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Abstract—Recent advances in deep neural networks (DNNs) have
substantially improved the accuracy and speed of a variety of
intelligent applications. Nevertheless, one obstacle is that DNN
inference imposes heavy computation burden to end devices, but
offloading inference tasks to the cloud causes transmission of
a large volume of data. Motivated by the fact that the data
size of some intermediate DNN layers is significantly smaller
than that of raw input data, we design the DNN surgery, which
allows partitioned DNN processed at both the edge and cloud
while limiting the data transmission. The challenge is twofold:
(1) Network dynamics substantially influence the performance of
DNN partition, and (2) State-of-the-art DNNs are characterized
by a directed acyclic graph (DAG) rather than a chain so that
partition is greatly complicated. In order to solve the issues, we
design a Dynamic Adaptive DNN Surgery (DADS) scheme, which
optimally partitions the DNN under different network condition.
Under the lightly loaded condition, DNN Surgery Light (DSL) is
developed, which minimizes the overall delay to process one frame.
The minimization problem is equivalent to a min-cut problem
so that a globally optimal solution is derived. In the heavily
loaded condition, DNN Surgery Heavy (DSH) is developed, with
the objective to maximize throughput. However, the problem is
NP-hard so that DSH resorts an approximation method to achieve
an approximation ratio of 3. Real-world prototype based on self-
driving car video dataset is implemented, showing that compared
with executing entire the DNN on the edge and cloud, DADS can
improve latency up to 6.45 and 8.08 times respectively, and improve
throughput up to 8.31 and 14.01 times respectively.

I. INTRODUCTION

Recent advances in deep neural networks (DNN) have sub-

stantially improve the accuracy and speed of computer vision

and video analytics, which creates new avenues for a new

generation of smart applications. The maturity of cloud comput-

ing, equipped with powerful hardware such as TPU and GPU,

becomes a typical choice for such kind computation intensive

DNN tasks. For example, in a self-driving car application,

cameras continuously monitor and stream surrounding scene to

servers, which then conduct video analytic and feed back control

signals to pedals and steering wheels. In an augmented reality

application, a smart glass continuously records its current view

and streams the information to the cloud servers, while the cloud

servers perform object recognition and send back contextual

augmentation labels, to be seamlessly displayed overlaying the

actual scenery.

One obstacle to realizing smart applications is the large

amount of data volume of video streaming. For example,

Google’s self-driving car can generate up to 750 megabytes

of sensor data per second [1], but the average uplink rate of

4G, fastest existing solution, is only 5.85Mbps [2]. The data

rate is substantially decreased when the user is fast moving

or the network is heavily loaded. In order to avoid the effect

of network and put the computing at the proximity of data

source, edge computing emerges. As a network-free approach, it

provides anywhere and anytime available computing resources.

For example, AWS DeepLens camera can run deep convolu-

tional neural networks (CNNs) to analyze visual imagery [3].

Nevertheless, edge computer themselves are limited by their

computing capacity and energy constraints, which cannot fully

replace cloud computing.

From Fig. 1, we observe that, for the DNN, the amount of

some intermediate results (the output of intermediate layers) are

significantly smaller than that of raw input data. For example,

the input data size of tiny YOLOv2 [4] is 0.95MB, while the

output data size of intermediate layer max5 is 0.08MB with

a reduction of 93%. This provides the opportunity for us to

take the advantages of the powerful computation capacity of the

cloud computing and the proximity of the edge computing. More

specifically, we can compute a part of DNN on the edge side,

transfer a small number of intermediate results to the cloud, and

compute the left part on the cloud side. The partition of DNN

constitutes a tradeoff between computation and transmission. As

shown in Fig. 2, partition at different layers will cause different

computation time and transmission time. So, an optimal partition

is desirable.

Unfortunately, the decision on how to split the DNN lay-

ers heavily depends on the network conditions. In a LTE

network, the throughput can decrease by 10.33 times during

peak hours [5], and this value could reach 18.65 for a WiFi

hotspot [6]. Under a high-throughput network condition, com-

puting delay dominates and it is more desirable to offload the

DNNs as early as possible. However, if the network condition

degrades severely, we should prudently determine the DNN cut

so to decrease the volume of data transmission. For example,

Fig. 3 shows that when the network capacity is as high as

18Mbps, the optimal cut is at input layer and the overall

processing delay is 0.59s. However, when the network capacity

is lowered to 4Mbps, cutting at input layer is no longer valid

as the communication delay increases substantially. Under this

scenario, cutting at max5 is optimal, with a delay reduction of

62%.

Another challenge in the partition is that the recent ad-

vances of DNN show that DNNs are no longer limited to a

chain topology, DAG topologies gain popularity. For example,

GoogleNet [7] and ResNet [8], the champion of ImageNet

Challenge 2014 and 2015 respectively, are DAGs. Obviously,

partitioning DAG instead of chain involves much more compli-

cated graph theoretic analysis, which may lead to NP-hardness
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Fig. 1: The output data size of each layer

of YOLOv2.
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Fig. 2: Latency constitution when

partition at the different layers of tiny

YOLOv2. Bandwidth is 4Mbps.
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in performance optimization.

To this end, in this paper, we investigate the DNN partition

problem, in order to find the optimal DNN partitioning in an

integrated edge and cloud computing environment with dynamic

network conditions. We design a Dynamic Adaptive DNN

Surgery (DADS) scheme, which optimally partitions the DNN

network by continually monitoring the network condition. The

key design of DADS is as follows. DADS keeps monitoring

the network condition and determines if the system is operated

in the lightly loaded condition or heavily loaded condition.

Under the lightly loaded condition, DNN Surgery Light (DSL)

is developed, which minimizes the overall delay to process one

frame. In this part, in order to solve the delay minimization

problem, we convert the original problem to an equivalent min-

cut problem so that the globally optimal solution can be found.

In the heavily loaded condition, DNN Surgery Heavy (DSH)

is developed, which maximizes the throughput, i.e. the number

of frames can be handled per unit time. However, we prove

such optimization problem is NP-hard, which cannot be solved

within polynomial computational complexity. DSH resorts an

approximation approach, which achieves an approximation ratio

of 3.

Finally, we develop a real-world testbed to validate our

proposed DADS scheme. The testbed is based on the self-

driving car video dataset and real traces of wireless network. We

test 5 DNN models. We observe that compared with executing

entire DNNs on the cloud and on the edge, DADS can reduce

execution latency up to 6.45 times and 8.08 times respectively,

and improve throughput up to 8.31 times and 14.01 times

respectively.

II. AN EDGE-CLOUD DNN INFERENCE (ECDI) MODEL

A. Background

Video analytics is the core to realize a wide range of exciting

applications ranging from surveillance and self-driving cars, to

personal digital assistants and automatic drone controls. The

current state-of-the-art approach is to use a deep neural network

(DNN) where the video frames are processed by a well-trained

constitutional neural network (CNN) or recurrent neural network

(RNN). Video analytics use DNNs to extract features from input

frames of the video and classify the objects in the frames into

one of the predefined classes.

DNN network consists of quite a few layers which can be

organized in a directed acyclic graph (DAG). Fig. 4 shows

a 7-layer DNN model. Inference for video is performed with

a DNN using a feed-forward algorithm that operates on each

frame separately. The algorithm begins at the input layer and

progressively moves forward layer by layer. Each layer receives

the output of prior layers as the input, performs a series of

computation on the input data to get the output, and feeds its

output to the successor layers. This process terminates once the

computation of output layer is finished.

The video is generated at the edge side and the frames of the

video are fed into the DNN as input. The computation of each

layer in DNN can be performed at the edge or at the cloud.

Computing layers at edge devices does not require to transmit

data to the cloud but incurs more computation due to resource-

constrained device. Computing layers at the cloud leads to less

computation but incurs transmission latency for transmitting data

from edge devices to the cloud.

B. The ECDI Model

In this subsection. We formally present the ECDI model.

1) Video Frame: A video consists of a sequence of

frames (pictures) to be processed, with a sampling rate Q
frames/second. Each sampled frame is fed to a predetermined

DNN for inference. Please note that the sampling rate is not the

frame rate of the video. It indicates how many frames/pictures

are processed each unit time [9].

2) DNN as a Graph: A DNN is modeled as a directed acyclic

graph (DAG). Each vertex represents one layer of the neural

network. A layer is indivisible and must be processed on either

the edge side or the cloud side. We add an virtual entry vertex

and an exit vertex to represent the starting point and the ending

point of DNN respectively. The links1 represent communication

and dependency among layers.

Let G = (V⋃{e, c},L) denote the DAG of DNN, where V =
{v1, v2, · · · , vn} is the set of vertices representing the layers of

the DNN (specially, v1 and vn represent the input layer and

output layer respectively). e and c denote virtual entry and exit

vertices (to facilitate the subsequent analysis). L is the set of

links. A link (vi, vj) ∈ L represents that vi has to be processed

before vj , and vi feeds its output to vj . Fig. 6 shows the DAG

of the pure inception v4 network [10] in Fig. 5.

Since each layer can be processed on either the edge or cloud

side, its processing time depends on where it is processed (i.e.

on the edge or on the cloud). Let tei and tci be the time needed

to process vi one edge and cloud respectively. Let di and tti
denote the output data size and the transmission time of vi. We

1Please note that to avoid misunderstanding, throughout this paper, we use
the term “link” to represent “edge of a graph.” This is because “edge” in this
paper has already represented “edge computing.”
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define Dt = {d1, d2, · · · , dn}. Let B be the network bandwidth,

we have tti = di

B . Please note that B can be dynamically

changed and we need to adapt such changes. We define Fe =
{te1, te2, · · · , ten}, Fc = {tc1, tc2, · · · , tcn}, Ft = {tt1, tt2, · · · , ttn}.

They denote the three key delays: processing delay at the edge,

transmission delay, and processing delay at the cloud of each

layer.

3) DNN Partitioning: Our objective is to partition DNN into

two parts so the one part is processed at the edge and the other

is processed at the cloud. Mathematically, we should find a set

of vertices VS as a subset of V such that removing VS causes

that the rest of G becomes two disconnected components. One

component contains e, denoted by V ′
E and the other component

contains c, denoted by VC . VS is the cut so that all down-

streaming layers are processed at the cloud. V ′
E and VS are

processed at the edge and VC are processed at the cloud. We

define VE = V ′
E

⋃VS . The output data of vertices in VS will

be transmitted from the edge side to the cloud. VE , including

V ′
E and VS will generate processing delay at the edge. VS will

generate transmission delay. VC will generate processing delay

at the cloud. Our aim is to determine best cut VS so that the

overall delay is minimized.

As shown in Fig. 6, we cut at VS = {v3, v5, v9, v12} so that

the V ′
E = {e, v1, v2, v4}, VE = {e, v1, v2, v3, v4, v5, v9, v12},

and VC = {v6, v7, v8, v10, v11, v13, c}. The overall delay is the

processing delay of VE on the edge and VC on the cloud plus

the communication delay of the output data of layer in VS .

4) Delay Components: Once the partition is made, each

frame is processed at the edge, and then sent from the edge

to the cloud, and then processed at the cloud. Since there are

multiple frames to be processed, we assume that the three stages

are conducted in pipeline. In order words, when frame 1 is being

processed at the cloud, frame 2 can be transmitted and frame 3

can be processed at the edge.

The delays of the three stages are characterized as follows.

In the edge-computing stage

Te =
∑

vi∈VE

tei . (1)

In the cloud-computing stage

Tc =
∑

vi∈VC

tci . (2)

In the communication stage

Tt =
∑

vi∈VS

tti. (3)

For each frame, Te, Tc, and Tt are spent for each stage. Frames

are processed in pipeline every 1
Q . As a consequence, the Gantt

chart (scheduling chart) of frames can be shown in Fig. 8. Te,

Tc, and Tl cannot exceed 1
Q . Otherwise, the incoming rate is

greater than the completion rate, leading to system congestion.

Our aim is to smartly partition the DNN so that the overall
delay to process frames is minimized and the system is not
congested.

C. Parameter Estimation for ECDI

In this subsection, we discuss how to derive the input pa-

rameters. The first class of parameters is called DNN profile,

including DNN topology G, processing delays of each layer at

the edge and the cloud Fe, Fc, data size of each layer Dt.

These parameters can be well derived in advance. G and Dt

can be directly derived given the DNN definition. Fe and Fc

can be measured beforehand. For example, we derive Dt of tiny

YOLOv2 model and measure Fe of tiny YOLOv2 model pro-

cessed on Raspberry Pi 3 model B and Ali Cloud respectively.

We show the results in Fig. 1 and Fig. 7 respectively.

The value B is dynamic and should be measured during the

process of DNN inference. This can be realized by a method

similar to HTTP DASH [11]. We use the tool “ping” at edge

to send two different size data consecutively to the cloud,

and measure the response times. The bandwidth equals to the

ratio between the difference of data size and the difference of

response times.

The value Q is user-specific. The user lets the system know

Q when the inference starts. The system does nothing unless Q
is too large for the system to handle (See Section III-D).

III. ECDI PARTITIONING OPTIMIZATION

A. The Impact of DNN Inference Workloads

Our first objective is to minimize the overall delay to process

each frame. This is true under the light workload: for each stage,

the current frame is completed before the next frame arrives.

Mathematically max{Te, Tt, Tc} < 1
Q so that the Gantt chart

is shown as the bottom one of Fig. 8. In this case, we just

need to complete every frame as soon as possible, i.e., minimize

Tc + Tt + Te.

However, if the system is heavily loaded, minimizing Te+Tt+
Tc may lead to system congestion as max{Te, Tt, Tc} ≥ 1

Q . For

example, in Fig. 8 (top), Te >
1
Q so that the next frame arrives

before the current frame is completed at the edge. Therefore,

under this situation, we need to maximize the throughput of the

system, i.e. how many frames at most the system can handle
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per unit time. Our objective is to minimize max{Te, Tt, Tc}
as the system throughput is 1

max{Te,Tt,Tc} . For presentation

convenience, max{Te, Tt, Tc} is referred to as the max stage
time.

Please note that in Section III-D, we will further discuss how

to judge if the system is lightly loaded or heavily loaded. There,

we also need to consider that if the sampling rate is greater

than 1
minmax{Te,Tt,Tc} so that the system will be congested

eventually. The system has to force the sender/user to reduce

sampling rate.

B. The Light Workload Partitioning Algorithm

In this subsection, we study Edge Cloud DNN Inference for
Light Workload (ECDI-L) problem. Our goal is to minimize

the overall delay of one frame, under a given the network

condition B. In summary, we have the following optimization

problem:

Problem 1. (ECDI-L) Given G, [Fe,Fc,Dt], and B, determine
VE , VS and VC , to minimize Tinf = Te + Tt + Tc.

Proposition 1. Problem ECDI-L can be solved in polynomial
time.

One challenge to solve ECDI-L problem directly is that each

vertex in G contains three delay values tei , t
c
i , t

t
i =

di

B . The delay

that contributes to the overall delay depends on where the vertex

is processed. To this end, we construct a new graph G′ so that

each edge only captures a single delay value. By doing so,

we convert ECDI-L problem to the minimum weighted s-t cut

problem of G′.
We first illustrate how to construct G′ based on G.

a) Cloud Computing Delay: Based on G, we add links

between e and each vertex v ∈ V , referred to as “red links,” to

capture the cloud-computing delay of v.

b) Edge Computing Delay: Similarly, we add links be-

tween vertex v ∈ V and c, referred to as “blue links,” to capture

the edge-computing delay of v.

c) Communication Delay: All the other links correspond

to communication delays. A link from v to u should capture

the communication delay of v. However, this is insufficient as

one vertex may have multiple successors and its communication

delay is counted multiple times. For example, v1 in Fig. 6 has

4 outgoing links but the communication delay of v1 has to be

counted at most once. To this end, we introduce axillary vertices
into graph G′. That is, for any vertex vk ∈ V whose outdegree is

greater than one, we add an auxiliary vertex v′k and link (vk, v
′
k).

The links from vk to successors of vk are now re-placed from

v′k to successors of vk. For example, a 4-layer DNN is shown

in Fig. 9(a). The outdegree of vertex v1 is greater than one,

we thus add an auxiliary vertex v′1 and link (v1, v
′
1) shown in

Fig. 9(b). The links (v1, v2) and (v1, v3) are re-placed by links

(v′1, v2) and (v′1, v3) respectively. We define VD to be the set of

axillary vertices.

Now, without considering e and c, if a vertex v has one

successor, the link starting from v corresponds to its commu-

nication delay, which is referred to as “black link.” If v has

multiple successors, then all the links starting from v are referred

to as “dashed links” and should not be considered since the

communication delay has already been considered from v to v′.
Links are assigned costs. The costs assigned to red, blue,

black links are cloud-computing, edge-computing, and commu-

nication delays. Dashed links are assigned infinity.

c(vi, vj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tei , if vi ∈ V, vj = c.

tti, if vi ∈ V, vj ∈ V⋃VD.

tci , if vi = e, vj ∈ V.
+∞, others.

(4)

At this stage, we can convert ECDI-L problem to the mini-

mum weighted s–t cut problem of G′.
A cut is a partition of the vertices of a DAG into two disjoint

subsets. The s–t cut of G′ is a cut that requires source s and

sink t to be in different subsets, and its cut-set only consists of
links going from the source’s side to sink’s side. The value of a

cut is defined as the sum of the cost of each link in the cut-set.

Problem ECDI-L is equivalent to the minimum e–c cut of G′. If

cutting on link from e to vi ∈ V (red link shown in Fig. 9(b)),

then vi will be processed on the cloud, i.e vi ∈ VC . If cutting

on link from vj ∈ V to c (blue link show in Fig. 9(b)), then vj
will be processed on the edge, i.e. vj ∈ VE . If cutting on link

from vi ∈ V to vj ∈ V⋃VD (black link show in Fig. 9(b)),

then the data of vi will be transmitted to the cloud, i.e vi ∈ VS .

It is impossible to cut on link from vi ∈ VD to vj ∈ V (dashed

links), because otherwise it will lead to infinite cost (but finite

cost exists). The total cost of cut on red links equals to cloud

computation time Tc. The total cost of cut on blue links equals

to edge computation time Te. The total cost of cut on black

links equals to transmission time without network latency Tt. If

the e–c cut of G′ is minimum, then the inference latency on a

single frame is minimum. For example, in Fig 9(b), the cut is

at (e, v2), (e, v3), (e, v4), (v1, v
′
1) and (v1, c). v1 is processed at

the edge so that te1 is counted in the blue link. v2, v3 and v4 are

processed at the cloud so that tc2 tc3 and tc4 are counted in the



red links. The communication delay tt1 is counted in the black

link.

We develop DNN Surgery Light (denoted as DSL) algorithm

for ECDI-L problem. The overall algorithm DSL() is shown

in Algorithm 1. The algorithm first calls compute-net() to

compute Ft. Then it calls graph-construct() (line 2) to

construct G′ based on G with the computation complexity of

O(n + m), where n is the number of layers |V|, m is the

number of links |L|, and then it calls min-cut() (line 3)

to find minimum e–c cut of G′ which outputs the partition

strategy (i.e. VE ,VS and VC). Boykov’s algorithm [12] is used

in min-cut() to solve the minimum e–c cut problem with

the computational complexity of O((m + n)n2). DSL() is a

polynomial-time algorithm with the computational complexity

of O((m+ n)n2).

Algorithm 1: DSL Algorithm DSL().

Input: G,Fe,FcDt, B
Output: VE ,VS ,VC , Te, Tt, Tc

1 Ft ←compute-net(Dt, B);
2 G′ ←graph-construct(G,Fe,Fc,Ft);
3 [VE ,VS ,VC , Te, Tt, Tc] ← min-cut(G′);
4 return VE ,VS ,VC , Te, Tt, Tc;

C. The Heavy Workload Partitioning Algorithms

As discussed in Section III-A, we formulate the Edge Cloud
DNN Inference for Heavy Workload (ECDI-H) problem,

to minimize max{Te, Tt, Tc}. The decision variables are VE ,

VS and VC . In summary, we have the following optimization

problem:

Problem 2. (ECDI-H) Given G, [Fe,Fc,Dt], and B, determine
VE , VS and VC , to minimize max{Te, Tt, Tc} (i.e. maximize
throughput).

ECDI-H Problem is NP-hard. We provide the sketch of the

proof. We prove it by reducing from the smallest component of

the most balanced minimum st-vertex cut problem (MBMVC-

SC), which is known to be NP-complete [13]. We consider the

following MBMVC-SC problem on GA = (VA

⋃{s, t},LA),
the goal is to find a vertex cut set VC to partition the graph into

two disjoint components (V1,V2), for which s ∈ V1, t ∈ V2 and

the largest components among {V1,V2,VC} is minimum. Any

instance of the above problem is equivalent to an instance in

ECDI-H problem. Due to page limitation, detailed explanations

are omitted.

ECDI-H is NP-hard. It is unrealistic to find a globally optimal

solution within polynomial time. We design DNN Surgery

Heavy (denoted as DSH) algorithm which achieves a locally

optimal solution. In addition, its approximation ratio is 3.

The rationale to develop DSH is as follows. We modify G′

by changing the costs of links as follow:

c(vi, vj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αtei , if vi ∈ V, vj = c.

βtti, if vi ∈ V, vj ∈ V⋃VD.

γtci , if vi = e, vj ∈ V.
+∞, others.

(5)

Here α, β and γ are non-negative variables. The approach

is to run DSL() with several different α, β and γ values. By

this way, a solution is generated to optimize ECDI-L with a

specific α, β, γ tuple. Then we test if this solution is also good

enough for ECDI-H. If it is better than all existing solutions, it

is regarded as a new solution to ECDI-H. We repeat the above

procedure for a wide range of α, β, γ tuples.

Here, the result of DSL() is determined by the ratio of the

three parameters, instead of their absolute values. Therefore, we

can fix one of the three, for example, β = 1 , and only vary

the other two. Thus, we have a two-dimensional search space

for α and γ. We first search in the two-dimensional plane with

a coarse granularity to find the best solution. Then we use a

finer granularity search in the neighborhood of the best solution

for further improvement. We repeat the steps until the improved

performance is smaller than a threshold ε.

The overall algorithm DSH() is shown in Algorithm 2. A

function search() (line 11–19) is designed to search for the

best solution in a given space S � [αl, γl, αh, γh], meaning that

αl ≤ α ≤ αh, γl ≤ γ ≤ γh, and a granularity δ (line 13–14),

i.e. the step size of changing α and γ is δ each time. For each α
and γ, search() calls DSL() to compute the vertex cut and

calls max-time() to compute the max[Tc, Te, Tt]. Lines 17–

18 guarantee max[Tc, Te, Tt] derived is non-increasing.

The overall algorithm first initializes the search granularity δ
to be 1 (line 2) and the search space large enough (line 3–4). It

calls search() (line 8) to search on the given space S with

a granularity δ, and returns the best α and γ found currently.

Then DSH() narrows down the search space S (line 8) to the

neighborhood of the best α and γ for the current iteration, and

adjusts δ to a finer granularity (line 9). Such space S and gran-

ularity δ is returned to search(). The termination condition

for the loop is that the improved performance is smaller than

a threshold ε (line 5). Finally, it returns the vertex cut with the

best-found performance (line 10). Obviously, we can achieve a

local optimal result with respect to the neighborhood of the final

α and γ.

Theorem 1. The approximation ratio of the algorithm DSH for
ECDI-H is 3.

Proof. Let the max stage time of DHL be tDSH . Let the optimal

max stage time of ECDI-H be t∗. We prove tDSH

t∗ ≤ 3. Let T ∗

denote the minimum inference latency for one frame. Let To

denote the inference latency of a single frame when achieving

the optimal max stage time. We have T ∗ ≤ To. Because there

are three stages, we have To ≤ 3t∗, thus T ∗ ≤ 3to.

As shown in Algorithm 2, when δ = 1, Search() will calls

DSL() using α = 1 and γ = 1 as the parameter. When α = 1
and γ = 1, DSL() achieves the minimum inference time T ∗ for

one frame. Let t1, t2 and t3 be the edge computation time, the

transmission time and the cloud computation time respectively

when achieving the minimum inference time. We have T ∗ =
t1 + t2 + t3. DSH() guarantees the searched max stage time

is non-increasing, thus tm ≤ max{t1, t2, t3}, combined with

T ∗ = t1 + t2 + t3, we have tm ≤ Tmin. As tm ≤ T ∗ and

T ∗ ≤ 3t∗, we prove tDSH

t∗ ≤ 3.



Algorithm 2: DSH Algorithm DSH().

Input: G,Fe,Fc,Dt, B, ε,K
Output: VE ,VS ,VC , Tmax

1 Ft ←compute-net(Dt, B);
2 Tmax ← +∞; T ′

max ← 0; δ ← 1;

3 αl ← 0; γl ← 0; αu ←
∑

(Fe)
min(Ft)

; γu ←
∑

(Fc)
min(Ft)

;

4 S ← [αl, γl, αu, γu];
5 while |T ′

max − Tmax| ≥ ε do
6 T ′

max ← Tmax;
7 [α, γ,VE ,VS ,VC , Tmax] ←Search(S, δ, Tmax);
8 αl ← α− δ; αu ← α+ δ;γl ← γ − δ; γu ← γ + δ;
9 δ ← δ/K;

10 return VE ,VS ,VC , Tmax;
11 function Search([αl, γl, αu, γu], δ, T

∗
max)

12 Tmax ← +∞;
13 for α ← αl;α ≤ αu;α ← α+ δ do
14 for γ ← γl; γ ≤ γu; γ ← γ + δ do
15 [VE ,VS ,VC , Te, Tt, Tc] ←DSL(G, αFe, γFc,Dt, B)
16 Tmax ←max-time(Te, Tt, Tc);
17 if Tmax ≤ T ∗

max then
18 α∗ ← α; γ∗ ← γ; T ∗

max ← Tmax;

19 return α∗, γ∗,VE ,VS ,VC , T
∗
max;

D. The Dynamic Partitioning Algorithm

We now consider network dynamics. In practice, the network

status B varies. This will affect the workload mode selection and

the partition decision dynamically. We design Dynamic Adaptive

DNN Surgery (DADS) scheme to adapt network dynamics.
It is shown in Algorithm 3. monitor-task() monitors

whether the video is active (line 2). This can be realized

by tool “iperf.” Detailed implementation can be found in

Section IV. The real-time network bandwidth is derived by

monitor-net() (line 3). Then DSL() is called to compute

the partition strategy (line 4). In this case, if it satisfies the

sampling rate 1
Q , i.e.max{Te, Tt, Tc) <

1
Q , we can confirm that

the system is in the light workload mode and the partition by

DSL is accepted.
Otherwise, the system is in the heavy workload mode and

calls DSH() to adjust the partition strategy to minimize the max

delay (line 6). However, if the completing rate is still smaller

than the sampling rate, it means that the sampling rate if too

large so that even DSH() still cannot satisfy the sampling rate.

The system will be congested. It calls the user to decreases the

sampling rate (line 7–8).

IV. IMPLEMENTATION

We implement a DADS prototype system. We use the Rasp-

berry Pi 3 model B as the edge device, integrated with a Logitech

BRIO camera. We rent a server in Cloud Ali with 8 cores of

2.5 GHz and a total memory of 128 GB. We employ WiFi as

the communication link between the edge device and the cloud.

The wired link from the edge router and the cloud is sufficiently

large. We implement our client-server interface using GRPC, an

open source flexible remote procedure call (RPC) interface for

inter-process communication.
The edge device. The duty of the edge device is to 1) extract

video from the camera and to sample frames from video, 2)

Algorithm 3: DADS Algorithm DADS()

1 while true do
2 if monitor-task()==true then
3 B ← monitor-net();
4 [VE ,VS ,VC , Te, Tt, Tc] ← DSL(G,Fe,Fc,Dt, B);
5 if max{Te, Tt, Tc} > 1

Q
then

6 [VE ,VS ,VC , Tmax] ←
DSH(G,Fe,Fc,Dt, B, ε,K);

7 if Tmax > 1
Q

then
8 inform-decrease();

9 execute(VE ,VS ,VC);

make partition decision, 3) process the layers allocated to the

edge device, and 4) inform the cloud the partition decision and

transfer the intermediate results to the cloud.

For video extraction, we extract videos from camera logitech

BRIO using the provided API video_capture(). The cam-

era transfers the captured video to Raspberry Pi through the

USB-to-serial cable.

For partition decision making, we implement a process that

monitors the generated frame by the camera, and runs DADS

scheme. DADS requires to estimate the real-time network band-

width. We use the command “iperf” provided by the operation

system Raspbian on Raspberry Pi. This command feeds back

the real-time network bandwidth between the Raspberry Pi and

the cloud.

For processing allocated layers on the edge, we install a

modified instance of Caffe and store a full DNN model on the

edge device. The challenge is to control Caffe to stop execution

at partitioned layers (e.g., VS). In Caffe, there is a “prototxt” file

recording the DNN structure. Layers are processed according to

this file. To solve the challenge, we modify the model structure

file “prototxt” by inserting a “stop layer” after each partitioned

layer. The instance of Caffe will stop processing at the desired

places.

For the intermediate results and partition decision transmis-

sion, the edge device calls the RPC function receiveRPC()
provided by the cloud to transmit the data to the cloud.

The cloud. The duty of the cloud is to execute the DNN

layers allocated to the cloud. There are two jobs: 1) to receive

the partition decision and the intermediate results from the edge

device, and 2) to execute the layers allocated to the cloud.

For the first job, we expose an API receiveRPC() to the

edge device. After completing processing layers allocated to the

edge, the edge device calls this RPC function to transmit the

intermediate results packed with the partition decision to the

cloud.

For the second job, we implement a modified instance of

Caffe and store a full DNN model. The challenge is to execute

only the layers allocated to the cloud. To this end, after receiv-

ing the partition decision and intermediate results, the layers

allocated to the edge are deleted before the marked place in

“prototxt,” and the intermediate results are forwarded to the

corresponding layers as input. By this way, only layers allocated

to the cloud will be executed.



V. PERFORMANCE EVALUATION

We evaluate the DADS prototype (Section IV) using real-trace

driven simulations.

A. Setup

Video Datasets. We employ the publicly available BDD100K

self-driving dataset. The videos of this dataset are obtained

from the camera on the self-driving car. Each video is about

40 seconds long and is viewed in 720p at 30 FPS.

Workload Setting. We divide the inference task into low

workload mode and heavy workload mode. Accordingly, We

transform the video into different sampling rates to produce

different workload. We set a low sampling rate to 0.1 frame per

second when evaluating light workload mode, and 20 frames

per second for heavy workload mode. The default resolution

is 224p. Each inference task consists of processing 100 frames

using the given DNN benchmarks.

Communication Network Parameters. To model the com-

munication between edge and cloud, we used the average uplink

rate of mobile Internet for different wireless networks, i.e. CAT1,

3G, 4G and WiFi as shown in Table I.

DNN Benchmarks. DADS can make partition not only

on chain topology DNN but also on the DAG topology. We

evaluate the performance of DADS for both topologies. For the

chain topology, NiN, tiny YOlOv2 and VGG16, are well-known

models used as benchmarks in this evaluation shown in Fig. 10.

For the DAG topology, we employ AlexNet and ResNet-18 as

the benchmarks shown in Fig. 11.

Evaluation Criteria: We compare DADS against Edge-Only

(i.e. executing the entire DNN on the edge), Cloud-Only (i.e.

executing the entire DNN on the cloud), and a variant Neurosur-

geon which is a partition strategy for chain-topology DNN. To

evaluation Neurosurgeon’s performance for DAG, we consider

a variant Neurosurgeon, which first employs topological sorting

method to transform the DAG topology to the chain topology,

and then uses the original partition method. We use the Edge-

Only method as the baseline, i.e. the performance is normalized

to Edge-Only method.

We evaluate the latency and throughput of DADS compared

with Edge-Only, Cloud-Only and Neurosurgeon in Section V-B.

We also evaluate the impact of different types of wireless

network to DADS, and the impact of bandwidth on the selection

of workload mode in Section V-C.

B. Performance Comparison

We first compare our DADS with Edge-Only, Cloud-Only and

Neurosurgeon under light workload mode and heavy workload

mode across the 5 DNN benchmarks in Fig. 12–14. The results

are normalized to Edge-Only method. We see that DADS

achieves a higher latency speedup and throughput gain compared

with other methods.

Comparing DADS with Edge-Only and Cloud-Only:
DADS has a latency speedup of 1.91–6.45 times, 1.35–8.08

times compared with Edge-Only and Cloud-Only methods re-

spectively under the light workload mode shown in the bottom

graph of Fig. 12. DADS has a throughput gain of 3.45–8.31

times, 1.46–11.13 times compared with Edge-Only and Cloud-

Only methods respectively under the light workload mode

shown in the upper graph of Fig. 12. This is because, Edge-Only

method executes the entire DNN on the edge side, it avoids data

transmission and ignores the weak computation capacity of edge

side. Cloud-Only method ignores the effect of the transmission

time. DADS considers both computation and transmission, and

it makes a good tradeoff between them.

From Fig. 16, we can see that, for the heavy workload

mode, DADS outperforms Edge-Only and Cloud-Only 1.66–

5.19 times and 1.07–6.92 times respectively in latency reduction,

and DADS outperforms Edge-Only and Cloud-Only 4.34–9.14

times and 1.46–14.10 times respectively in throughput gain. This

further confirms that DADS significantly outperforms Edge-

Only and Cloud-Only methods.

Comparing DADS with Neurosurgeon: Neurosurgeon can

automatically partition DNN between the edge device and cloud

at granularity of neural network layers, but it is only effective

for chain topology.

From Fig. 14, we can see that, for the chain topology

models, DADS and Neurosurgeon have the similar performance

in latency and throughput for the light workload. While for

the heavy workload, Neurosurgeon has a latency reduction of

16.28% and 13.64% than that of DADS for YOLOv2 and

VGG16, however the throughput gain of DADS is 1.26 times

and 1.27 times than that of Neurosurgeon under these two DNN

models. This is because, for the heavy workload, the higher

throughput is prior for DADS. We also can see that, for the

heavy workload and NiN model, the latency and the throughput

of Neurosurgeon and DADS are both the same. This is because

for NiN model, DADS achieves the minimum max stage time

when the latency is minimum.

For the DAG topology, we can observe that DADS outper-

forms Neurosurgeon significantly. For DAG topology models,

DADS has a latency speedup 66%–86% and throughput gain

of 76%–87% compared with Neurosurgeon. This observation

validates the usefulness of DADS for DAG topology.

C. Network Variation

In this section, we evaluate how transmission network affects

the performance of DADS using ResNet18 model. The sampling

rate is 1 frame per second.

The Impact of Transmission Network Type: We first

evaluate the performance of DADS, Edge-Only and Cloud-Only

for ResNet18 model when using Cat1, 3G, 4G and WiFi as the

communication network.

In Figs. 15–16, we show the latency speedup and the through-

put gain achieved by DADS and Cloud-Only normalized to

Edge-Only when using Cat1, 3G, 4G and WiFi for light and

heavy workload respectively.

Shown in Fig. 15, when the workload is light and the

edge device communicates with the cloud through Cat1, DADS

achieves 1.46 times latency reduction and 2.03 times throughput

gain compared with Edge-Only. When the network changes to

3G, 4G and 5G the latency reduction and the throughput gain

becomes more significant: 4.14 times and 8.3 times for 3G, 7.23

times and 9.78 times for 4G, 8.32 times and 9.31 times for
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Fig. 10: The chain-topology DNN

models.
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Fig. 11: The DAG-topology DNN

models.
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Fig. 12: Latency speedup and

throughput gain achieved by DADS

under light workload mode.

TABLE I: DNN Benchmark Specifications

CAT1 3G 4G WiFi
Uplink rate (Mpbs) 0.13 1.1 5.85 18.88

TABLE II: DNN Benchmark Specifications

Type Chain DAG
Model NiN YOLOv2 VGG16 Alexnet ResNet18
Layers 9 17 24 23 20

WiFi respectively. When the communication link provides more

bandwidth, DADS pushes larger portions of layers to the cloud

to achieve better performance. We can also see that, compared

with Cloud-Only, DADS achieves latency reduction of 64% for

CAT1, 26% for 3G and 7% for 4G receptively, and throughput

gain of 73% for CAT1, 45% for 3G and 4% for 4G. For WiFi,

the performance of Cloud-Only is good enough, it has the same

performance with DADS.

Edge-Only is only good for low data rate. Cloud-Only is only

good for high data rate, DADS can be adaptive to a wide range

of network setting.

The Impact of Bandwidth on Workload Mode Selection:
In Fig. 17, we show the workload mode switch of DADS

under different network bandwidth. We can see that when the

available bandwidth is smaller than 1.51Mbps, DADS works

at heavy workload mode, and the achieved latency speedup

and throughput gain increase compared with Edge-Only. When

the bandwidth is greater than 1.51Mbps, DADS works at light

workload mode.

We also evaluate DADS’s resilience to real-world measured

wireless network variations. In Fig. 18, the top graph shows

measured wireless bandwidth over a period of time. The bottom

graph shows the latency speedup of DADS normalized to Edge-

Only for ResNet18 model. We can see that DADS adjusts the

partition strategy according to the bandwidth variance success-

fully. For example, when the bandwidth drops from 3.41Mbps

to 2.15Mbps, DADS changes the partition from conv2 layer to

conv3 layer. DADS changes the partition from conv3 layer to

conv7 layer when bandwidth is smaller than 1.72Mbps.

VI. RELATED WORK

Modification of DNN Models. In order to realize inference

acceleration, one category of related work investigated how

to modify DNN models for speedup. For example, Microsoft

and Google developed small-scale DNNs for speech recogni-

tion on mobile platforms by sacrificing the high prediction

accuracy [14]. MCDNN [15] proposed generating alternative

DNN models to trade off accuracy and performance/energy and

choosing to execute either in the cloud or on the mobile. [16]

proposed deep models that are much smaller than normal and

to be run on phones. [17] allowed to use a pool of DNNs

and the most effective one is selected to use at runtime. Our

proposed DADS does not modify DNNs. It employs full-scale

deep models without sacrificing accuracy.

Computation Offloading. Research efforts focusing on of-

floading computation from the resource-constrained mobile

to the powerful cloud will reduce inference time. Neurosur-

geon [18] explored a computation offloading method for DNNs

between the mobile device and the cloud server at layer

granularity. However, Neurosurgeon is not applicable for the

computation partition performed by DADS for a number of

reasons: 1) Neurosurgeon only handle chain-topology DNNs that

are much easier to process. 2) Neurosurgeon can only handle

one inference task, without considering a sequence of tasks.

Needless to say the adaptation to network condition realized

by DADS. MAUI’s [19] is an offloading framework that can

determine where to execute functions (edge or cloud) of a

program. However, it is not designed specifically for DNN parti-

tioning as the communication data volume between functions is

small. [20] proposed DDNN, a distributed deep neural network

architecture that is distributed across computing hierarchies,

consisting of the cloud, the edge and end devices. DDNN aims

at reducing the communication data size among devices for

the given DNN. DADS differs as it handles dynamic network

condition to reduce the inference latency (communication and

computing latency) rather than communication overhead only.

Hardware Acceleration. Different from the scope of this

paper. Hardware specialization is another method for inference

acceleration. [21] proposed DeepBurning, an automation tool

to generate FPGA-based accelerators for DNN models. Van-

houcke et al. [22] used fixed point arithmetic and SSSE3/SSE4

instructions on x86 machines to reduce the inference latency.

DeepX [23] explored the opportunities to use mobile GPUs to

enable real-time deep learning inferences. DADS investigates

intelligent collaboration between the edge device and cloud

for inference optimization and can be jointly applied with

specialized hardware.

VII. CONCLUSION

In this paper, we study DNN inference acceleration through

collaborative edge-cloud computation. We propose Dynamic

Adaptive DNN surgery (DADS) scheme that can partition
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Fig. 13: Latency speedup and throughput

gain achieved by DADS under heavy

workload mode.
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Fig. 14: Latency and throughput speedup

achieved by DADS vs. Neurosurgeon

under light and heavy workload modes.
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Fig. 15: Latency speedup and throughput

gain achieved by DADS of different

networks under light workload mode.
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Fig. 16: Latency speedup and throughput

gain achieved by DADS of different

networks under heavy workload mode.
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gain achieved by DADS as a function of
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on DADS partition decision using
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DNN inference between the edge device and the cloud at the

granularity of neural network layers, according to the dynamic

network status. We present a comprehensive study of the parti-

tion problem under the lightly loaded condition and the heavily

loaded condition. We also develop an optimal solution to the

lightly loaded condition by converting it to min-cut problem,

and design a 3-approximation ratio algorithm under the heavily

loaded condition as the problem is NP-hard. We then implement

a fully functioning system. Evaluations show that DADS can

effectively improve latency and throughput in an order compared

with executing the entire DNN on the edge or on the cloud.
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