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Abstract—Energy is a global concern and the electricity
bills nowadays are leading to unprecedented costs. Electricity
price is market-based and dynamic. In this paper, we inves-
tigate how to cut the electricity bills of commercial buildings
in a dynamic power market. The building thermal systems
(e.g., air-conditioning), which dominate electricity bills, has
a special property of thermal storage, i.e., the energy will
not immediately dissipate from thermal air/water. Intuiti vely,
with storage, the energy can be “stored” in the thermal
system, making it possible to purchase electricity in low price
and use it at appropriate time. The building thermal supply
and electricity purchasing surely depends on human activities
that the building should support such as class and meeting
schedules. To minimize electricity bills, we develop a holistic
planning of electricity purchasing schedule with thermal stor-
age management, and appropriate room assignment schedules
for classes/meetings usage.

The computing algorithms require inputs of physical mod-
eling on energy consumption. We develop wireless sensing
systems to collect fine-grained data which are used to assist
the cross-disciplinary physical modeling. We conduct valida-
tion through real experiments. We formulate an optimization
problem and show that it is NP-complete. Our primary focus is
to minimize electricity bills, which matches the incentives of the
commercial buildings. We show that this does not coincide with
energy conservation. We further investigate the relationship of
minimization of electricity bills and minimization of ener gy
consumption. We develop algorithms for our problem and our
evaluation shows that we can achieve a 40% cost reduction.

I. INTRODUCTION

Energy is a global concern nowadays and the energy
price is expected to continuously increase. Electricity prices
also fluctuate. This is because some power plants cannot
stop power generation or some power sources are dynamic
(e.g., solar), and peak hour demand leads not only to more
electricity loss in power generation/delivery but also to
power plant damage and fast deterioration [1]. As such,
dynamic price can encourage usage in low demand time and
penalize usage in high demand time. The recent development
of smart grids aims at diversified electricity generation and
fast response to demands [2][3]. A more dynamic power
market is widely expected.

An important edge system of the grid is the commercial
building. It is one of the four dominating energy consuming
sectors, along with transportation, manufactory and resi-

dential usage [4]. For regions like Hong Kong, where the
Industry sector is small, 65% of electricity is reported to go
to the commercial buildings [5]. In buildings, the thermal
systems (i.e., the heating, ventilation and air-conditioning
systems, HVAC systems) dominate electricity bills. As an
example, it is reported that for the Office Segment of Hong
Kong, 54% electricity goes to space conditioning (i.e., air-
conditioning), 14% goes to lighting, 13% goes to office
equipments [5]. In this paper, we investigate how to cut the
electricity bills of commercial buildings in a dynamic power
market.

The thermal system has a special property of thermal
storage. For example, chilled water system is very typical in
buildings and the energy will not immediately dissipate from
thermal water. Nowadays, even separated Thermal Energy
Storage (TES) systems exist [6]. Intuitively, with storage,
the energy can be “stored” in the thermal system for a
certain time, making it possible to purchase electricity inlow
price and use it at appropriate time. The building thermal
supply and electricity purchasing from the power market
surely depends on human activities that the building should
support where the human activities could be represented by
class or meeting usage schedules. To minimize electricity
bills, we need a holistic planning of electricity purchasing
schedule with thermal storage management, and appropriate
room assignment schedules for classes/meetings usage.

Clearly, this planning falls into an optimization problem.
We need carefully designed algorithms. In addition, the com-
puting algorithms require inputs of the thermal consumption
of rooms and thermal storage capacity of the HVAC system
in the buildings. These require cross-disciplinary physical
modeling.

In this paper, we develop a wireless sensing system to
collect fine-grained data which are used to assist cross-
disciplinary thermal modeling. We validate our physical
modeling through real experiments. We formulate an op-
timization problem to minimize the total electricity bills
where we need to develop a schedule for electricity purchas-
ing from the power market and a schedule for meetings and
room assignment. We show such problem is NP-complete.
Our primary focus in this paper is to minimize electric-
ity bills; this matches the incentives of the commercial



buildings. We observe, however, that such minimization
does not coincide with energy conservation. Intuitively, the
optimization may schedule a meeting to a room at a time
that can result in low cost, yet high energy consumption.
We thus further study the root cause and the correlation
between energy consumption minimization and electricity
bill minimization. We develop a heuristic algorithm for
the overall problem using a Lagrangian relaxation-based
method. We conducted comprehensive evaluation based on
real pricing data and we see up to a 40% cost saving as
compared to typical current scheduling.

The remaining part of the paper is organized as follows.
We discuss related work in Section II. We then present
background on building thermal systems and an overview of
our problem and solutions in Section III. In Section IV, we
formally formulate our problem and analyze its complexity.
Before we go into the detailed physical thermal modeling
and computing algorithm designs, we discuss the relation-
ship between minimizing electricity cost and minimizing
energy consumption in Section V. In Section VI, we present
the thermal modeling, wireless sensing system development
and experimental validation. Our algorithms are shown in
Section VII. In Section VIII, we evaluate our algorithms
and finally we conclude our paper in Section IX.

II. RELATED WORK

With global concerns on energy conservation, energy
price is expected to continuously increase, leading to un-
precedented electricity bills in many domains. Electricity
grids adopt dynamic pricing strategy to reduce energy loss,
minimize power plant damage, etc [7]. There are studies
that take advantage of dynamic pricing to reduce bills for
data centers. Two early schemes were proposed to reduce
the electricity costs by shifting workload of data center
from locations with high electricity prices to those with low
prices [8]. Following these, a set of algorithms and game
theoretical models were developed for various scenarios
[9][10]. These studies provide useful experiences. However,
building thermal systems have unique characteristics and
different background context.

An early work that takes advantage of thermal storage and
real time pricing to save electricity bill in commercial build-
ings is [11]. The work considers the buildings as a whole.
They do not study detailed building activity management nor
they reveal the conflict between the energy minimization
and electricity bill minimization. In a recent work [12],
battery is proposed to be used as storage for residential
houses. Excellent machine learning techniques are developed
to predict next-day consumption. The objective of the paper
is also minimizing electricity bills. We differ from them as
we consider the storage of the thermal systems and our work
focus more on a building/campus environment. The thermal
system has greater capacity and is also cheaper. In addition,
we develop meeting and room assignment schedules. We

have a previous study [13] where we observe that the cool
air in a room will not dissipate immediately after a class
and class schedules should take such advantage. A follow-
up work develops more refined schedules [14]. These studies
only consider the thermal storage of a room, which is small
and less practical in real world. In addition, we clearly
specify the mismatch between minimizing electricity bills
and minimizing energy consumption and we hope this may
contribute insights for future studies to search for a balance.
As buildings are key edge systems for smart grids, the
mismatch shows a concrete example that the smart grid
pricing strategies may quantitatively take into consideration;
the pricing strategies of smart grids are heavily studied
recently [15], yet usually from a high level game theoretical
point of view.

As the commercial building is one top energy consuming
area [16], there are many other studies contributed by the
computer society in recent years: 1) there are studies on
fine-grained monitoring systems using the recent advances in
wireless sensor networks [17]. An auditing network is built
to collect electricity readings [18] and sMAP is developed
[19] as a general common layer to record physical infor-
mation for different applications. Similar systems include
[20]. We develop our own testbed where we convert the
wired building management systems into wireless without
changing upper layer building operational protocols [21];2)
there are studies on physical modeling of the building ther-
mal systems [22][23][24]; with an aim to better understand
cyber-physical co-designs and 3) there are algorithms on
wise and automatical device turning-off to save electricity
[25][26], assisted by fine-grained data collection and/or
thermal modeling, inference on human presence [27], or
human participatory sensing/voting for thermal comfort [28].

III. B ACKGROUND AND AN OVERVIEW

In this paper, we will use air-conditioning in our presenta-
tion for the sake of conciseness (our work straightforwardly
handles the heating). A typical HVAC system (the thermal
system) [29] has a cold water tank. It is chilled to certain
temperatures from time to time and this chilling process
consumes huge electricity. Hot air impacts on the chilled
water system and is compressed in the supply ductwork.
If a room turns on air-conditioning, the ventilation of the
room (e.g., VAV box) opens and the cold air is squeezed
into the room. The cold air gradually gets heated and
returns to circulation. Nowadays, advanced and separated
Thermal Energy Storage (TES) system are widely used and
this can substantially increase the thermal storage capacity.
Intrinsically, thermal storage, including the TES system, is
based on the ability of water to store large amount of heat
or cold. It is common that the thermal storage system today
can reasonably provide short term (less than 2 hours) or even
long term (greater than 10 hours) cooling energy [6].
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Figure 1: The diagram of the thermal energy flow
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Figure 2: The framework of the thermal cost management system

For a specific room, the amount of electricity it consumes
depends on many factors. Two rooms of the samecapacity
(the number of people the rooms can accommodate) may
consume different amount of electricity due to different
configurations and/or orientations. At different times of a
day, a room also may consume very different amount of
electricity.

The energy supply and demand in a building can be
abstracted as Fig. 1. The energy demands come from the
rooms when scheduled to hold human activities, i.e., meet-
ings. This meeting is meant to be general. In a campus
context, this can be translated into class schedules and in
a commercial building context, this can be translated into
office planning and meeting schedules. We will see in our
formulation (Section IV) that a meeting is only associated
with the number of people attending the meeting (one person
is fine if it is his office room) and a time period (which
can be considered as his/their activity patterns). The energy
supplies come from the chiller system and the thermal
storage. The chiller system is electrically charged to support
the energy demands from rooms when the thermal storage
is low. All of these finally are electrically supported by the
power market. Minimizing building electricity bills in the
aforementioned system falls into an optimization problem.
Yet we face difficulties both in algorithm design and in
physical thermal modeling. Our solution framework is in
Fig. 2. On the computing side, we need to develop two
schedules: 1) meeting/class schedule (if the time of the
meetings is not required to be fixed) and room assignment
schedule for meetings; and 2) electricity purchase schedule
from the dynamic power market. On the physical side, we
need to model: 1) the thermal storage model, and 2) the
energy (electricity) requirement for each room if they are
assigned for meetings/classes.

The linkage between the computing side and the phys-
ical side is that computing schedules need inputs from
the physical side. From a high level point of view, we

will develop equations that link the dynamics between the
demands (room air-conditioning), and the supplies (thermal
storage and electricity charges for the chiller system); aswe
can see from Fig. 1.

We give a more detailed overview of our physical side de-
sign in Fig. 2. Thermal computing falls into the expertise of
Building and Service Engineering. They have sophisticated
tools such as EnergyPlus [30]. One may fill in the parameters
of a room (or the thermal systems) and EnergyPlus will
output the energy requirements. In EnergyPlus, one can
even input the weather of the day, and EnergyPlus can
estimate the temperature, solar energy strength accordingto
the weather and output more accurate energy requirements
if a room is in use, based on its well trained model and
comprehensive history data. EnergyPlus is a complex model
and there can have hundreds of parameters.

Our physical computing is based on EnergyPlus. For
thermal storage model, we use EnergyPlus directly as it is
stand-alone and can be computed once for all. For rooms,
we can also use EnergyPlus directly. However, the rooms
are very different in configurations. This may introduce
high complication if we need to find out the parameters to
be input to EnergyPlus room-by-room. Our approach is a
wireless sensor system assisted approach as follows. The
major complexity comes from some compound parameters
that are not easy to obtain directly. As an example, a key
parameter is thermal conductivity of a wall. It is difficult
to compute from theory as it involves knowledge of sub-
parameters of materials etc, especially, if we have to do it
room-by-room for all rooms. We found that these parameters
are invariants as it will not change subject to environments.
We can inversely calibrate it if we can first collect a set of
data on electricity usage, temperature of the room, etc. We
develop wireless sensor networks to collect these data. We
thus can substantially reduce the number of parameters to
be input to EnergyPlus.

IV. T HE PROBLEM AND ITS COMPLEXITY

A. The Problem

Our problem is to compute the meeting and room as-
signment schedules and the electricity purchasing schedules
from the power market, so as to minimize the cost. We
now formally formulate this. Assume we haveN rooms and
M meetings. Letri andmj denote roomi and meetingj
respectively.

Without loss of generality, we simplify the meeting re-
quirement to the number of people of the meeting only. We
may have additional constraints, such as specific equipments
in a room, distance between two meetings/classes in loca-
tion so that people can travel between the rooms in time,
etc. From an optimization point of view, these add more
constraints to the problem. Letw(mj) denote the capacity
requirement (number of people) of meetingmj . Let w(ri)
denote the capacity of roomri. Let tsj andtej be the meeting



time is for each meetingj. Note that we can have fix meeting
times (as requirements/constraints) and/or flexible meeting
times (to be computed); and we will study both of them in
this paper.

We also simplify the total electricity consumption of a
building to be the sum of the electricity consumption of the
rooms in supporting meetings. There are surely other elec-
tricity consumptions, e.g., lighting, and air-conditioning of
the corridors, etc. We argue that the electricity consumption
of lighting, etc is much less than air-conditioning; and the
air-conditioning of corridors, etc is easy to compute as their
usage is regular and stable. LetE(i, tsj , t

e
j , Tj) be electricity

consumption of roomi at start timetsj and end timetej with a
target temperatureTj ; e.g., in Hong Kong the recommended
temperature for Grade A buildings is 23.5◦C (74.3◦F)[31].

Let Pt be the electricity price at timet. Let Vt be the
thermal storage at timet. Let the maximum and minimum
thermal storage capacity beVmax andVmin.

There are two schedules we need to compute. LetLt be
the electricity charge needed at timet. Lt represents the
electricity purchase schedule. For meeting schedules, we
need to decide the room and the meeting time (if the meeting
time is pre-determined, this becomes a constraint). Letxij be
an indicator variable, wherexij = 1 represents that meeting
mj is assigned to roomri and 0 otherwise.

Our Minimize Building Electricity Cost (MBEC) problem
can be formalized as:

min
∑

t

LtPt,

1) Meeting Schedule Constraints:

N∑

i=1

xij = 1 ∀j = 1, . . . ,M (1)

∑

j∈Jt

xij ≤ 1 ∀i = 1, . . . , N (2)

w(mj) ≤ w(ri) ∀xij = 1 (3)

2) Thermal Consumption Constraints:

Ht =

N∑

i=1

∑

j∈Jt

xijE(i, t
s
j , t

e
j , Tj) (4)

Ht ≤ Hmax ≤ Lmax (5)

3) Thermal Balance Constraints:

Vt+1 = aVt + bLt − cHt + d (6)

Vmin ≤ Vt ≤ Vmax (7)

The objective function is self-explanatory. The Meeting
Schedule Constraints show that a meeting must be assigned
once but the only once, a room can only accommodate one
meeting at any timet and the meeting should not exceed the
room capacity. Here,Jt represent the set of all meetings that
in action at timet. Let Ht be the total thermal consumption

at time t. It is computed in the Thermal Consumption
Constraints. The thermal consumption at any time must be
less than the thermal supply capacity of the HVAC system.
This is ensured by design of HVAC system. The Thermal
Balance Constraints show a state transition equation (more
details in Section VI) should be maintained between each
time t andt+1. Intuitively, the thermal storage at timet+1
equals the thermal storage at timet, plus electricity charges
and minus electricity usage.Vt has an upper and lower limit
at any timet. The state coefficientsa, b, c, d is related to
thermal efficiency and loss.

In this problem, the inputs ofE(i, tsj , t
e
j , Tj) and the state

coefficients need to be computed from the physical side.

B. Complexity analysis

Theorem 1:MBEC is NP-complete.
Proof: The proof reduces Job Interval Selection Prob-

lem [32] to MBEC. The detail of the proof is in [29].
Another problem that is of interest is to have the meeting

start and end time fixed. We call this problem f-MBEC. f-
MBEC is also NP-complete, we reduces Cost Constrained
Fixed Job Scheduling [33] to f-MBEC, see our proof in
[29]. We specially mention f-MBEC because 1) f-MBEC is
practical in many scenarios and 2) f-MBEC is quite different
from MBEC in the NP-complete proof and analysis. We
comment, in high-level, on the difference between MBEC
and f-MBEC. The key complexity difficulty of MBEC and
f-MBEC comes from the meeting scheduling (similar to job
scheduling). There are two different types of job scheduling:
one is finding a schedule to satisfy the timing of all jobs
[32] and one is minimization cost for fixed jobs [33]. The
complexity reduction are from completely different threads.

In this paper, we mainly focus on MBEC. In Section VII,
our algorithm for MBEC surely solves f-MBEC and we will
evaluate both in Section VIII.

V. ELECTRICITY COST VS. ENERGY

Before we go into the details of our algorithms for MBEC
and the physical modeling, we first analyze the relationship
between minimizing electricity cost and minimizing energy
consumption. As said, these two minimizations do not
coincide with each other. Note that this is true for both
MBEC and f-MBEC, i.e., even the start time and end time
of the meetings are fixed, the two minimizations are still
not coincide with each other. In this paper, we study the
root cause that leads to the differences between the two
minimization and in what conditions the two minimizations
become identical. It is not the objective of this paper to find
a good compromise of them; we believe that this is a grand
problem that is also related to power market pricing designs.
There are some studies on high-level abstraction [34] and we
also plan a future work.

Observation 2:Without real-time pricing, minimizing
electricity cost and minimizing energy consumption are
identical.
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Observation 3:If, at any time, all the rooms have iden-
tical energy consumption, minimizing electricity cost and
minimizing energy consumption are identical.

Intrinsically, if there is no price difference on the supply
side, or there is no difference on the demand side, saving
cost can be achieved only by saving energy. Thus, the two
minimizations become identical. The starting time, ending
time of meetings, room capacity, etc are not essential con-
ditions. As a consequence, both MBEC and f-MBEC face
that minimizing electricity cost may not conserve energy.

Let E(r, t) be the energy consumption of roomr at time
t. Definecost-energy in-conflict conditionas:

(1) Given E(r, t) > E(r′, t′) and Pt < Pt′ , ∀r, t, r′, t′,
E(r, t)Pt > E(r′, t′)Pt′ ; or (2) GivenE(r, t) < E(r′, t′) and
Pt > Pt′ , ∀r, t, r′, t′, E(r, t)Pt < E(r′, t′)Pt′ .

We use the cost-energy in-conflict condition to capture
the essence of Observation 2 and 3. Basically it ensures that
energy and electricity cost increase and decrease in the same
direction. Therefore,

Lemma 4: If cost-energy in-conflict condition holds, min-
imizing electricity cost and minimizing energy consumption
are identical.

Proof: The detailed proof is in [29].
In Fig. 3, we show an illustration of the cost-energy

in-conflict condition. The X-axis is the ratio between the
electricity price at any time and the Y-axis is the ratio be-
tween the energy consumption of any room at any time. “X”
shows the region where there will be cost-energy conflict.
More specifically, if the electricity pricing and/or energy
differences of rooms falls into these two regions, minimizing
electricity cost and minimizing energy consumption are not
the same.

We next show the role that thermal storage can play.
Lemma 5:Given that the thermal storage has infinite

capacity, minimizing electricity cost and minimizing energy
consumption are identical.

Proof: The detailed proof is in [29].
This lemma shows that thermal storage can mask the dif-

ference between the two minimizations. Intuitively, thermal
storage hides the impact of the electricity price difference at
different times.

To quantitatively understand the difference of the two
minimization, we plot an illustration in Fig. 4. The back-

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

Price difference ($)

D
iff

er
en

ce
 b

et
w

ee
n 

m
in

im
um

co
st

 a
nd

 m
in

im
um

 e
ne

rg
y 

(%
)

 

 

Without thermal storage
Thermal storage − 150kWh
Thermal storage − 250kWh

Figure 4: Difference between minimizing electricity and minimizing energy
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ground is as follows. There are 40 rooms and each room
has a capacity to accommodate 60 people. Nevertheless,
the energy requirement of each room is different as there
are different orientations of the room (more details of how
a room can be modeled are in Section VIII-A). We have
250 meetings each with a length of one hour. We compare
the solutions for minimizing electricity cost and minimizing
energy consumption. We see that when the price difference
is $25, there can be a difference of around 20%. With a
thermal storage capacity of 150kWh, the difference is 15%.
Note that the thermal storage capacity of 150kWh in our
setting indicates that the thermal storage can hold for all the
building rooms in operation for 1 hour. This is reasonable
practice in real world [35] and $25 - $30 price differences
are also quite conservative.

In this paper, we do not further study how we may
choose or find a trade-off between electricity bill reduction
and energy conservation. We believe there can be separate
studies both in a trade-off in building management and in
smart grid pricing strategies. In what follows, we emphasize
on electricity bill reduction as this matches the incentives of
the building operators.

VI. T HERMAL COMPUTING

We now study how we obtain the key physical inputs
for our scheduling algorithms. We first present our physical
modeling. We present our design and implementation of a
wireless sensor network, which is used for data collection
to assist our physical modeling. We further present our
validation.

A. Physical Modeling

We first discuss the state transition equation, i.e., Eq.
6 in Section IV. We then discuss how to model thermal
storage, i.e.,a; and energy consumption for rooms, i.e.,
E(i, tsj , t

e
j , Tj).

1) The State Transition Equation:Let L̇ be the electricity
charging rate, anḋH be the thermal demand rate. Let∆V be
the thermal storage charge/discharge volume in a period∆T .
Thus, the thermal storage volumeV can be characterized by
an electricity charging/thermal demand rate in the following



expression (the development of such equation follows [29]).

L̇∆T − Ḣ∆T = ±∆V
|∆V | < Vmax

(8)

When the electricity charging is greater than the thermal
demand, the thermal storage is in the charge mode; and
otherwise, in the discharge mode.

In this paper, we transform it into a discrete model by
discrete the time:

Vt+1 = aVt + bLt − cHt + d (9)

We call Eq. 9 thestate transition equation. It establishes a
linkage between the electricity charging, thermal demand,
and the thermal storage; where the electricity charging and
thermal demand should be determined by the schedule for
electricity purchasing and the schedule for meetings and
room assignment respectively.

2) Modeling Thermal Storage and Rooms:We use En-
ergyPlus for modeling both the thermal storage and room
energy requirement since it has extensively tested HVAC
modules. Many past experiences on EnergyPlus can be found
in [36][14].

As said, we directly use EnergyPlus to model the thermal
storage as it is once for all. We can also get the state coef-
ficientsa, b, c, d by regression analysis of data of electricity
charging and thermal demand from EnergyPlus [11][37]. For
energy consumption of the rooms, the number of parameters
to be used for EnergyPlus increases fast as rooms are very
different. The parameters can be broadly classified as: 1)
length, width, and height of the rooms etc. The values of
these parameters are easy to obtain, 2) the conductivity of
walls etc. These parameters are compound parameters, i.e.,
further related to materials etc. They are difficult to compute
directly but they are invariants, i.e., do not change from
environments; and 3) solar radiation, human activity, etc.
These changes frequently. Fortunately, however, EnergyPlus
has extensive training for these parameters. For example,
given the weather, we can get them by linear regression on
the historical data from EnergyPlus.

We mainly need to deal with 2). Though EnergyPlus can
also be used for 2) it can become over complex due to a
large number of rooms. As such, we derive these parameters
by inverse calibration. We use thermal conductivity as an
example to explain our idea. Letλ be the thermal conduc-
tivity of the walls.1 Ultimately, we want to compute energy
requirement of the roomE . E can be written as an equation
E = f(λ, a, b, c, . . .) wherea, b, c, . . . are side parameters
that are easy to obtain. To inversely calibrateλ, we can first
collect a set of values ofE , a, b, c, . . . and inversely solve

1This can be considered as an average to represent the thermalconduc-
tivities of all walls. More specifically, though the walls (including ceiling
and floor) of a roomr are also different, we can develop a virtual room
that has the same energy requirement and property of roomr; theλ of this
virtual room well represents theλs of the walls of roomr.
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Figure 5: The Sensor System.
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the equationE = f(λ, a, b, c, . . .), see more details in [29].
We develop a wireless sensor network to collect these

data for inverse calibration. The sensor network collect
indoor temperature, outdoor temperature and electricity us-
age. Similar ideas have been proposed in [22] and our
previous work [13][38]. We release our code and EnergyPlus
bag in [29]. Due to page limitation, we omit the details
of formal derivation and explanation of equation groups
E = f(λ, a, b, c, . . .).

B. Wireless Sensor Network Design

The objective of our wireless sensor network is to collect
the electricity usage to air-conditioning the room, and indoor,
outdoor temperatures.

We develop a two tiered WSNs as shown in Fig. 5.
The end tier is a set of TelosB-based temperature sensors.
They record temperatures and send such readings to the
top tier, the Imote2-based electricity-meters. The Imote2is
extended with an electricity meter. As such, it can record
and send electricity usage in real time. We also developed
a long-range data communication module (LR-Module, in
connection through 3G or WiFi) and connect it to the
Imote2. As such, the data can be transmitted to a remote base
station. This is because we cannot place the base station (e.g.
laptop computer), unattended, in the rooms of experiments
and one cannot afford to always have people in the rooms
of experiments.2

We implement our sensor system in TinyOS, and use Col-
lection Tree Protocol (CTP) for data routing among sensor

2The Imote2 sensors and the TelosB sensors are less conspicuous; they
can be placed in boxes and hung on the walls.



Period Measurement WSN+EnergyPlus
(kWh) (kWh)

8:00 - 9:00 560 505
10:00 - 11:00 690 755
12:00 - 13:00 780 845
17:00 - 18:00 530 480
22:00 - 23:00 510 560

Table I: Measured vs. Simulated Energy Consumption

nodes. The Imote2 sends the temperature data collected from
the end tier, and its electricity readings to our remote base
station. The Imote2 has high load to relay data, but it has
direct power supply and TelosB sensors use batteries.

C. Validation

We conduct real experiments to validate our inverse
calibration using wireless sensor network. The configuration
of the room of our experiments and the sensor network
deployment are shown in [29]. We deployed nine indoor
sensors, one outdoor sensor to collect temperature and an
electricity-meter connected to the air-conditioner (AC).In
our experiments, we periodically turned on and off the AC.
Fig. 6 shows part of our experiment data: the upper figure
shows the electricity usage recorded and the lower figure
shows the temperatures recorded. We computeλ̄ by the
average of theλs of a set of electricity and temperature data.
After we haveλ̄ and other parameters, we can put them into
EnergyPlus to compute energy requirements of a room.

To validate the accuracy of our method, we useλ̄ to
simulate the energy consumption in five periods when the
AC is in operation. We show the results in Table. I. There are
two columns. The 1st column shows the real measured data,
and the 2nd column shows the data byλ̄ assisted EnergyPlus
computation. The errors are around 9%. Note that the
purpose of our physical modeling is not to achieve ultimate
accuracy and make contribution to thermodynamic theory,
but inputs that are reasonable enough for our computing
algorithms.

VII. A LGORITHM

Our philosophy in developing the heuristic for MBEC
is as follows. We need to develop two schedules, 1) the
meeting schedule and the room assignment schedule and 2)
the electricity demand schedule. Accordingly, we develop
two algorithms: 1) given the electricity demand schedule
fixed, find the best meeting schedule and room assignment
schedule; we call it algorithm best-Assignment(), and 2)
given the meeting schedule and room assignment schedule
fixed, find the best electricity demand schedule; we call it
algorithm best-Demand(). We solve the overall MBEC by
a Lagrangian relaxation structure using best-Demand() and
best-Assignment() as sub-routines.

Given the meeting and room schedule fixed, finding the
best electricity purchasing schedule (i.e., best-Demand())
can be optimally solved as it can be transformed into linear

Algorithm MBEC()

1: Set∀t, V u
t = 0;

2: SetSm = Φ, Se = Φ;
3: repeat
4: Temp = Se;
5: Sm=best-Assignment(V u);
6: [Se, V

u]=best-Demand(Sm);
7: until Temp == Se

Figure 7: Algorithm MBEC.

programming. Given the electricity purchasing schedule
fixed, finding meeting and room assignment schedule (best-
Assignment()) is NP-complete.

In what follows, we will mainly discuss how we de-
velop best-Assignment(); and how best-Demand() and best-
Assignment() interact to solve MBEC.

Note that if there is no thermal storage, a meeting
schedule and the room assignment schedule computed by
best-Assignment() can determine the electricity purchasing
schedule. We defineusable thermal storageas the thermal
storage volume that can be used at a time. Intuitively, usable
thermal storage is the flexible storage volume at a time. With
different usable thermal storage volume, a fixed meeting
schedule and the room assignment schedule can reflect
different electricity purchasing schedule. This usable thermal
storage provides a linkage between best-Assignment() and
best-Demand(). The inputs of best-Assignment() are usable
thermal storage and meeting requirements. Its output is a
meeting and room assignment schedule. The input of best-
Demand() is a meeting and room assignment schedule and
its output is electricity purchasing schedule and the possible
usable thermal storage.

Algorithm MBEC() is shown in Fig. 7. Algorithm
MBEC() first calls best-Assignment() where the input of
usable thermal storageV u is 0. It determines a meet-
ing and room assignment scheduleSm. Sm is given to
best-Demand(). best-Demand() will compute the electric-
ity purchase scheduleSe according toSm and adjust the
usable thermal storageV u. SuchV u is returned to best-
Assignment(). The ending condition for MBEC() is if there
is no change in the schedules.

Algorithm best-Assignment() is greedy-oriented. We first
group the rooms according to its capacity, and sort room
groups in descending order according to capacity. Second,
we classify the meetings into different meeting groups
according to room groups. For example, if we have room
groups of capacity 20 and 40, we classify meetings of
25 people into meeting group of 40. As such, we have
corresponding group pairs, i.e., the room group and meeting
group. In each group pair, we calculate the cost and assign
meetings to the rooms greedily, i.e., from the smallest cost
one to the largest one.
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Figure 8: Comparison price differ for day-ahead market and real-time market in Houston
on Aug 30, 2012. (a) Day-ahead market (b) Real-time market.

0 8 16 24 32
0

200

400

600

800

August, 2012

E
le
c
tr
ic
it
y
 p
ri
c
e
($
/M
W
h
)

 

 

Houston, ERCOT: Real-time

Figure 9: Daily electricity price data in
Houston on August, 2012.

VIII. S IMULATION

A. Simulation Setup

We evaluate our algorithms using real electricity price
data, synthetic room configurations we generate based on our
validation in Section VI and synthetic meeting requirements.
We discuss each of these in details.

We first comment on the electricity price. We obtained
the electricity price data of Houston from ERCOT (Electric
Reliability Council of Texas). It has a day-ahead market and
a real-time market. The day ahead market is the predicted
price from ERCOT for the next day. This is not the true
price as the true price is real-time that subjects to the real
demands. Nevertheless, the trend of the day-ahead market
and real-time market matches well. We show the day-ahead
market and real-time price at Houston on August 30th, 2012
in Fig. 8 (a) and (b). We can see that the peak of real-time
price is usually smaller than the day-ahead prediction; this
shows that the intimidating day-ahead high predicted price
can reduce demand to certain level. We also see that the
real-time price and day-ahead price share the same trend.
This implies that if we develop our schedules using day-
ahead price (in other words, these are offline schedules), we
will obtain reasonable good result even if we do not have
real-time price. In our simulation, our evaluation is basedon
real-time price and we will compare with day-ahead price.
The dynamic price adjustment interval is 15 minutes. We
also show the daily electricity price from real-time market
in August, 2012 in Fig. 9. These data can be found from
[35] and similar evaluation setup has been used in [9][12].

The room configurations are summarized in Table II.
The total number of rooms is 110. (S) and (N) represent
the orientation of room, i.e., south and north. In general,
rooms towards south have higher energy consumption for
air-conditioning. We assume the materials of walls, floor and
ceiling in the rooms are same to the materials of the hotel
rooms in our validation (Section VI). As a consequence,
we can calculate theλ based on room size, position and
orientation. We then use EnergyPlus to compute the energy
consumption of each room each hour. TheP in the Table
shows the median and the variance of the results.

We set the target temperatureTt = 23.5◦C (74.3◦F) for
all meetings, the standard temperature recommended for

Cap Num Size λ P ± 20%
(S/N) (L×W ×H) (J/s ·K) (kW)
20(S) 10 4× 5× 3 49.8 1.5
20(N) 10 4× 5× 3 40.2 1.2
40(S) 20 8× 5× 3 83.7 2.4
40(N) 20 8× 5× 3 63.2 1.8
60(S) 20 6× 10× 3 114.5 4.7
60(N) 20 6× 10× 3 82.5 3.3
80(S) 5 8× 10× 3 142.0 6.2
80(N) 5 8× 10× 3 118.5 4.9

Table II: Room configuration

Grade A buildings in Hong Kong. We set the meetings from
[8:00, 22:00] in each day. The length of the meetings are
randomly selected from two groups,O1 = [1, 1.5, 2, 2.5, 3],
O2 = [1, 2, 3]. For example, forO1, the meeting lengths
are randomly chosen from 1, 1.5, 2, 2.5 or 3 hours. As
a reference, if the meetings are all 2 hours, the total
number of meetings the building can hold in one day is
770. The meeting capacity requirement is set randomly but
proportional to the room capacity. Similar evaluation setup
can be found in [13].

We compare our algorithm MBEC with 1) room schedul-
ing algorithm that just satisfies the meeting time and room
capacity requirements (denoted as just-fit). We have con-
sulted the class scheduling of our university and there
is no special algorithm designed with considerations on
energy or electricity issues. Therefore, we believe just-fit
can be considered as a standard benchmark; and 2) best-
Assignment() only.

B. Simulation Result

In the simulation, we first consider the impact of meetings,
prices and thermal storage on electricity costs. We then
evaluate our algorithms used for f-MBEC() and compare
to MBEC(). At the end of section, we further evaluate
our algorithms using day-ahead price. As a comparison
benchmark, the electricity cost if all rooms are fully assigned
(i.e., from 8:00 - 22:00) is $173.3.

The default values for thermal storage is set to 500kWh;
this can approximately support all rooms for 1.5 hours. We
use O1 as our default meeting length option group. The
cost saving is the difference between MBEC() and just-fit
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Figure 10: Total electricity cost of rooms as against to the number of meetings.
(a)meeting length: optionO1 (b)meeting length: optionO2.
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Figure 11: Monthly electricity cost as
against to the number of meetings.
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Figure 12: Electricity cost as against to
average electricity price.
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Figure 13: Cost saving as against to average
electricity price.
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Figure 14: Monthly electricity cost as
against to average electricity price.
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Figure 15: Electricity cost as against to peak
to peak-off ratio.
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Figure 16: Cost saving as against to peak to
peak-off ratio.
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Figure 17: Monthly electricity cost as
against to peak to peak-off ratio.

scheduling.

1) Impact of Meeting Configuration:Fig. 10 (a) show the
electricity cost as a function of meeting numbers. For all
three algorithms, we can see that if there are more meetings
(i.e., more human activities), there needs more costs. We
can also see that both our algorithms best-Assignment() and
MBEC() save costs as compared to the just-fit. This is not
surprising as the just-fit schedule only satisfies the meeting
capacity requirement. Specifically, we see that if there are
200 meetings, the electricity cost needed by just-fit, best-
Assignment() and MBEC() is $47.5, $34.5 and $30.0. Our
algorithm MBEC() has a saving of 36.8%. Note that such
saving is achieved only by more careful scheduling. Fig. 10
(b) shows very similar results if the meeting length option
is in O2.

Fig. 11 extends the results to the full month of Aug.
2012. As the same as the daily electricity cost, both our
algorithms best-Assignment() and MBEC() save costs as
compared to the just-fit schedule. If there are 200 meetings,
the total monthly electricity cost needed by just-fit, best-
Assignment() and MBEC() is $1441.7, $1064.0 and $894.5
and MBEC() saves 40.0%.

2) Impact of Dynamic Price:There are two important
parameters for the dynamic pricing: 1) average price and
2) peak to off-peak ratio. We study both these situations.
First, we adjust the average price of our electricity price
data while keeping peak to off-peak ratios constant. In our
baseline situation, the average price is 32.4$. We adjust this
to a range of [20, 50]. Second, we adjust the peak to off-
peak ratio while keeping the average price constant. In our
baseline situation, the peak to off-peak ratio is 2.2. We adjust
this to [1.5, 3.5].

Fig. 12 shows the electricity cost as against to the average
price when meeting number is 200. For all three algorithms,
we can see that if there are higher average electricity price,
there are higher costs. This figure shows that the total elec-
tricity cost increases when the average price increases; yet
the just-fit scheduling increases faster than our algorithms.

In Fig. 13 we show the cost savings as against to the aver-
age price. Clearly, MBEC() outperforms ad-hoc scheduling
and we want to evaluate the gap under different situations.
We see that the more meetings we have, the larger the gap
is. We also see that when average electricity price increases,
we have more savings. Fig. 14 show the monthly electricity
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Figure 18: Electricity cost as against to
thermal storage.
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Figure 19: Electricity cost saving as against
to thermal storage.
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Figure 20: Monthly cost as against to ther-
mal storage.
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Figure 21: Electricity cost as against to the number of meetings when
meetings have fixed start and end time.

cost as against to the average price when meeting number
is 200. We see the same results as the daily electricity cost.

Fig. 15 shows the electricity cost as against to the peak
to off-peak price when the number of meetings is 200. We
can see that if the peak to off-peak ratio increases, the total
electricity cost of just-fit scheduling stays the same and our
algorithms decrease. Clearly, just-fit scheduling is ignorant
to the cost and our algorithms can take more advantages of
the cost differences. When the peak to peak-off ratio is 3,
MBEC() can outperform just-fit for as much as 39.8%. In
Fig. 16 we show the cost savings as against to the peak to
off-peak ratio and we see similar results.

Fig. 17 shows the monthly electricity cost when the
number of meetings is 200. We compare all three algo-
rithms. Again, the same as the daily electricity cost, both
best-Assignment() and MBEC() substantially save costs as
compared to the just-fit scheduling.

3) Impact of Thermal Storage:Fig. 18 shows the elec-
tricity cost as against to thermal storage capacity when the
number of meetings is 200. We can see that if the thermal
storage capacity increases, the electricity costs of just-fit
scheduling and best-Assignment() do not change, while best-
Assignment() is better. The electricity costs of MBEC() keep
decreasing. This is not surprising as just-fit scheduling and
best-Assignment() do not use the thermal storage for cost
saving. When the thermal storage is 1000kWh (approxi-
mately support all rooms for 3 hours), it can introduce a
saving of 22.3% as compared to best-Assignment().

Fig. 19 shows the saving cost when we use different
thermal capacity and Fig. 20 show the monthly electricity

cost as against to thermal storage capacity. All these show
that having an appropriate thermal storage capacity is very
cost-effective.

4) Meetings with Fixed Start and End Time:In many
scenarios, meetings have fixed start and end time. We
specially evaluate this in this subsection. Our algorithm
MBEC() can naturally adapt to this. We call it f-MBEC()
in what follows to make the context clearer. Note that if the
start and end times are fixed, these times become constraints
(inputs for the algorithm) rather than to be computed. In our
simulation, we randomly generate the start and end times
for the meetings, The length of the meetings are randomly
selected from the meeting length groupO1.

Fig. 21 show the results. Similarly, we see that if there
are more meetings, there needs more costs and both best-
Assignment() and f-MBEC() save costs as compared to the
just-fit schedule. Compared to flexible start and end time,
the saving becomes smaller, yet f-MBEC() still has a saving
of around 25%.

IX. CONCLUSION

In this paper, we studied minimizing electricity bills of
buildings in a dynamic power market. We presented a holis-
tic planning by developing electricity purchasing schedule
from the power market on one end and meeting schedules
and room assignment schedules for the building to support
human activities on the other end. The thermal storage plays
a key role in cost reduction and linkage between the supply
and demand.

Our problem is cross-disciplinary in nature and we de-
veloped both computing algorithms and physical modeling,
which is assisted by our wireless sensing systems. We
showed real experiments for validation. We observed that
minimizing electricity bills does not coincide with mini-
mizing energy consumption. We studied the cause and their
relationship. Unfortunately, we believe that the incentive of
the building operators is to reduce costs. We would like to
conduct a in-depth study on an appropriate balance of them
in the future.
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