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_Abstract—Energy is a global concern and the electricity — dential usage [4]. For regions like Hong Kong, where the
bills nowadays are leading to unprecedented costs. Electity ~ |ndustry sector is small, 65% of electricity is reported to g
price is market-based and dynamic. In this paper, we inves- 14 the commercial buildings [5]. In buildings, the thermal

tigate how to cut the electricity bills of commercial buildings t . the heati tilati d ai difi
in a dynamic power market. The building thermal systems systems (i.e., the heating, ventilation and air-conditign

(e.g., air-conditioning), which dominate electricity bils, has  Systems, HVAC systems) dominate electricity bills. As an
a special property of thermal storage, i.e., the energy will example, it is reported that for the Office Segment of Hong

not immediately dissipate from thermal air/water. Intuiti vely, Kong, 54% electricity goes to space conditioning (i.e.; air
with storage, the energy can be “stored” in the thermal conditioning), 14% goes to lighting, 13% goes to office

system, making it possible to purchase electricity in low pice - - . .
and use it at appropriate time. The building thermal supply equipments [5]. In this paper, we investigate how to cut the

and electricity purchasing surely depends on human activies  €lectricity bills of commercial buildings in a dynamic powe
that the building should support such as class and meeting market.

schedules. To minimize electricity bills, we develop a hdtic The thermal system has a special property of thermal
planning of electricity purchasing schedule with thermal sor- storage. For example, chilled water system is very typital |

age management, and appropriate room assignment schedules . . : . .
for classes/meetings usage. buildings and the energy will not immediately dissipateriro

The computing algorithms require inputs of physical mod-  thermal water. Nowadays, even separ_a_ted The_rmal Energy
eling on energy consumption. We develop wireless sensing Storage (TES) systems exist [6]. Intuitively, with storage

systems to collect fine-grained data which are used to assist the energy can be “stored” in the thermal system for a
the cross-disciplinary physical modeling. We conduct valla-  certain time, making it possible to purchase electricitioin

tion through real experiments. We formulate an optimization rice and use it at appropriate time. The building thermal
problem and show that it is NP-complete. Our primary focus is P pprop ) 9

to minimize electricity bills, which matches the incentives of the ~ SUPPly and electricity purchasing from the power market
commercial buildings. We show that this does not coincide v surely depends on human activities that the building should

energy conservation. We further investigate the relationkip of support where the human activities could be represented by
minimizati.on of electricity biIIs.and minimization of energy class or meeting usage schedules. To minimize electricity
consumption. We develop algorithms for our problem and our bills, we need a holistic planning of electricity purchagin
evaluation shows that we can achieve a 40% cost reduction. ' i .
schedule with thermal storage management, and appropriate
room assignment schedules for classes/meetings usage.
Clearly, this planning falls into an optimization problem.
Energy is a global concern nowadays and the energWe need carefully designed algorithms. In addition, the-com
price is expected to continuously increase. Electriciiggs  puting algorithms require inputs of the thermal consumptio
also fluctuate. This is because some power plants cannof rooms and thermal storage capacity of the HVAC system
stop power generation or some power sources are dynamin the buildings. These require cross-disciplinary phgisic
(e.g., solar), and peak hour demand leads not only to mormodeling.
electricity loss in power generation/delivery but also to In this paper, we develop a wireless sensing system to
power plant damage and fast deterioration [1]. As suchcollect fine-grained data which are used to assist cross-
dynamic price can encourage usage in low demand time angisciplinary thermal modeling. We validate our physical
penalize usage in high demand time. The recent developmentodeling through real experiments. We formulate an op-
of smart grids aims at diversified electricity generatiod an timization problem to minimize the total electricity bills
fast response to demands [2][3]. A more dynamic powemvhere we need to develop a schedule for electricity purchas-
market is widely expected. ing from the power market and a schedule for meetings and
An important edge system of the grid is the commercialroom assignment. We show such problem is NP-complete.
building. It is one of the four dominating energy consumingOur primary focus in this paper is to minimize electric-
sectors, along with transportation, manufactory and resiity bills; this matches the incentives of the commercial
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buildings. We observe, however, that such minimizationhave a previous study [13] where we observe that the cool
does not coincide with energy conservation. Intuitivehg t air in a room will not dissipate immediately after a class
optimization may schedule a meeting to a room at a timeand class schedules should take such advantage. A follow-
that can result in low cost, yet high energy consumptionup work develops more refined schedules [14]. These studies
We thus further study the root cause and the correlatiomnly consider the thermal storage of a room, which is small
between energy consumption minimization and electricityand less practical in real world. In addition, we clearly
bill minimization. We develop a heuristic algorithm for specify the mismatch between minimizing electricity bills
the overall problem using a Lagrangian relaxation-base@nd minimizing energy consumption and we hope this may
method. We conducted comprehensive evaluation based antribute insights for future studies to search for a began
real pricing data and we see up to a 40% cost saving aAs buildings are key edge systems for smart grids, the
compared to typical current scheduling. mismatch shows a concrete example that the smart grid
The remaining part of the paper is organized as followspricing strategies may quantitatively take into consitlera
We discuss related work in Section Il. We then presenthe pricing strategies of smart grids are heavily studied
background on building thermal systems and an overview ofecently [15], yet usually from a high level game theordtica
our problem and solutions in Section Ill. In Section IV, we point of view.
formally formulate our problem and analyze its complexity. As the commercial building is one top energy consuming
Before we go into the detailed physical thermal modelingarea [16], there are many other studies contributed by the
and computing algorithm designs, we discuss the relationeomputer society in recent years: 1) there are studies on
ship between minimizing electricity cost and minimizing fine-grained monitoring systems using the recent advances i
energy consumption in Section V. In Section VI, we presenwireless sensor networks [17]. An auditing network is built
the thermal modeling, wireless sensing system developmed collect electricity readings [18] and sSMAP is developed
and experimental validation. Our algorithms are shown in[19] as a general common layer to record physical infor-
Section VII. In Section VI, we evaluate our algorithms mation for different applications. Similar systems in@ud
and finally we conclude our paper in Section IX. [20]. We develop our own testbed where we convert the
wired building management systems into wireless without
changing upper layer building operational protocols [21];
With global concerns on energy conservation, energythere are studies on physical modeling of the building ther-
price is expected to continuously increase, leading to unmal systems [22][23][24]; with an aim to better understand
precedented electricity bills in many domains. Electyicit cyber-physical co-designs and 3) there are algorithms on
grids adopt dynamic pricing strategy to reduce energy losswise and automatical device turning-off to save elecyicit
minimize power plant damage, etc [7]. There are studie$25][26], assisted by fine-grained data collection and/or
that take advantage of dynamic pricing to reduce bills forthermal modeling, inference on human presence [27], or
data centers. Two early schemes were proposed to redug@man participatory sensing/voting for thermal comfo8][2
the electricity costs by shifting workload of data center
from locations with high electricity prices to those withwlo 1l
prices [8]. Following these, a set of algorithms and game
theoretical models were developed for various scenarios In this paper, we will use air-conditioning in our presenta-
[9][10]. These studies provide useful experiences. Howevetion for the sake of conciseness (our work straightforwardl
building thermal systems have unique characteristics antandles the heating). A typical HVAC system (the thermal
different background context. system) [29] has a cold water tank. It is chilled to certain
An early work that takes advantage of thermal storage antemperatures from time to time and this chilling process
real time pricing to save electricity bill in commercial i  consumes huge electricity. Hot air impacts on the chilled
ings is [11]. The work considers the buildings as a wholewater system and is compressed in the supply ductwork.
They do not study detailed building activity management noidf a room turns on air-conditioning, the ventilation of the
they reveal the conflict between the energy minimizationroom (e.g., VAV box) opens and the cold air is squeezed
and electricity bill minimization. In a recent work [12], into the room. The cold air gradually gets heated and
battery is proposed to be used as storage for residentiabturns to circulation. Nowadays, advanced and separated
houses. Excellent machine learning techniques are des@lop Thermal Energy Storage (TES) system are widely used and
to predict next-day consumption. The objective of the papethis can substantially increase the thermal storage dgpaci
is also minimizing electricity bills. We differ from them as Intrinsically, thermal storageincluding the TES system, is
we consider the storage of the thermal systems and our woitkased on the ability of water to store large amount of heat
focus more on a building/campus environment. The thermabr cold. It is common that the thermal storage system today
system has greater capacity and is also cheaper. In additiooan reasonably provide short term (less than 2 hours) or even
we develop meeting and room assignment schedules. Weng term (greater than 10 hours) cooling energy [6].

Il. RELATED WORK

. BACKGROUND AND AN OVERVIEW
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will develop equations that link the dynamics between the
demands (room air-conditioning), and the supplies (thérma
storage and electricity charges for the chiller system)yas
can see from Fig. 1.

We give a more detailed overview of our physical side de-
sign in Fig. 2. Thermal computing falls into the expertise of
Building and Service Engineering. They have sophisticated
tools such as EnergyPlus [30]. One may fill in the parameters
of a room (or the thermal systems) and EnergyPlus will
output the energy requirements. In EnergyPlus, one can
even input the weather of the day, and EnergyPlus can

: estimate the temperature, solar energy strength accotaling
Room Assignment .
the weather and output more accurate energy requirements
Electricity Purchasing if a room is in use, based on its well trained model and
Scheduling comprehensive history data. EnergyPlus is a complex model
and there can have hundreds of parameters.
Our physical computing is based on EnergyPlus. For
For a specific room, the amount of electricity it consumesthermal storage model, we use EnergyPlus directly as it is
depends on many factors. Two rooms of the samgacity  stand-alone and can be computed once for all. For rooms,
(the number of people the rooms can accommodate) maye can also use EnergyPlus directly. However, the rooms
consume different amount of electricity due to differentare very different in configurations. This may introduce
configurations and/or orientations. At different times of ahigh complication if we need to find out the parameters to
day, a room also may consume very different amount obe input to EnergyPlus room-by-room. Our approach is a
electricity. wireless sensor system assisted approach as follows. The
The energy supply and demand in a building can bemajor complexity comes from some compound parameters
abstracted as Fig. 1. The energy demands come from thtat are not easy to obtain directly. As an example, a key
rooms when scheduled to hold human activities, i.e., meetparameter is thermal conductivity of a wall. It is difficult
ings. This meeting is meant to be general. In a campus compute from theory as it involves knowledge of sub-
context, this can be translated into class schedules and jmarameters of materials etc, especially, if we have to do it
a commercial building context, this can be translated intaoom-by-room for all rooms. We found that these parameters
office planning and meeting schedules. We will see in ourare invariants as it will not change subject to environments
formulation (Section 1V) that a meeting is only associatedWe can inversely calibrate it if we can first collect a set of
with the number of people attending the meeting (one persodata on electricity usage, temperature of the room, etc. We
is fine if it is his office room) and a time period (which develop wireless sensor networks to collect these data. We
can be considered as his/their activity patterns). Theggner thus can substantially reduce the number of parameters to
supplies come from the chiller system and the thermabe input to EnergyPlus.
storage. The chiller system is electrically charged to supp
the energy demands from rooms when the thermal storage
is low. All of these finally are electrically supported by the A- The Problem
power market. Minimizing building electricity bills in the ~ Our problem is to compute the meeting and room as-
aforementioned system falls into an optimization problemsignment schedules and the electricity purchasing schedul
Yet we face difficulties both in algorithm design and in from the power market, so as to minimize the cost. We
physical thermal modeling. Our solution framework is in now formally formulate this. Assume we hadérooms and
Fig. 2. On the computing side, we need to develop two)/ meetings. Let; andm,; denote room and meetingj
schedules: 1) meeting/class schedule (if the time of theespectively.
meetings is not required to be fixed) and room assignment Without loss of generality, we simplify the meeting re-
schedule for meetings; and 2) electricity purchase scleedulquirement to the number of people of the meeting only. We
from the dynamic power market. On the physical side, wemay have additional constraints, such as specific equimpment
need to model: 1) the thermal storage model, and 2) thén a room, distance between two meetings/classes in loca-
energy (electricity) requirement for each room if they aretion so that people can travel between the rooms in time,
assigned for meetings/classes. etc. From an optimization point of view, these add more
The linkage between the computing side and the physeonstraints to the problem. Let(m;) denote the capacity
ical side is that computing schedules need inputs fronrequirement (number of people) of meeting. Let w(r;)
the physical side. From a high level point of view, we denote the capacity of room. Lett; andt; be the meeting
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Figure 2: The framework of the thermal cost management syste
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time is for each meeting. Note that we can have fix meeting at time ¢. It is computed in the Thermal Consumption

times (as requirements/constraints) and/or flexible mgeti Constraints. The thermal consumption at any time must be
times (to be computed); and we will study both of them inless than the thermal supply capacity of the HVAC system.
this paper. This is ensured by design of HVAC system. The Thermal

We also simplify the total electricity consumption of a Balance Constraints show a state transition equation (more
building to be the sum of the electricity consumption of thedetails in Section VI) should be maintained between each
rooms in supporting meetings. There are surely other eledime ¢ and¢+ 1. Intuitively, the thermal storage at tinte- 1
tricity consumptions, e.g., lighting, and air-conditingiof = equals the thermal storage at timeplus electricity charges
the corridors, etc. We argue that the electricity consuompti and minus electricity usag®; has an upper and lower limit
of lighting, etc is much less than air-conditioning; and theat any timet. The state coefficients, b, c,d is related to
air-conditioning of corridors, etc is easy to compute asrthe thermal efficiency and loss.
usage is regular and stable. L&, t3,t5, T;) be electricity In this problem, the inputs of (i, 7,5, 7;) and the state
consumption of room at start timef; and end time$ witha  coefficients need to be computed from the physical side.
target temperaturg;; e.g., in ang Kpng the recommended g Complexity analysis
temperature for Grade A buildings is 23 (74.3F)[31].

Let P, be the electricity price at time¢. Let V; be the
thermal storage at timé Let the maximum and minimum
thermal storage capacity B36,,.. andV,,;,.

There are two schedules we need to compute./lebe
the electricity charge needed at tinte L; represents the
electricity purchase schedule. For meeting schedules,
need to decide the room and the meeting time (if the meeti
time is pre-determined, this becomes a constraint)zlebe
an indicator variable, where;; = 1 represents that meeting
m; is assigned to room; and O otherwise.

Our Minimize Building Electricity Cost (MBEC) problem
can be formalized as:

Theorem 1:MBEC is NP-complete.
Proof: The proof reduces Job Interval Selection Prob-
lem [32] to MBEC. The detail of the proof is in [29]. &
Another problem that is of interest is to have the meeting
start and end time fixed. We call this problem f-MBEC. f-
WMBEC is also NP-complete, we reduces Cost Constrained
nIgixed Job Scheduling [33] to -MBEC, see our proof in
?29]. We specially mention f-MBEC because 1) f-MBEC is
practical in many scenarios and 2) f-MBEC is quite different
from MBEC in the NP-complete proof and analysis. We
comment, in high-level, on the difference between MBEC
and f-MBEC. The key complexity difficulty of MBEC and
f-MBEC comes from the meeting scheduling (similar to job

min Z L. Py, scheduling). There are two different types of job schedylin
t one is finding a schedule to satisfy the timing of all jobs
1) Meeting Schedule Constraints: [32] and one is minimization cost for fixed jobs [33]. The

complexity reduction are from completely different thread

XN:I" ~ 1vj=1 o (1) In this paper, we mainly focus on MBEC. In Section V_II,
Pt I Ty our algorithm for MBEC surely solves f-MBEC and we will
_ evaluate both in Section VIII.
»wy < 1Vi=1,...,N (2)
JET V. ELECTRICITY COST VS. ENERGY
w(mj) < w(r) Yoy =1 (3) Before we go into the details of our algorithms for MBEC
_ _ and the physical modeling, we first analyze the relationship
2) Thermal Consumption Constraints: between minimizing electricity cost and minimizing energy
N consumption. As said, these two minimizations do not
H = Z Z v E(i, 15,15, T;) (4) coincide with each other. Note that this is true for both
i=1jET, MBEC and f-MBEC, i.e., even the start time and end time
H, <  Hpoer < Ljas (5) of the meetings are fixed, the two minimizations are still

not coincide with each other. In this paper, we study the
root cause that leads to the differences between the two
Viei = aVi+bLy—cH +d (6) minimization and in what conditions the two minimizations
Voo < Vo<V @) become identical. It is not the objective of this paper to find
min = t = max . . . .
a good compromise of them; we believe that this is a grand
The objective function is self-explanatory. The Meeting problem that is also related to power market pricing designs
Schedule Constraints show that a meeting must be assigndthere are some studies on high-level abstraction [34] and we
once but the only once, a room can only accommodate onalso plan a future work.
meeting at any time and the meeting should not exceed the Observation 2:Without real-time pricing, minimizing
room capacity. Here7; represent the set of all meetings that electricity cost and minimizing energy consumption are
in action at timet. Let H,; be the total thermal consumption identical.

3) Thermal Balance Constraints:
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Observation 3:If, at any time, all the rooms have iden-

tical energy consumption, minimizing electricity cost andground is as follows. There are 40 rooms and each room
minimizing energy consumption are identical. has a capacity to accommodate 60 people. Nevertheless,
Intrinsically, if there is no price difference on the supply the energy requirement of each room is different as there
side, or there is no difference on the demand side, savingre different orientations of the room (more details of how
cost can be achieved only by saving energy. Thus, the twa room can be modeled are in Section VIII-A). We have
minimizations become identical. The starting time, ending250 meetings each with a length of one hour. We compare
time of meetings, room capacity, etc are not essential conthe solutions for minimizing electricity cost and mininmigj
ditions. As a consequence, both MBEC and f-MBEC faceenergy consumption. We see that when the price difference
that minimizing electricity cost may not conserve energy. is $25, there can be a difference of around 20%. With a
Let £(r,t) be the energy consumption of roomat time  thermal storage capacity of 150kWh, the difference is 15%.
t. Definecost-energy in-conflict conditioas: Note that the thermal storage capacity of 150kWh in our
(1) Given&(r,t) > E(r',t') and P, < Py, Vr,t,7',t',  setting indicates that the thermal storage can hold fohall t
E(r,t)P, > E(r', t')Py; or (2) GivenE(r,t) < £(r',t') and  puilding rooms in operation for 1 hour. This is reasonable
Py > Py, Vr t, o' ', E(r,t) Py < E(r',t") Py practice in real world [35] and $25 - $30 price differences
We use the cost-energy in-conflict condition to captureare also quite conservative.
the essence of Observation 2 and 3. Basically it ensures that |n this paper, we do not further study how we may
energy and electricity cost increase and decrease in the sarshoose or find a trade-off between electricity bill reduatio
direction. Therefore, and energy conservation. We believe there can be separate
Lemma 4:1f cost-energy in-conflict condition holds, min- studies both in a trade-off in building management and in
imizing electricity cost and minimizing energy consumptio smart grid pricing strategies. In what follows, we emphasiz

are identical. on electricity bill reduction as this matches the incerdio¢
Proof: The detailed proof is in [29]. B the building operators.

In Fig. 3, we show an illustration of the cost-energy
in-conflict condition. The X-axis is the ratio between the V1. THERMAL COMPUTING

electricity price at any time and the Y-axis is the ratio be- We now study how we obtain the key physical inputs

tween the energy consumption of any room at any time. “X” : . X )
shows the region where there will be cost-energy conflict.]cor our scheduling algorithms. We first present our physical

More specifically, if the electricity pricing and/or energy m.odellng. We present our d(.aS'gn and implementation O.f a
differences of rooms falls into these two regions, minimdgi ereles_s sensor net_work, Whlc.h is used for data collection
electricity cost and minimizing energy consumption are notto _ass_lst our physical modeling. We further present our
the same. validation.
We next show the role that thermal storage can play.
Lemma 5:Given that the thermal storage has infinite
capacity, minimizing electricity cost and minimizing eggr We first discuss the state transition equation, i.e., Eq.
consumption are identical. 6 in Section IV. We then discuss how to model thermal
Proof: The detailed proof is in [29]. u storage, i.e.,a; and energy consumption for rooms, i.e.,
This lemma shows that thermal storage can mask the dif€ (7, t5, 5, 7;)-
ference between the two minimizations. Intuitively, thatm 1) The State Transition Equatioreet L be the electricity
storage hides the impact of the electricity price diffeeeat  charging rate, andl be the thermal demand rate. L&t be
different times. the thermal storage charge/discharge volume in a pexibd
To quantitatively understand the difference of the twoThus, the thermal storage voluriiecan be characterized by
minimization, we plot an illustration in Fig. 4. The back- an electricity charging/thermal demand rate in the follogvi

A. Physical Modeling



expression (the development of such equation follows [29])

LAT — HAT = +AV
AV < Vinas

When the electricity charging is greater than the thermal
demand, the thermal storage is in the charge mode; and}
otherwise, in the discharge mode.

In this paper, we transform it into a discrete model by

(8)

|
|
|
|
|
End Tier M Top Tier |

———e A e (O T

Figure 5: The Sensor System.

discrete the time: 5 s
£
Vie1 =aVy +bLy — cHy +d 9 ==
We call Eq. 9 thestate transition equatianit establishes a g %0.5 W HNWM
linkage between the electricity charging, thermal demand, o & L
and the thermal storage; where the electricity charging and = 2
thermal demand should be determined by the schedule for S —Node 1 ——Hode 3
electricity purchasing and the schedule for meetings and il Node 8 Tt
room assignment respectively. =) -
2) Modeling Thermal Storage and Roomdé/e use En- § 24
ergyPlus for modeling both the thermal storage and room g 2
energy requirement since it has extensively tested HVAC g Lt T eyl
mOdUleS. Many paSt eXperienceS on Energyp|us can be found &= 8:00- 8:40 9:20 10:00 10:40 11:20 12:00 12:40 13:20
in [36][14]. Figure 6: Example of Experiment Results

As said, we directly use EnergyPlus to model the therma}},o equatiorf = f(\,a,b,c,...), see more details in [29].
storage as it is once for all. We can also get the state coef- \yo develop a wireless sensor network to collect these
ficientsa, b, c, d by regression analysis of data of electricity ya1a for inverse calibration. The sensor network collect
charging and thermal demand from EnergyPlus [11][37]. FOfqoor temperature, outdoor temperature and electricity u
energy consumption of the rooms, the number of parametetgye - Similar ideas have been proposed in [22] and our
to be used for EnergyPlus increases fast as rooms are Vepye\jious work [13][38]. We release our code and EnergyPlus

different. The parameters can be broadly classified as: 1Bag in [29]. Due to page limitation, we omit the details

length, width, and height of the rooms etc. The values Oyt formal derivation and explanation of equation groups
these parameters are easy to obtain, 2) the conductivity of _ Fha,bye,...)
walls etc. These parameters are compound parameters, i.e., T

further related to materials etc. They are difficult to cotepu B. Wireless Sensor Network Design

directly but they are invariants, i.e., do not change from Thg gpjective of our wireless sensor network is to collect

environments; and 3) solar radiation, human activity, etcy,q electricity usage to air-conditioning the room, ancbing
These changes frequently. Fortunately, however, EneugyP! ,  idoor temperatures.

hgs extensive training for these parameters. For exgmple, We develop a two tiered WSNs as shown in Fig. 5.
given the weather, we can get them by linear regression Ofthe eng tier is a set of TelosB-based temperature sensors.
the historical data from EnergyPlus. They record temperatures and send such readings to the
We mainly need to deal with 2). Though EnergyPlus cang, tier, the Imote2-based electricity-meters. The Imdge?2
also be used for 2) it can become over complex due t0 @yiended with an electricity meter. As such, it can record
large number of rooms. As such, we derive these parametetg,q send electricity usage in real time. We also developed
by inverse calibration. We use thermal conductivity as an, long-range data communication module (LR-Module, in
example to explain our idea. Lét be the thermal conduc- ~5nnection through 3G or WiFi) and connect it to the
tivity of the walls Ultimately, we want to compute energy |mote2. As such, the data can be transmitted to a remote base
requirement of the roordi. £ can be written as an equation giation. This is because we cannot place the base statipn (e.
&= f(Aa,b,c,...) wherea,b,c,... are side parameters |apt0p computer), unattended, in the rooms of experiments

that are easy to obtain. To inversely calibrateve can first 514 one cannot afford to always have people in the rooms
collect a set of values of, a,b,c,... and inversely solve ¢ experiments.

We implement our sensor system in TinyOS, and use Col-

IThi b idered t t the thesnhic- . ;
1o Fall D¢ ronsiaerec as an Bverage o fepresen e ¢ lection Tree Protocol (CTP) for data routing among sensor

tivities of all walls. More specifically, though the walls@luding ceiling
and floor) of a roomr are also different, we can develop a virtual room
that has the same energy requirement and property of rodhe \ of this 2The Imote2 sensors and the TelosB sensors are less consgidhey
virtual room well represents thes of the walls of roomv. can be placed in boxes and hung on the walls.



Period Measurement WSN+EnergyPlus Algorithm MBEC()
(kWh) (kWh) _ w_ ()

8:00 - 9:00 560 505 ;j 22:? :th) _SO’: .

10:00 - 11:00 690 755 s repeat

12:00 - 13:00 780 845 4' Temp = S,

;;88 - ;288 gfg ggg 5. S,,=best-Assignmenl(*);
s 6: [Se,V¥|=best-Demand,,);

7

Table I: Measured vs. Simulated Energy Consumption cuntil Temp == S8,
nodes. The Imote2 sends the temperature data collected from
the end tier, and its electricity readings to our remote base Figure 7: Algorithm MBEC.

station. The Imote2 has high load to relay data, but it has . . - .
direct power supply and TelosB sensors use batteries. programming. Given the electricity purchasing schedule

fixed, finding meeting and room assignment schedule (best-
C. Validation Assignment()) is NP-complete.

We conduct real experiments to validate our inverse In what follows, we will mainly discuss how we de-
calibration using wireless sensor network. The configamati velop best-Assignment(); and how best-Demand() and best-
of the room of our experiments and the sensor networkAssignment() interact to solve MBEC.
deployment are shown in [29]. We deployed nine indoor pNote that if there is no thermal storage, a meeting
sensors, one outdoor sensor to collect temperature and aghedule and the room assignment schedule computed by
electricity-meter connected to the air-conditioner (AG). best-Assignment() can determine the electricity purciasi
our experiments, we periodically turned on and off the AC.gchedule. We definasable thermal storagas the thermal
Fig. 6 shows part of our experiment data: the upper figureorage volume that can be used at a time. Intuitively, @sabl
shows the electricity usage recorded and the lower figurghermal storage is the flexible storage volume at a time. With
shows the temperatures recorded. We computby the  gifferent usable thermal storage volume, a fixed meeting
average of theis of a set of electricity and temperature d"f‘ta-schedule and the room assignment schedule can reflect
After we have and other parameters, we can put them intogjfferent electricity purchasing schedule. This usabétal
EnergyPlus to compute energy requirements of a room.  storage provides a linkage between best-Assignment() and

To validate the accuracy of our method, we US€0  pest-Demand(). The inputs of best-Assignment() are usable
simulate the energy consumption in five periods when thenermal storage and meeting requirements. Its output is a
AC is in operation. We show the results in Table. I. There arfmeeting and room assignment schedule. The input of best-
two columns. The 1st column shows the _real measured datﬁ)emand() is a meeting and room assignment schedule and
and the 2nd column shows the data)bgssisted EnergyPIus jis output is electricity purchasing schedule and the tessi
computation. The errors are around 9%. Note that thgsaple thermal storage.

purpose of our physical modeling is not to achieve ultimate Algorithm MBEC() is shown in Fig. 7. Algorithm

accuracy and make contribution to thermodynamic theo.ryMBEC() first calls best-Assignment() where the input of

but |r_1puts that are reasonable enough for our Compu“n%sable thermal storag®™ is 0. It determines a meet-

algorithms. ing and room assignment schedufs,. S,, is given to
VIl. ALGORITHM best-Demand(). best-Demand() will compute the electric-

Our philosophy in developing the heuristic for MBEC ity purchase schedulg. according toS,, and adjust the
is as follows. We need to develop two schedules, 1) thé/Sable thermal storagé™. SuchV* is returned to best-
meeting schedule and the room assignment schedule and 2$Signment(). The ending condition for MBEC() is if there
the electricity demand schedule. Accordingly, we develog$ N0 change in the schedules.
two algorithms: 1) given the electricity demand schedule Algorithm best-Assignment() is greedy-oriented. We first
fixed, find the best meeting schedule and room assignmeigiroup the rooms according to its capacity, and sort room
schedule; we call it algorithm best-Assignment(), and 2)groups in descending order according to capacity. Second,
given the meeting schedule and room assignment scheduee classify the meetings into different meeting groups
fixed, find the best electricity demand schedule; we call itaccording to room groups. For example, if we have room
algorithm best-Demand(). We solve the overall MBEC bygroups of capacity 20 and 40, we classify meetings of
a Lagrangian relaxation structure using best-Demand() an@5 people into meeting group of 40. As such, we have
best-Assignment() as sub-routines. corresponding group pairs, i.e., the room group and meeting

Given the meeting and room schedule fixed, finding thegroup. In each group pair, we calculate the cost and assign
best electricity purchasing schedule (i.e., best-Demand( meetings to the rooms greedily, i.e., from the smallest cost
can be optimally solved as it can be transformed into lineaone to the largest one.
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VIIl. SIMULATION Cap | Num Size A P £20%
_ ) (S/N) (LxWxH) (J/s-K) (kW)
A. Simulation Setup 20S)| 10  4x5x3 498 15
We evaluate our algorithms using real electricity price 20(N) | 10 4x5x%x3 40.2 1.2
data, synthetic room configurations we generate based on our40(S) | 20 8x5Hx3 83.7 2.4
validation in Section VI and synthetic meeting requirensent  40(N) | 20 8x5x3 63.2 1.8
We discuss each of these in details. 60(S) | 20 6x10x3 1145 4.7
We first comment on the electricity price. We obtained 60(N) | 20 6x10x3 82.5 3.3
the electricity price data of Houston from ERCOT (Electric 80(S) | 5 8§x10x 3 142.0 6.2
Reliability Council of Texas). It has a day-ahead market and 80(N) | 5 8x10x 3 118.5 4.9

a real-time market. The day ahead market is the predicted
price from ERCOT for the next day. This is not the true
price as the true price is real-time that subjects to the redbrade A buildings in Hong Kong. We set the meetings from
demands. Nevertheless, the trend of the day-ahead markig 00, 22:00] in each day. The length of the meetings are
and real-time market matches well. We show the day-ahea@ndomly selected from two group®; = [1,1.5,2,2.5, 3],
market and real-time price at Houston on August 30th, 201®: = [1,2,3]. For example, forO;, the meeting lengths

in Fig. 8 (a) and (b). We can see that the peak of real-tim@re randomly chosen from 1, 1.5, 2, 2.5 or 3 hours. As
price is usually smaller than the day-ahead predictiors thia reference, if the meetings are all 2 hours, the total
shows that the intimidating day-ahead high predicted pricéeiumber of meetings the building can hold in one day is
can reduce demand to certain level. We also see that thé/0. The meeting capacity requirement is set randomly but
real-time price and day-ahead price share the same trenfifoportional to the room capacity. Similar evaluation petu
This implies that if we develop our schedules using day-can be found in [13].

ahead price (in other words, these are offline schedules), we We compare our algorithm MBEC with 1) room schedul-
will obtain reasonable good result even if we do not haveng algorithm that just satisfies the meeting time and room
real-time price. In our simulation, our evaluation is basad ~capacity requirements (denoted as just-fit). We have con-
real-time price and we will compare with day-ahead price.sulted the class scheduling of our university and there
The dynamic price adjustment interval is 15 minutes. WeiS no special algorithm designed with considerations on
also show the daily electricity price from real-time market€nergy or electricity issues. Therefore, we believe just-fi

in August, 2012 in Fig. 9. These data can be found fromcan be considered as a standard benchmark; and 2) best-
[35] and similar evaluation setup has been used in [9][12].Assignment() only.

The room configurations are summarized in Table II.
The total number of rooms is 110. (S) and (N) represen
the orientation of room, i.e., south and north. In general, Inthe simulation, we first consider the impact of meetings,
rooms towards south have higher energy consumption foprices and thermal storage on electricity costs. We then
air-conditioning. We assume the materials of walls, float an evaluate our algorithms used for f-MBEC() and compare
ceiling in the rooms are same to the materials of the hotelo MBEC(). At the end of section, we further evaluate
rooms in our validation (Section VI). As a consequenceour algorithms using day-ahead price. As a comparison
we can calculate the. based on room size, position and benchmark, the electricity cost if all rooms are fully assid
orientation. We then use EnergyPlus to compute the energf.e., from 8:00 - 22:00) is $173.3.
consumption of each room each hour. TRein the Table The default values for thermal storage is set to 500kWh;
shows the median and the variance of the results. this can approximately support all rooms for 1.5 hours. We

We set the target temperatufg = 23.5°C (74.3F) for  use O, as our default meeting length option group. The
all meetings, the standard temperature recommended faost saving is the difference between MBEC() and just-fit

Table II: Room configuration

5. Simulation Result
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scheduling. 2) Impact of Dynamic Price:There are two important

1) Impact of Meeting ConfiguratiorEig. 10 (a) show the parameters for the dyn_amic pricing: 1) average price_ and
electricity cost as a function of meeting numbers. For all?) peak to off-peak ratio. We study both these situations.
three algorithms, we can see that if there are more meetingg'St: We adjust the average price of our electricity price
(i.e., more human activities), there needs more costs. Wgata \_/vh|le_ kee_pmg peak to Off'pe_ak _ra‘uos constant.__ln our
can also see that both our algorithms best-Assignment() arigSeline situation, the average price is 32.4$. We adjisst th
MBEC() save costs as compared to the just-fit. This is nof® & range of [20, 50]. Second, we adjust the peak to off-
surprising as the just-fit schedule only satisfies the mgetinpeak ratio while keeping the average price constant. In our
capacity requirement. Specifically, we see that if there ar@@Seline situation, the peak to off-peak ratio is 2.2. Werstdj
200 meetings, the electricity cost needed by just-fit, best'Ehls to [1.5, 3.5].
Assignment() and MBEC() is $47.5, $34.5 and $30.0. Our Fig. 12 shows the electricity cost as against to the average
algorithm MBEC() has a saving of 36.8%. Note that suchprice when meeting number is 200. For all three algorithms,
saving is achieved only by more careful scheduling. Fig. 10ve can see that if there are higher average electricity price
(b) shows very similar results if the meeting length optionthere are higher costs. This figure shows that the total elec-
is in Os. tricity cost increases when the average price increasés; ye

Fig. 11 extends the results to the full month of Aug. the just-fit scheduling increases faster than our algosthm

2012. As the same as the daily electricity cost, both our In Fig. 13 we show the cost savings as against to the aver-
algorithms best-Assignment() and MBEC() save costs aage price. Clearly, MBEC() outperforms ad-hoc scheduling
compared to the just-fit schedule. If there are 200 meetingand we want to evaluate the gap under different situations.
the total monthly electricity cost needed by just-fit, best-We see that the more meetings we have, the larger the gap
Assignment() and MBEC() is $1441.7, $1064.0 and $894.5s. We also see that when average electricity price incegase
and MBEC() saves 40.0%. we have more savings. Fig. 14 show the monthly electricity
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thermal storage. to thermal storage. mal storage.
100 cost as against to thermal storage capacity. All these show
—+f-MBEC that having an appropriate thermal storage capacity is very
& & best-Assignment % -
L 801 5 justiit cost-effective.
g 4) Meetings with Fixed Start and End Timén many
; eor scenarios, meetings have fixed start and end time. We
S 0l specially evaluate this in this subsection. Our algorithm
2 MBEC() can naturally adapt to this. We call it -MBEC()
ﬁ 201 in what follows to make the context clearer. Note that if the
¢ start and end times are fixed, these times become constraints
g

0

100 200 400 (inputs for the algorithm) rather than to be computed. In our
Meeting numbers simulation, we randomly generate the start and end times
Figure 21: Electricity cost as against to the number of mestiwhen  for the meetings, The length of the meetings are randomly
meetings have fixed start and end time. selected from the meeting |ength gro(m'

Fig. 21 show the results. Similarly, we see that if there
e more meetings, there needs more costs and both best-
, - X ssignment() and f-MBEC() save costs as compared to the
Fig. 15 shows the electricity cost as against to the pea st-fit schedule. Compared to flexible start and end time,

to off-peak pr_ice when the number of !“e_etings is 200. Wep,o saving becomes smaller, yet -MBEC() still has a saving
can see that if the peak to off-peak ratio increases, thé ot 2 round 25%

electricity cost of just-fit scheduling stays the same and ou

algorithms decrease. Clearly, just-fit scheduling is igmor IX. CONCLUSION

to the cost and our algorithms can take more advantages of | this paper, we studied minimizing electricity bills of

the cost differences. When the peak to peak-off ratio is 3pyijldings in a dynamic power market. We presented a holis-

MBEC() can outperform just-fit for as much as 39.8%. Intjc planning by developing electricity purchasing schedul

Fig. 16 we show the cost savings as against to the peak ¥9om the power market on one end and meeting schedules

off-peak ratio and we see similar results. and room assignment schedules for the building to support
Fig. 17 shows the monthly electricity cost when the hyman activities on the other end. The thermal storage plays

number of meetings is 200. We compare all three algog key role in cost reduction and linkage between the supply
rithms. Again, the same as the daily electricity cost, bothand demand.

best-Assignment() and MBEC() substantially save costs as Qur problem is cross-disciplinary in nature and we de-
compared to the just-fit scheduling. veloped both computing algorithms and physical modeling,
3) Impact of Thermal StorageFig. 18 shows the elec- which is assisted by our wireless sensing systems. We
tricity cost as against to thermal storage capacity when thghowed real experiments for validation. We observed that
number of meetings is 200. We can see that if the thermahinimizing electricity bills does not coincide with mini-
storage capacity increases, the electricity costs of fjust- mizing energy consumption. We studied the cause and their
scheduling and best-Assignment() do not change, while beste|ationship. Unfortunately, we believe that the incemitdf
Assignment() is better. The electricity costs of MBEC() fkee the building operators is to reduce costs. We would like to

decreasing. This is not surprising as just-fit scheduling an conduct a in-depth study on an appropriate balance of them
best-Assignment() do not use the thermal storage for cosh the future.

saving. When the thermal storage is 1000kWh (approxi-

mately support all rooms for 3 hours), it can introduce a ACKNOWLEDGMENT

saving of 22.3% as compared to best-Assignment(). Dan Wang's work is supported in part by National Natural
Fig. 19 shows the saving cost when we use differenScience Foundation of China (No. 61272464), RGC/GRF

thermal capacity and Fig. 20 show the monthly electricityPolyU 5264/13E, HK PolyU G-YMO06, A-PK95.

cost as against to the average price when meeting numb
is 200. We see the same results as the daily electricity cos
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