 1 KB

Field 3: 5 B
Function Block 2
...

Function Block 1

Function:

data_load

Address: 0x0200

Field 1: 100 B

Field 2: 1 KB

Field 3: 5 B
Function Block 2
...

Data

Results

Function

Code

Data

Results

Function

Code
0x0300

Fig. 10: The FPGA Adapter.

Multiplier

Accumulator

PE

Output

Inputs

Fig. 11: SGPE in
GPU Image.

Algorithm 1: Bandit-based Computing Resource Control
Input: A
Output: At iteration t, output arm at for context ut

1 for all a ∈ A do
2 Initialize st,a = 0;

3 for t = 1, 2, 3, ..., T do
4 Observe current context ut ;
5 Observe features of all arm a ∈ A : xt,a ∈ Rd;
6 Compute θ̂t according to Eq.(5);
7 Compute At according to Eq.(6);
8 for all a ∈ A do
9 st,a = x⊤

t,aθ̂t + α
√

x⊤
t,aA

−1
t xt,a;

10 Select arm at with the highest UCB, i.e.,
at = arg maxa∈A st,a;

V. IMPLEMENTATION

We implement a Gemini prototype as shown in Fig. 8. Here,
we use an AWS DeepLens as the camera and an Intel Max10
as the dual-image FPGA. We overcome a set of challenges and
present three necessary enhancements: 1) the FPGA images
should switch automatically by instructions. However, off-
the-shelf Intel Max10 only provides manual switching.4 We
conduct a hardware redesign to facilitate instruction-triggered
image switching and enable multi-image functions on dual-
image FPGA by modifying Altera Dual Configuration; 2) we
develop an example adapter for Intel Max10 so that it can
be registered into the Gemini system of a host edge device.
The applications can then use the hardware functions in §IV-A
to access the FPGA computing resources, and 3) the BCRC
algorithm in Gemini needs to choose different NN models in
runtime to maximize accuracy. However, FPGA requires the
pre-storage of a GPU image. To allow multiple NN models to
be used in runtime, we design a simple and generic processing
element (SGPE) that can be utilized by different types of NN
processing models.
Enhancement to FPGA Image Switching. To complete a
video analytics task (i.e., frame processing tens to hundreds
ms), we need both filtering (CPU) and model inference (GPU),
and thus a switch is needed. Intrinsically, the switch is not
triggered by context changes, but by executing tasks. Context
change will trigger our bandit algorithm to set parameters,
e.g., video resolution, NN model choice. FPGA switch is
between images, not the configurations, e.g., there is no change
in the GPU image, only spending more time on the GPU

4Xilinx Artix-7 does not have this problem.

image. In Max10, there are two control points, SW1 and
SW2, see Fig. 9(a). SW1 is used to select the (next) image
by the CONFIG SEL pin, and SW2 is used to trigger
reconfiguration by the RU nCONFIG pin. To complete an
image switch operation, SW1 and SW2 should be triggered
manually. We conduct a hardware redesign to replace the
hand switch SW1 and SW2 by relays shown in Fig. 9(b).
We remove the switch SW1 and SW2 and solider a relay
at the original place of SW1 and SW2. When switching
to the CPU image stored in the flash area one, Gemini
switches CONFIG SEL pin by Relay0, then triggers the
reconfiguration by pulling the RU nCONFIG pins down by
Relay1, and vice versa. And we reprogrammed the Altera Dual
Configuration module to alternatively change the allocation
address of images to enable multiple images functions.
FPGA Adapter. We show the workflow of the adapter devel-
oped for Intel Max10 in Fig. 10. The adapter consists of an
FPGA configuration file and a control program. The FPGA
configuration file records the function name, function code,
parameter field, and the result field of each hardware function
in the form of a function block. This file is loaded to the
SRAM of the camera. The control program monitors whether
there is a hardware function call. Once the program detects
a hardware function call, it searches the SRAM to find the
corresponding function, sends the parameters to the parameter
field, and finally collects the results from the result field.
GPU Image Implementation for Generic NN Computation.
For NN processing models, different characters of NN layers
vary in the FPGA implementation, depending on the computa-
tion type and the number of values that need to be accumulated
(we call it accumulation frequency). We design a simple and
generic processing element (SGPE) that can be utilized by
different types of NN computations, similar to [29]. We show
our SGPE in Fig. 11: each SGPE consists of a multiplier
and an accumulator. The SGPE can complete the essential
operation in all types of NN computation. In this way, we can
implement one type of NN computation by combining SGPEs,
and control the accumulation frequency through controlling
the number of SGPEs.

We employ Reducto [12] as the filtering algorithm and
implement a CPU image to support it. For the system resource
monitor module, we use mpstat [30] to record the system
states. We implement the Gemini modules in Python with 2K+
lines of code. We develop the Gemini system in GitHub, and
we plan to publicly release the codes as open sources.

M
R

S-
A

-
-1

0%
-9

0%
M

R
S-

A
-

-2
0%

-8
0%

M
R

S-
A

-
-3

0%
-7

0%
M

R
S-

A
-

-4
0%

-6
0%

M
R

S-
A

-
-5

0%
-5

0%
M

R
S-

B
-

-1
0%

-9
0%

M
R

S-
B

-
-2

0%
-8

0%
M

R
S-

B
-

-3
0%

-7
0%

M
R

S-
B

-
-4

0%
-6

0%
M

R
S-

B
-

-5
0%

-5
0%

V
ES

-
-1

0%
-9

0%
V

ES
-

-2
0%

-8
0%

V
ES

-
-3

0%
-7

0%
V

ES
-

-4
0%

-6
0%

V
ES

-
-5

0%
-5

0%
G

em
in

i

O
O

S

50

60

70

80

90

100

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

(a) Application VC

M
R

S-
A

-
-1

0%
-9

0%
M

R
S-

A
-

-2
0%

-8
0%

M
R

S-
A

-
-3

0%
-7

0%
M

R
S-

A
-

-4
0%

-6
0%

M
R

S-
A

-
-5

0%
-5

0%
M

R
S-

B
-

-1
0%

-9
0%

M
R

S-
B

-
-2

0%
-8

0%
M

R
S-

B
-

-3
0%

-7
0%

M
R

S-
B

-
-4

0%
-6

0%
M

R
S-

B
-

-5
0%

-5
0%

V
ES

-
-1

0%
-9

0%
V

ES
-

-2
0%

-8
0%

V
ES

-
-3

0%
-7

0%
V

ES
-

-4
0%

-6
0%

V
ES

-
-5

0%
-5

0%
G

em
in

i

O
O

S

50

60

70

80

90

100

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

(b) Application VPD

Fig. 12: The average analytics accuracy comparison.

TABLE IV: The Application Specifications.
Applications VC VPD

IIC Functions SDD ROI Extraction [13] Reduction Filtering [12]
DIC Functions Model Inference Model Inference
Resolutions (p) 144,280,540,720,1080 280,540,720,1080,2160

NN Models

TinyYOLO [14],
SSD300 [15],

RetinaNet [16],
YOLOv3 [17]

MobileNet [31],
R-FCN [32],

YOLOv3 [17]

Delay Requirement 40 ms 70 ms
Frame Rate 25 fps 30 fps

VI. EVALUATION

In this section, we evaluate the performance of Gemini with
the aim to answer the following questions:

• How does Gemini compare to existing video analytics
systems using the fixed CPU/GPU resources? (§VI-B)

• To what extent can Gemini reduce the development effort
for video analytics applications? (§VI-C)

• How do the internal factors, e.g., the computing resource
control algorithm, affect the performance? (§VI-D)

A. Methodology

Testbed. We evaluate the Gemini prototype equipped with an
AWS DeepLens camera and an Intel Max10 FPGA. The cam-
era has an Intel Atom CPU with 8GB memory running Ubuntu
OS-16.04 LTS. Intel Max10 FPGA has 50,000 configurable
logic blocks and 4GB DDR3 memory.
Applications. We use two representative applications to eval-
uate Gemini. The specifications are shown in Table IV.

• Vehicle Counting (VC) counts the number of vehicles in
video footage. For the video dataset, we use the video captured
by the traffic cameras in the city of Bellevue [18] that contains
24 hours video streams of 38GB.

• Vehicles and Pedestrians Detection (VPD) paints the
bounding box of the Vehicles and Pedestrians in the video.
We use the Auburn dataset [33] that contains 24 hours traffic
video stream of 54GB.
Baselines. We compare Gemini against two state-of-the-art
edge-side video analytics systems and an offline optimal
scheme serving as the performance upper bound. They are
open-source and have been widely used as benchmarks wile
some other systems are not.

• Microsoft Rocket System (MRS) [5] is the status quo real-
time video analytics system. It detects the available computing
resources of a camera and uses the built-in resolution selec-
tion and model selection algorithms to balance the analytics

accuracy and delay. We apply two various MRS with different
algorithms based on two existed works [5], [34]. We annotate
the system from [34] as MRS-A that lower down the compu-
tation cost and the one from [5] as MRS-B that is focusing on
reducing the latency and improving the accuracy.
• VideoEdge System (VES) [35] is a real-time video ana-

lytics that collects the available resources of multiple cameras
and then selects the video resolution and models to maximize
the analytics accuracy. For a fair comparison, we implement
a variant VideoEdge that only collects the available resource
of a camera and processes video stream locally.
• Offline Optimal Scheme (OOS) is computed using dy-

namic programming with complete workload information. It
outputs the optimal computing resource allocation strategy, the
resolution, and the NN model. The offline optimal serves as
an upper bound on the accuracy of an omniscient policy with
complete knowledge of the future IIC and DIC workload.

We use FPGA to emulate CPU and GPU resources. Let s-
x%-y% denote x% and y% FPGA time allocated as CPU and
GPU resources for system s. Let s-best represent the best-
fixed CPU and GPU resources allocation for the system s.
Evaluation Metrics. We use three metrics to evaluate the
performance of Gemini and the baselines.
• Analytics Accuracy is the first priority. For the VC appli-

cation, the analytics accuracy is computed as 1− |r−g|
g , where

r is the number of vehicles in the analytics result, and g is the
ground truth. For the VPD application, the analytics accuracy
is computed as v

w , where v is the overlapping area between
the localization box of the analytics result and the correct
localization box, w is the area of the correct localization box.
• Latency Miss Rate quantifies the percent of the video

analytics tasks that do not meet the latency requirement set
by a video analytics application.
• Hardware Utilization indicates how effectively the com-

puting resource has been used in video analytics systems.

B. Overall Performance

1) Improvement on Analytics Accuracy: Fig. 12 shows the
average analytics accuracy of Gemini, MRS-A, MRS-B and
VES. For the application VC as shown in Fig. 12(a), we
can see that MRS-A and VES achieve only 59.36%-81.92%
of the accuracy of the OOS scheme. The average analytics
accuracy of MRS-A is lower than 74% under all fixed CPU and
GPU resources, which are qualitatively similar to VES. The

55 60 65 70 75 80 85 90 95 100
Average Accuracy (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

MRS-A-best
MRS-B-best
VES-best
Gemini
OOS

(a) Application VC

55 60 65 70 75 80 85 90 95 100
Average Accuracy (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

MRS-A-best
MRS-B-best
VES-best
Gemini
OOS

(b) Application VPD

Fig. 13: The CDF of analytics accuracy comparison.

MRS-A-best MRS-B-best VES-best Gemini OOS
0

10

20

30

40

La
te

nc
y

M
is

s R
at

e
(%

)

24.11 23.18

28.26

1.94 0.1

(a) Application VC

MRS-A-best MRS-B-best VES-best Gemini OOS
0

10

20

30

40

La
te

nc
y

M
is

s R
at

e
(%

)

25.31 24.48

33.61

3.48
0.11

(b) Application VPD

Fig. 14: The latency miss rate comparison.

M
R

S-
A

-
-1

0%
-9

0%
M

R
S-

A
-

-2
0%

-8
0%

M
R

S-
A

-
-3

0%
-7

0%
M

R
S-

A
-

-4
0%

-6
0%

M
R

S-
A

-
-5

0%
-5

0%
M

R
S-

B
-

-1
0%

-9
0%

M
R

S-
B

-
-2

0%
-8

0%
M

R
S-

B
-

-3
0%

-7
0%

M
R

S-
B

-
-4

0%
-6

0%
M

R
S-

B
-

-5
0%

-5
0%

V
ES

-
-1

0%
-9

0%
V

ES
-

-2
0%

-8
0%

V
ES

-
-3

0%
-7

0%
V

ES
-

-4
0%

-6
0%

V
ES

-
-5

0%
-5

0%
G

em
in

i

O
O

S

50

60

70

80

90

100

U
nt

ili
za

tio
n

R
at

e(
%

)

(a) Application VC

M
R

S-
A

-
-1

0%
-9

0%
M

R
S-

A
-

-2
0%

-8
0%

M
R

S-
A

-
-3

0%
-7

0%
M

R
S-

A
-

-4
0%

-6
0%

M
R

S-
A

-
-5

0%
-5

0%
M

R
S-

B
-

-1
0%

-9
0%

M
R

S-
B

-
-2

0%
-8

0%
M

R
S-

B
-

-3
0%

-7
0%

M
R

S-
B

-
-4

0%
-6

0%
M

R
S-

B
-

-5
0%

-5
0%

V
ES

-
-1

0%
-9

0%
V

ES
-

-2
0%

-8
0%

V
ES

-
-3

0%
-7

0%
V

ES
-

-4
0%

-6
0%

V
ES

-
-5

0%
-5

0%
G

em
in

i

O
O

S

50

60

70

80

90

100

U
nt

ili
za

tio
n

R
at

e(
%

)

(b) Application VPD

Fig. 15: The hardware utilization comparison.
MRS-B has an about 7% higher average analytics accuracy
than MRS-A. The value becomes even lower for VPD, as
shown in Fig. 12(b), where MRS-A, MRS-B and VES achieve
58.63%-77.48% accuracy. It reveals that systems based on
fixed CPU/GPU resources are far from satisfactory.

We can observe that Gemini outperforms MRS-A, MRS-
B and VES over both applications. More specifically, Gemini
outperforms MRS-A with an improvement in average analytics
accuracy of 16.92%-24.67% and MRS-B with 7.58%-17.42%.
The gap widens to 15.97%-27.76% for VES. Both experiments
show that the performance gap of Gemini within 4.38%-
5.40% of OOS scheme across both applications. Recall that the
performance of OOS cannot be achieved in practice because
complete knowledge of future workloads is required. It reveals
that little room exists for video analytics systems without
future knowledge to improve over Gemini in these scenarios.

Fig. 13 shows the CDF of the average accuracy of Gemini,
MRS-A, MRS-B and VES with the best-fixed CPU/GPU
resources (i.e., MRS-A-best, MRS-B-best), and OOS. For
application VC as shown in Fig. 13(a), only 19.32%, 20.32%
and 19.21% of the accuracy of MRS-A-best, MRS-B-best and
VES-best can reach the accuracy 85%, while 89.78% of the
accuracy of Gemini can reach the accuracy 85%. These values
of MRS-A, MRS-B and VES become even smaller in VPD
as shown in Fig. 13(b), with only 11.52% of MRS-A-best,
12.06% of MRS-B-best and 12.88% of VES-best. However,
Gemini can maintain 85.25% accuracy exceeding 85%. It
illustrates Gemini output high accuracy results consistently.

2) Reduction on Latency Miss Rate: Fig. 14 compares
the latency miss rates of Gemini, MRS-A-best, MRS-B-best,
VES-best, and OOS. As shown, Gemini and OOS have similar
low latency miss rates. Gemini outperforms MRS-best and
VES-best by a large margin. Specifically, Gemini achieves
a near-zero latency miss rate (1.94% in VC and 3.48% in

TABLE V: Development effort w/o Hardware Function Ab-
straction (HFA) among different applications.

APP. HFA
Enable

Code lines(Reduction Rate)
MAX10 Artix-7 MAX10+Artix-7

VC × 21.1k 26.4k 47.5k
✓ 12.4k(-41.2%) 12.4k(-53.3%) 12.4k(-73.9%)

VPD × 32.5k 34.9k 67.4k
✓ 14.9k(-54.5%) 14.9k(-57.3%) 14.9k(-77.9%)

VPD), while MRS-A-best (24.11% in VC and 25.31% in
VPD), MRS-B-best (23.18% in VC and 24.48% in VPD),
and VES-best (28.26% in VC and 33.61% in VPD) are much
higher. Compared with MRS-A, MRS-B and VES, Gemini has
a latency miss rate reduction from 85.78% to 93.14%.

Gemini can achieve better performance because MRS and
VES model the workloads of video analytics tasks through
one-time measurement, which leads to significant deviation in
practice deploying, while Gemini learns the workloads through
statistics with a much higher accuracy.

3) Improvement on Hardware Utilization: Fig. 15 shows
the hardware utilization rate of different systems. We can see
that MRS-A, MRS-B and VES suffer low hardware utilization,
while Gemini can achieve a high hardware utilization under
all scenarios. Specifically, the hardware utilization rate of
Gemini reaches up to 93.58% in VC and 95.32% in VPD, and
outperforms MRS-A, MRS-B and VES, with an improvement
of 11.60% to 32,78% in VC, and 10.2% to 30.85% in VPD.

Please note that a higher hardware utilization means more
computing resources are used to accelerate video analytics.
Systems using fixed CPU and GPU resources result in a
large amount of idling resources. Gemini can transform fixed
CPU/GPU resources to elastic CPU/GPU resources, thus re-
duces the idling computing resources. The high hardware
utilization explains why Gemini is able to achieve a high
accuracy compared to those using fixed CPU/GPU resources.

VC VPD
Application

50

60

70

80

90

100

A
ve

ra
ge

 A
cc

ur
ac

y(
%

) Gemini Gemini-A Gemini-B

Fig. 16: Accuracy comparison for Com-
ponent Analysis.

VC VPD
Application

6

8

10

12

14

16

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

 T
im

e
(m

s)

Gemini Gemini-A Gemini-B

Fig. 17: Transmission time comparison
for Component Analysis.

144p
280p
540p
720p

1080p
Application VC

Gemini Gemini-A Gemini-B
Selection Percentages (%)

280p
540p
720p

1080p
2160p

Application VPD

R
es

ol
ut

io
n

Fig. 18: The resolution selection distribu-
tions comparison for Component Analy-
sis.

C. Application Development Effort

In this section, we investigate to what extent Gemini can
simplify application development. We develop the application
VC and VPD on two dual-image FPGAs, the Intel Max10
and the Xilinx Artix-7. We compare the development effort in
terms of program length when programming with/without the
hardware function abstraction provided by Gemini.

Table V shows the development effort of two applications on
two different dual-image FPGAs. There are two key takeaways
from these results. First, we find that the hardware function
abstraction of Gemini can reduce the development effort
significantly for all applications. For example, With hardware
function abstraction, the total lines of code are reduced by
41.2% and 54.5% for VC and VPD on Max10.

Second, we observe that Gemini provides portability for
application development. For example, with hardware function
abstraction, the program length of VC deployed on Max10 and
Artix-7 is 12.4k lines. If the developer develops the application
on both Max10 and Artix-7, the program length is still 12.4k
lines (Max10+Artix-7 in Table V). It is because hardware
function abstraction enables the developer to reuse the code
without modification for FPGA specifications.

Third, in compile, the compile-time increases slightly on
Intel Quartus Compiler, e.g., with and without abstraction
differs about 0.21%. It is because the hardware function
abstraction does not change the functional logic of FPGA.
Thus, in runtime, no overhead is added to the execution time.

D. Component Analysis Study

In this section, we explore Gemini’s internal components
better to understand their contributions to the performance
of the system. We implemented two breakdown versions of
Gemini to take a closer look at the contribution of each
component: 1) Gemini-A has the asynchronous data transfer
mechanism but does not enable bandit-resource computing
resource control algorithm. We choose the best CPU/GPU
resources configuration with the highest accuracy, and 2)
Gemini-B has the bandit-resource computing resource control
algorithm but does not enable asynchronous data transfer.

Fig. 16-18 show the comparison results on application VC
and VPD that the accuracy gains brought by both Gemini-
A and Gemini-B are significant. For example, in application
VC, Fig. 17 shows the transmission time of Gemini, Gemini-
A, and Gemini-B. Gemini reduces about 24% of time than

Fig. 19: The end-to-end operations of Gemini in the field. (The
photo has been informed and approved by the people in it and
erased private information.)

Gemini-B. And it leads to the fact that Gemini can infer
higher resolution of input images than Gemini-A and Gemini-
B as shown in Fig. 18.32.04% of image resolutions Gemini
infers are 1080p, 1.71, and 2.66 times more than the other
two. In Fig. 16, we observe the average analytics accuracy of
Gemini, Gemini-A, and Gemini-B are 90.73%, 87.42%, and
79.93%, respectively. It means 3.31% of accuracy reduction
will be incurred by disabling elastic computing resource
control, and 10.80% accuracy reduction will be incurred by
disabling asynchronous data transfer mechanism. We observe
a similar accuracy reduction in VPD. These results indicate the
importance of both asynchronous data transfer mechanisms
and elastic computing resource control. Gemini is able to
combine the advantages to achieve better performance than
using only one of them.

VII. CASE STUDY

We present a case study where we use our Gemini prototype
(Fig. 8) to support an intrusion detection application that has
been deployed in a computer laboratory in our department. The
application applies a Hikvision intrusion detection application
indoor [36]. It has three pre-trained models, Mvx-net [37],
AcuSense [38], and Complete-YOLO [39]. We ran the ap-
plication supported by Gemini for over 8 hours. The content
change in this scenario is in minute-level. As shown in Fig.
17, where content changed at 8:52am as compared to 8:55am,
i.e., a one-person content changes to a three-person content.

Table VI shows the average analytics accuracy, hardware
utilization, and the latency miss rate of three periods on a

TABLE VI: Average analytics accuracy, hardware utilization
rate and latency miss rate of three periods on a day.

Time Average
Accuracy

Hardware
Utilization Rate

Latency
Miss Rate

6:30am–9:30am 92.4% 96.4% 0.002%
9:30am–12:00pm 97.9% 97.7% 0%
12:00pm–2:30pm 93.3% 98.9% 0%

day. The accuracy is holding at high accuracy (above 92.4%).
The computing resource can be fully utilized as the hardware
utilization ranges from 96.4% to 98.9%. We also observe
that only 0.002% of video analytics tasks violate the latency
requirement between 8:30 am and 9:30 am. It illustrates that
Gemini can provide high service quality.

Fig. 19 shows the end-to-end operations in the field of
Gemini between 8:30 am to 9:30 am. In Fig. 19, the top graph
shows the frame filtering rate over a period. The bottom three
graphs show the amount of allocated CPU/GPU resources, the
selected resolution, and the employed model over a period of
time, respectively. We can see that Gemini adjusts computing
resource allocation, video resolution, and model in runtime
successfully. For example, at the time 9:05 am (green dash
line in Fig. 19, a burst of persons appears in the video, the
frame rate drops to 27%, and more frames are fed to the
GPU. Gemini detects the increasing workloads on GPU, thus
allocates more resources for GPU, and downsizes resolution
to 280p, changes the model to Mvx-net to keep high accuracy.

We further estimate the Gemini overhead by computing
the number of floating-point operations (FLOPs) of Gemini
in this case. We find that Gemini has the computation of
25.63 MFLOPs, which is only 18.3% of MobileNet (140
MFLOPs) [31]. It takes only 1.7 ms to compute the dual
computing resource allocation strategy, which occupied 2%
of the total CPU time of the camera. In short, we believe
that Gemini can successfully be deployed on laptops, mobile
phones, or even on low-capacity cameras.

VIII. RELATED WORK

In the research literature, Gemini falls into an edge-side
real-time video analytics system that leverages a newly devel-
oped accelerator, i.e., the dual-image FPGA, with end-to-end
video analytics optimization.

Edge-side video analytics systems: Early video analytics
systems were developed in the cloud environment; some
handle pre-stored videos [1] and some handle real-time videos,
e.g., AWStream [2] and Chameleon [10]. Edge-cloud video
analytics systems were developed, e.g., DNN Surgery [3],
EdgeBox [40], where the workloads are partitioned between
the edge device and the cloud. These systems optimized
the analytics workloads through spatial-temporal contextual
filtering, workload partitioning between the edge devices and
the cloud, etc., under bottlenecks such as network delays,
throughput variance.

With the increase of the edge-side computing power [41],
real-time requirements [42], as well as privacy concerns [43],
edge-side real-time video analytics systems were developed.
Microsoft Rocket [5] performs on-camera video analytics

through dynamically adapting parameters and frame filtering
techniques. VideoEdge [35] is a fully distributed framework
to partition the video analytics pipeline across cameras and
the edge cluster. Distream [44] performs workload allocation
across cameras and edge clusters based on workload dynam-
ics. Existing edge-side video analytics systems run on fixed
CPU/GPU resources and cannot effectively adapt to dynamic
IIC/DIC workloads. Gemini leverages a newly developed dual-
image FPGA to provide elastic dual computing resources and
we present a full set of hardware and software designs.

Accelerators for video analytics: In the past years, we see
a flourish of dedicated AI processors. Commercial products
emerge such as Google TPU [45], NVIDIA SCNN [46],
etc. These processors specifically focus on DIC workloads.
FPGA can perform customized hardware acceleration [47].
There are studies using FPGA for video analytics acceleration,
such as recognition [48] and classification [48]. There is a
history to develop reprogramable FPGAs. Early FPGAs were
based on static memory and cannot be reprogrammed. New
generations of silicon have led to the SRAM-based FPGAs
with reprogrammabililty. Then the programmable FPGAs can
support partial reconfiguration, where a part of the FPGA can
be reprogrammed while another part of the FPGA is being
used. However, the reconfiguration normally takes minutes.
The most recent FPGA development with external non-volatile
memory allows dual-image storage and supports runtime re-
configuration through fast image switching. Gemini leverages
such an advance to support elastic workloads.

Video analytics optimization techniques: There are op-
timization techniques to reduce the NN model size and thus
decrease the model inference (DIC) workloads, e.g., model
compression, model quantization. Small models have also
been developed: Google developed small-scale DNNs for
mobile platforms [49], MCDNN [50] generates alternative
DNN models, etc. There are also optimization techniques to
reduce the number of frames fed into model inference, e.g.,
Reducto [12] has a lightweight filtering algorithm to filter
out irrelevant frames. A region of targeted objects [13] was
extracted based on common-feature analysis. These techniques
incur IIC workloads, which need to be taken into consideration
in resource-constrained edge devices. Gemini is an end-to-end
system that leverages these techniques as components.

IX. CONCLUSION

In this paper, we developed Gemini, a new real-time video
analytics system enhanced by a dual-image FPGA. Gemini
can provide elastic computing resources in CPU and GPU
in runtime. With its workload adaptation controller running
a bandit-based algorithm, Gemini can adapt to the workload
dynamics of video analytics applications in field, and sub-
stantially improve the video analytics accuracy. We presented
a Gemini prototype implementation and evaluated Gemini
through real-world video trace experiments and a case study.
We believe that Gemini can be extended into an edge-cloud
video analytics system, or a collaborative video analytics sys-

tem, where its effective control on dual computing resources
can improve the performance of these systems as well.

ACKNOWLEDGEMENT

Dan Wang’s work is supported by National Key R&D
Program of China under Grant No. 2020YFE0200500, GRF
15210119, 15209220, 15200321, ITF-ITSP ITS/070/19FP,
CRF C5026- 18G, C5018-20G, PolyU 1-ZVPZ.

REFERENCES

[1] T. Xu, L. M. Botelho, and F. X. Lin, “Vstore: A data store for analytics
on large videos,” in Proc. of EuroSys’19, Dresden, Germany, Mar. 2019.

[2] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proc. of ACM
SIGCOMM’18, Budapest Hungary, Aug. 2018.

[3] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in Proc. of IEEE INFOCOM’19,
Paris, France, Apr. 2019.

[4] Amazon, “Aws deeplens-deep learning enabled video camera for devel-
opers,” 2019. [Online]. Available: https://aws.amazon.com/deeplens

[5] Microsoft, “Microsoft rocket for live video analytics,” 2017.
[Online]. Available: https://www.microsoft.com/en-us/research/project/
live-video-analytics/

[6] “Machine Learning Image and Video Analysis-Amazon Rekognition,”
2021. [Online]. Available: https://aws.amazon.com/rekognition/

[7] “Canon’s surveillance solution - Crowd People Counter for Milestone
XProtect,” 2020. [Online]. Available: https://www.milestonesys.com/
marketplace/canon-inc/crowd-people-counter/

[8] Z. Zhao, Z. Jiang, N. Ling, X. Shuai, and G. Xing, “Ecrt: an edge
computing system for real-time image-based object tracking,” in Proc.
of ACM SenSys’18, 2018.

[9] F. Loewenherz, V. Bahl, and Y. Wang, “Video analytics towards vision
zero,” ITE Journal, vol. 87, no. 3, p. 25, 2017.

[10] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proc. of ACM
SIGCOMM’18, Budapest Hungary, Aug. 2018.

[11] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in Proc. of IEEE
INFOCOM’18, Honolulu, HI, USA, Apr. 2018.

[12] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,
“Reducto: On-camera filtering for resource-efficient real-time video
analytics,” in Proc. of ACM SIGCOMM’20, Virtual Event, Aug. 2020.

[13] H. Kuang, L. Chen, F. Gu, J. Chen, L. Chan, and H. Yan, “Combin-
ing region-of-interest extraction and image enhancement for nighttime
vehicle detection,” IEEE Intelligent systems, vol. 31, no. 3, 2016.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. of IEEE CVPR’16,
San Juan, PR, USA, June 2016.

[15] W. Liu, D. Anguelov, D. Erhan et al., “Ssd: Single shot multibox
detector,” in Proc. of ECCV’16, Amsterdam, Netherlands, Oct. 2016.

[16] T.-Y. Lin, P. Goyal et al., “Focal loss for dense object detection,” in
Proc. of IEEE ICCV’17, Venice, Italy, Oct. 2017.

[17] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv:1804.02767, 2018.

[18] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor: Privacy-preserving video analytics as a cloud service,” in Proc.
of USENIX Security’20, Virtual Event, Aug. 2020.

[19] C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “Ffs-va: A
fast filtering system for large-scale video analytics,” in Proc. of ICPP’18,
Eugene, OR, USA, Aug. 2018.

[20] S. Zhang, G. Wu, J. P. Costeira, and J. M. Moura, “Fcn-rlstm: Deep
spatio-temporal neural networks for vehicle counting in city cameras,”
in Proc. of IEEE ICCV’17, Venice, Italy, Oct. 2017.

[21] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive
faster r-cnn for object detection in the wild,” in Proc. of IEEE CVPR’18,
Salt Lake City,UT,USA, June 2018.

[22] STMicroelectronics, “STM32F1 Series.” [Online]. Available: https:
//www.st.com/en/microcontrollers-microprocessors/stm32f1-series.html

[23] S. Ibrahim, T.-D. Phan, A. Carpen-Amarie et al., “Governing energy
consumption in hadoop through cpu frequency scaling: An analysis,”
Future Generation Computer Systems, vol. 54, pp. 219–232, 2016.

[24] W. Kanda, Y. Yumura, Y. Kinebuchi, K. Makijima, and T. Nakajima,
“Spumone: Lightweight cpu virtualization layer for embedded systems,”
in Proc. of IEEE EUC’08, vol. 1, Shanghai, China, Dec. 2008.

[25] A. Dhakal, S. G. Kulkarni, and K. Ramakrishnan, “Machine learning at
the edge: efficient utilization of limited cpu/gpu resources by multiplex-
ing,” in Proc. of IEEE ICNP’20, Madrid, Spain, Oct. 2020.

[26] W. Wu, J. Yang, and C. Shen, “Stochastic linear contextual bandits with
diverse contexts,” in Proc. of AISTATS’20, Palermo, Italy, Aug. 2020.

[27] R. Mathonat, D. Nurbakova, J.-F. Boulicaut, and M. Kaytoue, “Seqscout:
Using a bandit model to discover interesting subgroups in labeled
sequences,” in Proc. of IEEE DSAA’19, DC, USA, 2019.

[28] T. J. Walsh, I. Szita et al., “Exploring compact reinforcement-learning
representations with linear regression,” arXiv:1205.2606, 2012.

[29] H. Cho, P. Oh et al., “Fa3c: Fpga-accelerated deep reinforcement
learning,” in Proc. of ASPLOS’19, Providence, RI, USA, Apr. 2019.

[30] B. Gregg, “Linux performance,” [Online]. http://www. brendangregg.
com/linuxperf. html, 2018.

[31] Z. Qin, Z. Zhang, X. Chen, C. Wang, and Y. Peng, “Fd-mobilenet:
Improved mobilenet with a fast downsampling strategy,” in Proc. of
IEEE ICIP’18, Taipei, Taiwan, Sept. 2018.

[32] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” arXiv:1605.06409, 2016.

[33] C. of Auburn AL, “City of auburn toomer’s corner webcam2,” Jan 2019.
[Online]. Available: https://www.youtube.com/watch?v=hMYIc5ZPJL4

[34] A. Kewalramani, “Live Video Analytics with Microsoft
Rocket for reducing edge compute costs,” 2020. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
live-video-analytics-with-microsoft-rocket-for-reducing-edge-compute-costs/

[35] C.-C. Hung, G. Ananthanarayanan, P. Bodik et al., “Videoedge: Process-
ing camera streams using hierarchical clusters,” in Proc. of IEEE/ACM
SEC’18, Bellevue, WA, USA, Oct. 2018.

[36] “Hikvision Intrusion Detectors,” 2020. [Online]. Available: https://www.
hikvision.com/products/Alarm-Products/Hikvision-Intrusion-Detector/

[37] V. A. Sindagi et al., “Mvx-net: Multimodal voxelnet for 3d object
detection,” in Proc. of IEEE ICRA’19, Montreal, Canada, May 2019.

[38] “AcuSense Technology,” 2020. [Online]. Available: www.hikvision.
com/hk/products/IP-Products/Network-Cameras/acusense-products/

[39] M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, “Complex-yolo:
An euler-region-proposal for real-time 3d object detection on point
clouds,” in Proc. of ECCV’18, Munich, Germany, Sept. 2018.

[40] B. Luo, S. Tan, Z. Yu, and W. Shi, “Edgebox: Live edge video analytics
for near real-time event detection,” in Proc. of IEEE/ACM SEC’18,
Bellevue, WA, USA, Oct. 2018.

[41] Z. Xu, F. Yu, Z. Qin, C. Liu, and X. Chen, “Directx: Dynamic resource-
aware cnn reconfiguration framework for real-time mobile applications,”
IEEE TCAD’20, vol. 40, no. 2, pp. 246–259, 2020.

[42] J. Lee, B. Varghese, R. Woods, and H. Vandierendonck, “Tod: Trans-
precise object detection to maximise real-time accuracy on the edge,”
in Proc. of IEEE ICFEC’21), 2021.

[43] W. Du, A. Li, P. Zhou, B. Niu, and D. Wu, “Privacyeye: A privacy-
preserving and computationally efficient deep learning-based mobile
video analytics system,” IEEE TMC’21, 2021.

[44] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live video
analytics with workload-adaptive distributed edge intelligence,” in Proc.
of ACM SenSys’20, Virtual Event, Nov. 2020.

[45] J. Dean, “Recent advances in artificial intelligence via machine learning
and the implications for computer system design,” in Proc. of IEEE
HCS’17, Cupertino, CA, USA, Aug. 2017.

[46] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli et al., “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 27–40, 2017.

[47] S. Biookaghazadeh, P. K. Ravi, and M. Zhao, “Toward multi-fpga
acceleration of the neural networks,” ACM JETC’21, pp. 1–23, 2021.

[48] S. Han, J. Kang, H. Mao, Y. Hu, X. Li et al., “Ese: Efficient speech
recognition engine with sparse lstm on fpga,” in Proc. of ACM/SIGDA
FPGA’17, Monterey, CA,USA, Feb. 2017.

[49] A. Gordon, E. Eban, O. Nachum et al., “Morphnet: Fast & simple
resource-constrained structure learning of deep networks,” in Proc. of
IEEE CVPR’18, Salt Lake City,UT,USA, June 2018.

[50] S. Han, H. Shen, M. Philipose et al., “Mcdnn: An approximation-
based execution framework for deep stream processing under resource
constraints,” in Proc. of ACM MobiSys’16, Singapore, June 2016.

