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Abstract—Smart contract technologies can be used to implement almost arbitrary business logic. They can revolutionize many
businesses such as payments, insurance, and crowdfunding. The resulting birth of decentralized finance (DeFi) has gained significant
momentum. Smart contracts and DeFi are now attractive targets for attacks. An important research question is how to protect deployed
smart contracts and DeFi. Smart contracts cannot be modified once deployed, namely vulnerabilities cannot be fixed by patching. In
this case, vulnerabilities in deployed contracts and DeFi might cause devastating consequences. In this paper, we put forward
SolSaviour, a framework for protecting deployed smart contracts and DeFi. The core of SolSaviour is to build a smart contract
protection mechanism based on democratic voting using a distributed trusted execution environment (TEE) cluster. Once a vulnerability
in deployed contracts or DeFi is found, SolSaviour can destroy the defective contract and redeploy a patched contract via the
distributed TEE cluster. Moreover, SolSaviour can migrate the funds and state variables from the destroyed contract to the patched
one. Our experiment results show that SolSaviour can protect smart contracts and complex DeFi protocols with feasible overhead.

Index Terms—smart contract, decentralized finance (DeFi), trusted execution environment (TEE), blockchain, DeFi security.
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1 INTRODUCTION

A S the global market size of smart contract grows year
by year, the security of smart contracts has raised huge

concerns. Smart contracts and decentralized finance (DeFi)
operate on a distributed blockchain environment. Their
deployment and execution rely on the distributed consensus
of the blockchain. Due to the tamper-proof feature of the
blockchain, contracts and DeFi cannot be modified once de-
ployed. Therefore, we cannot fix a deployed smart contract
in the same way as patching a traditional application when
the deployed contract has a vulnerability.

Vulnerabilities in deployed smart contracts and DeFi
have caused significant losses in recent years due to the
lack of proper protection methods. One of the most noto-
rious incidents was the DAO hack [1], in which attackers
exploited the reentrancy vulnerability in the DAO contract
to steal ethers wantonly. During this attack, honest contract
users can do nothing but to withdraw ethers to secure ac-
counts as fast as possible. The DAO contract lost around 3.6
million ethers in this attack. In addition, with the increased
popularity of DeFi applications, new types of attacks are
appearing. In April 2022, the Fei protocol suffered from a
reentrancy attack. The attacker discovered a reentrancy bug
in Fei’s collateral mechanism, meaning that it was possible
to use the fallback function to release assets locked in
the Fei contract when the loan arrived, and thus steal assets
inside Fei. This attack caused around 28,380 ETH loss [2].
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Spurred by these attacks, the community started to
conduct research on detecting vulnerabilities before de-
ployment. Many software analysis techniques are explored,
including but not limited to symbolic execution [3], formal
verification [4], static analysis [5], [6], dynamic analysis [7],
and fuzzing testing [8]. However, these detection methods
still have certain limitations. They cover limited types of
vulnerabilities, have restricted detection efficiency (i.e., sen-
sitive to some vulnerabilities, but insensitive to others), and
suffer from possible false negative cases. We point out that
for high-net-worth smart contracts, pre-deployment detec-
tion methods are not fully effective. It is possible that vul-
nerabilities may be discovered after deployment. Therefore,
how to protect deployed smart contracts and DeFi remains
a crucial problem.

Proxy pattern is a promising method to safeguard de-
ployed smart contracts and DeFi. Using proxy pattern,
a smart contract is separated into a proxy contract and
an implementation contract. The proxy contract stores the
address of implementation contract. Function calls to the
proxy contract are forwarded to the implementation using
delegatecall opcode, which executes the code of imple-
mentation contract with the data inside the proxy contract. If
a vulnerability is discovered in the implementation contract,
the proxy pattern allows users to deploy a new patched
implementation contract to replace the defective one. How-
ever, the proxy pattern still has some limitations, such as the
proxy selector clashing problem, which can be exploited by
attackers to steal assets inside contracts. In August 2022, a
DeFi protocol Nomad was exploited and $190M assets were
stolen [9]. Nomad bridge was deployed in proxy pattern
and the vulnerability was introduced in an upgrade. In this
case, though proxy pattern provides a possible solution to
fix vulnerabilities in deployed smart contracts, it is still lack
of the protection of inside assets. However, the asset in smart
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contracts and DeFi is, to some extent, the most important
thing to protect.

In this paper, we focus on protecting deployed smart
contracts and DeFi from external attacks or internal bugs,
with a particular emphasis on securing inside assets. Con-
sidering that most high-net-worth contracts are multi-user
scenarios, we implement the management of contracts in
a democratic voting way. We propose the voteDestruct
mechanism to allow contract participants (i.e., stakeholders)
to vote on the contract’s future. They can vote to lock,
unlock, and destroy a potentially defective contract. The
number of ethers (i.e., stake) they have deposited in the
contract determines the weight of their votes. The more
stake a stakeholder controls, the more weight its vote has.
We also propose a distributed trusted execution environ-
ment (TEE) cluster to enable the management of contracts,
such as update, destruction, and redeployment. The TEE
cluster also takes charge of temporary asset escrow after
destroying a defective smart contract and stake migration.
By transferring the assets and state variables from defective
contract to patched contract, TEE cluster protects the assets
and guarantees the consistency of the contract state. For
newly-deployed smart contracts, TEE cluster ensures that
the data and internal stake distribution remains unchanged
through state migration. For patched smart contracts, the
TEE cluster deploys it and conducts the state migration to
transfer all internal assets to the newly-deployed contract.

We achieve decentralized control of smart contracts and
DeFi by multiple parties through a secure and principled
combination of blockchain and trusted hardware. Assuming
the integrity of the blockchain, users do not need to trust the
validity, persistence, confidentiality, or correctness of smart
contract creators, miners, or TEE nodes. SolSaviour thus
can provide self-sustaining service even when some miners,
contract creators, contract participants, or TEE nodes are
unavailable.

In our preliminary conference version of this paper [10],
we first present SolSaviour for repairing and recovering a
defective smart contract. However, SolSaviour still has some
drawbacks, such as external calls not being authenticated
by the TEE cluster and no valid verification for generated
patches. In this paper, we overcome these shortcomings and
extend our work to the protection of DeFi. Some modules
are added including a policy-based exception detector, an
identity authentication module, and a patch tester. Com-
plete API via which clients can invoke SolSaviour is pro-
vided. We also explore a method for redeploying a patched
contract without TEE asset escrow. The main contributions
of this paper are summarized as follow:

• We propose a voteDestruct mechanism to enable
democratic voting on deployed smart contracts and
DeFi, allowing stakeholders to make fair future deci-
sions.

• We propose a distributed TEE cluster that allows con-
tract stakeholders to replace the defective contract
with a patched contract in a trusted manner. Our
proposed TEE cluster can take charge of asset escrow
and contract state migration. It also can verify the
identity of message calls, preserve trusted execution
of contract invocation, patching, and deployment.

We also provide complete API of the TEE cluster.
• We give a thorough security analysis of SolSaviour

in three aspects: balance security, correctness, and
fairness.

• We collect smart contracts and DeFi protocols that
were attacked in the past and use them to evaluate
the effectiveness and performance of SolSaviour. Ex-
periment results show that SolSaviour can effectively
mitigate the loss caused by smart contract vulnerabil-
ities with little overhead.

The remainder of this paper is organized as follows.
Section 2 gives some background knowledge of this paper.
In Section 3, we introduce the overview, workflow, building
blocks, and API of SolSaviour. The detailed implementa-
tion is presented in Section 4. We analyze the security of
SolSaviour in Section 5. We discuss potential improvement
of SolSaviour in 6. The effectiveness and performance of
SolSaviour are evaluated in Section 7. We present related
work in Section 8 and conclude our work in Section 9.

2 BACKGROUND

2.1 Smart Contract and DeFi
Smart Contract. A smart contract is a distributed computer
program that runs in a blockchain environment. Supported
by the underlying blockchain, smart contracts can store
arbitrary state and perform arbitrary computation. The de-
ployment and invocation of a smart contract is achieved
by sending transactions to the blockchain. Message call
transactions that conform to the internal logic of the contract
are executed by miners and later included in the new blocks.

DeFi. DeFi applications are essentially smart contracts
running on the blockchain. They can provide financial in-
struments that do not rely on third-party intermediaries,
such as exchanges and banks. DeFi allows users to carry
out financial services such as lending, investing in deriva-
tives, and insuring. Users can store their money in a secure
digital wallet and interact with DeFi through message call
transactions. In DeFi, transactions are not executed through
traditional centralized exchanges, but between participants
and mediated via smart contracts. Since a DeFi application
typically consists of multiple contracts, the risk of smart
contract errors increases.

Internal State. The internal state indicates the values
of contract variables and the stake distribution inside the
contract. While migrating and upgrading contracts, the
consistency of contract internal state should be maintained.
People could recover the value of variables inside a smart
contract. The getter function can be used to acquire values
of contract variables. The stake distribution can be recovered
in a similar way as long as the contract explicitly define vari-
ables to store stake distribution. However, it is non-trivial
to migrate the stake distribution from defective contracts
to patched contracts, which requires actual transactions of
funds. In this case, assets are transferred from defective
contract account to patched contract account, in accordance
with the stake distribution inside defective contract.

2.2 Defining Defects
Smart contracts and DeFi are subject to a wide variety
of defects. Defective smart contracts can be divided into
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two categories: exploitable smart contracts and unexpected
smart contacts (i.e., may have unexpected internal states).
For the first type, either there are some problems within the
contract implementation that create bugs (e.g., reentrancy
vulnerability), or an attacker can exploit the contract internal
logic to launch attacks (e.g., front running attack). Attackers
can gain benefits that do not belong to themselves by
exploiting these defects. For the second type, these defects
may cause a smart contract to an unexpected state (e.g., a
locked state). For example, a jackpot may never succeed
because of a strictly equal operation [11]. Regardless of the
defect, effective protection measures are needed to prevent
potential asset loss.

2.3 Contract Protection
Generally, we define the defending methods of smart con-
tracts and DeFi as repairing and recovering techniques. Re-
pairing technique can alleviate the bugs in a smart contract,
and recovering technique can save a contract from serious
states.

Currently, almost all contract remediation techniques
focus on repairing smart contracts before deployment. Some
efforts identify vulnerabilities by statically analyzing the
contract code and generating the appropriate patches. Other
efforts, such as runtime validation, determine if a deployed
contract is vulnerable and generating appropriate patches.
The two efforts are similar in their inability to protect
deployed smart contracts and DeFi. In addition, they cannot
fix vulnerabilities that have not been detected. Nor can they
protect the assets in deployed smart contracts.

One possible solution for protecting deployed contracts
and DeFi is the proxy pattern, where the smart contract
is separated into a proxy contract and a implementation
contract. Once an error is exposed, a new implementation
contract is deployed to replace the defective one. However,
this approach is subject to the requirements of a trusted
contract owner. That is, the contract developer sets its own
address as a super user for future maintenance, which is a
strong trust assumption.

2.4 Distributed TEE Cluster
TEE is a hardware-level trusted computing technology in
which the CPU divides a portion of the memory area to
ensure that internally loaded code and data are protected
in terms of integrity and confidentiality. Integrity ensures
that software outside the TEE cannot tamper with the in-
side code and data without authorization. Confidentiality
implies that entities outside the TEE cannot acquire the
information inside the TEE without permission. In Intel Soft-
ware Protection Extensions (Intel SGX), these two attributes
are achieved by hardware-level memory encryption, which
isolates application-specific code and data in memory. TEE
execution results can be verified in the form of remote
attestation.

Considering the availability and confidentiality problem
of TEE, we propose distributed TEE cluster. Multiple TEE
nodes work together in a distributed environment can avoid
the service termination problem. We also propose a dis-
tributed signature scheme to avoid storing private keys in a
single TEE node.
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Figure 1. The architecture of SolSaviour. Contract stakeholders can
invoke the TEE cluster via SolSaviour API to generate message call
transactions to instruct the voteDestruct-enabled contract.

3 SOLSAVIOUR

3.1 What is SolSaviour

The architecture of SolSaviour is depicted in Fig. 1. Sol-
Saviour consists of two core parts: a voteDestruct mecha-
nism and a distributed TEE cluster. The voteDestruct mech-
anism is embedded in smart contracts. It allows smart con-
tracts to be destroyed in the voting manner. TEE cluster can
deploy a patched contract onto the blockchain and migrate
all assets and stake distribution. Once a patched contract is
deployed, stakeholders can continue to execute the contract
without the vulnerability.

3.2 Workflow

First of all, stakeholders should prepare a TEE cluster for
protecting smart contracts and DeFi. Contract stakeholders
collect a cluster of SGX-capable computers and launch en-
claves into them. Then, these TEE nodes corporate to estab-
lish a distributed TEE cluster following the bootstrapping
process. After constructing the TEE cluster, users can invoke
it to deploy a voteDestruct-enabled smart contract.

During the contract execution, an unknown bug may
be disclosed. Then, stakeholders can check whether this
exposed bug is a false positive. If not, they can invoke
SolSaviour API to protect the deployed contract as shown
in Fig. 2. The detailed workflow is summarized below:

Phase 1: Destroying the Defective Contract.
1 Once identified a bug, stakeholders invoke the TEE

cluster to lock the defective contract to prevent further
attacks.

2 Stakeholders invoke the TEE cluster to extract the
internal state of the defective smart contract for future state
migration. Specifically, it stores the values of state variables
and the stake distribution at the time that the contract is
locked.

3 Stakeholders can vote to destroy the defective smart
contract via a cumulative voting way. They simply invoke
the vote() function provided by the voteDestruct mecha-
nism. After voting, stakeholders can invoke the TEE cluster
to destroy the defective contract.

Phase 2: Preparing a Patched Contract Offline.
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Figure 2. The workflow of SolSaviour. In Phase 1, contract stakeholders can destroy a defective contract via democratic voting. In Phase 2, a
patched contract is generated and tested. In Phase 3, patched contract is deployed to replace the defective one.

In this phase, stakeholders generate and test patches for
the defective contract. Stakeholders can prepare a patch for
the located vulnerability and integrate it with the original
contract. After that, stakeholders leverage the patch tester to
validate whether the vulnerability is resolved and whether
the functionalities of the patched contract remain the same.
Then, contract stakeholders can upload a patched contract
into the TEE cluster.

Phase 3: Redeploying the Patched Contract.
1 Stakeholders invoke the TEE cluster to deploy the

patched contract prepared in Phase 2. The TEE cluster gen-
erates a contract creation transaction to deploy the patched
contract.

2 Stakeholders migrate the previously-extracted state
as well as assets into the patched contract via TEE clus-
ter. After destroying the defective smart contract, all in-
side assets are temporarily held by the TEE cluster. The
temporarily-held assets are transferred into the deployed
patched contract according to the stake distribution and
previously-extracted values are written into the state vari-
ables of the newly-deployed patched contract.

3.3 Building Blocks
3.3.1 Exception Detector
For the detection of potential attacks in SolSaviour-protected
smart contracts and DeFi, we propose a policy-based ex-
ception detector. Two exception detection strategies have
been designed for SolSaviour. The first one is to alert when
a contract withdrawal exceeds a certain percentage of the
contract’s total assets within a certain period of time. The

exact parameters can be fine-tuned according to the security
requirements. The second one is to alert when a contract
withdrawal is made to an address that is not a contract
stakeholder. Warning messages are published via event
messages on the blockchain. These two strategies ensure
that stakeholders are able to quickly perceive hazards and
react when contracts are at risk of potential asset loss.

The implementation of exception detector is on the con-
tract level. The warning messages exist on the blockchain
network and are not actively communicated to the contract
stakeholders, who therefore need to implement an active
crawler to automatically and continuously monitor event
messages. This way, when an exception occurs in a mon-
itored contract, stakeholders can be aware of it and take
actions as soon as possible.

3.3.2 voteDestruct Mechanism

Currently, a typical method to destroy a contract is to have a
privileged destruction function that only specific users can
invoke. This approach is not feasible to multi-user smart
contract scenarios. For example, assets in a DeFi contract
typically belong to different users. Stakeholders of a DeFi
have the right to decide whether to destroy the smart con-
tract. In this case, we propose the voteDestruct mechanism
to enable decentralized control of smart contracts and DeFi.

In voteDestruct-enabled contracts, stakeholders can vote
on whether to destroy the smart contract and withdraw all
internal funds. The voteDestruct mechanism is based on
the contract stake distribution, which is recorded by state
variables. The more stake a stakeholder controls, the greater
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Figure 3. The state diagram of a voteDestruct-enabled smart contract.

its vote weight. Specifically, The voteDestruct is processed
in three steps. The contract first forms the stake distribution
during its execution. Then, once a vulnerability is exposed,
stakeholders can invoke the contract via TEE cluster to vote.
After that, the contract stakeholders can invoke the TEE
cluster to destroy the defective contract if the support rate
exceeds a predefined threshold.

Stake Distribution: Each depositing transaction will be
recorded. Specifically, the address of stakeholder and
amount of deposited assets are stored in a tuple.

Voting: During the voting process, the smart contract is
locked so that no external users can deposit or withdraw
assets. This ensures that the stake distribution remains con-
stant throughout the voting. Once completed, the contract
stores the percentage of stake on supporting and opposing,
respectively. Then, stakeholders can determine whether this
contract can be destroyed.

State Transition: The state transition of a voteDestruct-
enabled smart contract is depicted in Fig. 3. A smart
contract is initially in an active state. Then, an unknown
bug is discovered and the contract enters a defective state.
Stakeholders can now lock the defective contract using the
vote_initial() function. For false positive cases, they
could unlock the contract via vote_halt() function. For
true bugs, stakeholders could vote on whether to destroy
the defective contract. When the support rate exceeds the
threshold, the user can call the destroy() function to
destroy it.

Destroying: A contract can only be destroyed if the num-
ber of votes in favour of destruction exceeds the threshold.
Stakeholders can instruct the TEE cluster to invoke the
destroy function once the voting process completes.

3.3.3 TEE Cluster

Participants can monitor the blockchain for protocol devi-
ations and respond appropriately. In SolSaviour, TEE act
as the root of trust. The TEE cluster is independent of
the blockchain and can assure faithful implementation. Sol-
Saviour can provide safe destruction, redeployment, and
state migration of defective smart contracts by employing
the TEE cluster as an independent root of trust. Further-
more, the cluster architecture improves the system’s overall
failure tolerance. A single point of failure will not influence
overall availability.

1
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Algorithm 1 TEE Cluster
1: procedure BOOTSTRAPPING(σi, i ∈ [0, n− 1])
2: load σi

3: broadcast {sgx quotei,Ki}
4: verify sgx quotej
5: generate {K ,addr}
6: end procedure
7: procedure IDENTITY AUTHENTICATION
8: on receiving a message call tx
9: require(st.map(msg.sender()).st amount)

10: revert()
11: end procedure
12: procedure LOCKING DEFECTIVE CONTRACT
13: goto line 8, on receiving addr
14: SignK(tx.payload(addr, vote initial))
15: upload tx, broadcast(++nonce)
16: end procedure
17: procedure EXTRACTING INTERNAL STATE
18: goto line 8, verify tx(tx,pub1,pub2)
19: d← create(tx)
20: mapping stake dist(addr→stake amount)
21: stake dist← addr.st map getter()
22: end procedure
23: procedure DESTROYING DEFECTIVE CONTRACT
24: goto line 8, on receiving addr
25: SignK(tx.payload(addr,destroy))
26: upload tx, broadcast(++nonce)
27: end procedure
28: procedure REDEPLOYING PATCHED CONTRACT
29: goto line 8, on receiving Cp

30: SignK(tx.payload(Cp))
31: upload tx, broadcast(++nonce)
32: end procedure
33: procedure MIGRATING TO PATCHED CONTRACT
34: goto line 8
35: tx.payload(addr Cp, stake dist), go to line 15
36: values[]←stake dist[]
37: balance[c idn]←values[c idn]
38: end procedure

Figure 4. The working logic of TEE cluster. The TEE cluster receives
instructions from contract stakeholders and generates transactions to
call smart contract functions.

The working logic of distributed TEE cluster is depicted
in Fig. 4. Each enclave is denoted as σi. We use c to
represent a potentially defective smart contract and Cp to
denote a patched contract. To demonstrate the difference
between intra-TEE cluster communication and TEE cluster-
blockchain communication, we use “broadcast” to indicate
broadcasting messages inside TEE cluster and “upload” to
represent uploading transactions onto the blockchain.

Bootstrapping: Let G be an Elliptic curve group of order
q with generator (base point) G. Each TEE node Pi has
the information of (G,G, q). A TEE node Pi first chooses
a random xi from Z∗

q and computing Qi = xi ·G. Each TEE
node stores (G,G, q, x). Then, each TEE node Pi broadcasts
its generated xi to Pj for every j ∈ [n]\{j}. After receiving
xj (j ∈ [n]\{j}) from other parties, Pi locally computes
x =

∑n
l=1 xl and Q = x · G. Each party Pi locally stores Q

as the ECDSA public key.
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Signing: A TEE node Pi locally generates ki and ρi
randomly. Then, Pi broadcasts ki and ρi to Pj for every
j ∈ [n]\{j}. After receiving kj and ρj (j ∈ [n]\{j}). Each
party can locally compute k =

∑n
l=1 kl and ρ =

∑n
l=1 ρl.

Then, TEE node Pi computes τ = k · ρ and R = k · G.
The TEE node Pi can now compute R = (rx, ry) and
r = rx mod q. For a raw transaction m, node Pi generates
β = ρ · (m+ x · r) mod q. Then, Pi computes s′ = τ−1 · β
mod q and s = min(s, q − s). Finally, TEE node Pi outputs
(r, s) as the ECDSA signature of the transaction.

Identity Authentication: Identity authentication is a
crucial component in TEE cluster, which happens before
each external call. Identity authentication restricts that only
eligible stakeholders can invoke the TEE cluster. SolSaviour
needs to verify that the identity of the object initiating the
call is reliable, which reduces the likelihood of an attacker
invoking the TEE cluster for dangerous operations, such
as DoS attacks. TEE Cluster uses membership proof for
identity authentication. It first extracts the address of the
stakeholder that initiated the call, which in turn polls the
membership proof integrated with the voteDestruct mecha-
nism. Only if the membership proof is true, the TEE cluster
determines that the invoking stakeholder is valid and pro-
ceeds.

Destroying: TEE cluster allows stakeholders to lock the
defective contracts as shown in line 12-16. Once an error is
detected, the stakeholder can call the TEE cluster to lock the
contract. The TEE cluster generates a message call transac-
tion to invoke the vote_initial() function and signs it.
The signed transaction is uploaded to the blockchain and an
incremented nonce is broadcasted inside the TEE cluster.

Before destroying the defective smart contract, the TEE
cluster extracts the internal states from it as shown in line
17-22. Internal states include state variable values and the
stake distribution of stakeholders at the time of locking. The
TEE cluster can obtain internal states via getter functions
and save them locally.

After completing the voting process, stakeholders can
instruct the TEE cluster to invoke the destroy() function
as shown in line 23-27. The TEE cluster generates a signed
message call transaction destined to the address of the defec-
tive smart contract. Provided the amount of stake in favour
of destruction exceeds a specified threshold, the contract is
allowed to be destroyed.

Redeploying: Contract stakeholders first generate the
patch offline. Then, they could invoke the TEE cluster to
redeploy a patched smart contract as shown in line 28-
32. After receiving the patched contract, the TEE cluster
generates a contract creation transaction with compiled
contract as payload, uploads the signed transaction onto the
blockchain, and broadcasts an incremental nonce.

Based on the previously-extracted internal states, stake-
holders can call the TEE cluster to migrate them to the
patched contract as shown in line 33-38. For stake distribu-
tion and assets, TEE cluster generates signed message call
transactions to invoke the patched contract. In this process,
the TEE cluster ensures that states are consistent. The TEE
cluster also guarantees the atomicity of execution, i.e. any
intermediate state resulting from the call, and the need
to provide an effective rollback mechanism in the event
of a failed call, allowing the system to revert to the state

before the call, eliminating the impact of intermediate state
resulting from the call.

3.4 SolSaviour API
We summarize the API of SolSaviour in Table. 1. Contract
stakeholders can invoke the functionalities provided by
SolSaviour via these interfaces.

SolSaviour API includes 3 types: bootstrap, deployment,
and message call. In the bootstrap type, stakeholders can
invoke the new_address function to generate a new key
pair for the agreed account address utilized in the TEE
cluster. In the deployment type, there are two functions:
new_contract and patched_contract. The former one
is used to deploy a compiled new smart contract, and
the later one is used to deploy a patched contract. Both
functions return the id of the contract generation transaction
that utilized to deploy the contract.

For message call type, stakeholders can invoke them
to generate message call transactions to instruct the vot-
eDestruct mechanism. Stakeholders should provide the ad-
dress of the defective contract as inputs so that TEE cluster
know which contract should call. SolSaviour provides 3
message calls: lock, unlock, and destroy. The lock call
can invoke the vote_initial function in voteDestruct
mechanism to lock a defective smart contract, unlock can
invoke vote_halt function to unlock a falsely locked
smart contract, and destroy function can invoke the
destroy function in voteDestruct mechanism to destroy
a defective smart contract and transfer all assets to TEE
cluster. After receiving the invocation from stakeholders, the
TEE cluster passes parameters to the transaction generator
to generate a signed message call transaction, which is later
uploaded onto the blockchain.

4 IMPLEMENTATION

4.1 Destroying
Currently, we can use selfdestruct to destroy deployed
smart contracts and refund all inside assets. In SolSaviour,
we introduce the voteDestruct mechanism to better lever-
age the selfdestruct opcode. A voteDestruct-enabled
contract can only be destroyed if and only if most of the
stakeholders vote to destroy it. Fig. 5 shows a sample of
the voteDestruct mechanism. We emphasize that its im-
plementation does not require new EVM opcodes. It is
constructed based on pure Solidity language. Moreover, the
voteDestruct mechanism can be implemented in different
versions of Solidity with minor modifications.

In the life cycle of a smart contract, contract partici-
pants may deposit ethers before a bug is exposed. The
voteDestruct mechanism records these participants as stake-
holders st_holder and the amount of their deposited
ethers as st_amount. Once the exception detector issues a
warning message or a stakeholder notices that the contract
has a potential vulnerability, all contract stakeholders can
vote to lock the contract. If the support rate exceeds 1/3 (i.e.,
lock threshold), the contract enters a locked state and no
external calls can be executed, except for calls that unlock or
destroy the contract. During the locking phase, the contract
stakeholders can analyze the exposed vulnerability and
develop corresponding patches.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM, VOL. XX, NO. X, AUGUST 20XX 7

Table 1
SolSaviour API.

SolSaviour API Inputs Outputs API Description

Bootstrap
new address N/A ⊤|⊥ Generate a new key pair as well as the blockchain address for the TEE cluster

Deployment
new contract Cb tx id Deploys a compiled smart contract and returns a transaction id
patched contract Cb tx id Receives the bytecode-version smart contract, deploys it and returns a transaction id

Message Call
lock Caddr tx id Receives the address of contract and returns the id of transaction that invokes vote_initial()
unlock Caddr tx id Receives the address of contract and returns the id of transaction that invokes vote_halt()
destroy Caddr tx id Receives the address of contract and returns the id of transaction that invokes destroy()

contract voteDestruct_sample {
struct st_holder
{ uint key_index; uint st_amount; bool voted;}
mapping(address => st_holder) public st_map;
address public TEE_addr;
uint public contract_stake; uint public support_stake;
enum State {Active, Locked} State public state;

modifier inState(State _state)
{ require(state == _state); _;}

constructor() { TEE_addr = msg.sender;}

function any_payable_function() inState(State.Active)
public payable {

st_map[msg.sender].st_amount += msg.value;
contract_stake += msg.value;}

function vote_initial() inState(State.Active) public {
require (msg.sender == TEE_addr);
state = State.Locked;}

function vote_halt() inState(State.Locked) public {
require (msg.sender == TEE_addr);
state = State.Active;}

function vote(bool choice) inState(State.Locked) public {
require(!st_map[msg.sender].voted);
st_map[msg.sender].voted = true;
if (choice)
{ support_stake += st_map[msg.sender].st_amount;}}

function destroy() public {
require (msg.sender == TEE_addr);
require (support_stake > (contract_stake * 2 / 3));
selfdestruct(payable(TEE_addr));}}

Figure 5. A voteDestruct-enabled contract sample.

If most stakeholders think that this vulnerability is a false
positive case, they can vote to unlock the smart contract.
The voting threshold for unlocking a locked contract is the
same as the threshold for locking it. If stakeholders think the
vulnerability may lead to serious consequences, they could
vote to destroy the defective contract. When the support
rate exceeds 2/3 (i.e., destroy threshold), the vote is passed
and the contract can be destroyed. All internal assets are
transferred to the distributed TEE cluster for temporary
escrow.

ACSAC ’21, December 06–10, 2021, Austin, Texas Anon.

static bytes C_patched[];
void patchGeneration(bytes C_defective, bytes& C_patched){

C_patched[0] << sGuard(C_defective);
C_patched[1] << SCRepair(C_defective);
C_patched[3] << C_patched;}

bytes patchTest(bytes& C_patched[]){
string Tx[];
while(web3.eth.addr){

Tx += web3.eth.addr.transaction;}
uint length = Tx.length; uint index;
uint success[] = 0;
for(int i =0; i<3; i++){

for(index=0, index<length; index++){
if(C_patched[i].exe(Tx[index])){

success[i]++;}}}
if(success[0]>success[1]){

if(success[0]>success[2]) return C_patched[0];
else return(C_patched[2]);}

else{
if(success[1]>success[2]) return(C_patched[1]);
else return(C_patched[2]);}}

Listing 2: patching

2

Figure 6. The implementation of patching a defective contract.

4.2 Patching

In SolSaviour, patches for defective smart contracts are pro-
vided by the contract stakeholders. This is because the main
purpose of SolSaviour is to provide a framework for se-
curing defective deployed smart contracts and DeFi, rather
than providing a system that can automatically generate
patches. Smart contract patches can be generated manually
using existing tools such as sGuard [12] and SCRepair [13].
Once a patched contract is prepared, the patched contract
should be tested thoroughly before deployment by replay-
ing previous related transactions. This can test whether the
patched contract functions well and has fixed all related
bugs. We propose a patch tester to re-execute non-malicious
history transactions on the patched contract and verifies
whether the execution results of the old contract and the
patched contract are consistent. Any execution discrepancies
are scrutinised to determine whether the patch has caused
the patched smart contract to function inconsistently with
the defective contract. Detailed implementation is provided
in Fig. 6.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM, VOL. XX, NO. X, AUGUST 20XX 8

SolSaviour Code ACSAC ’21, December 06–10, 2021, Austin, Texas

void stateVariableGetter(string addr){
struct stateVariable{

string name;
bytes value;};

stateVariable states[]; uint index;
uint length = addr.ABI.length;
for (index=0, index<length; index++){

states[index].name = addr.ABI[index].name;
states[index].value = addr.ABI[index].value;}}

void stakeDistribution(string addr){
struct stakeDist{

string addr;
uint amount;};

stakeDist stakes[]; uint index;
uint length = addr.st_map.length;
for (index=0; index<length; index++){

stakes[index].addr = addr.st_map[index].key;
stakes[index].amount = addr.st_map[index].st_amount;}}

void stateMigration(string addrFrom[], string addrTo[],
uint256 values[]){↪→
require(addrFrom.length == values.length);
uint256 length = values.length;
uint i;
for (i=0; i<length; i++){

balances[addrTo[i]] = values[i];
emit Transfer(0x0, addrTo[i], values[i]);}}

Listing 3: recovering

REFERENCES

3

Figure 7. The implementation of recovering a patched contract.

4.3 Redeploying

4.3.1 Redeploy a Patched Contract

In this step, stakeholders can redeploy a patched contract
and migrate the internal state from the defective contract to
the patched one.

During redeployment, the TEE cluster takes charge of
injecting the initial state of the patched contract. The TEE
cluster injects a list of stakeholder addresses and the amount
of their stakes to the patched contract, which indicates the
amount of assets they deposited before contract destruction.
Then, the TEE cluster generates a contract creation trans-
action for the patched contract and broadcast it onto the
blockchain. For contract stakeholders, the internal state of
the redeployed contract remains the same as the previous
defective contract, but SolSaviour has already fixed the
vulnerabilities.

4.3.2 State Migration

For migrating states to the newly-patched smart contract,
the TEE cluster first extracts required variables from the
blockchain. Then, the TEE cluster modifies the patched
smart contracts provided by the contract stakeholders. The
purpose of this modification is to migrate the internal state
from the old, defective contract to the new, patched smart
contract. TEE cluster ensures that variable values in the
patched contract are the same with before by initializing
them. TEE cluster directly transfers all the escrow assets
to the newly-deployed contract. Since the stake distribution
has been injected by TEE cluster, the ownership of these as-
sets is certain and consistent, as well as their corresponding
voting rights. Detailed implementation is provided in Fig. 7.

5 SECURITY ANALYSIS

5.1 Threat Model
Our threat model considers the security of SolSaviour from
following three perspectives.

Host. We assume hosts are potentially malicious. They
may delay messages between the blockchain and its hosted
enclaves for a period of time. We also assume an adversary
A that can corrupt up to t of n hosts in the TEE cluster.

Enclave. We assume the attested execution result of
enclave is trusted, which means the malicious host cannot
tamper with the code and data inside enclaves. However,
we assume the enclave may suffer from some confidentiality
problem.

Stakeholder. We assume the stakeholders are rational
and potentially malicious. If there are benefits, they may
deviate from the protocol execution and try to steal funds
that belong to others. Stakeholders are greedy, if a smart
contract is under attack, they will steal assets that belong to
others.

5.2 Threat Analysis
In this section, we analyze the security of SolSaviour in three
aspects: balance security, correctness, and fairness.

5.2.1 Balance Security
The balance security of SolSaviour is twofold. First, honest
stakeholders won’t lose assets except necessary transaction
fees as long as stakeholders behave honestly. Second, the
stake distribution remains the same in the old defective
contract and new patched contract.

First, we consider the case that a smart contract is in
the locked state. If contract stakeholders cannot reach an
agreement on a patched contract, the defective smart con-
tract remains locked and reject all external calls except ones
from the TEE cluster. In this case, no assets can be stolen by
attackers. If stakeholders agree on a patched contract, the
TEE cluster proceeds to conduct the state migration.

We then prove that the assets security is preserved
during the state migration process. Before migrating assets
into new patched contract, assets are held in a blockchain
account controlled by the TEE cluster. As assumed before,
attackers cannot control more than t of n TEE nodes. In
this case, attackers cannot withdraw assets from the new
patched contract with legitimate signature so that cannot
steal assets. Moreover, there is no way for attackers to
tamper with the code inside TEE cluster since the execution
logic of the enclave is fixed once it has been encapsulated.
As a result, attackers are unable to alter the TEE cluster’s
state migration logic and transfer assets to their accounts.

Finally, we discuss the consistency of stake distribution
between the defective contract and patched contract. The
history of defective smart contracts is publicly available on
the blockchain. The stake distribution a defective contract
can be determined by looking up its transaction history.
Additionally, the TEE cluster can crawl the contract history
to ascertain the internal variable values for the defective
contract. In this way, TEE cluster can ensure a safe migration
of contract internal state from the old vulnerable smart
contract to the new patched one. After state migration, due
to the tamper-evident nature of on-chain data, assets cannot
be stolen once they are transferred into a new contract.
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5.2.2 Correctness

Intuitively, correctness states that all honest parties can
output correct results, namely successfully patching and
transmitting the assets from defective smart contracts to the
patched contracts. For the proof of correctness, we divide
it into two parts: bootstrapping of the TEE cluster and
destruction of a defective contract.

Firstly, we prove that the bootstrapping process of TEE
cluster satisfies correctness with threshold t, which indicates
that TEE nodes can reach an agreement on a key when there
are at most t corrupted parties among n TEE nodes. During
the bootstrapping process, once a node Ui receives other
node’s Kj , it can verify it. If the check fails for index j, Ui

can broadcast a complaint against node Uj . If more than t
nodes complain about a node Uj , that node is recognized
as disqualified. Each node stores a node set QUAL for all
qualified nodes. In this case, they generate the key based on
nodes inside QUAL. As all honest nodes construct identical
QUAL, they can generate the same key and derive the same
blockchain address. Thus, we can show that TEE cluster
can correctly complete the bootstrapping process for a given
attacker threshold.

Secondly, we prove that the destruction of defective
smart contracts satisfies correctness. We consider rational
stakeholders, that means they behave maliciously if they
think their behaviour is more profitable. In this case, we
analyze the choice of rational stakeholders in two scenarios.
When a smart contract is exposed to a vulnerability or
under attack, stakeholders have two choices, attacking or
locking. As stakeholders have some assets inside defec-
tive smart contracts, the best way is to lock contract as
soon as possible. In the scenario that a defective contract
is successfully locked, the best way is also to prepare a
patched contract for deployment as soon as possible. This
is because stakeholders have assets inside locked smart
contracts, which do no output interest. Only when smart
contracts are active, stakeholders can use their assets for
arbitrage or other financial services.

5.2.3 Fairness

Fairness indicates that our proposed voteDestruct mech-
anism is fair. All stakeholders cannot have more power
than the amount of their controlled stake. For the proof
of fairness, even if an attacker holds a certain amount of
stake in the defective contract and has the right to vote, it
cannot maliciously manipulate the voting result or prevent
the destruction of the defective smart contract.

We first analyze the case where there are some malicious
stakeholders. As malicious stakeholders are profit oriented,
what they want is to steal the assets from honest stakehold-
ers. However, honest stakeholders can always safely exit a
smart contract as long as their cumulative stake amount ex-
ceeds the specified destroy threshold. In SolSaviour, a smart
contract has three states: active (but potentially defective),
locked, and destroyed.

In locked state, a contract is protected by blockchain min-
ers that reject all function calls except those initiated from
the TEE cluster. In this case, malicious stakeholders cannot
steal assets. In destroyed state, assets in a contract are held
by the TEE cluster, so that malicious stakeholders cannot

profit either. The only chance for malicious stakeholders to
profit is during the active (but potentially defective) state. In
SolSaviour, the threshold of required stake amount to lock
a contract is 1/3. Only when the amount of stake held by
malicious stakeholders exceeds 2/3, they can prevent the
contract from entering the locked state.

During the active (but potentially defective) state, when
a hidden vulnerability is exposed, malicious stakeholders
can try to prevent the contract from entering the locked state
and exploit the vulnerability. However, due to the unknown
feature of the vulnerability, it may cause the contract to
a deadlock state, which is also unprofitable for malicious
stakeholders. Therefore, it is also unprofitable for malicious
stakeholders to prevent locking defective contract.

6 DISCUSSION

6.1 Limitations and Security Risks
In this section, we discuss the limitations and security risks
of SolSaviour. One of the main limitations of SolSaviour is
that it can only protect contracts that have integrated the
voteDestruct mechanism. Due to the tamper-proof feature
of the blockchain, SolSaviour cannot provide the defence
mechanism for active smart contracts that have already been
deployed. As TEE is a technology still under development,
there may be unknown vulnerabilities. TEE is therefore at
risk and newly discovered TEE vulnerabilities could com-
promise the security of the entire system and the in-contract
assets.

6.2 Recovering Patched Contract without TEE Escrow
6.2.1 Implementation
Considering the risks to the security of assets temporarily
held in the TEE cluster, we introduce a new way to recover
a defective smart contract to a patched contract directly.

Setup Phase. In this way, SolSaviour first locks a poten-
tially defective contract to prevent it from further attacks.
Then, stakeholders develop a patched smart contract and
provide it to the TEE cluster. The TEE cluster first deploys
the patched contract onto the blockchain. After deploying
the patched smart contract, the voteDestruct mechanism
could set the parameter of the destroy function to the
address of the patched contract. In this way, the assets are
directly transferred from the defective smart contract to the
patched contract without interaction of the TEE cluster. In
this way, even the serious problem such as key leakage of
the account controlled by the TEE cluster, the assets are still
under protection.

Recovering Phase. Unlike reverting to a TEE cluster, this
approach eschews the use of TEE and therefore its state
transfer behaviour cannot be implemented through TEE. We
then need to implement complex state migration logic in the
smart contract. Specifically, we need to store the complete
state variables of the smart contract and the take distribution
of the assets stored in the take holders, and we need to have
transfer logic that acts on top of these state variables. We
consider using a bridging contract to accomplish this step,
i.e. deploying a smart contract dedicated to state migration,
in which the state variables and take distribution associated
with the defective smart contract are stored, and in the
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Table 2
The list of contracts that have been attacked or exposed to serious bugs.

Contract Address Vulnerability Type Caused Damage

King of Ether 0x2464d1d97f8D0180CFaD67BdB19bc30ccA69DdA0 Unchecked Return Values Ownership Loss

GovernMental 0xF45717552f12Ef7cb65e95476F217Ea008167Ae3 Timestamp Dependence DoS

Rubixi 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be Bad Constructor Ownership Loss

ENS Name Wrapper 0x00000000000C2E074eC69A0dFb2997BA6C7d2e1e Access Control Domain Ownership Loss

1st Parity Multisig 0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 Delegatecall 153,037 ETH Loss ($31M)

2nd Parity Multisig 0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 Denial of Service 513,774.16 ETH Locked ($300M)

The DAO 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 Reentrancy 3.6M ETH Loss ($150M)

PoWH Coin 0xA7CA36F7273D4d38fc2aEC5A454C497F86728a7A Integer Underflow 866 ETH Loss ($800k)

Bancor Exchange 0x1F573D6Fb3F13d689FF844B4cE37794d79a7FF1C Front Running Economic Earns ($150)

SushiSwap 0x6B3595068778DD592e39A122f4f5a5cF09C90fE2 Supply Chain Attack 864.8 ETH

Fei 0x956F47F50A910163D8BF957Cf5846D573E7f87CA Price Manipulation 60k ETH at risk

Uniswap Hack 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 ERC777 Reentrancy Exploit $320M

constructor of the patched contract, allowing it to read and
write the state variables in the contract. In this way, we can
achieve state transfer for smart contracts without the need
for TEE intervention. In contrast, this approach requires sig-
nificant gas consumption to maintain the various operations
and data stores. The cost required to implement contract
recovery on the public chain is significantly higher due to
the addition of bridging contracts and the corresponding
storage of state variables. However, the advantages of this
approach are clear: by avoiding temporary asset hosting of
TEE clusters, this approach significantly reduces the attack
surface of the system and eliminates the risk of security
issues that may arise from the TEE itself.

6.2.2 Comparison
In summary, there are advantages and disadvantages to
both recovering to the TEE cluster and recovering to the
patched contract, the former being more gas efficient but
less secure than the latter, and the latter being secure, but
the cost of protecting the smart contract is greatly increased
by the high gas consumption it entails. The latter is secure,
but the high gas consumption associated with it can add
significantly to the cost of protecting smart contracts. There-
fore, when faced with a specific smart contract, the contract
developer needs to make a trade-off between security and
cost and choose the best method to protect the smart con-
tract.

7 EXPERIMENT

In our prototype of SolSaviour, the voteDestruct mechanism
is implemented in Solidity and the TEE cluster is imple-
mented based on Intel SGX with around 2000 LOC. Four
nodes are set up in the TEE cluster. The experiments are
conducted in two aspects: effectiveness and performance.

7.1 Dataset Collection

To accurately evaluate the effectiveness and performance of
SolSaviour, we collected ordinary and DeFi contracts that

were exposed to vulnerabilities. Some contracts have expe-
rienced real attacks that have caused asset losses, some have
not been exploited but their defects have been confirmed.
The reason we chose these contracts is that we want to prove
the effectiveness of SolSaviour with the deduction of loss
for these contracts when they are under the protection of
SolSaviour.

Our collected contracts are the DAO [1], PoWH Coin
[14], 1st [15] and 2nd [16] Parity Multisig Wallet, King
of Ether [17], Bancor Exchange [18], GovernMental [19],
and Rubixi [20]. We also collected DeFi contracts that were
exposed to some severe bugs such as SushiSwap [21], ENS
Name Wrapper [22], Fei [2], and Uniswap [23]. We list
these contracts in Table. 2, accompanying with contract
vulnerability type and caused damage as well as losses in
monetary form (if so).

For our collected contracts, we also prepare correspond-
ing voteDestruct-enabled contracts and patched contracts.
The voteDestruct mechanism is injected on the source code
level. As collected contracts are written in different ver-
sions of Solidity, we make minor modifications to make
our voteDestruct mechanism compatible in all versions of
Solidity. For patched contract, our collected contracts are
also patched manually by modifying the code. We also
ensure that the compiled voteDestruct-enabled contracts
and patched contracts following the same version of Solidity
as original contracts.

SolSaviour is then applied to these generated compara-
tive smart contracts so that we could verify the effectiveness
and performance by validating the results. We can verify
whether the voteDestruct mechanism is effective and that
the patched smart contract redeployed by SolSaviour fixed
vulnerability.

7.2 Effectiveness
The effectiveness of SolSaviour is evaluated from two per-
spectives: qualitative and quantitative.

For qualitative part, we check whether we can lever-
age SolSaviour to safely exit from all collected defective
contracts, refund locked assets back to stakeholders, and
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Table 3
Comparison of losses/damages in an attack against our collected
contracts. “Actual” indicates that no action is taken; “Traditional”

indicates that traditional defence methods are used; “SolSaviour”
indicates that the contract is maintained by SolSaviour.

Contract Actual Traditional SolSaviour

King of Ether Lose Onwership No Mitigation Fix

GovernMental Lose Ownership No Mitigation Fix

Rubixi Lose Ownership No Mitigation Fix

ENS Name Wrapper Lose Ownership No Mitigation Fix

1st Parity Multisig 100 100 0

2nd Parity Multisig 100 100 0

The DAO 100 48.6 6.5

PoWH Coin 100 100 0

Bancor Exchange 100 69.6 0

SushiSwap 100 100 3.3

Fei 100 61.2 2.3

Uniswap Hack 100 54.3 4.6

redeploy a patched contract. To test whether SolSaviour can
recover a buggy smart contract, we generate a large and
representative evaluation dataset by collecting transactions
sent to the collected contracts from the Ethereum. Replaying
those transactions and observing outcomes can check the
functionality and defence of patched contracts. Specifically,
we test whether SolSaviour can successfully destroy a de-
fective smart contract with voteDestruct mechanism and
redeploy a patched one with TEE cluster. In addition, we
test whether the TEE cluster can successfully migrate the
previous state to the new contract to ensure the state consis-
tency.

For the quantitative part, we set up two contract in-
stances for each collected defective contract: an original
contract instance and a SolSaviour-protected instance. We
compare the loss between the original one and SolSaviour-
protected one. We think the effectiveness of SolSaviour is
reflected in the loss deduction when a vulnerable smart
contract is protected by SolSaviour. That’s the reason we
compare the loss of smart contracts in difference settings.
For the original one, we also record the loss when taking
traditional defence measures and doing nothing. We test to
what extent can SolSaviour save loss when facing different
vulnerabilities.

7.2.1 Qualitative

We evaluate the effectiveness of SolSaviour in three as-
pects: successful state migration, identical functionalities,
and successful defence. For each contract, we use Ganache
to simulate 10 accounts, who play the role of contract stake-
holders and each has deposited 100 ethers. Then, a random
stakeholder initializes the vote_initial and provides a
patched contract to the TEE cluster. In our experiments,
we omit the security assumption of potential malicious
stakeholders and assume all of them will vote to destroy
the defective contract. Once the voting completes, the TEE
cluster destroys the defective contract, redeploys a patched
one, and conducts state migration.

By checking the patched contracts deployed by the TEE
cluster, we can evaluate whether state migration successes.
A successful state migration means the internal states of
buggy contract and patched contract are identical. Not only
the stake distribution, but also the ownership. We check
this by letting each stakeholder withdraw their previously-
deposited ethers. We found that stakeholders can withdraw
their assets successfully from all contracts. Then, we check
the functionality and defence of patched contracts by re-
playing collected transactions. We compare the execution
results of patched contract with buggy contract’s history
state transition.

7.2.2 Quantitative
We quantitatively evaluate the effectiveness of SolSaviour
by attacking and recovering defective contracts with Sol-
Saviour simultaneously. Then, we evaluate to what extent
can SolSaviour reduce loss. Since different contracts are
tested in different scenarios, where the amount of loss are
different, we use a two-tuple (loss, percentage) to show
results.

For the DAO contract, we simulate a scenario, where the
defective deployed contract contains 100 ethers. Then, we
start to attack and recover it at the same time. Attackers
can arbitrarily withdraw ethers until honest stakeholders
lock the contract. Then, we tried to refund all locked ethers
to stakeholders and calculate the loss. Similar steps are
conducted to evaluate the loss when using SolSaviour. For
the PoWH coin contract, since the real attack transactions
are limited, we simply replay these attack transactions and
check the execution results. We also test the loss when doing
nothing and taking traditional defence. Each contract are
tested 5 times and the average loss is recorded. The results
are listed in Table. 3.

7.3 Performance
7.3.1 Contract Size Increase
In this section, we evaluate the additional code required
to use SolSaviour. On Ethereum, deploying smart contracts
consumes gases, which are proportionally to the size of
the deployed contract. In SolSaviour, as the voteDestruct
mechanism is implemented inside contracts, extra codes
are introduced. The manually-generated patch may also
increases the code of contracts. Moreover, the method on
recovering patched contract without TEE also introduces
extra codes in the contract. Results are summarized in Fig.
8. The code size of the original version of collected defective
contracts are listed as the basis. Each subplot has six bars.
The left three bars represent the size of contract when
recovering with TEE, while the right three bars represent
the size of contract when recovering without TEE. In each
subplot with three bars, from left to right are the size of the
original contract, the size voteDestruct-enabled contract and
the size of the patched contract.

However, since patches are generated manually, it is
impossible to determine the performance of the system in
terms of the number of lines of code added by the patch. The
only additional code introduced by the system is the vot-
eDestruct framework that makes defective contracts have
the ability to iterative upgrades under SolSaviour. In this
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Figure 8. Contract size increased in SolSaviour. The left three bars represent using TEE cluster for asset escrow while the right three bars using
patched contract. Blue bar indicates original contract, orange bar indicates voteDestruct-enabled contract, and green bar indicates patched contract.

Figure 9. Gas consumption increased in SolSaviour. The left three bars represent using TEE cluster for asset escrow while the right three bars
using patched contract. Blue bar indicates original contract, orange bar indicates voteDestruct-enabled contract, and green bar indicates patched
contract.

case, we compare the size of compiled contract. We found
that voteDestruct mechanism introduces limited size to the
original contract. These code size increases are worth com-
pared to the security enhancement that SolSaviour brings.
For Parity Miltisig contract, we note that injecting vot-
eDestruct mechanism naturally resolves the vulnerability so
that the patched contract and voteDestruct-enabled contract
have the same size.

7.3.2 Gas Consumption

In this section, we evaluate the additional gas consumption
incurred by SolSaviour, which mainly arises from two as-
pects: the voteDestruct mechanism and the redeployment
of the patched contract. We also evaluate the gas con-
sumption on redeploying a patched contract without TEE
asset escrow. Results are summarized in Fig. 9. The gas
consumption to deploy the original version of collected
defective contracts are evaluated as the basis. Each subplot
has six bars. The left three bars represent the gas consump-
tion of original contract, voteDestruct-enabled contract, and
patched contract respectively when letting TEE conduct
asset escrow. By contrast, the right three bars represent

the gas consumption when recovering without TEE asset
escrow.

For voteDestruct mechanism, the evaluation is con-
ducted by deploying our prepared voteDestruct-enabled
contracts. From the results, we can see the voteDestruct
mechanism introduced minimal gas overhead. The gas cost
are mainly introduced by additional storage of state vari-
ables and corresponding logic. Storing data on Ethereum is
expensive, which leads to a lot of gases to be consumed.
For the redeplyment of patched contract, the extra gas
consumption are mainly introduced by the patcg. As the gas
consumption depends on the contract size, namely the size
of original contract plus the size of the patch as well as the
voteDestruct mechanism for future protection. As shown in
the results, the overhead introduced by the patch is not
stable. This is because different contracts require different
type of patches.

7.3.3 TEE Cluster Overhead
In SolSaviour, state migration and asset escrow are con-
ducted by TEE cluster. We therefore evaluate the overhead
introduced by TEE cluster. We build a Ethereum private
network with four nodes (i.e., node A, B, C, and D), each is
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Table 4
The overhead of TEE cluster, which is counted in the number of blocks

mined by different combinations of TEE nodes.

Node A AB ABC ABCD

All 5780 5685(-1.6%) 5507(-4.7%) 5469(-5.3%) 5391(-6.7%)

A 1451 1368(-5.7%) 1312(-9.5%) 1340(-7.6%) 1341(-7.6%)
B 1446 1439 1325(-8.3%) 1339(-7.4%) 1335(-7.7%)
C 1438 1441 1439 1351(-6.1%) 1349(-6.2%)
D 1445 1437 1431 1439 1366(-5.5%)

installed with an Ethereum endpoint. We record the number
of blocks mined by them in one day. Then, we initialize
the enclave in one node and monitor the blocks mined by
each node. After that, we sequentially initialize enclaves
in the other three nodes and add them to the TEE cluster.
During this time, we continuously monitor the number of
blocks mined by each node. The mining difficulty remains
the same during this experiment. We summarize the results
in Table. 4. As we can see, for nodes without TEE cluster,
they can mine around 1440 blocks per day, which satisfies
the Ethereum blockchain generation speed, namely a block
per 15 seconds. For nodes with TEE cluster, the mining
rate is slightly affected. The impact is greatest when only
half nodes participate the TEE cluster, and tends to become
smaller when all nodes initialize TEE.

8 RELATED WORK

In this section, we first present work on detecting contract
vulnerabilities, protecting deployed contracts, and gener-
ating patches for vulnerable contracts. We also introduce
recent work on investigating the security of DeFi. Finally,
we present work on combining blockchain and TEE.

8.1 Smart Contract Vulnerabilities

Most work on smart contract vulnerability detection relies
on techniques used in traditional software analysis. Luu et
al. proposed Oyente [3] based on symbolic execution to
automate the reentrancy bug detection. After that, lots of
symbolic execution tools are proposed such as Osiris [24],
TEETHER [25], MAIAN [26], ETHBMC [27], and ZEUS [28].
Feist et al. proposed Slither [5] to analyze the contract on
source code level. Tsankov et al. presented Security [7] to
analyze the contract on bytecode level. Brent et al. proposed
Ethainter [6] to conduct information flow analysis to reveal
composite vulnerabilities. Chen et al. proposed SODA [29],
which accepts user-defined vulnerability pattern. Pan et al.
proposed ReDefender [30], which detects reentrancy vul-
nerabilities with fuzz testing. Furthermore, the semantics
of Solidity was formalized [31]. However, these proposed
detection methods still have limitations, such as the inability
to identify unknown vulnerabilities. Therefore, there has
also been some work focused on protecting deployed smart
contracts.

For contract defence, Rodler et al. proposed Sereum [32]
to defend against reentrancy exploits through analyzing
the EVM execution traces. Ferreira et al. proposed ÆGIS
[33] to defend deployed contracts against known attacks.
Specifically, it records a number of known contract attack

execution traces through a proposed domain-specific lan-
guage and integrates within the EVM to revert the execution
of transactions that match the attack traces. Ellul et al.
proposed a runtime verification mechanism [34] to ensure
that violating party provides insurance for correct behavior.
Li et al. proposed SOLYTHESIS [35] to address the high
overhead in runtime validation.

For contract patch, Yu et al. proposed SCRepair [13] to
detect and repair bugs in smart contracts before deploy-
ment. Zhang et al. proposed SMARTSHIELD [36], which
leverages bytecode rewriting techniques to fix contract vul-
nerabilities. Bytecode rewriting technique was also used in
the EVMPatch [37] to repair defective contracts.

8.2 DeFi Vulnerabilities
As DeFi has evolved greatly, more work has been carried
out to investigate its security. Qin et al. explored attack
vectors that leverage the Flash Loan in [38]. They quan-
titatively show how transaction atomicity affects arbitrage
revenue. Zhou et al. proposed sandwich attack to exploit
the information that may change the asset price [39]. Zhou
et al. worked on crafting profitable transactions across the
intertwined DeFi platforms automatically [40]. They investi-
gated two methods that focus on arbitrage and complicated
DeFi setting, respectively. Qin et al. analyzed the danger of
blockchain extractable value (BEV) quantitatively [41]. They
deduced the amount of possible profits for the attacker in
the case of sandwich attacks, liquidations, and decentralized
exchange arbitrage.

8.3 Smart Contract and TEE
There is a range of work focused on offloading the execution
of smart contracts into the TEE, which enables the imple-
mentation of private and high-performance smart contracts.
Cheng et al. proposed Ekiden [42], whose execution of smart
contracts is deployed inside enclaves. With the enclave’s
public key, users can encrypt the input data in a confidential
message call transaction. Das et al. proposed FASTKITTEN
[43] to enable the execution of complex, high-performance
smart contracts on Bitcoin. In FASTKITTEN, enclaves take
charge of executing smart contracts and generating state
transitions, which are recorded by the Bitcoin. FASTKIT-
TEN can extend its work to execute smart contracts on
more blockchains which were designed to only support
naive transactions. Liu et al. proposed Saber [44], a parallel
and asynchronous execution paradigm of smart contracts
boosted by TEE.

In addition, the combination of blockchain and TEE
shows promise in many other areas. Zhang et al. proposed
Town Crier to address the problem that smart contracts
running on the blockchain cannot access information in a
trusted way [45]. Zhang et al. proposed REM [46], a resource
efficient mining algorithm that works on useful computa-
tion workloads. Considering the problem that traditional
PoW consensus algorithms consume lots of power, REM
converts the traditional meaningless hash computation into
meaningful computation workload, accompanied by a SGX-
based verification mechanism. Lind et al. proposed Teechain
[47], a layer-2 payment network that can process off-chain
transactions asynchronously with TEE. Li et al. proposed
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PISTIS [48], which leverages smart contract and TEE to
issue trusted and authorized certificates to address the
problem of rogue certificates. Matetic et al. proposed BITE
[49], a SGX-based lightweight node, to address the privacy
issue in lightweight nodes. In BITE, full nodes leverage
SGX enclaves to process privacy preserving requests from
lightweight clients.

9 CONCLUSION

In this paper, we present SolSaviour that can protect de-
ployed but defective smart contracts and DeFi protocols.
Compared with existing work that requires a trusted third
party to redeploy patched contract and can only migrate
contract data, SolSaviour can achieve effective migration of
contract assets and does not require the involvement of a
trusted third party. SolSaviour enables the offline patch-
ing of defective smart contracts through the decentralized
control provided by voteDestruct mechanism and the state
migration provided by TEE cluster. For all collected con-
tracts and DeFi, our experiment results demonstrate that
SolSaviour can effectively repair and recover all of them
with affordable overhead.
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[26] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings
of the 34th Annual Computer Security Applications Conference, 2018,
pp. 653–663.

[27] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded
model checker for smart contracts,” in 29th USENIX Security
Symposium, 2020, pp. 2757–2774.

[28] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in NDSS, 2018, pp. 1–12.

[29] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He et al., “Soda: A generic online detection framework
for smart contracts,” in NDSS, 2020, pp. 1–17.

[30] Z. Pan, T. Hu, C. Qian, and B. Li, “Redefender: A tool for detecting
reentrancy vulnerabilities in smart contracts effectively,” in 2021
IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS), 2021, pp. 915–925.

[31] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: executable operational seman-
tics of solidity,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 1695–1712.

[32] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” in NDSS,
2018, pp. 1–15.

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://halborn.com/explained-the-fei-protocol-hack-april-2022/
https://halborn.com/explained-the-fei-protocol-hack-april-2022/
https://halborn.com/the-nomad-bridge-hack-a-deeper-dive/
https://halborn.com/the-nomad-bridge-hack-a-deeper-dive/
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://www.freecodecamp.org/news/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce/
https://www.freecodecamp.org/news/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce/
https://www.freecodecamp.org/news/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce/
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://www.kingoftheether.com/postmortem
https://www.kingoftheether.com/postmortem
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://bitcointalk.org/index.php?topic=1400536.60
https://samczsun.com/two-rights-might-make-a-wrong/
https://samczsun.com/two-rights-might-make-a-wrong/
https://samczsun.com/the-dangers-of-surprising-code/
https://peckshield.medium.com/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://peckshield.medium.com/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM, VOL. XX, NO. X, AUGUST 20XX 15

[33] C. Ferreira Torres, M. Baden, R. Norvill, B. B. Fiz Pontiveros,
H. Jonker, and S. Mauw, “Ægis: Shielding vulnerable smart con-
tracts against attacks,” in Proceedings of the 15th ACM Asia Confer-
ence on Computer and Communications Security, 2020, pp. 584–597.

[34] J. Ellul and G. J. Pace, “Runtime verification of ethereum smart
contracts,” in 2018 14th European Dependable Computing Conference
(EDCC), 2018, pp. 158–163.

[35] A. Li, J. A. Choi, and F. Long, “Securing smart contract with
runtime validation,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020, pp. 438–453.

[36] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “Smartshield:
Automatic smart contract protection made easy,” in 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2020, pp. 23–34.

[37] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Evmpatch: Timely
and automated patching of ethereum smart contracts,” in 30th
USENIX Security Symposium, 2021, pp. 1289–1306.

[38] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi
ecosystem with flash loans for fun and profit,” in International
Conference on Financial Cryptography and Data Security. Springer,
2021, pp. 3–32.

[39] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-
frequency trading on decentralized on-chain exchanges,” in 2021
IEEE Symposium on Security and Privacy (SP), 2021, pp. 428–445.

[40] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On
the just-in-time discovery of profit-generating transactions in defi
protocols,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021, pp. 919–936.

[41] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain ex-
tractable value: How dark is the forest?” in 2022 IEEE Symposium
on Security and Privacy (SP), 2022.

[42] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019
IEEE European Symposium on Security and Privacy, 2019, pp. 185–
200.

[43] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
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