
Mobile Filtering for Error-Bounded Data Collection in Sensor Networks

Dan Wang
Hong Kong Polytechnic Univ.

Hung Hom, Hong Kong
csdwang@comp.polyu.edu.hk

Jianliang Xu∗

Hong Kong Baptist Univ.
Kowloon Tong, Hong Kong

xujl@comp.hkbu.edu.hk

Jiangchuan Liu, Feng Wang †

Simon Fraser University
Burnaby, BC, Canada

{jcliu, fwa1}@cs.sfu.ca

Abstract

In wireless sensor networks, filters, which suppress data
update reports within predefined error bounds, effectively
reduce the traffic volume for continuous data collection. All
prior filter designs, however, are stationary in the sense that
each filter is attached to a specific sensor node and remains
stationary over its lifetime. In this paper, we propose mo-
bile filter, a novel design that explores migration of filters to
maximize overall traffic reduction. A mobile filter moves up-
stream along the data collection path, with its residual size
being updated according to the collected data. Intuitively,
this migration extracts and relays unused filters, leading to
more proactive suppressing of update reports. We start by
presenting an optimal filter migration algorithm for a chain
topology. The algorithm is then extended to general multi-
chain and tree topologies. Extensive simulations demon-
strate that, for both synthetic and real data traces, the mo-
bile filtering scheme significantly reduces data traffic and
extends network lifetime against a state-of-the-art station-
ary filtering scheme.

1 Introduction

Wireless sensor networks have recently been used
for many applications, such as habitat monitoring, mili-
tary surveillance, and terrain discovery, where traditional
wired/wireless networks are not appropriate or available.
The primary task of a sensor network is to continuously
collect the sensed data in the operational field, so that the
field’s properties of interest can be monitored. In this paper,
we are interested in continuously gathering data distribution
of the sensor field. For example:

Q1: Get the temperature distribution of the sensor field
every other hour for the next 6 months.

Q2: Monitor the population of wildlife at difference
places every 4 hours for the next 12 months.

∗Jianliang Xu’s work was supported by the Research Grants Council of
Hong Kong under Project No. HKBU211307.

†J. Liu and F. Wang’s work is supported by an NSERC Discovery Grant
and an NSERC Strategic Project Grant.

Such complex queries, though clearly more difficult to
answer, reveal richer information than a simple aggregate
such as sum or average. For example, a (consistent) change
of the population distribution of the wildlife may be an in-
dication of the change of the surrounding environment [6].

In sensor networks, energy is a severely limited resource,
and communication dominates energy consumption. To ob-
tain the distribution information aforementioned, the base
station needs to continuously collect data from each sensor
node. This is obviously very energy expensive. Fortunately,
approximate results are usually acceptable as long as the
error is bounded by a certain threshold. Thus, a trade-off
between energy consumption and data quality can be ex-
plored. Data filtering, by exploring temporal data correla-
tion, is an effective in-network processing scheme towards
this goal. Intuitively, if the difference between the new read-
ing and the previous reading in a sensor node is small, the
node should not report the new reading. Olston et al. [13]
first generalizes this idea to a filter design for continuous
data collection. In their work, a filter is allocated to each
sensor node such that the total filter size obeys the user-
specified error bound. In each round of data collection, a
node will suppress its data update report if the difference
from the previous report is less than its filter size. There
have been a flourish of follow-ups with more intelligent fil-
ter allocation strategies (e.g., [3][17]).

All these prior filter designs, however, are stationary in
the sense that each filter is attached to a specific node and
remains stationary during a round of data collection. Thus,
unused filters in the current round of data collection might
be wasted, limiting the filtering capability.

In this paper, we propose mobile filter, a novel design
that explores migration of filters to reduce network traffic
for error-bounded data collection. A mobile filter moves up-
stream along the data collection path, with its residual size
being updated according to the collected data. Intuitively,
this migration extracts and relays unused filters, leading to
more proactive suppressing of data reports. While extra
communications are needed to move filters, the overhead
is outrun by the gain from suppressing more data trans-

1

s4s0 s1 s2 s3

29 63 32 50

(a) Previously reported data readings.

s4s0 s1 s2 s3

29.3 64.3 33.1 51.2

(b) Data readings of the current round.

s4s0 s1 s2 s3

11 1 1

0.3 1.3 1.1 1.2
X

(c) Stationary filter suppresses one data report from s1.

Figure 1. An example of a stationary filtering scheme. Total user allowed filter size (error bound) is 4. Node s0 is the base station.

s4s0 s1 s2 s3

4

0.3 1.3 1.1 1.2

(a) Mobile filtering scheme at the start of the current round.

s4s0 s1 s2 s3

2.8

0.3 1.3 1.1 1.2
X

(b) Mobile filter moves and suppresses data reports.

s4s0 s1 s2 s3

0.1

0.3 1.3 1.1 1.2
XXXX

(c) In total, all four data reports are suppressed.

Figure 2. An example of a mobile filtering scheme. Total user allowed filter size (error bound) is 4. Node s0 is the base station.

missions. The overhead can be further reduced by piggy-
backing the filter information in data update reports.

An Example. To illustrate the effect of our mobile filter-
ing scheme, we compare it with a basic stationary filtering
scheme in a toy example in Figs. 1 and 2. Consider a sen-
sor network of chain topology (s4 through s0). The base
station s0 needs to record the data for each sensor node in
each round (or use the previously recorded data if it does
not hear from the node). Assume L1 distance is used for
bounding data errors [1],1 and the total user-allowed filter
size (error bound) is 4. The previously reported reading of
each sensor is shown in Fig. 1(a). In the current round,
each sensor acquires a new reading, as shown in Fig. 1(b).
Using the stationary filtering scheme, filters are allocated to
each node and one possible (uniform) allocation is shown
below each sensor in Fig. 1(c). We can see that the station-
ary filters can suppress only one data update report from s1.
All other updates need to be reported, and overall it incurs
2+3+4 = 9 link messages. As a contrast, we now employ the
mobile filtering scheme for the same scenario. The entire
filter is assigned to s4 at the beginning of the current round,
as shown in Fig. 2(a). The filter suppresses s4’s data update
report and the residual filter moves upstream as shown in
Fig. 2(b), which further suppresses s3’s update report. In
general, the filter suppresses update reports while it moves
along the path. Eventually, all four update reports are sup-
pressed, as shown in Fig. 2(c). The total number of link
messages incurred is 3 (for the mobile filter transmission).

Intrinsically, one may consider the filter (i.e., the error
bound allowed by the user) a valuable resource that can be
exploited for conserving energy. In the stationary filtering
scheme, each filter has to make an independent decision
about data suppressing. The filters have no knowledge of
how other filters are used by other sensor nodes. Therefore,
the utilization of the filter resource is not optimized; for ex-

1L1 distance is the sum of the absolute difference over all paired values
in the two datasets. Note however that the general framework of mobile
filtering does not depend on specific data error models.

ample, the filters on s2 through s4 are wasted in the above
example. The mobile filtering scheme, on the other hand, is
able to adapt to the current data readings and allocates fil-
ters on the fly to optimize the utilization. This intuition will
be formalized in our analysis later in the paper.

There are, however, many design issues left to be ad-
dressed; for example, a formal error bound model is needed
for the data collection and filtering scheme; filter migration
and data filtering algorithms should be developed to max-
imize the overall traffic reduction. We shall address these
issues in detail in the rest of this paper. Our contributions
made in this paper are summarized as follows. First, we pro-
pose a novel mobile filtering scheme. Second, we develop
an optimal filter migration and data filtering algorithm for a
chain topology. We extend our algorithm to general multi-
chain and tree topologies for sensor data collection. Third,
our scheme is validated through extensive simulations using
both synthetic and real-world traces.

The rest of the paper is organized as follows. We review
related work in Section 2. The system model is described in
Section 3. Section 4 is devoted to our mobile filter design.
We then show the simulation results in Section 5. Finally,
Section 6 concludes the paper.

2 Related Work

Wireless sensor networks have been extensively studied
in recent years and many sensor networks are designed for
continuous data collection applications over a long period
of time; see examples in [9][11].

Energy efficiency is a key consideration in sensor net-
work designs. A pioneer work [4] has suggested various in-
network processing techniques to reduce the network traffic.
One effective in-network processing scheme is in-network
aggregation. By exploring the query properties, an interme-
diate sensor node can compute a partial aggregate of its own
value and the values of the downstream nodes before report-
ing to its upstream nodes. A number of aggregate functions,
such as MAX, MIN, SUM, AVG, and MEDIAN, have been

2

studied [10][15]. Another effective in-network processing
scheme is to make use of spatial data correlation, and the
studies include clustering [7], sampling [19] and overhear-
ing [16] techniques. Our work falls into an orthogonal cat-
egory where temporal data correlation is explored [14], and
we are interested in non-aggregate data. Non-aggregate
data can provide a fine-grained analysis of the phenomena
in the sensor field, which is requested by many applications
[2][5]. These in-network processing techniques can also be
combined to achieved higher energy efficiency; see [3][21].

To explore temporal data correlation, data filtering is a
commonly used technique that trades data quality for en-
ergy efficiency. In [13], a filter is allocated to each sensor
node where the total filter size is constrained by the user
error bound. The filters shrink periodically and the server
will re-allocate the left-over error bound to the sensor nodes
based on burden scores. The burden score of a node is cal-
culated based on a set of parameters involving the number
of update packets generated by the sensor node since the last
filter reallocation, the current filter size, and the data report-
ing cost. The work in [3] further incorporates in-network
aggregation into filter designs, where an intermediate node
is responsible for computing partial aggregates from its de-
scendants. A more intelligent filter adjustment scheme is
proposed in [17]. In contrast to the previous studies where
the filters are reallocated mainly based on data changing
patterns, the optimization in [17] explicitly takes the resid-
ual energy of the sensor nodes into consideration.

Although these prior studies [3][13][17] have different
filter (re)allocation mechanisms, they share a common fun-
damental assumption: the filter attached to a specific sen-
sor node will be used for suppressing data reports for this
node only. In other words, filters are stationary and only
data traverse inside the network. The novelty of our work
is that we allow the filters to move in each round of data
collection, and we show that given the same error bounds,
the migration of filters suppresses significantly more data
transmissions, making the system more energy efficient.

3 System Model

In our system, the readings from individual sensors need
to be periodically collected by the base station to evaluate
complex distribution queries, and we call each data collec-
tion a round. In the first round, all the sensor nodes report
their readings. In the subsequent rounds, the sensor nodes
report readings that are not suppressed. If the base station
does not receive a report from a sensor node, its previously
reported reading will be treated as collected data and used
for current query evaluation.

3.1 The Error Bound Model

To facilitate our presentation, in this paper we employ
L1 distance as the error bound model. Specifically, let the

Level 0

Level 1

Level 2

Base
Station

Figure 3. Underlying communication/routing structure.

true readings of the sensor nodes be x1, x2, . . . , xN and let
the readings collected by the base station be x′

1, x
′
2, . . . , x

′
N ;

the L1 distance is then L1 =
∑N

i=1 |xi − x′
i|. If the user-

specified precision requirement is E, the error-bounded data
collection must guarantee L1 =

∑N
i=1 |xi − x′

i| ≤ E. L1

distance is commonly used to measure the distance between
complex distributions [1]. The smaller is the L1 distance of
two distributions,2 the closer are the two distributions. More
formally, if the L1 distance is small, any event will happen
with similar probability in the two distributions.

It is worthwhile to note that our mobile filtering scheme
is not limited to the L1 model. It is straightforward to
show that it can work with Lk distance where Lk =
k

√∑N
i=1 |xi − x′

i|k for any k = 0, 1, 2, · · ·. In general, the
mobile filtering scheme is workable for any error bound
model where the overall error bound is a function of the
error introduced from individual sensor node. Additional
examples are weighted Lk distance, KL-divergence, etc.

To bound the error of data collection, data filters are in-
stalled (either statically or dynamically) on sensor nodes in
the network. Each filter is associated with a deviation bound
(hereafter referred to as filter size) and the total filter size
should not exceed the bound E. During a round of data
collection, a senor node reports its data to the base station
only if the deviation between the current reading and the
last reported reading exceeds the filter size.

3.2 Data Collection Model

For each round, we use a data collection model similar
to TAG [10]. The underlying network is structured as a tree
and the data is propagated from the leaf nodes to the root.
Specifically, each sensor node is associated with a level in
the tree, which indicates the number of hops the node is
away from the base station (i.e., the root) (see Fig. 3). To
avoid transmission collisions, the time is divided into slots,
and a sensor node is kept in a sleeping state for most of
the time in a round. In each time slot, starting from the
leaf level, the sensor nodes at one level are activated to en-

2The sensor readings can be easily normalized to probabilities.

3

ter into a processing state, and the sensor nodes one level
higher enter into a listening state. Upon being in the pro-
cessing state, a sensor node acquires a new reading, pro-
cesses it together with the data received from its children,
and possibly transmits some data to its parent node. A sen-
sor node in the listening state monitors the wireless chan-
nel and buffers all incoming packets for further processing.
Various synchronization techniques can facilitate this state
transition [8][10]. A round of data collection is completed
when the processing state propagates to the root.

4 Mobile Filtering: Design and Optimization

The objective of our mobile filtering scheme is to min-
imize the total communication cost while maintaining the
user error bound. In this section, we first outline a practi-
cal mobile filter design. We analyze this scheme for a chain
routing topology. We derive an optimal offline migration
strategy, together with an efficient online heuristic. We then
extend the algorithm to multi-chain and tree topologies.

4.1 Operations of Mobile Filters

In stationary filtering schemes, each filter only needs to
suppress the newly sensed data if it can. In mobile filtering
schemes, a mobile filter may not suppress a newly sensed
data in the sensor node it travels. The intuition here is that
suppressing the data consumes its filter size and may restrict
the mobile filter’s ability to suppress more data updates up-
stream. In addition, a mobile filter needs to decide whether
to travel to the next sensor node. The intuition here is that if
the residual filter size is small, a mobile filter may not travel
further to reduce the overhead it incurs.

Formally, in each round of data collection, each sensor
node s first senses a new reading rn and then operates as
follows. In the listening state, s receives message(s) sent
from its children. Let e be its current filter size (we will
show later how this size is initialized). If the incoming mes-
sage contains an unused filter ein, s updates the filter as
e = e + ein. If the message contains an update report, it
is buffered for forwarding later. Detailed operations for this
stage are shown in Fig. 4(a).

When the sensor node s enters into its processing state, a
data filtering strategy first decides whether the current filter
is to suppress rn. Let ro be the last reading reported to the
base station. If rn is suppressed, a filter size of |ro − rn|
is consumed and the residual filter size is updated to e =
e − |ro − rn|. Otherwise if rn is not suppressed, an update
report is composed and buffered, and the residual filter size
remains e. The second decision is whether to migrate the
residual filter upstream. If there are update reports (either
its own or the reports forwarded for its descendants) to be
sent to the parent, the residual filter can be piggy-backed.
Otherwise, a filter migration strategy will decide whether to

Aggregate the
filter

Put update
report in buffer

Has filter?

 No

 Message arrives

Yes

Has report?

 Yes

 No

(a) Listening state

Suppress rn?

Send all reports in
buffer to parent

 No

Yes

 Can process

 Suppress rn

e = e - |ro - rn|

ro = rn

Compose an
update report
for rn in buffer

Has reports
in buffer?

No

Generate a
filter message

in buffer

 Yes
Piggy-back

the filter

Migrate filter?

 Yes
 No

(b) Processing state

Figure 4. Operations of a sensor node in each round.

migrate the residual filter using a separate message. Finally,
the sensor node forwards all update reports in the buffer to
its parent. Detailed operations for this stage are summarized
in Fig. 4(b).

It is easy to see that under this operation model, the sum
of the data changes suppressed does not exceed the total
error bound. Thus, the user-specified precision requirement
is guaranteed. The remaining task is to design data filtering
and migration strategies so as to minimize the overall data
transmission cost.

4.2 Filter Migration in Chain Topology

We start our discussion with a simple chain topology. We
first show that the mobile filter should initially be placed at
the leaf node.

Theorem 1 For a chain topology, the filter should be allo-
cated as a whole to the leaf sensor node in order to minimize
the total communication cost.3

Proof: Due to space limitation, we omit the proof. See our
technical report for details [20].

Following this theorem, given a total error bound of E,
the filter size allocated to the leaf node is E and the filter
sizes allocated to all other nodes are zero. The filter then
follows the operations described in Section 4.1. By the end
of each round of data collection, the leaf node resets the
filter size to E and all other nodes reset the filter sizes to
zero. It is worth noting that resetting the filter sizes does
not incur any communication cost.

3Here, we assume that the sensor readings always change between two
consecutive rounds of data collection.

4

4.2.1 Filter Migration and Data Filtering Strategies

Recall that our objective is to minimize the number of up-
date reports transmitted in the network given a total filter
size of E. In this section, we first develop an optimal of-
fline solution (through dynamic programming) with all data
changes known a priori. Let i be the distance (in terms of
hops) between the ith node and the base station. Let vi be
the data change (against the last reported value) at sensor
node si, and e be the residual filter size. Let Gi(e) be the
gain from placing a filter of size e at sensor node si, which
represents the cost difference between suppressing the data
update at node si and migrating the residual filter size up-
stream.

Gi(e) = max

i + Gi−1(e − vi) − 1, no piggy-back (1)
i + Gi−1(e − vi), piggy-back (2)
Gi−1(e), piggy-back (3)
i (4)

There are four possible choices that si can execute, as
shown in (1)-(4). With the first choice, the data update is
suppressed. The gain consists of two parts. The first part is
a saving of i transmissions for this data update. The second
part is a potential gain of Gi−1(e − vi) when the residual
filter with size e − vi migrates to the parent. If the filter
migration is not piggy-backed, there is one extra cost for
sending this filter upstream to sensor node si−1. The sec-
ond choice is similar to the first except the filter migration
is piggy-backed with the data reports (of si’s descendants)
and incurs no extra overhead. With the third choice, the data
update is not suppressed and reported to the base station. In
this case, the unused filter size e is piggy-backed upstream
to node si−1. With the fourth choice, the data update is sup-
pressed, and the residual filter is not sent upstream. A sen-
sor node should select the one with the highest gain among
the four choices.

We also initialize the Gi(·) function for special cases:

∀i, Gi(0) = 0, (5)
∀i, Gi(−) = −∞, (6)
∀e, G0(e) = 0, (7)
∀e, G1(e) = 0, no piggy-back (8)
∀e, G1(e) = 1, piggy-back (9)

where condition (5) means there is no gain if the filter is
used up; condition (6) states that negative filters are strictly
prohibited; condition (7) states that there is no gain if the
filter has arrived at the base station; and conditions (8) and
(9) specify the gains for node s1.

Gi(·) can then be iteratively calculated using dynamic
programming, as shown in Fig. 5. Note, however, that this
optimal algorithm needs prior information about the data
changes, which is difficult to obtain. We therefore develop
a greedy online heuristic as follows. Let TR and TS be two

Algorithm CalGain ()

Gi(e,+): the gain at node i with residual filter size e with
piggy-back; Gi(e,−): the gain without piggy-back.

1 Initialization;
2 for ∀i, e, {+,−}

3 Gi(e,+) = max

i + Gi−1(e − vi,+),
Gi−1(e,+),
0

4 Gi(e,−) = max

i + Gi−1(e − vi,−) − 1,
Gi−1(e,+),
i

5 end for

Output: GN (E,−) and the filter migration and data fil-
tering strategies.

Figure 5. Calculate Gain Algorithm

thresholds used for filter migration and data filtering. If the
residual filter size is smaller than TR, the filter is not sent
upstream unless the filter is piggy-backed; if the data update
at a sensor is greater than TS , the filter will not suppress this
update. Intuitively, a small residual filter TR means that the
chance of suppressing upstream data reports is small, and
thus the filter should not be sent upstream. The threshold
TS means that if a data change is very large, suppressing
this update will significantly reduce the chance of suppress-
ing future reports. As such, even if the current residual filter
size is able to suppress this update, it leaves the opportuni-
ties to suppress updates upstream.

4.3 Filter Migration in Multi-Chain Trees

The chain structure has provided us with a basic under-
standing of mobile filtering. In this section, we consider a
more general routing structure, a multi-chain tree consisting
of multiple chains, which appears in the networks with dis-
joint multi-path routing or star-like networks. An example
is shown in Fig. 6.

In a multi-chain tree, the initial filters will also be as-
signed to the leaf sensor nodes. Since there are multiple
leaf nodes, a filter size allocation strategy among the leaf
nodes is needed. Note that if we treat each chain of the tree
as a single node, the tree can be considered as the one-hop
network studied in [13][17]. Thus, we adapt our filter allo-
cation scheme reported in a previous study [17] and devise
our algorithm as follows.

The total error bound is first allocated uniformly to the
leaf sensor node of each chain. The filters are re-allocated
every UpD rounds. Intuitively, our algorithm re-allocates
larger filters to the chains with larger number of update
packets and lower residual energy. Let Ei be the filter size
assigned to chain ci in the current round. Each chain main-

5

s8

s0

s5

s6

s7

s12

s9

s10

s11

s4

s1

s2

s3

…... …....
.
.
.
.
.
.

.

.

.

.

.

.

.

Figure 6. An example of a multi-chain tree.

s6

s0

s7

s8

s5

s9

s10

s11s4

s1

s2

s3

Figure 7. A tree, divided into multiple chains.

tains the number of update messages Wi and the minimum
residual energy pi of the sensor nodes on the chain for the
recent UpD rounds. Each chain also maintains a set of sam-
pling filter sizes 1

2Ei, 3
4Ei, . . ., 2K−1

2K Ei, 2K+1
2K Ei, . . ., 5

4Ei,
3
2Ei. We also estimate Wi and pi under these sampling fil-
ter sizes. After every UpD round, each chain informs the
base station of Wi and pi for each of the sampling filter
sizes. This information can be submitted by sending a mes-
sage from the leaf sensor node through the chain topology.
In this message, there is a counter Wi for each of the sam-
pling filter sizes. When this message passes an intermediate
node, the node will add the number of updates recorded by
itself to the respective Wi. This message also estimates the
minimum residual energy of the sensor nodes. Based on this
information, the optimal filter re-allocation algorithm [17]
is adopted by the base station to calculate the filters to be al-
located to each chain for the next UpD rounds to maximize
the minimum energy of the sensor nodes.

4.4 Filter Migration in General Trees

Finally, we extend our filter migration scheme to accom-
modate general tree structures for data collection. Our strat-
egy is to partition the tree into multiple chains and then
apply the algorithm for multi-chain trees. Unlike the sim-
ple multi-chain tree, however, we need to decide where a

chain ends in a general tree (the starting point is always a
leaf node). We propose to use the intersection of two tree
branches as a natural ending point. An example of such
partitioning is shown in Fig. 7. A detailed description for
a binary tree partitioning can be found in Fig. 8, which can
be easily extended to trees of arbitrary degrees.

Algorithm TreeDivision ()

1 for each leaf si do
2 sk = parent(si)
3 while si is the only child of sk or
4 si is the left child of sk

5 sk = parent(sk)
6 construct a chain from si to parent(sk)
7 end for

Figure 8. Tree Partitioning Algorithm

After partitioning, the tree topology can be treated as a
multi-chain structure, except that residual filters are aggre-
gated at the end of a chain (e.g., s2 and s7 in Fig. 7). The
filter allocation and migration algorithms are the same as
those discussed in the previous sections.

5 Simulation Results

We have implemented our mobile filtering scheme in ns-
2 [12]. Three typical topologies, namely, a chain, a cross,
and a grid topology, have been used for performance eval-
uation. The cross topology is a multi-chain topology with
four equal-length branches. In the grid topology, we set the
base station at the center and a routing tree is built by broad-
casting. For all these topologies, the distance between two
neighboring sensor nodes is set to 2m and the transmission
power on the physical layer is set to 2.5 × 10−6dBm.

We adopt the same energy settings as those used in the
Great Duck Island project [11]. The energy costs of trans-
mitting and receiving a packet are set to 20nAh (Ampere-
hour) and 8nAh respectively. The energy cost for sensing a
sample is 1.438nAh. The energy budget reserved for a sen-
sor node is set to 80mAh. We omit the energy for sensors in
sleeping state. The system lifetime is defined as the lifetime
of the first dying node, which is widely adopted [7][17].

We test two different data traces in our simulation. The
first is a synthetic data trace, whose readings are randomly
generated in the range of [0, 10]. The second is a real world
trace obtained from the Live from Earth and Mars (LEM)
project [18] at the University of Washington. We used the
dewpoint trace logged by the station at the University of
Washington from August 2004 to August 2005, which con-
sists of more than 500,000 sensor readings. We have evalu-
ated our algorithm against other traces in LEM, and similar
performance trends are obtained. Each data point in a figure
is an average of 10 randomly generated experiments.

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 15 20 25 30

Li
fe

tim
e

Number of Nodes

Mobile-Optimal
Mobile-Greedy

Stationary

Figure 9. Lifetime as a function of
number of nodes for chain topology
under synthetic data.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 15 20 25 30

Li
fe

tim
e

Number of Nodes

Mobile-Optimal
Mobile-Greedy

Stationary

Figure 10. Lifetime as a function
of number of nodes for chain topol-
ogy and dewpoint trace.

 0

 500

 1000

 1500

 2000

 15 20 25 30 35

Li
fe

tim
e

Number of Nodes

Mobile
Stationary

Figure 11. Life time as a function
of number of nodes for cross topol-
ogy under synthetic data.

 0

 500

 1000

 1500

 2000

 15 20 25 30 35

Li
fe

tim
e

Number of Nodes

Mobile
Stationary

Figure 12. Lifetime as a function
of number of nodes for cross topol-
ogy under dewpoint trace.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Li
fe

tim
e

Number of Rounds

Precision = 1.2
Precision = 1.6
Precision = 2.0

Figure 13. Lifetime as a function
of filter allocation for cross topology
under synthetic data.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Li
fe

tim
e

Number of Rounds

Precision = 0.2
Precision = 0.3
Precision = 0.4

Figure 14. Lifetime as a function
of filter allocation for cross topology
under dewpoint trace.

We compare our mobile filtering scheme with a state-of-
the-art stationary filtering algorithm [17]. It has been shown
that this algorithm outperforms other existing stationary fil-
tering algorithms ([3][13]) under various configurations.

Simulation Results

In Fig. 9, we show the results under a chain topology
where the synthetic data are used. The total filter size is
set to 2 × N ; that is, each node on average can get a fil-
ter size of 2 (hereafter called the normalized filter size, as
opposed to the total filter size 2N). In this figure, we plot
the mobile filtering scheme under both the greedy heuristic
and the optimal offline algorithm. In the greedy heuristic,
we set TR = 0 and TS = 18% of the total filter size. Due
to the limitation of space, readers may find how we choose
TR and TS in [20]. The optimal algorithm (Fig. 5) is used
to serve as the performance upper bound in which all data
updates on a chain are known a priori.

We can see that the more sensor nodes we have, the
shorter is the system lifetime for both the mobile and sta-
tionary filtering schemes. This is because the total filter
size is smaller than the total data change. Thus, with more
nodes, the number of data packet transmissions increases.
We can make two other observations: First, mobile filter-
ing always performs better than stationary filtering. Sec-

ond, as the number of nodes increases, the superiority of
mobile filtering becomes more substantial. For example,
for 12 nodes, the system lifetime of mobile filtering is 2.5
times longer than that of stationary filtering, whereas for
28 nodes, a three time difference is observed. We also com-
pare our scheme with stationary filtering using the dewpoint
trace. The filter size is set to 0.2×N . As shown in Fig. 10,
similar results are found. In both sets of simulations, we
can see that our greedy heuristic performs very close to the
optimal solution. Thus, in the remaining simulations, we
will present the results of the greedy heuristic only.

We next examine the cross topology. We first consider
the lifetime under different numbers of nodes. The results
for the synthetic data trace and the dewpoint trace are shown
in Fig. 11 and Fig. 12. Again, our mobile filtering scheme
performs consistently better than stationary filtering by 50%
to 100%. We also study the parameter UpD, the number of
rounds that the filters should be re-allocated for different
chains. The results for the synthetic data trace and the dew-
point trace are shown in Fig. 13 and Fig. 14, where the
total number of nodes is set to 24. We observe that as UpD
increases, the system lifetime generally improves. The sys-
tem will become stabilized sooner for a smaller precision.
This is because it takes a shorter time to correctly predict the
data changing pattern for smaller filters. The synthetic data

7

 0

 100

 200

 300

 400

 500

 600

 1 1.5 2 2.5 3

Li
fe

tim
e

Precision (Filter Size)

Mobile
Stationary

Figure 15. Life time as a function of precision for grid
topology under synthetic data trace.

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Li
fe

tim
e

Precision (Filter Size)

Mobile
Stationary

Figure 16. Lifetime as a function of precision for grid
topology under dewpoint trace.

trace shows a larger performance variation than the dew-
point trace; the changes of the later are more predictable.

Finally, we examine our mobile filtering scheme for a
7×7 grid topology. From Figs. 15 and 16, it can be seen that
our mobile filtering scheme outperforms the stationary fil-
tering scheme for both the synthetic and the dewpoint trace.

We have conducted experiments on a Mica-2 sensor net-
work testbed and such results are also observed, see our
technical report [20] for details.

6 Conclusion

In this paper, we have proposed a novel mobile filtering
scheme for error-bounded non-aggregate data collection in
sensor networks. By exploring the migration of filters, a
mobile filter extracts and relays unused filters in the network
to suppress as many data update reports as possible.

We have presented the detailed mobile filter designs for
a chain routing topology. An optimal offline filter migration
algorithm as well as a greedy online heuristic were devel-
oped. The algorithm was further extended to general multi-
chain and tree topologies. Extensive simulations showed
that: i) a small error allowed in data collection can signifi-
cantly improve network lifetime, which verifies the impor-
tance of this study; ii) our mobile filtering scheme performs
close to the optimal offline algorithm under a chain topol-
ogy; and iii) the mobile filtering scheme substantially ex-

tends the network lifetime against the state-of-the-art sta-
tionary filtering scheme under various system configura-
tions.

References

[1] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White, “Testing
That Distributions Are Close”, in Proc. IEEE FOCS’00, Redondo
Beach, CA, Nov. 2000.

[2] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong, “Approximate
Data Collection in Sensor Networks using Probabilistic Models”, in
Proc. IEEE ICDE’06, Atlant, GA, Apr. 2006.

[3] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Hierarchical
In-Network Data Aggregation with Quality Guarantees”, in Proc.
EDBT’04, Heraklion, Greece, Mar. 2004.

[4] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks”, in Proc.
ACM MOBICOM’99, Seattle, WA, Aug. 1999.

[5] J. Gao, L. Guibas, and J. Hershberger, “Sparse Data Aggregation in
Sensor Networks”, in Proc. ACM IPSN’07, Cambridge, MA, Apr.
2007.

[6] T. He, S. Ben-David, and L. Tong, “Nonparametric Change Detection
and Estimation in Large Scale Sensor Networks”, IEEE Trans. Signal
Processing, vol. 54, no. 4, pp. 1204-1217, Apr. 2006.

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocol for Wireless Microsensor Net-
works”, in Proc. HICSS’00, Wailea Maui, HI, Jan. 2000.

[8] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Im-
pact of Network Density on Data Aggregation in Wireless Sensor
Networks” in Proc. ICDCS’02, Vienna, Austria, July 2002.

[9] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Ruben-
stein, “Energy-Efficient Computing for Wildlife Tracking: Design
Tradeoffs and Early Experiences with ZebraNet”, in Proc. ACM AS-
PLOS’02, Oct. 2002.

[10] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny
Aggregation Service for Ad hoc Sensor Networks”, in Proc. USENIX
OSDI’02, Boston, MA, Dec. 2002.

[11] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless Sensor Networks for Habitat Monitoring”, in Proc. ACM
WSNA’02, Atlanta, GA, Sept. 2002.

[12] “The Network Simulator ns-2”, http://www.isi.edu/nsnam/ns/.
[13] C. Olston, J. Jiang, and J. Widom, “Adaptive Filters for Continuous

Queries over Distributed Data Streams”, in Proc. ACM SIGMOD’03,
San Diego, CA, June 2003.

[14] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “TiNA:
A Scheme for Temporal Coherency-Aware in-Network Aggregation”,
in Proc. ACM MobiDE’03, San Diego, CA, Sept. 2003.

[15] N. Shrivastava, C. Buragohain, S. Suri, and D. Agrawal, “Medians
and Beyond: New Aggregation Techniques for Sensor Networks”, in
Proc. ACM SENSYS’04, Baltimore, MD, Nov. 2004.

[16] A. Silberstein, K. Munagala, and J. Yang, “Energy-Efficient Moni-
toring of Extreme Values in Sensor Networks”, in Proc. ACM SIG-
MOD’06, Chicago, IL, June 2006.

[17] X. Tang and J. Xu, “Extending Network Lifetime for Precision-
Constrained Data Aggregation in Wireless Sensor Networks”, in
Proc. IEEE INFOCOM’06, Apr. 2006. (An extended version is to ap-
pear in ACM/IEEE Trans. Networking)

[18] Live from Earth and Mars (LEM) Project, http://www-
k12.atmos.washington.edu/k12/grayskies, 2006.

[19] D. Wang, Y. Long, and F. Ergun, “A Layered Architecture for Delay
Sensitive Sensor Networks”, in Proc. IEEE SECON’05, Sept. 2005.

[20] D. Wang, J. Xu, J. Liu, and F. Wang, “Mobile Filtering for Error-
Bounded Data Collection in Sensor Networks”, Technical Report,
Simon Fraser University, Nov. 2007.

[21] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour Map Matching for
Event Detection in Sensor Networks”, in Proc. ACM SIGMOD’06,
Chicago, IL, June, 2006.

8

