
A Communication-aware Container Re-distribution

Approach for High Performance VNFs

Yuchao Zhang1,2, Yusen Li3,4, Ke Xu1,5, Dan Wang2, Minghui Li4, Xuan Cao4, Qingqing Liang4

1Tsinghua University 2Hong Kong Polytechnic University 3Nankai University
4Baidu 5Tsinghua National Laboratory for Information Science and Technology

zhangyc14@mails.tsinghua.edu.cn, liyusen@nbjl.nankai.edu.cn, xuke@tsinghua.edu.cn,

dan.wang@polyu.edu.hk, {liminghui,caoxuan,liangqingqing}@baidu.com

Abstract—Containers have been used in many applications
for isolation purposes due to the lightweight, scalable and
highly portable properties. However, to apply containers in
virtual network functions (VNFs) faces a big challenge because
high-performance VNFs often generate frequent communication
workloads among containers while the container communications
are generally not efficient. Compared with hardware modification
solutions, properly distributing containers among hosts is an
efficient and low-cost way to reduce communication overhead.
However, we observe that this approach yields a trade-off between
the communication overhead and the overall throughput of the
cluster. In this paper, we focus on the communication-aware
container re-distribution problem to optimize the communication
overhead and the overall throughput jointly for VNF clusters. We
propose a solution called FreeContainer which utilizes a novel
two-stage algorithm to re-distribute containers among hosts. We
implement FreeContainer in Baidu clusters with 6000 servers and
35 services deployed. Extensive experiments on real networks
are conducted to evaluate the performance of the proposed
approach. The results show that FreeContainer can increase
the overall throughput up to 90% with significant reduction on
communication overhead.

Index Terms—Container Communication, High-performance
VNF, System Throughput

I. INTRODUCTION

Containerization has become a popular virtualization tech-

nology since containers are lightweight, scalable and highly

portable, offering good isolation using control group (cgroup)

[1] and namespace [2]. Many applications thus are being de-

veloped, deployed and managed as containers. Some promis-

ing projects such as OpenStack [3], OpenVZ [4], FreeBSD

Jails [5] and Solaris Zones [6] have already published their

container-supporting versions.

However, containers are now faced with great challenges

when being adopted to build virtualized network functions

(VNFs), especially for high-performance VNFs managed on

the hypervisor-based platforms (such as Xen [7], KVM [8],

Hyper-V [9] and VMWare Server [10]). This is because VNFs

are usually built as groups of containers that communicate

with each other to deliver the desired service, which requires

highly efficient communications among containers. But the

host networks introduce extra communication overhead to

the VNFs [11], and the containers deployed on different

hosts usually communicate in extremely low efficiency, which

significantly degrades the VNF performance especially in large

scale systems [12].

To reduce the communication overhead, some kernel by-

passing techniques like RDMA [13], DPDK [14] and FreeFlow

[11] are proposed. While these techniques can improve

the communication efficiency, they sacrifice some isolations,

which is the key advantage of containerization. To retain

isolations, a commonly used way for communication overhead

reduction is to find a proper container distribution among

hosts. If the containers in the same group are deployed on the

same host or hosts nearby, the communication overhead will be

greatly reduced. But this approach yields a trade-off between

the communication overhead and the overall throughput.

As we know, containers of the same service are generally

intensive to the same resource (e.g., containers for a big

data analytics application are all CPU intensive [15]–[17]).

Assigning the containers of the same service on the same host

may cause heavily imbalanced resource utilizations on hosts,

which will significantly degrade the overall throughput.

TABLE I: CPU Utilization in a Cluster with 3000 Servers.

Top 1% Top 5% Top 10% Mean

0.837 0.704 0.675 0.52

Example. We bring a real example to show the conflicts

between the communication overhead and the resource utiliza-

tions. We conduct measurements on a Baidu [18] cluster with

over 3000 servers. In this cluster, 25 applications with different

resource intensions are mixed-deployed. The containers of

the same application (i.e., belong to the same group) are

deployed closer. Table I shows the top 1%, 5%, 10% servers

in terms of CPU utilizations under stress test. It is clear that

the CPU utilizations are highly imbalanced since the top 1%

servers have CPU utilizations over 80% while the mean CPU

utilization of all the servers is only 52%.

The above example is not a special case because the conflict

between container communication and host resource utiliza-

tion is ubiquitous in most server providers. Figure 1 gives a

more clear illustration of the reason that causes the conflicts.

Two types of applications are deployed on two hosts, and

each application has two containers. App 1 is CPU-intensive

(maybe a big data analytics application [16], [17]) and App 2 is



Container

App 1App 1 App 2App 2 App 2App 2 App 1App 1

CPUCPU

I/OI/O

CPUCPU

I/OI/O

Physical Host

PUCPU

I/OI/O

CPUCPU

I/OI/O

Host Network

Host OS Host OS

kkNNHH

(a) High network communication overhead, long latency.

I/O Exhaustion

pp 1App 1 App 2App 2

CPUCPU

I/OI/O

CPUCPU

I/OI/O

CPU Exhaustion

Host Network

Host OS Host OS

App 2App 2

CPUCPU

I/OI/O

App 1App 1

CPUCPU

I/OI/O

OSHH SSOOOHH

(b) Low host resource utilizations, low throughput.

Fig. 1: The conflict between container communication and host resource utilization.

network I/O-intensive (maybe a data transfer application [19],

[20]). Figure 1(a) shows the mix-deployment solution which

assigns the containers of different applications on the same

host. This approach achieves high resource utilizations for both

CPU and network, while incurs high communication overhead

between two hosts. Figure 1(b) shows another solution which

assigns the containers of the same application on the same

host. The communication overhead is significantly reduced,

however, the utilizations of CPU and network are highly

imbalanced at the two hosts.

In this paper, we address the container distribution issues in

VNFs, which aims to optimize both communication overhead

and overall throughput. We consider a general scenario, where

an initial container distribution is given, and our objective

is to re-distribute the containers among hosts by contain-

er migrations. Re-distribution problem is more challenging.

This is because online services cannot be interrupted during

container migrations, which requires some resources (called

transient resources) are consumed both at the original host

and the new host. For this reason, some containers (especially

for large containers) may not be able to migrate due to

resource limitations. To address this issue, we propose a

communication-aware container re-distribution solution called

FreeContainer, which separates the entire re-distribution into

two stages. In the first stage, we try to handle the “hot hosts”

(i.e., the hosts with high resource utilizations), which are

generally the bottleneck of the overall throughput. After that,

local search is used to further improve the solution in the

second stage. FreeContainer does not require hardware mod-

ification and is completely transparent to online applications.

We implement FreeContainer on Baidu’s clusters and conduct

extensive evaluations in real environment. The results show

that FreeContainer can significantly reduce the communication

overhead and improve the overall throughput compared to the

existing approaches.

The rest of this paper is structured as follows. Section II

covers related work. Section III describes the background and

formulates the container re-instantiation problem. We intro-

duce the FreeContainer design in detail in Section IV and give

the algorithm analysis in Section V. The implementation and

evaluation are provided in Section VI and VII, respectively.

At last, Section VIII concludes the paper.

II. RELATED WORK

As the popularity of NFV and container grows, a plenty

of related work has been conducted, which includes NVF

platforms, container communication and VM technologies.

NFV Platforms. There are two options to isolate VNFs

running on the same host: hypervisors and containers [21]. Hy-

pervisors support different guest OSes on the same hardware,

but the performance and portability is not good. Container-

based platforms offer better performance and portability by

using namespace and cgroup technologies. Some projects such

as OpenStack [3] have already published the NFV-supporting

versions, and they are typically managed by a central orches-

trator (e.g., Kubernetes [22], Matrix [23]). These orchestrators

provide us a roadmap of deployment-specific information of

containers and thus give us the opportunity and foundation to

implement FreeContainer.

Container Communication. As containers are essentially

processes, there are many traditional schemes to optimize

inter-process communication network. Shared memory scheme

allows containers on the same host to communicate with

each other. Overlay routers (and virtual switches) provide

the possibility for containers on different hosts to be remote

accessed by adopting DPDK [14] or RDMA [13]. These

technologies optimize network latency among containers in

different ways. FreeContainer addresses the communication

issues from another perspective. The proposed approach can

easily be applied on or combined with the existing techniques.

VM Technologies. As the tussle between communications

and isolations is not unique to containers, one may argue that

VMs suffer from similar inefficiency and this issue has already

been studied using technologies like Network Virtual Machine

(NetVM) [24], NetMap [25] and VALE [26]. NetVM provides

a shared-memory framework to allow zero-copy delivery of

data between VMs. ClickOS [21] adopts VALE instead of

Open vSwitch to provide sharing buffers between kernel and

userspace to eliminate memory copies. But NetVM requires

VMs to be on the same host, so the inter-host communications

cannot be handled. NetMap and VALE are sub-optimal to

intra-host setting [11] compared with shared-memory. These

technologies cannot be used in container systems directly,

while our proposed FreeContainer retains the advantages of



containerization, for both intra-host and inter-host communi-

cations.

III. BACKGROUND AND OVERVIEW

In this section, we first give a brief introduction of con-

tainerization relevant techniques in Subsection III-A. On this

basis, we formulate the optimization problem to be addressed

in Subsection III-B.

A. Container Group based Architecture

Containerization is gaining tremendous popularity recently

due to its convenience and good performance on deploying

applications and services. First, containers provide good iso-

lations by using namespace technologies (e.g., chroot [27]),

eliminating conflicts with other containers. Second, containers

put everything in one package (code, runtime, system tools,

system libraries) and do not need any external dependencies to

run processes, which make containers highly portable and fast

to distribute. Docker [28] is one of the most popular software

containerization platforms, which provides much convenience

to application developers by enabling containers to run on the

top of any infrastructures.

To ensure service integrity, a function of a particular ap-

plication may instantiate multiple containers. For example, in

Hadoop, each mapper or reducer should be implemented as

one container, and the layers in a web service (e.g., load

balancer, web search, backend database) are deployed as

container groups.

These container groups are deployed in cloud or server clus-

ters, and managed by a cluster orchestrator such as Kubernetes

[22], Matrix [23] and Mesos [29]. Using name services, these

orchestrators can quickly locate all the containers implemented

on different hosts, so application upgrade and failure recovery

can be well handled. Moreover, it is also easy to build, replace

or delete containers.

As the functions deployed in the same container group

belong to the same service, they need to exchange con-

trol messages and transfer data. Therefore, communication

efficiency within a container group will affect the overall

service performance [11]. The above orchestrators provide

the possibility to leverage containers, but how to manage

container groups for higher throughput and lower latency is

still a pending problem.

B. Problem Formulation

In this section, we formally define the container re-

distribution problem which aims to optimize the overall

throughput and container communications. The throughput is

measured by the resource utilization cost and residual resource

balance cost. Table II defines the notations to be used in the

problem definition.

Resource Utilization Cost. If the resource utilization of

a host is much higher than others, it will easily become

the bottleneck of a chained service, seriously degrading the

overall throughput. The ideal situation is that all hosts enjoy

equal resource utilizations. Therefore, we define the resource

TABLE II: Notation Definitions.

Notation Meaning

H The set of physical hosts

S The set of deployed services S(i)
R Multiple resources

ck,i The ith container of the kth service

hi The ith host

C(h, r) Capacity of resource r on host h

U(h, r) Usage of resource r on host h

H(c) The assigned host for container c

H ′(c) The reassigned host for container c

Dr
c Demand of resource r of container c

utilization cost as the variance of resource usage of all hosts,

i.e.,

Ucost =
∑

r∈R

∑

h∈H

[U(h, r)− Ū(r)]2
∣

∣

∣

∣

H

∣

∣

∣

∣

(1)

where Ū(r) is the average utilization of resource r on all

hosts h ∈ H and Ucost represents the equalization degree of

resource utilization.

Residual Resource Balance Cost. Any amount of CPU

resources without any available RAM is useless for future

container assignments or coming requests, so the residual

amount of multiple resources should be balanced [30]. Let

t(ri, rj) represent the target proportion between resource ri
and resource rj . We define the total balance cost as follows:

Bcost =
∑

(ri,rj),∀ri 6=rj

cost(ri, rj)

cost(ri, rj) =
∑

hk∈H

max{0, A(hk, ri)−A(hk, rj)× t(ri, rj)}

(2)

where A(h, r) = C(h, r) − U(h, r) refers to the residual

available resource r on host h.

Communication Cost. Containers from the same service

often exchange control and data messages frequently. As has

been mentioned earlier, the communication overhead exists

mainly in host networks, while the inner-host communication

is negligible compared with network communications. So we

leave out the inner-host communication here and only consider

the network communication overhead between hosts. For a

pair of communication containers ci ⇔ cj instantiated on

H(ci) and H(cj), let f(H(ci), H(cj)) represent the network

communication overhead between the two hosts. Let Ccost

denote the total communication overhead, we have:

Ccost =
∑

Sk∈S

∑

∀ci,cj∈Sk

f(H(ci), H(cj)),

f(H(ci), H(cj)) = 0, if H(ci) = H(cj) or ci < cj .

(3)

where ci < cj means there is no communication between



20

30

20

50 50 40

Service 1 Service 2 Service 3

20

30

20

50 50 40

(a)

(b)

20 2050 50 40

(c)

30

Host 1 Host 2 Host 3

Fig. 2: There are three services each with two containers: (a)

shows the current assignment; (b) is the inefficient reassign-

ment; (c) is the best solution.

container ci and cj .

Based on the above definitions, the objective function to be

minimized can be defined as the weighted sum of all the costs,

i.e.,

Cost = wU ∗ Ucost+ wB ∗Bcost+ wC ∗ Ccost (4)

IV. FREECONTAINER DESIGN

In this section, we present the design of FreeContainer.

We first discuss the constraints of the container re-distribution

problem and then propose a two-stage container re-distribution

algorithm.

A. Constraints and Motivation

1) Constraints: To make sure online services are not

interrupted, the container re-distribution process should be

transparent. In order to do that, some constraints need to be

satisfied during container migrations.

Constraint 1: (Capacity) In each host, resource usage cannot

exceed its capacity, i.e.,

U(h, r) ≤ C(h, r), ∀h ∈ H, ∀r ∈ R (5)

To ensure failure recovery, each application has a certain

number of duplications. Assume there are dk,i duplicates for

container ck,i, and cmk,i indicates the mth duplicate.

Constraint 2: (Duplicate) Any two different duplicates of

the same container cannot be assigned to the same host:

m 6= n⇒ H(cmk,i) 6= H(cnk,i), ∀ck,i ∈ Sk (6)

For service availability purpose, any migrated container

cannot be destroyed at the original host until the new instance

is built at the new host. Thus, resources are consumed at

both original host H(c) and new host H ′(c) during container

migration, which we call transient property.

Constraint 3: (Transient) Resources are required twice, i.e.,
∑

H(c)=hi

⋃
H′(c)=hi

Dr
c ≤ C(hi, r),

∀c ∈ Si ∈ S, ∀hi ∈ H, ∀r ∈ R

(7)

Besides the above hard constraints, there are also some other

requirements that we need to take into consideration.

A specific function in a high performance application is

usually implemented on multiple containers to support con-

current operations. For example, a basic search function in

web services is usually instantiated in different hosts or even

different datacenters. As these containers are sensitive to the

same resource (CPU-dominant in the web search example),

they cannot be put on the same host, otherwise, there will

be serious waste of other resources like memory and I/O.

Therefore, for each service Si ∈ S, let M(Si) ∈ N be

the minimum number of different hosts where at least one

container of Si should run, we can define the following spread

constraints for each service.:

Constraint 4: (Spread) The containers for Si should be

spread on at least M(S) hosts, i.e.,

∑

hi∈H

min(1,

∣

∣

∣

∣

c ∈ Si ∈ S|H(c) = hi

∣

∣

∣

∣

) ≥M(Si),

∀Si ∈ S

(8)

Different functions in one application are usually sensitive

to different resources. In the above web service example,

while the search module is CPU-dominant, a load balancer

is bandwidth-dominant. These two modules need frequent

information exchange and data transmissions, so the commu-

nication latency among the corresponding containers is crucial

to the application performance. In order to mitigate network

latency, these associated containers with frequent interactions

should be reassigned to the same host. Therefore, we define

the following co-locate constraints.

Constraint 5: (Co-locate) Associated containers should be

on the same host, i.e.,

H(ck,i) = H(ck,j),

if ck,i and ck,j are associated containers in Sk.
(9)

2) Example: The container re-distribution problem defined

above is a combinational optimization problem, which is NP-

complete. Many classical heuristic algorithms have been used

to solve similar problems [31]–[33]. However, we shall show

that the existing approaches are not efficient to handle big

containers at the hot hosts due to transient constraints in our

problem.

Consider the example as shown in Figure 2, three services

each with two containers are mixed deployed on three hosts.

The hosts have a same capacity of 100. The numbers in Figure

2 represents the resource consumptions of the containers.

Figure 2(a) shows the current distribution and Figure 2(c)

shows the optimal distribution. In order to achieve the optimal

distribution, we need to move 30 from host 1 to host 3, and

move 50 from host 2 to host 1. However, migrating 50 from



host 2 to host 1 is impossible since the transient constraint

will be violated at host 1 (the sum of resource consumption

at host 1 will be larger than 100 if 50 is moved in).

In fact, if we first move 30 from host 1 to host 3 and suppose

the resource consumed is released at host 1 after migration,

then 50 can be moved from host 2 to host 1. Inspired by this

observation, we propose FreeContainer, which is a two-stage

strategy for more efficient container re-distribution.

B. FreeContainer

FreeContainer aims at finding a reassignment solution of

containers to minimize the overall cost (Equation 4), FreeCon-

tainer has two stages, which are Sweep and Search. The

Sweep stage aims to handle hot hosts, especially for the big

containers at the hot hosts. Based on the results generated

in the Sweep stage, Search stage adopts a tailored variable

neighborhood local search to further optimize the solution.

1) Sweep: As has been shown by the example in Figure

2, the existing solutions for the reassignment problem are not

efficient to handle hot hosts, especially for big containers due

to transient resource constraints. To address this issue, we

propose a novel two step solution in the Sweep stage. As

we know, the hosts with high resource utilizations are usually

the bottleneck of the overall throughput. To mitigate these

bottlenecks, general methods try to move containers away from

these hosts, however in this manner, the residual resources

at each host might be not sufficient for accommodating big

containers in the migrating process.

Different from the existing solutions, Sweep solves the

problem from a totally different perspective. In the first step,

we try to empty the spare hosts as much as possible by moving

out containers from spare hosts to other hosts. This will free up

space for accommodating more big containers from hot hosts.

In the second step, we handle hot hosts by move containers

from hot hosts to spare ones. The pseudo-code of Sweep is

shown in Algorithm 1.

We select N “hot” hosts in the host set and clear up N

“spare” hosts for them. For each container ck on the spare

host h, FindPosition function tries to find a better position

h′ for it and we then move ck from h to h′. After that, spare

hosts are set free and can be assigned with containers from hot

hosts. Note that the candidate hosts in FindPosition function

are the hosts that are neither hot nor spare. After that, we try to

eliminate hot hosts by moving out containers to the free hosts,

the move action continues until the utilization drops below the

mean utilization of all hosts.

The intention of emptying spare hosts in the first step is:

we observe that hot hosts often have more big containers

which are supposed to be moved to the spare hosts for cost

optimization; clearing up spare hosts will make them have

more space to accommodate the big containers.

2) Search: After Sweep, the communication cost and re-

source utilization cost may still be high. Search stage will

further optimize the solution using a local search algorithm.

Specifically, the Search algorithm combines a variable neigh-

borhood search procedure and a tailored move action: 1) The

Algorithm 1 Sweep

1: Sort H in descending order according to CPU utilization

2: Hhot ← {hk|U(hk) > safety threshold}
3: N = count(Hhot)
4: Sort H in ascending order according to CPU utilization

5: Hcold ← {H1, ...,HN}
6: for hi ∈ Hcold do

7: for containers H(cj) = hi do

8: h′ = FindHost(cj)
9: MOVE(cj , hi, h

′)

10: end for

11: end for

12: for hi ∈ Hhot do

13: while U(hi) > Ū(h) do

14: select cj (H(cj) = hi)

15: MOVE(cj , hi,Hcold)

16: end while

17: end for

local search procedure explores three kinds of neighbors: shift,

swap and replace. In each neighbor set, one of the best three

moves is randomly chosen, and this action will be executed

if the overall cost is improved; 2) The move action will be

executed at the beginning of each search iteration, resorting H,

replacing the current state and restarting the search procedure.

With this move action, the Search algorithm can escape from

local optima.

Shift. A shift move is to reassign a container from one host

to another. The shift neighbor Nshift is defined as the set of

reassignment plans that can be achieved by a shift move.

As shown in Figure 3(a), shift move is the most simple

neighbor exploration that directly reduces the overall cost. For

example, reassigning a container from a “hot” host to a “spare”

host will reduce Ucost; moving a CPU-intensive container

from a host with little residual CPU will reduce Bcost; moving

a container nearer to its group members reduces Ccost.

Swap. A swap move is to exchange the assignment of two

containers on different hosts, so the swap neighbor Nswap is

defined as the set of reassignment plans that can be achieved

by a swap move.

Figure 3(b) shows a simple case of swap move. It is easy

to see that the size of the swap neighborhood is O(n2), where

n is the number of containers. To limit the branch number,

we cut off the neighbors that obviously violate the constraints

and worsen the overall cost.

Replace. A replace move is more complex than the shift

or swap move, which tries to reassign a container from hA

to hB under the premise to move the zombie containers from

hB to hC . A zombie container on hB is a container that was

planned to move here (from other hosts) in the earlier search

process.

We represent zombie containers with dashed edges. Since

the zombie containers have not been migrated, it will not incur

additional overhead if we reassign them to other hosts.

See Figure 3(c) for an example, there are three hosts



50 20 30

Service 1 Service 2 Service 3

(a) Shift

60

20

40

50

1050 1030 30

(b) Swap (c) Replace

�

 

Host 1 Host 2 Host 1 Host 2 Host 1 Host 2 Host 3

Fig. 3: Three kinds of move neighbors the variable neighborhood search procedure explores.

(f(h1, h2) = f(h2, h3) = f(h1, h3)) and the current uti-

lizations are 100%, 70% and 10%, respectively. The average

utilization is 60%, so the overall cost is:

Cost0 = 402+102+502

3 + 2× f(h1, h2) = 1600 + 2f
With a traditional adjustment scheme, the container of

Service 2 on Host 1 will be moved to Host 3 (reduce Ucost

and keep Ccost unchanged). Then utilizations become 60%,

70% and 50%, so,

Cost1 = 102+202+102

3 + 2× f(h2, h3) = 200 + 2f
Replace moves the zombie container on Host 2 to Host 3,

and this makes it possible to move the container of Service

2 from Host 1. The final utilizations for Hosts 1, 2, 3 are all

60% and the overall cost is:

Cost2 = 0 + 2× f(h2, h3) = 2f
It is obvious that replace is more powerful than shift and

swap, but the overhead is much higher. This is because there

are so many potential scenarios for a zombie container and

replace should explore all the possible branches. Fortunately,

the overhead can be bounded. In each iteration of the Search

algorithm, one shift and one swap will be accepted, which

will generate 3 zombies. So there are 3 branches for the next

replace phase. In each branch, we try to move the zombie

container away from the assigned host, and this is another

shift operation. So in the ith iteration, there are at most 3i
zombie containers. If we assume the overhead of exploring

a shift neighbor is os, the total overhead of FreeContainer is

linear to os.

The pseudo-code of Search is shown in Algorithm 2. The

tailored move action resorts all the hosts and updates the

current state in Line 5. This procedure is necessary to our

algorithm because it helps the neighborhood search procedure

escape from local optima. In the following search procedure,

we select 2δ hosts as the set of candidates N from the top

δ and tail δ hosts. We leverage neighbor searching only on

these candidate hosts since they play more important roles in

cost reduction. The three search actions in Line 8, 12 and

16 explore shift, swap and replace neighbors, respectively.

Each neighborhood search returns the best three solutions. We

randomly select one and compare it with the current state. If

the cost is improved, we accept this action. The above iteration

continues until the overall cost falls to the pre-set threshold

T .

With Sweep and Search, FreeContainer successfully im-

proves system throughput and reduces network communication

overhead by solving the “hot” host problem and exploring

Algorithm 2 Search

1: Initialize the starting point Pstart

2: Pcrt ← Pstart

3: Pbest ← Pstart

4: while Cost(Pcrt) > T do

5: Sort H by resource utilization

6: Update Pcrt

7: N ← H(Top(δ)) +H(Tail(δ))
8: Pshift ← shiftSearch(Pcrt, N)
9: if Cost(Pshift) < Cost(Pcrt) then

10: Pcrt ← Pshift

11: end if

12: Pswap ← swapSearch(Pcrt, N)
13: if Cost(Pswap) < Cost(Pcrt) then

14: Pcrt ← Pswap

15: end if

16: Preplace ← replaceSearch(Pcrt, N)
17: if Cost(Preplace) < Cost(Pcrt) then

18: Pcrt ← Preplace

19: end if

20: Pbest ← Pcrt

21: end while

22: Output Pbest

better reassignment plans for container groups. In Section V,

we’ll give a detailed algorithm analysis and prove that the

deviation between FreeContainer and the theoretical optimal

solution has an upper bound.

V. ALGORITHM ANALYSIS

In this section, we would like to prove that the output of

FreeContainer Pbest is (1+ǫ, θ)-approximate to the theoretical

optimum result P ∗ (for simplification, we use P̂ instead of

Pbest in the subsequent analysis), where ǫ is an accuracy

parameter, and θ is a confidence parameter that represents

the possibility of that accuracy [34]. More specifically, this

(1 + ǫ, θ)-approximation can be formulated as the following

inequality:

Pr[|P̂ − P ∗| ≤ ǫP ∗] ≥ 1− θ (10)

if ǫ = 0.05 and θ = 0.1, it means that the output of

FreeContainer P̂ differs from the optimal solution P ∗ by at



most 5% (the accuracy bound) with a probability 90% (the

confidence bound).

Sweep introduces no deviation, so the deviation of P̂ and

P ∗ mainly comes from the Search stage which consists of two

parts: one is to select a subset of host set H to run Search, the

other is the stopping condition. Specifically, the core idea of

the search algorithm is to select some candidate hosts from H,

expand to search three kinds of neighbors for a few iterations

and generate an approximate result in each iteration.

Let bi be the branch that is explored on hi and xi be the

minimum cost of bi. Assume there are n branches in total, a

fact that can be easily seen is that the optimal result (minimum

cost) is Q∗ = min{x1, ..., xn}. Given an approximation ratio

ǫ, we would like to prove that the output of FreeContainer P̂

with cost Q̂ meets |Q̂−Q∗| ≤ ǫQ∗ with a bounded probability.

We split the total error ǫ into two parts and try to bound the

above two errors separately.

Bound the error from stopping conditions: In

each iteration, we explore 2δ branches. Let Q̂iter =

min{min{x1, ..., x2δ},
(1−ǫ)Q∗

iter

2 }, which means that the

stopping condition is a balance of the following two: 1) the

minimum cost on these branches reaches the best result; and

2) the threshold 1−ǫ
2 is reached.

Lemma 1: The output Q̂iter in each iteration satisfies

|Q̂iter −Q∗
iter| ≤

ǫ
2Q

∗
iter

Proof. There are two parts: 1) If the minimum cost on these

2δ branches reaches the current best one, then Q̂iter = Q∗
iter;

2) If the minimum cost on these branches is greater than the

current best, then Q̂iter = 1−ǫ
2 Q∗

iter.

Overall, |Q̂iter−Q∗
iter| ≤ |

1−ǫ
2 Q∗

iter−Q∗
iter| =

ǫ
2Q

∗
iter, so

the deviation is bounded by ǫ
2 .

Bound the error from subset selection: We now try to

prove that we can bound |Q̂ − Q∗| by exploring 2δ hosts in

each iteration.

Before giving the proof, we first introduce the Hoeffding

Bound:

Hoeffding inequality: There are k random identical and

independent variables Vi. For any ε, we have:

Pr[|V − E(V )| ≥ ε] ≤ e−2ε2k (11)

With this Hoeffding Bound, we have the following lemma:

Lemma 2: There is an upper bound for Pr[|Q̂−Q∗| ≤ ǫ
2Q

∗]
when exploring 2δ hosts in each iteration.

Proof. Assume the minimum cost of all branches is in

uniform distribution (range from a to b), so we have Q̂ =
(min{x1, ..., x2δ}) and E(Q̂) = (1 − xi

b−a
)2δ . Let Yi =

1− xi

b−a
, and Y =

∏2δ
i=1 Yi, we have:

E(Q̂) = Y < Y
n
2δ (12)

As Y is associated with Q̂ and the expectation of the

minimum Yi is associated with Q∗, so Q̂ and Q∗ are linked

together. More specifically, E(Y ) = E(Yi)
2δ , E(Yi) =

E(Y )
1

2δ . Thus, we have:

TABLE III: Server Configuration.

CPU Memory SSD

Capacity No. Capacity No. Capacity No.

1 37 1 1970 1 4

0.8 1819 0.75 24 0.3 309

0.55 3210 0.5 2437 0.18 2433

0.45 814 0.35 1578 0.1 1567

E(Q∗) = (1−
xi

b− a
)n = E(Yi)

n = E(Y )
n
2δ (13)

and

Pr[|E(Q̂)−E(Q∗)| ≥
ǫ

2
] < Pr[|Y

n
2δ −E(Y )

n
2δ | ≥

ǫ

2
] (14)

Through the above Hoeffding Bound (Inequation 11), we

know that:

Pr[|Y
n
2δ − E(Y )

n
2δ | ≥

ǫ

2
] ≤ e−2( ǫ

2
)2∗2δ (15)

Finally,

Pr[|E(Q̂)− E(Q∗)| ≥
ǫ

2
] ≤ e−ǫ2δ (16)

Now we can combine the above two errors: the error rate

from stopping condition is within ǫ
2 and the error rate from

subset selection is also bounded to ǫ
2 within a probability. So

we can propose the whole theorem as follows.

Theorem. Let Q∗ be the theoretical optimal result (with the

minimum overall cost) of the container group reassignment

problem, FreeContainer can output an approximate result Q̂

where |Q̂−Q∗| ≤ ǫQ∗ with probability at least e−ǫ2δ .

As a conclusion, we can give an upper bound to the

deviation and the possibility is associated with the number

of selected hosts in each searching iteration. With a given

accuracy, we can further improve that probability by exploring

more hosts in Line 7 of Algorithm 2.

VI. IMPLEMENTATION

We built FreeContainer in the cluster orchestrator system

that manages virtualized services of Baidu Company. The

implementation environment is described as follows:

Server Cluster. We implement FreeContainer in an IDC

with about 6000 servers spreading across several geographical

cities and placed in different regions. The capacities of servers

are shown in Table III after normalization. Specifically, we

take CPU as an example. There are 37 servers in top config-

uration, and we normalize the top configuration to 1. Thus,

1819 servers are in 80% of the top configuration. We leave

out some configurations with small quantities of servers and

just list the main configurations.

Deployed Services. In this IDC, 35 services are deployed

together with some other background services. Each service

has a number of duplications, and each duplication consists of

a group of containers that would communicate with each other.



TABLE IV: Service Information.

Service Duplication No. Containers/Dupl

S1 1 3052

S2 6 378

S3 10 96

S4 3 192

S5 6 98

0 50 100 150 200
0

100

200

300

400

500

Experiment No.

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Current

FreeContainer

(a) Request response time.

S1 S2 S3 S4 S5
0

2

4

6

8

10
x 10

5

T
h
ro

u
g
h
p
u
t(

q
p
s
)

Current

FreeContainer

(b) Throughput per service.

Fig. 4: System performance before and after deploying

FreeContainer.

Table IV shows the detailed information of 5 representative

selected services. Taking S2 as an example, there are 6

service duplications and each of them has 378 containers that

would communicate with each other. S1 represents the services

with a large amount of distinct containers and S3 represents

the services with multiple duplications. FreeContainer aims

at minimizing the communication latency within the same

service and improving system throughput simultaneously.

Comparison System. We also implemented two other

algorithms to compare. 1) The first one adopts a greedy

algorithm. In each iteration, it tries to move containers from

the “hottest” host to the “sparest” one. This algorithm reduces

Ucost directly in a straightforward way. 2) The second is noisy

local search method (NLS), which is based on the winner

team solution for Google Machine Reassignment problem

(GMRP) [30]. This method reallocates processes among a set

of machines to improve the overall efficiency.

VII. EVALUATION

We have conducted extensive experiments with variant

parameter settings in Baidu’s IDC to evaluate FreeContainer

from different aspects: 1. the efficiency and advantages of

FreeContainer; 2. the comparison results between FreeCon-

tainer and the other two systems; 3. the algorithm efficiency

under different parameter settings.

A. FreeContainer Performance

We implement FreeContainer in IDC with 6000 servers

described in the above section. To evaluate algorithm per-

formance on container communication and the overall cost,

we conduct a series of experiments to measure the following

system features: service span, request response time, cluster

throughput and resource utilization.

Response Time. To show the efficiency on communication

cost reduction, we measure service response time, which refers

to the total response time of a particular request. As each

request would go through multiple containers, an efficient

container communication scheme should give low network

latency. We show the results in Figure 4(a), where the small

red (big blue) points denote the request response time before

(after) deploying FreeContainer. The average response times

are 451 ms and 365 ms, respectively. From this figure, we

can conclude that FreeContainer reduces up to 20% commu-

nication latency.

Cluster Throughput. For container-based network func-

tions, throughput is a key indicator of performance. We

perform pressure measurement on this cluster and the service

throughput is shown in Figure 4(b). We still choose the 5

representative services and show the throughput before and

after deploying FreeContainer. Taking S2 as an example,

the maximum throughput before deploying FreeContainer is

510008 qps and raises to 972581 qps after implementing

our algorithm, getting an increase of 90%. But different

services enjoy different optimization. For S5, the throughput is

improved from 295581 qps to 384761 qps, with 30% increase.

This is because there are only 588 interactive containers in

S5 but 2268 containers in S2. These results show that for

a particular service, the more containers in a communication

group, the higher efficiency FreeContainer obtains.

Resource Utilization. Resource utilization is another in-

dicator of the performance. If the resource utilizations are

balanced among hosts, the throughput is generally also good.

We measure resource utilizations under pressure experiments

and show the cumulative distribution function (CDF) results

in Figure 5 (CPU in Figure 5(a), memory in Figure 5(b)

and SSD in Figure 5(c)). From these figures we can see that

FreeContainer eliminates the long tails of resource utilizations.

Taking CPU utilization as an example, there are about 800
servers whose utilization exceeds 80%. These servers suffer

from long request latency due to CPU resource shortage, which

are the bottlenecks of the overall network functions. From

the results we can see, FreeContainer obtains more balanced

resource utilizations.

B. Comparison with other algorithms

To compare FreeContainer with the state-of-the-art solu-

tions, we build two comparison systems – Greedy and NLS.

As we cannot deploy these comparison systems in the real

IDC for safety concerns, we implement them in a cluster with

2513 servers.

As illustrated in the above subsection, server resource

utilizations reflect the cluster performance under pressure

experiment, i.e., when burst occurs, the more balanced server

resource utilizations are, the larger throughput a cluster can

obtain. Along this way, we measure resource utilizations in

this experimental cluster and show the results in Figure 6.

Figure 6(a) shows the CDF of CPU utilizations of those

2513 servers. There are about 330 servers whose CPU utiliza-

tions exceed 60% under the greedy algorithm and 210 servers

under the NLS algorithm. But when leveraging FreeContainer,



0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

Servers

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Current

FreeContainer

(a) CPU utilization.

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

Servers

M
e

m
o

ry
 U

ti
liz

a
ti
o

n
 (

%
)

Current

FreeContainer

(b) Memory utilization.

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

Servers

S
S

D
 U

ti
liz

a
ti
o

n
 (

%
)

Current

FreeContainer

(c) SSD utilization.

Fig. 5: Resource utilizations of the Baidu server cluster before and after deploying FreeContainer.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Servers

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Greedy

NLS

FreeContainer

(a) CPU utilization.

2200 2300 2400 2500
0.5

0.6

0.7

0.8

0.9

1

Servers

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Greedy

NLS

FreeContainer

(b) CPU tail utilization.

2200 2300 2400 2500
0.8

0.85

0.9

0.95

1

Servers

M
e
m

o
ry

 U
ti
liz

a
ti
o
n
 (

%
) Greedy

NLS

FreeContainer

(c) Memory tail utilization.

2200 2300 2400 2500
0.6

0.7

0.8

0.9

1

Servers

S
S

D
 U

ti
liz

a
ti
o
n
 (

%
)

Greedy

NLS

FreeContainer

(d) SSD tail utilization.

Fig. 6: The comparison of resource utilizations of different systems.

TABLE V: Average CPU Utilization of Bottleneck Servers.

Algorithm Top 1% Top 5% Top 10%

Greedy 0.7362 0.7033 0.6749

NLS 0.7190 0.6919 0.6566

FreeContainer 0.5714 0.5703 0.5687

the highest CPU utilization falls down to 52%, which is much

better than greedy and NLS.

For high performance network services, the overall through-

put of the system is generally determined by the hot hosts. We

collect the resource usages of the top 300 hot servers produced

by each algorithm, and the results are shown in Figure 6.

Taking SSD as an example, the average utilizations of the

top 300 hot servers under greedy, NSL and FreeContainer are

97.71%, 93.15% and 81.33%, respectively. To clearly show the

quantified optimization results, the average CPU utilizations

of top hot servers are shown in Table V. The overall average

CPU utilization of the 2513 servers is 51.16%. We can see

that FreeContainer’s performance is very close to the lower

bound, and outperforms greedy and NSL by up to 70%.

We attribute this to: First, we take Ucost and Bcost into

consideration to minimize the difference in resource utiliza-

tions and balance residual multiple resources. Second, the

Sweep stage in FreeContainer makes room for the following

search procedure, based on which Search stage could explore

more branches to find better solutions.

C. Algorithm Efficiency

In this subsection, we evaluate the impacts of different

parameter settings on the performance of FreeContainer.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Servers

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Before

After

(a) The efficiency of sweep.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Servers

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

δ=2%

δ=10%

(b) Different delta.

Fig. 7: Algorithm efficiency with different configurations.

Figure 7(a) shows the resource utilization of the 2513

servers before and after running the Sweep algorithm. As we

described in Section IV, the objective of the Sweep stage is to

make as much room as possible for the Search stage by freeing

up a group of servers and using these servers to instantiate

containers that are moved from “hot hosts”.

Figure 7(b) shows the results under different exploring

scopes. δ = 2%(10%) means that in each exploring iteration,

we select 4%(20%) servers as the set of candidates from the

top 2%(10%) and the tail 2%(10%) and leverage neighbor

searching on these candidate servers. As can be seen from

Figure 7, larger δ achieves more balanced resource utilizations,

which confirms the analysis given in Section V.

In summary, FreeContainer manages container groups de-

ployed in clusters in a high-efficient way in terms of mini-

mizing communication overhead among interactive containers

and balancing server resource utilizations. The experimental

results on Baidu clusters show that FreeContainer increases



the overall throughput up to 90% at most.

VIII. CONCLUSION

Although containerization provides good isolation and

portability for network functions, the container communication

is threatened by the requirements from high-performance

VNFs. To address this problem, the existing network solutions

either make hardware modification or sacrifice some system

performance, making them too costly and undermine the

advantages of containerization.

In this paper, we proposed FreeContainer, which is a

communication-aware container re-distribution method that

manages container groups for high-performance VNFs.

FreeContainer requires no hardware modification and is com-

pletely transparent to online services and introduces no dis-

ruption. We implemented FreeContainer in Baidu clusters

with 6000 servers and 35 services and conduct a series of

experiments under pressure testing. The measurements from

real network indicate that FreeContainer can: 1) reduce the

communication overhead among interactive containers by re-

assigning containers; 2) increase the overall throughput up to

90% in terms of balancing resource utilizations; 3) outperform

the state-of-the-art solutions up to 70%.

ACKNOWLEDGMENTS

This work was partly done during Yuchao Zhang’s intern-

ship in Baidu.

This work was supported by the National Natural Founda-

tion of China (61472212), National Science and Technology

Major Project of China (2015ZX03003004), the National High

Technology Research and Development Program of China

(863 Program) (2013AA013302, 2015AA015601), EU Marie

Curie Actions CROWN (FP7-PEOPLE-2013-IRSES-610524).

Yusen Li’s work was supported in part by the NSF of China

under grant 61602266, and NSF of Tianjin under grant 16JCY-

BJC41900. Dan Wang’s work was supported in part by PolyU

G-YBAG.

Corresponding authors are Yusen Li, Ke Xu and Dan Wang.

REFERENCES

[1] [online], “Control groups definition, implementation details,
examples and api.” https://android.googlesource.com/kernel/msm/
+/android-wear-5.0.2 r0.1/Documentation/cgroups/00-INDEX, 2016.

[2] E. W. Biederman and L. Networx, “Multiple instances of the global linux
namespaces,” in Proceedings of the Linux Symposium, vol. 1. Citeseer,
2006, pp. 101–112.

[3] “Openstack,” https://www.openstack.org/, 2016.
[4] “Openvz linux containers.” https://openvz.org/Main Page, 2016.
[5] “Freebsd - the power to serve.” https://www.freebsd.org/, 2016.
[6] “Oracle solaris containers.” http://www.oracle.com/technetwork/

server-storage/solaris/containers-169727.html, 2016.
[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM, 2003,
pp. 164–177.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux symposium,
vol. 1, 2007, pp. 225–230.

[9] M. Corporation, “Build your future with windows server 2016,” https:
//www.microsoft.com/en-us/cloud-platform/windows-server, 2016.

[10] VMware, “Vmware virtualization software for desktops, servers and
virtual machines for public and private cloud solutions.” http://www.
vmware.com, 2016.

[11] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar,
“Freeflow: High performance container networking,” in Proceedings of

the 15th ACM Workshop on Hot Topics in Networks. ACM, 2016, pp.
43–49.

[12] B. Burns and D. Oppenheimer, “Design patterns for container-based
distributed systems,” in 8th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 16), 2016.

[13] Mellanox, “Rdma aware networks programming user manual.” http://
www.mellanox.com/, 2016.

[14] “Data plane development kit (dpdk).” http://dpdk.org/, 2016.

[15] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri.” in OSDI, vol. 10, no. 1, 2010, p. 24.

[16] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), 2014, pp.
583–598.

[17] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE transactions on knowledge and data engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[18] “Baidu,” http://www.baidu.com.

[19] K. Xu, T. Li, H. Wang, H. Li, Z. Wei, J. Liu, and S. Lin, “Modeling,
analysis, and implementation of universal acceleration platform across
online video sharing sites,” IEEE Transactions on Services Computing,
2016.

[20] Y. Zhang, K. Xu, G. Yao, M. Zhang, and X. Nie, “Piebridge: A cross-dr
scale large data transmission scheduling system,” in Proceedings of the

2016 conference on ACM SIGCOMM 2016 Conference. ACM, 2016,
pp. 553–554.

[21] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation. USENIX Association, 2014, pp. 459–473.

[22] “Kubernetes.” http://kubernetes.io/, 2016.

[23] “Matrix.” http://wiki.baidu.com/display/solaria/Solaria, 2016.

[24] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 34–47, 2015.

[25] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in 21st

USENIX Security Symposium (USENIX Security 12), 2012, pp. 101–
112.

[26] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual ma-
chines,” in Proceedings of the 8th international conference on Emerging

networking experiments and technologies. ACM, 2012, pp. 61–72.

[27] “Freebds.chrootcfreebdsmanpages.” http://www.freebsd.org/cgi/man.cgi,
2016.

[28] “Docker.” http://www.docker.com/, 2016.

[29] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, 2011, pp. 22–22.

[30] H. Gavranović and M. Buljubašić, “An efficient local search with
noising strategy for google machine reassignment problem,” Annals of

Operations Research, pp. 1–13, 2014.

[31] S. Mitrović-Minić and A. P. Punnen, “Local search intensified: Very
large-scale variable neighborhood search for the multi-resource gener-
alized assignment problem,” Discrete Optimization, vol. 6, no. 4, pp.
370–377, 2009.

[32] J. A. Dıaz and E. Fernández, “A tabu search heuristic for the generalized
assignment problem,” European Journal of Operational Research, vol.
132, no. 1, pp. 22–38, 2001.

[33] R. Masson, T. Vidal, J. Michallet, P. H. V. Penna, V. Petrucci, A. Sub-
ramanian, and H. Dubedout, “An iterated local search heuristic for
multi-capacity bin packing and machine reassignment problems,” Expert

Systems with Applications, vol. 40, no. 13, pp. 5266–5275, 2013.

[34] M. H. Zhu Han and D. Wang, Signal processing and networking for big

data applications. Cambridge Press, 2017.


