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ABSTRACT
Edge-cloud video analytics systems capture video streams by edge

cameras and send the video streams to the cloud for analytics to

support applications like video surveillance, VR/AR, autonomous

driving, etc. Video streams captured at the edge may contain sensi-

tive objects, e.g., a human being. Existing studies propose adding

noise to the intermediate video analytics results, encrypting video

frames, etc. In this paper, we take an orthogonal approach where

we remove, a.k.a. denaturing, the sensitive objects at the edge side

before sending a video frame to the cloud.

The challenge is that edge devices are highly resource-limited,

and the denaturing operation has non-trivial computation costs.

More specifically, before denaturing, one needs to locate the sensi-

tive objects by object detection; such object detection computation

is resource intensive. In this paper, we propose EPC, an edge-cloud

video analytics system that leverages a trajectory prediction model

to locate sensitive objects in video frames. We formally analyze EPC

and show that EPC can guarantee privacy. We evaluate EPC with

two applications, person counting and vehicle detection. Evaluation

results show that EPC can prevent privacy leakage under visual

data attack with 95% video analytics accuracy and a 4x speedup

compared to existing privacy control mechanisms.
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1 INTRODUCTION
Nowadays, edge-cloud video analytics systems have obtained in-

creasing attention with broad applications in video surveillance,

VR/AR, Metaverse and so forth. The edge devices capture the video

streams and send them to the cloud to leverage the cloud’s comput-

ing resources. An essential feature of edge-cloud video analytics

systems is the distrust of the cloud from the perspective of the

edge because the users usually have no complete control of their

sensitive data after uploading them. For example, the ADT provides

intrusion detection by its edge-cloud video analytics system. Their

cloud servers were hacked in 2021, and videos uploaded by hun-

dreds of ADT home security cameras were leaked. Consequently,

users choose edge devices that differ from the cloud vendor, e.g.,

Apple Aqara G3, to maintain certain controllability.

Many privacy protection mechanisms have been proposed for

edge-cloud video analytics systems [9, 11, 17]. One category of

privacy mechanisms is adding noise to the intermediate results sent

to the cloud so that attackers cannot reconstruct sensitive visual

data [11]. Another category of mechanisms is to encrypt video

frames and perform video analytics on encrypted frames [15]. In

this paper, we take an orthogonal approach where we remove the

sensitive objects at the edge before sending video frames to the

cloud (denaturing). Such an approach poses nil requirement for

the forthcoming video analytics operations. In comparison, adding

noise usually requires a co-training of the noise model and the

video analytics model, whereas an encryption mechanism is limited

in the number of video analytics operations supported.

A straightforward denaturing mechanism first detects sensitive

objects in each frame and denatures detected objects. Yet object

detection is a DNN/CNN inference operation and thus computation-

intensive. This poses a challenge to resource-constrained edge de-

vices, in particular for applications, e.g., the aforementioned illegal

intrusion detection, which requires detection in a series of frames.

In this paper, we develop EPC, a video analytics system with

efficient edge-side privacy control. EPC leverages trajectory pre-
diction, a common technology developed in computer vision to

locate sensitive objects in a video frame. Such trajectory prediction

is much more resource efficient. We design a memory-based tra-

jectory prediction approach that uses a memory to embed history

trajectories and to online search a trajectory for prediction. We

argue that memory-based trajectory prediction is suitable since it

requires less computing resources, and more importantly, we can
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control privacy leakage and computation latency. More specifically,

we can manage the memory size: a larger memory size will embed

more history trajectories with a higher prediction accuracy and

thus less privacy leakage, yet larger memory size will also lead to

greater computing cost, and vice versa for smaller memory size. We

formally analyze EPC and show that EPC can guarantee privacy

leakage to a threshold.

EPC supports applications with video analytics of a series of

frames and is more efficient as compared to mechanisms based on

object tracking. We evaluate EPC with two applications, person

counting and vehicle detection under privacy leakage, system la-

tency, and video analytics accuracy. Evaluation results show that

EPC can prevent privacy leakage under visual data attack with 95%

video analytics accuracy and a 4x speedup compared to existing

privacy control mechanisms. The contributions of our paper are:

• We study edge-cloud video analytics systems with privacy

concerns from the perspective of implementing edge-side

privacy control.

• We develop a trajectory prediction-based system, EPC (§2)
for resource-constrained edge devices.We design amemory-

based trajectory prediction approach with analyzable pri-

vacy leakage control (§3).
• We present a systematic evaluation in two applications,

person counting and vehicle detection (§4).

2 EPC DESIGN

2.1 Background
Edge-cloud video analytics system typically works in the fol-

lowing manner: an edge device (e.g., a camera enhanced with an

edge box) captures video streams and performs preprocessing oper-

ations, e.g., background subtraction; then, the video frames will be

sent to the cloud for video analytics using a pre-trained DNN/CNN

model. Particularly, when the computation resources of the edge are

available, it can optionally perform (usually partial) video analytics

using the same DNN/CNN model as the cloud.

Trajectory prediction has been extensively explored in the

computer vision community [12]. A trajectory is a sequence of

positions of an object [1]. Trajectory prediction is the task of pre-

dicting future trajectories of the target object based on history

trajectories [13]. DNN-based methods [1, 10, 13, 18] have shown

good performance, and existing methods are divided into two cate-

gories: parameter-based methods [1, 13] and memory-based meth-

ods [10, 18]. The parameter-based methods, e.g., Social-LSTM [1]

and SGCN [13], train a DNNmodel directly for trajectory prediction,

whereas the memory-based methods, e.g., MANTRA [10], trains

DNN models that can construct a memory which stores the em-

bedding of the history trajectories. Intuitively, a trajectory will be

extracted from this memory when conducting trajectory prediction.

Note that the memory is substantially smaller than the DNN model

itself and intuitively, trajectory prediction is basically a search of the

trajectories from this memory. Parameter-based methods have high

computation costs and high accuracy, and memory-based methods

have low computation costs. For resource-constrained edge devices,

memory-based methods are more viable, and we adopt one typical

memory-based method in this paper.

Memory-based trajectory prediction. We now present a

representative memory-based method, MANTRA. It has two phases,

which are trajectory learning and prediction.

Trajectory learning: There are three essential components 1)

a memory to store the embeddings of history trajectories, 2) en-

coder/decoder DNN models to build the memory, and 3) a memory

controller to balance memory size and prediction accuracy. In-

tuitively, to achieve greater accuracy, one can construct a larger

memory by embedding more history trajectories. Specifically, the

memory controller is a DNN model, which takes a trajectory as

input and outputs whether this trajectory should be embedded into

the memory or not.

Trajectory learning performs as follows. Given history trajecto-

ries, it trains an encoder DNN model and a decoder DNN model.

Then, given the desired accuracy, the encoder DNN model uses

history trajectories to construct the memory by embedding the

trajectories released by the memory controller. Note that a larger

memory size will lead to a greater computation cost in trajectory

prediction.

Trajectory prediction: given the history trajectory of an object,

it uses the decoder DNN model to predict the future trajectory of

this object by searching the memory. Note that larger memory size

will lead to a greater computing cost.

2.2 The EPC Framework
In this paper, we develop EPC, a real-time video analytics system

that protects inference privacy by restricting sensitive objects from

being leaked from the edge side.

Threatmodel.We assume that the edge is trusted and the cloud

is untrusted. The potential attacker conducts visual data attack [19]

on video frames. In such an attack, the attacker can analyze the

acquired video frames by a pre-trained DNN/CNN model (e.g., an

object detection model for a specific sensitive object) and recognize

the sensitive object.

EPCmodular design. As shown in Figure 1, EPC has a privacy

control module to restrict the sensitive objects from leaking at the

edge side and a video analytics module to undertake various video

analytics tasks. For the privacy control module, there are three key

components: 1) a video stream segmentationmodule to partition the

input video stream into groups of pictures (GOPs) by Algorithm 1,

and 2) a trajectory-assisted target localization module to efficiently

acquire the positions of sensitive objects in each frame, in which

Algorithm 2 is executed, and 3) an object denaturing module to

modify the sensitive objects based on their location in each frame.

For the video analytics module, we fed the denatured video stream

into the video analytics DNN model and obtain the corresponding

analytics results.

Video analytics in EPC. As shown in Figure 1, the video

frames will first be divided into GOPs by the video stream seg-

mentation module. Next, the sensitive objects are located by the

trajectory-assisted target localization module. Finally, the frame

denaturing module modifies the sensitive objects in each frame

based on the received locations of them and sends the modified

video stream to the video analytics module, e.g., a YOLOv3 model

for people counting.
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Figure 1: The modular architecture of EPC

2.3 Trajectory Learning and Prediction
There are two phases for utilizing trajectory prediction in EPC. The

first phase is trajectory learning, where a memory-based trajectory

prediction model, MANTRA, is trained offline. The second phase

is trajectory prediction, given the edge-side resource constraints,

applying object detection andMANTRA on a video stream to obtain

the sensitive objects’ positions in each framewith minimum privacy

leakage. In this subsection, we will first introduce the training

of MANTRA model, and then present how MANTRA serves in

trajectory prediction-assisted target localization.

2.3.1 Trajectory learning. Memory acts as a database to store

encodings of history trajectories in a key-value form. Let 𝑀 be a

memory that contains |𝑀 | entries of observation-future encodings,
where each entry𝑚𝑖 = (𝜋𝑖 ,𝜓𝑖 ). 𝜋𝑖 is the key and𝜓𝑖 is the value.

Encoder/decodermodels aim to generate the encodings stored

in the memory. Let Π(·) be the encoder of observation positions,

and Φ(·) be the encoder of future positions. We define Ψ(·) as the
decoder to decode the newly observed positions. Given a sample

trajectory X𝑖 = [X𝑖
𝑂
,X𝑖

𝐹
], supposing the cosine similarity score

between the encoding Π(X𝑖
𝑂
) and 𝜋 𝑗 ∈ 𝑀 is the highest, then we

have: X̂𝑖𝐹 = Ψ(Π(X𝑖
𝑂
), 𝜙 𝑗 ). Π(·), Φ(·) and Ψ(·) are implemented

by Gated Recurrent Unit (GRU), and we jointly train them as an

autoencoder.

Memory controller ensures prediction accuracy while main-

taining a compact memory. It emits a probability 𝑃 of writing a new

embedding into the memory. The memory controller is trained by

minimizing the following loss 𝐿𝑐 :

𝐿𝑐 = 𝑒 × (1 − 𝑃) + (1 − 𝑒) × 𝑃, (1)

where 𝑒 is the trajectory prediction error.

𝑒 = 1 − 1

𝑁

𝑁∑︁
𝑖=1

1𝑖 (X̂𝐹 ,X𝐹 ), (2)

where

1𝑖 (X̂𝐹 ,X𝐹 ) =
{
1, 𝑑𝐸 ((𝑥𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑦𝑖 )) ≤ 𝑡ℎ𝑖 ,

0, 𝑑𝐸 ((𝑥𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑦𝑖 )) > 𝑡ℎ𝑖 ,
(3)

and 𝑑𝐸 ((𝑥𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑦𝑖 )) is the Euclidean distance between the i-th
point of X̂𝐹 and X𝐹 , and 𝑡ℎ𝑖 is a threshold.

Prediction error andmemory size. At the beginning of train-
ing, 𝑒 is close to one, indicating that the memory is too small to

reconstruct future trajectory accurately. In this case, 𝐿𝑐 ≈ 1 − 𝑃 ,

so the controller maximizes 𝑃 to store more embeddings to reduce

prediction error and the memory size increases consequently. As

prediction accuracy and memory size increase, 𝑒 gradually drops to

Algorithm 1: SSeg
Input: Predefined threshold 𝜏 . Video Stream 𝑆 of length𝑇𝑠 .

Output: Group of Pictures𝐺

1 for t = 1 to𝑇𝑠 do
2 𝑓 = 𝑟𝑔𝑏2𝑔𝑟𝑎𝑦 (𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (𝑓𝑡 ) )
3 𝑑𝑖 𝑓 𝑓𝐴 (𝑓 , 𝑓𝑟𝑒𝑓 ) = 𝐷𝑖𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑓 , 𝑓𝑟𝑒𝑓 )
4 if 𝑑𝑖 𝑓 𝑓𝐴 (𝑓 , 𝑓𝑟𝑒𝑓 ) ≤ 𝜏 then
5 𝐺.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓𝑡 )
6 else
7 Output𝐺

8 𝐺 = 𝑓𝑡 , 𝑓𝑟𝑒𝑓 = 𝑓

zero, 𝐿𝑐 ≈ 𝑃 , indicating that 𝑃 is minimized. Since the memory con-

troller loss is minimized in training, we can ensure that the memory

achieves low prediction error with minimal memory size. Note that

given different requirements of prediction error and memory size,

we can construct the memory of different sizes.

2.3.2 Trajectory prediction. Due to resource constraints, we must

decide whether the sensitive objects in video frames are located

by object detection or trajectory prediction to minimize privacy

leakage under latency constraints. We first introduce video stream

segmentation. Then, we propose the privacy leakage and latency

constraint. Finally, we formulate the trajectory prediction frame

scheduling problem and propose an algorithm to solve it.

Video stream segmentation. A trajectory prediction model

cannot discover a new object. So, we may discover an object after

it has existed for a period, leading to privacy leakage. In video

streams, the adjacent frames are similar in terms of content. If a

new object emerges, a high frame difference will be detected. Thus,

we propose an algorithm called SSeg to divide a video stream into a

set of GOPs, where the inter-frame difference is under a threshold.

We propose to use 𝐴𝑟𝑒𝑎 metric [8] because it is sensitive to the

arrival of a new object but not the motion of existing objects.

SSeg is summarized in Algorithm 1. We first downsample a new

frame to 320 × 180 and convert it to grayscale (line 2). Next, we

compute the difference between it and the reference frame (line 4).

If the difference is within a threshold, the new frame is appended

to the current GOP. Otherwise, it is set as the reference frame, and

a new GOP starts from it (line 5-9).

Latency of trajectory prediction-assisted denaturing. We

formulate the time 𝑡 𝑗 to denature frame 𝑓𝑗 below:

𝑡 𝑗 = 𝑥 𝑗 · 𝑡 𝑗𝑑𝑒𝑡 + (1 − 𝑥 𝑗 ) · 𝑡 𝑗𝑝𝑟𝑒 + 𝑡
𝑗

𝑑𝑒
(4)

where 𝑥 𝑗 ∈ {0, 1}. 𝑥 𝑗 equals to one when object detection and recog-
nition execute on 𝑓𝑗 . Otherwise, 𝑥 𝑗 equals to zero. 𝑡

𝑗

𝑑𝑒𝑡
, 𝑡
𝑗
𝑝𝑟𝑒 and

𝑡
𝑗

𝑑𝑒
are the object detection and recognition latency, the trajectory

prediction latency and the denaturing latency respectively. Suppose

the upper bound of latency for a given GOP of length 𝑇 is 𝛽𝑇 , we

have:

𝑇𝑑𝑒 =

𝑇∑︁
𝑖=1

𝑡𝑖 ≤ 𝛽𝑇 (5)

Privacy leakage of trajectory prediction-assisted denaturing.
Privacy refers to the private information encoded in the pixels cov-

ering a sensitive object𝑂𝑘 . Each pixel 𝑝𝑖 carries part of the privacy.
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Algorithm 2: TPFSche
Input: \𝑡𝑟𝑎 ,𝐺 , 𝛽𝑇

Output: x: Scheduling policy of GOP𝐺

1 x = [1, 1, 0, 0, . . . , 0]
2 for t = 3 to T do
3 𝐿 = 𝐿𝐺 (x, \𝑡𝑟𝑎 )
4 𝑥𝑡 = 1

5 if 𝐿𝐺 (x, \𝑡𝑟𝑎 ) ≤ 𝐿 and𝑇𝑑𝑒 ≤ 𝛽𝑇 then
6 𝐿 = 𝐿𝐺 (x, \𝑡𝑟𝑎 )
7 else
8 𝑥𝑡 = 0

9 Output x

Thus, we propose to define privacy leakage as the remaining private

information in the denatured object 𝑂𝑑
𝑘
. The privacy leakage 𝐿𝑂 of

𝑂𝑑
𝑘
is the summation of undenatured pixels’ CAM values, i.e.,

𝐿𝑂 (𝑂𝑑
𝑘
) =

∑︁
𝑈

𝐶𝐴𝑀 (𝑝𝑖 ) (6)

where𝑈 is the undenatured region of 𝑂𝑑
𝑘
, and 𝐶𝐴𝑀 () is the Class

Activation Map (CAM) [20] for images.

Problem formulation. Given a GOP 𝐺 of length 𝑇 , latency

constraint 𝛽𝑇 , we need to determine the scheduling policy x to

minimize the privacy leakage under Constraint (5). We formulate

the Trajectory Prediction Frame Scheduling Problem as below:

min

x

𝑇∑︁
𝑡=1

(1 − 𝑥𝑡 )
𝐾𝑡∑︁
𝑘=1

𝐿𝑂 (𝑂𝑑
𝑘
) (7)

𝑠 .𝑡 .

𝑇∑︁
𝑖=1

𝑡𝑖 ≤ 𝛽𝑇 ,

𝑇∑︁
𝑡=1

𝑥𝑡 = 𝑠,

𝑠∑︁
𝑡=1

𝑥𝑡 = 𝑠,∀𝑠 = 2, . . . ,𝑇

𝑥𝑡 ∈ {0, 1}, ∀𝑡 = 1, . . . ,𝑇 .

(8)

To solve this problem, we propose a greedy algorithm shown in

Algorithm 2. The main idea is to search all viable solutions and

select the solution which minimizes privacy leakage. Since the

searching space is𝑂 (𝑇 ) and we can finish each search in𝑂 (1) time,

this search terminates in 𝑂 (𝑇 ) time.

3 PRIVACY ANALYSIS
This section provides a formal analysis of the privacy leakage in

EPC. We first formally model the privacy leakage. Then, we analyze

how our design of EPC ensures that the privacy leakage in EPC can

be bounded by a threshold.

Privacy leakage. In EPC, privacy leakage mainly depends on

the accuracy of locating the regions for denaturing. The localization

error comes from the trajectory prediction error. We use the same

metric defined in Equation (6) to measure the privacy leakage of

a denatured sensitive object 𝑂𝑑
𝑘
. Since trajectory prediction error

contributes to the localization error and corresponding undenatured

region, we define the privacy leakage 𝐿𝐸𝑃𝐶 of a denatured sensitive

object 𝑂𝑑
𝑘
in frame 𝑓𝑡 as follows:

𝐿𝐸𝑃𝐶 (𝑂𝑑𝑘 ) = (1 − 𝑥𝑡 )
∑︁
𝑈

𝐶𝐴𝑀 (𝑝𝑖 ) (9)

where𝑈 is the undenatured region due to error in trajectory pre-

diction, and 𝑥𝑡 is the decision variable in scheduling policy x corre-

sponding to the frame which contains 𝑂𝑑
𝑘
.

Given a GOP 𝐺 of length 𝑇 and the privacy definition in Equa-

tion (9), we can compute the privacy leakage of 𝐺 as follows:

𝐿𝐸𝑃𝐶 (𝐺) =
𝑇∑︁
𝑡=1

𝐾𝑡∑︁
𝑘=1

𝐿𝐸𝑃𝐶 (𝑂𝑑𝑘 ) (10)

Inserting Equation (9) into Equation (10), we can rewrite the privacy

leakage of GOP 𝐺 as:

𝐿𝐸𝑃𝐶 (𝐺) =
𝑇∑︁
𝑡=1

𝐾𝑡∑︁
𝑘=1

(1 − 𝑥𝑡 )
∑︁
𝑈

𝐶𝐴𝑀 (𝑝𝑖 ) (11)

Theorem 1. If 𝐿𝑐 ≤ 0.5 & 𝑃 < 0.5 or 𝐿𝑐 > 0.5 & 𝑃 > 0.5, then
𝑒 ≤ 𝐿𝑐 .

Proof. Based on Equation (1), we can get 𝑒 =
𝐿𝑐−𝑃
1−2𝑃 (𝑃 ≠ 0.5).

If 𝐿𝑐 ≤ 0.5, then we have (1 − 2𝑃)𝐿𝑐 ≥ 𝐿𝑐 − 𝑃 . If 𝑃 < 0.5, then

we can get 𝑒 =
𝐿𝑐−𝑃
1−2𝑃 ≤ 𝐿𝑐 . Similarly, we can prove 𝑒 ≤ 𝐿𝑐 when

𝐿𝑐 > 0.5 & 𝑃 > 0.5. □

Theorem 2. Given the constraint 𝑒 ≤ 𝛼 , for a GOP 𝐺 of length
𝑇 , we have:

𝐿𝐸𝑃𝐶 (𝐺) ≤
𝑁𝑡𝑟𝑎∑︁
𝑝=1

(
𝑁 (1−𝛼 )∑︁
𝑖=1

𝜖
𝑝

𝑖
+
𝑁𝛼∑︁
𝑖=1

`
𝑝

𝑖
) (12)

where 𝑁𝑡𝑟𝑎 is number of trajectories and 𝑁 = 𝑇 −∑𝑇
𝑡=1 𝑥𝑡 .

Proof. Theorem 1 ensures that we can bound the trajectory

prediction error 𝑒 by minimizing controller loss 𝐿𝑐 . If the training

process ensures 𝑒 ≤ 𝛼 , then, for a prediction X̂𝑖𝐹 of length𝑁 , accord-

ing to Equation (2) and (3), there are at least 𝑁 (1−𝛼) objects at posi-
tion (𝑥𝑖 , 𝑦𝑖 ) satisfying the condition that 𝑑𝐸 ((𝑥𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑦𝑖 )) ≤ 𝑡ℎ𝑖 .

Thus, there are at least 𝑁 (1 − 𝛼) denatured objects satisfying:∑︁
𝑈

𝐶𝐴𝑀 (𝑝𝑖 ) ≤ 𝜖
𝑝

𝑖
, (13)

where 𝜖
𝑝

𝑖
= max𝑈

∑
𝑈 𝐶𝐴𝑀 (𝑝𝑖 ) and the undenatured region 𝑈

satisfies the condition 𝑑𝐸 ((𝑥𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑦𝑖 )) ≤ 𝑡ℎ𝑖 . For the other at

most 𝑁𝛼 objects, their privacy leakage cannot exceed all the private

information they contains, so these at most 𝑁𝛼 objects satisfies:∑︁
𝑈

𝐶𝐴𝑀 (𝑝𝑖 ) ≤ `
𝑝

𝑖
, (14)

where `
𝑝

𝑖
=
∑
𝑅𝑖 𝐶𝐴𝑀 (𝑝𝑖 ) and 𝑅𝑖 is the region covered by corre-

sponding sensitive object. Therefore, for each prediction X̂𝑝
𝐹
, its

privacy leakage cannot exceed

∑𝑁 (1−𝛼 )
𝑖=1

𝜖
𝑝

𝑖
+∑𝑁𝛼

𝑖=1 `
𝑝

𝑖
. Finally, we

can generalize it to all predictions of a GOP to get Equation (12).

Thus, we can prove Theorem 2. □

Theorem 2 ensures a privacy leakage guarantee for a GOP.

Since a video stream consists of GOPs, it can easily generalize to

the conclusion that EPC can bound privacy leakage.
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4 EVALUATION
4.1 Experimental Setup
We use a desktop with an Intel i9 CPU and an Nvidia RTX 3090

GPU to simulate an edge box. An AWS DeepLens camera functions

as the IP-camera connected to an edge box.

Applications and datasets.We use two typical applications

to evaluate EPC: 1)Vehicle Detection (VD)marks the bounding boxes

of vehicles in video streams of nuScenes dataset [2] with YOLOv5s

model, 2)Person Counting (PC) counts the number of persons in

each frame of the MOT15 dataset [7] with YOLO5Face model.

Baselines.We compare EPC with two baselines: 1) Naive Video
Denaturing (NVD) [14] denatures objects for each frame in a detect-

modify manner, 2) Amadeus [4] denatures the sensitive objects

based on the locations which are obtained by object detection and

KCF tracking. Particularly, for fair comparison with Amadeus, we
test EPC on various frequencies of object detection, e.g., 1:3 indi-

cates object detection is performed on one-fourth of all frames.

Evaluation Metrics. We use three metrics to compare the

performance of EPC with the baselines: 1) Defense Accuracy is used

to show the privacy protection performance and calculated as the

proportion of frames that are protected w.r.t all frames. Specifically,

the protected frame refers to from which the visual data attacker

can not recognize a sensitive object, 2) Latency per Frame represents
the time spent in converting a raw frame to a denatured frame, 3)

Analytics Accuracy shows the utility of the denatured video frame

and is computed by the accuracy metric of each application.

4.2 Experiment Results
4.2.1 Performance in Privacy Protection. Figure 2(a) depicts defense
accuracy of EPC, Amadeus and NVD. Overall, EPC outperforms

Amadeus on both applications. Given the same fraction of object

detection, EPC towers over Amadeus in 19.05%-23.49% and 3.55%-

5.69% onVD application and PC application, respectively. Compared

to NVD, EPC can reach even 96.40% of its accuracy, which indicates

a very small performance gap. We need to note that EPC executes

under the resource constraints which hardly support real-time

execution of NVD. Therefore, Figure 2(a) validates the effectiveness

of integrating trajectory prediction into privacy control for video

analytics systems.

4.2.2 Improvement on System Latency. According to Figure 2(b),

in VD application, NVD shows a latency of 21.0ms. In PC applica-

tion, NVD takes 48ms to denature a frame, i.e., the frame rate is

20.8fps, but a real-time system usually requires frame rate to be

30fps, presenting that NVD is not suitable for resource-constrained

edge devices. Compared to NVD, EPC significantly outperforms

it in latency metric. For EPC-1:1, its latency is only 51.81% and

50.83% of NVD on VD and PC applications, respectively. EPC-1:4

even achieves up to 78.92% latency reduction on PC application.

EPC also demonstrates its advantage over Amadeus. The latency

of EPC-1:1 and EPC-1:4 are 92.95% and 76.67% of Amadeus-1:1 and

Amadeus-1:4 on PC application, respectively. The ratios drop to

78.56% and 49.27% on VD application. The main reason is that trajec-

tory prediction is an order of magnitude faster than object detection.

And trajectory prediction requires only history trajectories as input,

instead of complex visual inputs, e.g., video frames.

4.2.3 Performance in Analytics Accuracy. Figure 2(c) displays the
analytics accuracy of VD and PC applications. As shown in Fig-

ure 2(c), running video analytics with frames denatured by EPC is

only slightly affected. For VD application, the analytics accuracy

of EPC is 97.65%-98.75%. For PC application, the result is 98.17%-

98.73%. The analytics accuracy of NVD is 99.2% for VD application

and 99.3% for PC application. EPC’s performance is very close to

NVD’s performance, but EPC executes much faster than NVD. EPC

also demonstrates its advantage over Amadeus in analytics accu-

racy. Different from protection accuracy, analytics accuracy varies

a little under different latency constraints. We argue that this is

because mis-tracking or mis-predicting an object’s position will

directly lead to failure of privacy protection, while video analytics

is not very sensitive to such error.

4.2.4 Analysis of System Latency. Figure 3 presents the decomposi-

tion of latency for Amadeus and EPC. As we can see from Figure 3,

the latency for each case is decomposed into time for target localiza-

tion and time for tracking/trajectory prediction. Obviously, target

localization dominates the latency for both Amadeus and EPC. For

Amadeus, the fraction of target localization is 43.93%-75.81% on

VD application and 72.73%-91.43% on PC application. For EPC, the

fraction of target localization is 89.17%-96.15% on VD application

and 94.86%-98.36%. Thus, on both VD and PC applications, EPC’s

fraction of target localization in latency is higher than Amadeus.

Therefore, apart from target localization, EPC requires less time

to locate a sensitive object, explaining why EPC can outperform

Amadeus in latency metric. Besides, for Amadeus, as the fraction

of object localization drops, the benefit due to KCF tracking is grad-

ually encroached by its cost. But for EPC, the fraction of trajectory

prediction in latency constantly stays at a low level.

5 RELATEDWORK
Edge-cloud video analytics systems have been widely used

nowadays. Our work falls into the edge-cloud video analytics sys-

tems with trusted edge and untrusted cloud. One major challenge is

that edge devices are resource-constrained. This leads to research

studies onmechanisms on hardware acceleration [3], frame filtering

[8], etc. It is also typical that video analytics systems periodically

adjust the resolution of a group of future frames given dynamic

resource constraints. Our EPC, with trajectory prediction, can pre-

determine future resources to be consumed by itself.

Trajectory prediction methods can be classified according

to the way they describe target motion and formulate the causes

[12]. There are physics-based methods [5], planning-based meth-

ods [6], and pattern-based methods [1]. Our trajectory prediction

method falls into pattern-based methods. Pattern-based methods

are usually supported by DNN models and can be further classi-

fied into parameter- and memory-based methods. EPC is based on

the memory-based trajectory prediction method for its resource

efficiency and analyzable privacy control.

Privacy-preserving edge-cloud video analytics systems
have been developed due to visual data attacks [19] and privacy con-

cerns. Existing privacy control mechanisms include adding noise

[11], image transformation [9, 17], encryption [15], etc. Our work

falls into the denaturing [4, 14, 16]. Denaturing is suitable for broad

applications since it only removes sensitive objects and requires

no modification of video analytics model. There exist denaturing
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Figure 2: The overall performance of EPC and baselines
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Figure 3: Decomposition of latency per frame for Amadeus
and EPC

mechanisms [4, 16] based on object tracking. We show in our ex-

periments that EPC outperforms these mechanisms. Yet a more

important advantage is that object tracking-based mechanisms per-

form denaturing on the current frame. Consequently, the system

may not know how much resource is available for future video

analytics and cannot prepare adjustments.

6 CONCLUSION
This paper presents EPC, a new edge-cloud video analytics sys-

tem with efficient edge-side privacy control. EPC can protect the

privacy of video streams from visual data attacks by locating and

denaturing sensitive objects before sending them to the cloud. To

fit resource-constrained edge devices, EPC adopts a lightweight

trajectory prediction method to efficiently locate sensitive objects

in frames. Theoretical analysis and experimental results show EPC

can achieve valid privacy control with negligible impact on utility.
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