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Abstract
Wireless sensor networks have recently been suggested

for many surveillance applications such as object monitor-
ing, path protection, or area coverage. Since the sensors
themselves are important and critical objects in the net-
work, a natural question is whether they need certain level
of protection, so as to resist the attacks targeting on them
directly. If this is necessary, then who should provide this
protection, and how it can be achieved?

We refer to the above problem as self-protection, as we
believe the sensors themselves are the best (and often the
only) candidate to provide such protection. In this paper,
we for the first time present a formal study on the self-
protection problem in wireless sensor networks. We show
that, if we simply focus on the quality of field or object cov-
ering, the sensors might not necessarily be self-protected,
which in turn makes the system vulnerable. We then inves-
tigate different forms of self-protections, and show that the
problems are generally NP-complete. We develop efficient
approximation algorithms for centrally-controlled sensors.
We then extend the algorithms to fully distributed implemen-
tation, and introduce a smart sleep-scheduling algorithm
that minimize the energy consumption.

1 Introduction
A wireless sensor network consists of a large number of

sensor nodes that perform sensing, computation, and com-
munication. It has become an attractive modern tool for
surveillance and protection applications, such as museum
monitoring, military surveillance, object tracking, and in-
trusion detection. A key objective here is to provide enough
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coverage for the monitored entities; which range from indi-
vidual objects to an entire area.

Obviously, the denser and more active the sensors are,
the better the coverage quality we can expect, and hence,
the better protection for the objects. Sensors, however,
are small and uni-functional devices which are tightly con-
strained by non-rechargeable batteries. Sensors will die af-
ter the depletion of their energy resource and the quality of
protection will thus be damaged. Many research activities
on sensor networks are focusing on how to balance the qual-
ity of protection and energy consumption of the sensors.

Sensors may also die due to attacks. By sneakily disman-
tle a few sensors, the quality of coverage/protection can also
be significantly affected. Fig. 1 shows an example of such
attacks to the maximal breach path model in a sensor net-
work [10]. Intuitively, the maximal breach path is a path
traveling through the sensor network that has the least prob-
ability of being detected. More formally, define the weight
of a path as the minimum distance from this path to any sen-
sor in the network; a maximal breach path is the maximum
weight path from the source to the destination, as illustrated
in Fig. 1 (a). Intuitively, when deploying the sensors, we
should minimize the weight of the maximal breach path.
While elegant solutions have been devised in this context to
provide quality coverage for the area, they generally assume
that the sensors are not the target of attacks. This, however,
creates a severe back door that can be explored by intruders.
As shown in Fig 1 (b), if removing two sensors A, B in Fig
1 (a), the weight of the maximal breach path can be substan-
tially increased. Our simulations verifies that, by removing
about 1% of the carefully chosen sensors, the weight of the
maximal breach path will increase 40%. Note that, the at-
tack may not need to physically remove a sensor; a simple
interference would work, and a smart intruder may strategi-
cally select weak sensors to amplify the effect.

Given the sensors themselves are important and critical
objects in the network, we argue that they also need cer-
tain level of coverage and hence protection. We refer to
the above problem as self-protection, as we believe the sen-
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Figure 1. (a) The maximal breach path in the network.
The minimum weights are at (B, C) and (A, D). (b) By re-
moving A and B, the weight of the maximal breach path is
significantly increased. The weight of the maximum path is
remarked between lines of E, G and F, G.

sors themselves are the best (and often the only) candidate
to provide protection. In a simple form, a sensor network
is self-protected if all sensors are protected by at least one
other active sensor. The challenges lie in three aspects:
1) We need to identify the necessary requirements for dif-
ferent levels of self-protections; 2) We need efficient and
preferably distributed algorithms to accommodate the self-
protection demands; and 3) Self-protection itself is never
the ultimate objective in system design; whereas serving
field/object protections is. We refer these as the main ob-
jective(s) of the system. An effective integration of self-
protection with the protection of main objectives is needed.

In this paper, we for the first time present a formal study
on the self-protection problem in wireless sensor networks.
We show that, if we simply focus on enhancing the quality
of field or object covering, the sensors might not necessarily
be self-protected, which in turn makes the system vulnera-
ble. We then investigate different levels of self-protections,
and show that the problems are generally NP-complete. We
develop efficient approximation algorithms for centrally-
controlled sensors. For large sensor networks deployed in
open areas, we present fully randomized and distributed im-
plementations. Finally, we developed a two-tier architec-
ture, which seamlessly integrates self-protection with the
main objectives of the sensor network. Extensive sim-
ulations are conducted to illustrate the necessity of self-
protection and the performance of our algorithms.

The reminder of this paper is organized as follows: We
discuss the related work in Section 2. The self-protection
problem is formally presented in Section 3. In Section 4, we
consider a centralized scenario and discuss its complexity;
we also show effective approximations. Section 5 extends
the study to an distributed environment. In section 6, we de-
scribe a two-tier architecture to integrate the self-protection
and the main protection objectives. Section 7 offer simu-
lation results that verify the effectiveness and efficiency of

our algorithms. We conclude our paper in Section 8.

2 Related Work
Wireless sensor networks have received a lot of attention

recently due to its unique capabilities and the wide spectrum
of applications. A general overview can be found in [1].

In many sensor network applications, providing desired
field coverage or object protection is a key design objec-
tive. A typical coverage criterion is that every point of the
field should be k-covered, which is studied in [13]. The
k-coverage problem is further examined in [7], which pro-
poses a sleeping/active schedule to minimize energy con-
sumption. In [8], barrier coverage is considered, where the
sensors can be used as barriers of, say, international borders.
The problem is formulated as a k-multi-path problem and
solved optimally if the sensors are centralized controlled.
Distributed algorithms is also discussed in their work. Cov-
erage of individual objects is studied in [2], which shows
that the problem is NP-complete and heuristics are then de-
veloped. Other related works include variable-quality of
coverage [4]. Besides, practical surveillance systems are
also under active development; see for example [5].

A closely related and yet opposite research direction is to
find breach paths in the sensor protected area. A representa-
tive example is the maximal breach path [10], as described
in the introduction. The maximal breach path is an indica-
tion of the quality that the area is protected. It is followed
by exposure paths [14] that focuses on the paths with the
least and most expected coverage.

Our work is motivated by these studies on quality cov-
erage. However, to the best of our knowledge, the above
studies do not address the possible weakness of the sensors
themselves. Our self-protection does not conflict with these
protection objectives; it can be viewed as a complementary
new metric for the quality of coverage/protection. This met-
ric is important because without protected sensors, quality
coverage/protection for others can hardly be achieved.

3 Self-Protection: The Problem
We formulate the sensor network as a graph G(V,E). V

represents the set of sensor nodes, and E is the set of di-
rected links, (u, v), where nodes u, v ∈ V and v is in the
sensing range of u. We use |V | and |E| to denote the num-
ber of nodes and the number of links, respectively. A sensor
is called active, if it can carry out protections currently; oth-
erwise it is called a sleeping sensor.

Definition 1 A sensor network is k-self-protected if all sen-
sors (active or sleeping) are covered by at least k−1 active
sensors.

In this paper, we focus on the 2-self-protection only;
yet the techniques described can be extended to k-self-
protection. In the rest, self-protection simply refers to the



2-self-protection, and we will point out the techniques for
generalization whenever necessary.

4 Centralized Scenarios

We first consider the scenario where the sensors can be
centralized controlled. This is often achievable in small-
scale sensor networks. As energy consumption is a major
concern in sensor networks, we use the following measures:

Definition 2 A Minimum Self-Protection is a self-
protection for the senor network, where the number of
active nodes is minimized.

We prove that both the minimum self-protection prob-
lem is NP-complete. We then present an approximation al-
gorithm for the minimum protection. We have developed
other measurements; for details, we refer to [15].

Theorem 1 Finding minimum self-protection is NP-
complete.

Proof It is easy to see that the decision problem of validat-
ing a given self-protection is solvable in polynomial time.
Therefore, the minimum self-protection is in NP class. To
show this problem is NP-hard, we reduce the Minimum Set
Cover to it; the former is known to be NP-complete [3].

Given a set cover instance (U,C); U = u1, u2, . . . , un is
the universe of the elements and C = c1, c2, . . . , cm is the
family of the subsets of U , construct network G = (V, E),
where each node v ∈ V corresponds to an element of U or
an element of C. Thus we have |V | = |U |+ |C|. E consists
of two parts: 1) Make full connection of nodes representing
the elements from C; 2) For each node v ∈ V , representing
ui ∈ U , 1 ≤ i ≤ n, connect v with the node w ∈ V ,
representing cj ∈ C, 1 ≤ j ≤ m where ui ∈ cj .

We next show that by finding a minimum self-protection,
P, in G, we can find a minimum set cover for (U,C) in poly-
nomial time. For each node v in P representing an element
ui, delete v and change it to w, which represents the sub-
set cj containing this single element ui. The resulting pro-
tection is still a minimum self-protection with no isolating
node, and this operation is polynomial. It is easy to see that
the resulting nodes representing cj are indeed a minimum
set cover, because if there is another set cover with fewer
sets, when mapping back to G, we can find a self-protection
with fewer nodes, which contradicts to our assumption that
P is a minimum self-protection.

The minimum self-protection problem can be formulated
as a constrained dominating set problem, where the degree
of each dominating node must be greater than one. The
subgraph formed by the dominating nodes does not need

to be connected, however; only isolating nodes are prohib-
ited1. We then show that an approximation algorithm exists
for minimum self-protection through minimum dominating
set problem; the cost of the self-protection is the number of
sensors selected to be active.

Lemma 2 The cost of the minimum self-protection is at
most twice of the cost of the minimum dominating set [3].
And this is also a lower bound.

Proof A dominating set is a set of node where all remain-
ing nodes in the network will connected to at least one node
in the dominating set. It is easy to see that a minimum self-
protection is a dominating set. We now prove, by contradic-
tion, that the cost of this minimum dominating set is at least
half of the cost of minimum self-protection.

If the minimum dominating set contains fewer nodes
than half of the minimum self-protection, then we add the
same number of nodes adjacent to the nodes in this mini-
mum dominating set. The resulting set of nodes is clearly
a minimum self-protection. This contradict to that the cost
of the protection is minimum. This bound is also a lower
bound since the minimum dominating set can be an inde-
pendent set, e.g., the network is a straight line.

Theorem 3 A 2(1 + log|V |) approximation algorithm ex-
ists for minimum self protection.

Proof A (1 + log|V |) approximation algorithm for mini-
mum dominating set is given in [6]. Since the cost of min-
imum self protection will not be less than minimum domi-
nating set problem, then by doubling this, we will have an
easy 2(1 + log|V |) approximation algorithm.

The centralized algorithms are suitable for small-scale
sensor networks, where all the sensors can be easily con-
trolled through a central unit. For example, the video sen-
sor monitoring systems in museums, where the number of
art collections to be protected is very limited.

5 Distributed Scenarios
In a large sensor network, each sensor needs to make de-

cisions based on limited information. In this section, we
present two distributed approaches for self-protection, Pre-
scheduled Independent Activation (PIA) and Neighbor Co-
operative Self-Protection (NC). In PIA, an activation sched-
ule is pre-defined and each sensor follows this schedule
without knowing the behavior of other sensors. In NC, sen-
sors negotiate activation schedules with each other in a dis-
tributed manner. In both PIA and NC, while maintaining
qualified protection, sensors need to minimize and balance
the energy consumption. We study the relationship between

1In this paper, we assume there is a mechanism that once an abnormal
event is found, the sensor network will notify the responsible parties.



the quality of the self-protection with some key parameters
of the system. Let R be the sensing range and l be the life
time of a single sensor in full activation. We assume the
sensors are uniformly distributed with density d.

5.1 Two Randomized Algorithms for PIA

In the centralized scenario, the sensor network can find
a set of sensors so that all the sensors are protected. In the
distributed scenario, this deterministic allocation can be dif-
ficult to achieve with no global information. We thus adopt
the following probabilistic definition for self-protection:

Definition 3 Given user defined confidence parameter δ ∈
(0, 1), a protection is said to be δ-self-protected if in any
given area, the probability that the sensors in this area are
not protected is less than δ.

This definition is an extension for our self-protection in
the probabilistic point of view. It can be extended to δ-k-
self-protection where the probability that a sensor is not k-
self-protected is less than δ.

In PIA, a timer and an activation probability p are built
in each sensor. When the timer expires, the sensors acti-
vate itself with probability p and reset the timer. The key
parameter a sensor needs to set for PIA is p, given the user
required δ and the network setting. We now discuss two ran-
domized algorithms: in the first, a sensor reactively links to
another active sensor after activation; in the second, a sen-
sor pro-actively decides its partner before activation.

Total Random Activation: Each sensor independently
makes decisions to activate itself with probability p. After
activation, the sensor will search within its sensing range of
other active sensors, and connect them as partners. If there
is no other active sensor in its neighborhood, the sensor goes
back to sleep.

To determine the activation probability p, we assume the
sensors are on a unit size mesh where the distance between
each neighboring sensor is 1√

d
and R > 1√

d
. In our simula-

tion, we relax this assumption and show similar results hold
for random uniform distribution.

Theorem 4 The sensor network is δ-self-protected if p >
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2d .

Proof Let Yi be a random variable where Yi = 1 if sen-
sor i is activated and Yi = 0 otherwise. Let S denote
the set of sensors in a circle with radius r = 1

2R. If
any sensor that falls into this circle is active, all sensors
in this circle is covered; see Fig. 2. Define Y where
Y =

∑
i∈S Yi. The total number of sensors in this circle

is at least n = 1
2R2d − c, where c is a constant, as ap-

proximated by the inner square of this circle; see Fig. 2.
We omit c as it can be compensated by a small adjustment

    R

    r

R

Figure 2. Outside circle has radius R; inside circle has
radius r = R

2
. Any sensor activated in the inside circle

will protect all sensors within the this circle. The number
of sensors is at least equal to the sensors in the inner box.

in the probability. Clearly, we have E[Y ] = 1
2R2dp. To

construct a self-protection, at least 2 sensors need to be ac-
tivated in this circle, i.e., we need to find Pr[Y < 2]. Since
each sensor makes activation independently, using Cher-
noff’s inequality [11], we have Pr[Y < 2] = Pr[Y <

2
E[Y ]E[Y ]] < e−(1− 2

E[Y ] )
2 E[Y ]

2 < δ. By solving the last

inequality, we have p >
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2d . The the-
orem follows as the circle is arbitrarily chosen.

Since this bound is a lower bound, while provides guar-
antee for δ-protection, in practice it may activate more sen-
sors than necessary. It, however, gives us important infor-
mation of the relations between different parameters. Obvi-
ously, the activation probability p is inversely proportional
to sensing range R2 and density d, implying that the sensing
range has a significant impact on p. The user confident level
is easier to boost, as p ∝ O(ln 1

δ ). In fact, from probability
theory, repeating the sampling O(log k) times will improve
δ to δ

k . It is worth noting that, given a certain density d and
sensing range R, it is possible that we can not achieve a cer-
tain level of self-protection at all; if the sensor network is
too sparse. Therefore, to achieve a quality protection, we
may have to sacrifice the cost of deploying more sensors.
This is formally stated in Corollary 5.

Corollary 5 To achieve the protection ratio δ, the minimum

density of the network is d >
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2 .

Proof Directly from
2
(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

R2d < p < 1.

We are also interested in the life time of the system which
can be estimated as L = l

p if the active sensor sets are peri-
odically alternated in a random fashion. Corollary 6 implies
that the life time of the network is proportional to the sensor
density. This is consistent with the experimental observa-
tions in [16].



Corollary 6 To achieve the protection ratio δ and the ex-
pected life time L, the minimum density of the sensor net-

work d >
2L

(
2+ln 1

δ +
√

ln 1
δ (4+ln 1

δ )
)

lR2 .

Paired Random Activation: The sensors will first arbitrar-
ily choose one of their neighbors to form pairs. Sensor pairs
will activate themselves with certain probability, which, by
re-using notations, is also denoted as p. We consider this
scheme as opposed to Total Random Activation, where the
sensors may find no other active sensors in its surroundings
after activation. We have the following observation.

Theorem 7 The sensor network is δ-self-protected if p >
2(1+ln 1

δ +
√

ln 1
δ (1+ln 1

δ ))

R2d .

The proof technique is similar to Theorem 4. For space
consideration, we omit the proof and refer to [15].

We compare Paired Random Activation and Total Ran-
dom Activation by using the activation bounds in Theorem
4 and 7. Although these bounds are not tight, they give im-
portant indication of the performance of the two algorithms.
We observe that, when δ is small, the number of sensors
required to achieve δ-self-protection in Paired Random is
much larger than Total Random. For such small δ, we need
a more refined protection and high activation probability for
both algorithms. Consequently, even if sensors make activa-
tion decision individually in Total Random, the probability
that they can not find other active sensors in their neighbor-
hood is relatively small if a large number of sensors are acti-
vated; Paired Random, however, might activate more sensor
than needed in this case. On the other hand, when δ is large,
the two algorithms perform closely. The drawback of Total
Random is that some sensors might not find protection after
activation in this case. While such analysis is based on a
mesh sensor network, our simulations results in Section 7
validate the conclusions for uniformly distributed sensors.

5.2 Neighbor Cooperative Self-Protection

In PIA, to accurately estimate the activation probability
p, the density of the sensor network should be known. This,
however, can not be easily obtained if the sensors are de-
ployed arbitrarily, e.g., from an aircraft. We now present
another distributed self-protection, where sensors work co-
operatively to provide necessary protections without know-
ing the density information.

There have been many studies on neighborhood coop-
eration for sensor networks, e.g., Geographical Adaptive
Fidelity (GAF) [16] and Probing Environment and Adap-
tive Sleeping (PEAS) [17]. In these studies, sensors oper-
ate among different states. Our Neighborhood Cooperative
(NC) self-protection is motivated by the above studies. The
key difference is that, unlike these schemes where only one

Sleeping

Discovery Waiting

Active

Figure 3. State transition diagram.

active sensor is needed, in our setting, sensors not only need
to decide whether they should keep active, but also have to
wait for other sensors if appropriate.

The NC algorithm has four states, namely, active, dis-
covery, waiting, and sleeping; See Fig. 3 for the state tran-
sition diagram. In the sleeping state, the sensor is in the
power saving mode for a period of sleep time dur. After
the timer expires, the sensor changes to the discovery state
and sends out probe messages to its neighbors. The active
neighbor sensors will reply with rejections, which includes
their remaining active time. If the sensor receives more than
rNum rejections, it will return to the sleeping state and set
sleep time dur to the smallest remaining active time it re-
ceives. Otherwise, it will change to the waiting state, and
periodically sends out probe messages. If it receives another
probe message, the two sensors will form a pair and activate
themselves. The pair sensors will stay active for duration
of work time dur. The work time dur and sleep time dur
are chosen uniformly from [0, MAX WORK TIME] and
[0, MAX SLEEP TIME].

Fig. 4 gives an illustrative example of the state transition
for a four-sensor network. In Fig. 4 (a), sensor 2 and 3 are
in the active states, protecting each other and surrounding
sleeping sensors. In Fig. 4 (b), two sleeping sensors 1 and 4
wake up and send discovery messages to their neighbors. In
this example rNum = 2; so sensor 1 switches to the wait-
ing state and sensor 4 returns to sleep after receiving two
rejections. Sensor 4 sets the sleeping time to the remaining
working time for the active sensors. In Fig. 4 (c), Sensor
0 changes to waiting state, and send probe messages to the
neighbors. In Fig. 4 (d), the two waiting sensors 0 and 1
become active. The two former active sensors 2 and 3 go to
sleep as their working timers expire, and the sleeping sensor
4 wake up to the discovery state.

The basic design philology of NC is to use rNum to
control the quality of the self-protection and the sleep/work
schedules to balance the energy consumption. Its perfor-
mance will be evaluated through simulations in Section 7.
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Figure 4. (a) A snapshot of the sensor network; (b) Sensor 1 and 4 are in discovery state; (c) Sensor 4 returns sleep after receiving
two rejections (rNum = 2); Sensor 1 switch to waiting state; (d) Sensor 0 and 1 change to active state and sensor 4 wake up again.

6 Binding with the Main Objectives
As we mentioned earlier, self-protection improves the

robustness of the network, but itself is never the single ob-
jective in the system design. It serves as a complement to
such main objective(s) as monitoring the field or valuable
objects. Thus, an effective integration of self-protection
with these main protection objective is a critical issue.

We suggest a two-tier architecture, in which the sensor
network will first calculate the set of sensors that can pro-
vide self-protection. All the sensors will then participate in
the operations for the main objectives. The set of sensors to
stay in active is the union of that for self-protection and for
the main objectives. An interface is provided between the
two tiers for communications about their respective energy
consumption. Each tier then independently optimize their
coverage and their energy consumption.

We adopt this architecture for its simplicity and adapt-
ability to different coverage/protection scenarios (i.e., main
objectives). To minimize energy consumption, we adap-
tively adjust the energy consumptions based on the informa-
tion exchanged between the two tiers. We omit the details
for simplicity and refer to [15] for further discussion.

7 Performance Evaluation
Since we have obtained bounded approximation algo-

rithms for the centralized scenario and the algorithm is usu-
ally applied to small set of sensors; we thus focus on the
evaluation of the distributed scenario.

In our simulation, unless otherwise specified, we uni-
formly deploy 500 sensors into a square field of 40m ×
40m. The sensing range is set to 3m for each sensor. Each
point in our figure represents an average of 50 random and
independent experiments.

The Necessity of Self-Protection: As an additional level
of protection, self protection has additional demands from
the network, such as denser sensor deployment and more
energy consumption. It is therefore important to justify its
necessity. In the first set of experiment, we use the maximal
breach path [10], to show that the protection quality can be
poor without self-protection.

The deployment of sensors should minimize the weight
of the maximal breach path. To attack this protection, we
selectively dismantle a few sensors that are not protected
by others. In our implementation, we try to maximize the
profit. We randomly selects a subset of sensors and calcu-
late the resultant maximal breach path. This repeats k = 8
times and we remove the best subset of sensors, and com-
pare the maximal breach path before and after the removal.

We set the activation probability p = 0.1. In expecta-
tion, a total of 50 sensors will be active. We attack isolated
sensors only and the attack ratio is set from 0% to 30%.
From Fig. 5 we see that by attacking a few isolated sensors,
the weight of the breach path is increased substantially. For
example, in our experiment, if 25% of the isolated sensors,
(5.86 on average, i.e., 1.17% of the total nodes or 10% of
the active nodes) are attacked, the maximal breach path will
increase by 39.4%. This degradation is remarkable; also
note that a simple interference would achieve the same re-
sult of physical removal [12]. We thus conclude that self-
protection is of great importance.

Performance of PIA: We study the effectiveness of the
two pre-scheduled activation algorithms (Total Random and
Paired Random) in Fig. 6. The activation probability for To-
tal Random is from 5% to 40%; The activation probability
for Paired Random is halved, so that the expected number of
active sensors is the same as that in Total Random. We can
see that Total Random performs worse than Paired Random
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if p is small, because, after activation, sensors might not find
other active sensors in their neighborhood. When p is high,
the number of sensors unprotected by Total Random is less
than Paired Random. One reason is that in Paired Random,
sensors need to find a pair sensor before activation; not all
sensors, however, will succeed if all the neighbor sensors
are paired by other sensors in advance. In addition, Total
Random potentially enables better distribution of the active
sensors, which will contribute to its protection capability.

We next evaluate the parameters that affect self-
protection quality. In Fig. 7, we consider the change of the
maximal breach paths before and after an attack for Total
Random. In particular, we are interested in the enlargement
ratio of the weight of the maximal breach path. The base
line corresponds to the default network setting. Obviously,
the higher the activation probability, the smaller the enlarge-
ment of the weight of the maximal breach path. To under-
stand the impact of the sensor density and sensing range,
we also show the results corresponding to 500 sensors with
sensing range of 4m, and 670 sensors with sensing range
3m, i.e., a respective increase of 1

3 for the sensing range and
density. We see that the sensor network with the default set-
ting are most vulnerable to the attack and the enlargement
is the highest. It follows our intuition that a denser deploy-
ment, or equivalently, larger sensing range, provides better
protection. Note that the coverage of each sensor is a square
function of the sensing range; hence, an increase in sensing
range has a higher impact (less enlargement ratio). These
observations are consistent with our analysis in Section 5.

Performance of Neighbor Cooperation: In neighborhood
cooperation, we consider the energy consumption of send-
ing, receiving, idling and sensing. We neglect the cost of
sleeping, which is generally small in practice. We adopt
the parameters in [9] as 20nAh (transmission) and 8nAh
(receiving). The energy consumption for sensing is re-
markably smaller than transmission, 20:1.447. We assume
packet transmission has a rate of 6 per idling time. There-

fore, according to [9] we set our costs, transmission : re-
ceiving : idling : sensing to 15:6:6:1. Similar energy con-
sumption ratio is also observed in [16]. We assume that the
sensors sensing the environment once per second. The total
energy for a sensor is set to 80mAh and the duration of our
experiment is 1500 seconds.

We compare the difference between PIA and NC with
different parameters. For PIA, we set the interval time to
20 seconds, i.e., each sensor will randomly activate itself
with probability p every 20 seconds. For NC, to have a
similar effect, the ratio work time dur : (sleep time dur
+ work time dur) is set to p. In our setting, p = 10%,
work time dur = 10 seconds, and sleep time dur = 90 sec-
onds. rNum is set to 2 and 5, respectively. The initial
protection ratio is set to be the same.

The comparison is shown in Fig. 8. In PIA, the protec-
tion quality is relative stable over time. In NC, the protec-
tion is improved over time. This is because in PIA, each
time the network rebuilds the active sensor set, the protec-
tion capability remains unchanged. In NC, however, the
sensors will know the next sleep time from other active
sensors and awake at that point of time; This gradually in-
creases the number of sensors needed for protection. Since
the process stops according to the number of rejection mes-
sages, rNum acts an indicator for the system to discourage
(or encourage) future active sensors. Clearly, we can boost
the protection capability of PIA by increasing p. As argued
in our analysis before, this depends on the deployment of
the sensor networks, which may not be easily controlled.

The corresponding energy consumption can be seen in
Fig. 9. PIA is more energy effective, as it does not require
extra message exchanges, a major energy consumption for
sensor networks. In addition, the number of active nodes
in use is less than NC as time progresses. We thus argue
that PIA is beneficial if the sensor network is well planed
so that we can pre-estimate the activation probability more
accurately, and NC is better for dynamic environments.
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We next consider the impact of sensor distributions. In
Fig. 10, we introduce a biased distribution, where 1

4 of the
sensors are uniformly distributed in half of the area. In other
words, one part of the network is denser and the other part
is sparser. We see that NC performs worse in this biased
distribution than in uniform distribution for there are fewer
sensors in the sparse area. PIA, however, shows an oppo-
site trend, suggesting that PIA benefit more from the biased
network, in particular, the dense part.

8 Conclusion and Future Work

In this paper, we pointed out that the sensors themselves
can be the weakness in a wireless sensor network for pro-
tection applications. We for the first time addressed and
presented a formally study of the self-protection problems.
We showed the complexity of the problem, and developed
efficient algorithms under different networks situations.

In our study, we consider the main protection objectives
as a black box. We however conjecture that some main
protection objects might be overlapping with and thus as-
sist self-protection while others might introduce conflicts.
Thus, an interesting future work is to joint optimize the self-
protection and other protection objectives.
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