
An Efficient Block Validation Mechanism for
UTXO-based Blockchains

Xiaohai Dai∗, Bin Xiao†, Jiang Xiao∗, and Hai Jin∗
∗National Engineering Research Center for Big Data Technology and System

∗Services Computing Technology and System Lab, Cluster and Grid Computing Lab
∗School of Computer Science and Technology, Huazhong University of Science and Technology, China

†Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Abstract—It has been recognized that one of the bottlenecks in
the UTXO-based blockchain systems is the slow block validation
– the process of validating a newly-received block by a node
before locally storing it and further broadcasting it. As a block
contains multiple inputs, the block validation mainly involves
checking the inputs against the status data, which is also known
as the Unspent Transaction Outputs (UTXO) set. As time goes
by, the UTXO set becomes more and more expansive, most of
which can only be stored on disks. This considerably slows
down the input checking and thus block validation, which
can potentially compromise system security. To deal with the
above problem, we disassemble the function of input checking
into three parts: existence validation (EV), unspent validation
(UV), and script validation (SV). Based on the disassembly,
we propose EBV, an efficient block validation mechanism to
speed up EV, UV, and SV individually. First, EBV changes the
representation of status data, from UTXO set to a bit-vector set,
which drastically reduces its size. The smaller status data can
be entirely maintained in memory, thereby accelerating UV and
also block validation. Second, EBV requires each transaction to
carry the proof data, which enables EV and SV without accessing
the disks. Furthermore, we also cope with two challenges in the
design of EBV, namely transaction inflation and fake positions. To
evaluate the EBV mechanism, we implement a prototype on top
of Bitcoin, the most widely known UTXO-based blockchain, and
conduct extensive experiments to compare EBV and Bitcoin. The
experimental results demonstrate that EBV successfully reduces
the memory requirement by 93.1% and the block validation time
by up to 93.5%.

Index Terms—Blockchain, Bitcoin, UTXO, UTXO set, block
validation

I. INTRODUCTION

Due to its decentralization and anonymization merits, the
blockchain system has received considerable attention from
both academia and industry [1], [2]. Classified by the data
models, the existing blockchain systems can be divided into
two categories: Unspent Transaction Output (UTXO)-based
and account-based [3]. Compared with the account-based
model, the UTXO-based model provides a higher degree of
privacy and concurrency, which is widely adopted by the
cryptocurrency-like blockchain systems, with Bitcoin [4] as
the representative. This paper mainly focuses on UTXO-
based blockchains. Therefore, for the rest of the paper, unless
stated otherwise, we refer to ’UTXO-based blockchain’ as
blockchain for brevity.

To ensure the security of the blockchain system, a block
must be validated after it is newly received by a node. Only

if a block passes the validation, will it be stored by the node
locally and be further broadcast to other nodes. Since a block
contains multiple inputs, the block validation process mainly
involves checking the legitimacy of each input in it. Further,
an input is considered legitimate if it can be found from a
local database (status database), which stores all the Unspent
Transaction Outputs (UTXO) and is also known as the UTXO
set [5].

As time goes by, more and more outputs are accumulated in
the UTXO set. To show the rapid expansion of the UTXO set
clearly, we take the Bitcoin system as an example, depicting
its change in the UTXO count and the size of the UTXO
set by quarters, from the first quarter of 2015 (15-Q1) to the
second quarter of 2021 (21-Q2). As shown in Fig. 1, the size
of the UTXO set experiences a significant increase, which has
exceeded 4.3 GB to date.

To prevent the blockchain system from occupying too many
resources, the memory used by the UTXO set is usually
restricted, especially in the resource-constrained nodes. For
example, the memory usage of Btcd1 (a Bitcoin client written
in Golang2) is restricted to hundreds of MB, which is much
less than the size of the UTXO set. As a result, the main parts
of the UTXO set have to be stored in the slow disk, which
slows down the input checking and thus block validation [6].

The low efficiency of the block validation can potentially
compromise system security. First, only if a new block passes
the block validation, will a node broadcast it to its neighbors.
Therefore, the slow block validation can lead to a long
propagation delay of blocks, which is a primary cause of the
blockchain forks [7], [8]. From the perspective of a distributed
system, the blockchain fork means inconsistent data stored
in different nodes, which will endanger the security of a
distributed system. Second, a newcomer must finish the Initial
Block Download (IBD) to start a validator node [9]. During
the process of IBD, each block is received from other nodes
and validated locally to ensure its authenticity. If the block
validation is slow, it will take a long time to finish the
IBD process, which may discourage a user from starting a
validator node. With a small number of validator nodes, the
decentralization degree of a distributed system is low, thus

1https://github.com/btcsuite/btcd
2https://golang.org/



15
-Q
1

15
-Q
2

15
-Q
3

15
-Q
4

16
-Q
1

16
-Q
2

16
-Q
3

16
-Q
4

17
-Q
1

17
-Q
2

17
-Q
3

17
-Q
4

18
-Q
1

18
-Q
2

18
-Q
3

18
-Q
4

19
-Q
1

19
-Q
2

19
-Q
3

19
-Q
4

20
-Q
1

20
-Q
2

20
-Q
3

20
-Q
4

21
-Q
1

21
-Q
2

Time (quarter)

0

10

20

30

40

50

60

70
Nu
m
be
r o
f U
TX
Os
 (M
illi
on
)

Count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Si
ze
 o
f U
TX
O 
se
t (
GB
)

Size

Fig. 1: Number of UTXOs and size of the UTXO set

compromising system security.
There are already some attempts trying to reduce the mem-

ory usage of the UTXO set or accelerate the block validation
process. The first category works on the database layer, such
as BZIP [10]. It compacts the keys and values stored in
the database with shorter representations separately. However,
memory pointers used by BZIP are temporary and will change
once the node restarts, which makes this attempt impractical.
Another category focuses on the protocol layer. One of the
representatives is Edrax [11], which discards the UTXO set.
However, it goes to an extreme to store almost nothing in a
validator node, and totally relies on the transaction proposer to
provide the proof. It requires each proposer to update its local
proof in real time, which brings a heavy workload. Different
from Edrax, our work stores a small amount of data in the
validator nodes to facilitate the validation, which relieves the
burden of transaction proposers.

To deal with the problem of slow block validation, we
perform disassembly of the input checking process, which
is the most critical part of the block validation. In general,
the input checking is mainly used to check (1) if an input
corresponds to an existent output (Existence Validation, EV),
(2) if the output is unspent (Unspent Validation, UV), and
(3) if the input can unlock the output (Script Validation, SV).
According to our experimental analysis, the process of EV and
UV takes up the largest parts of the block validation time,
which inspires us to speed up the total block validation by
accelerating EV and UV.

In this paper, we propose EBV, an efficient block valida-
tion mechanism for UTXO-based blockchains, which mainly
changes the representation method of status data, from the
UTXO set to a bit-vector set. Each vector in the bit-vector
set corresponds to a block and each bit in a vector indicates
if an output has been spent or not. Therefore, the bit-vector
set can facilitate UV. Since the size of the bit-vector set is
much smaller, which can be entirely maintained in memory,
thus accelerating UV. Besides, EBV requires each transaction
proposer to attach proof for each input in the transaction.
Without relying on the status data, EV can be performed with

the input proofs in memory, which is much faster. To sum up,
the input checking (including EV and UV) can be conducted
without accessing the slow disk, which improves the efficiency
of block validation.

However, there are two challenges encountered in the above
design. First, a new transaction has to embed a previous trans-
action as the input proof, which is used for SV. In this way, an
old transaction will be included by a new one, and the new one
will be further included by a newer one later, which leads to
everlasting transaction nesting. Therefore, the transaction size
is expected to be more and more inflated, which is named
a transaction inflation problem. Towards addressing it, EBV
separates the input data from the transaction and instead places
its hash (input hash) in the transaction. A transaction with
only input hashes is called a tidy transaction. Accordingly,
the input proof in a new transaction contains the previous
tidy transaction, without input proofs in the previous one, thus
avoiding the transaction inflation.

Second, the input proof contains a position field to refer to
the index of the to-be-spent output in the block. Since the po-
sition field is provided by the transaction proposer unilaterally,
the malicious proposer may provide a fake position value. To
tackle this challenge, EBV adds a stake position value for each
transaction when packaging a new block, whose validity can
be checked via the Merkle branch. Based on the stake position
value, the position needed in the input proof can be acquired
by calculation credibly.

To evaluate the efficient block validation mechanism, we
implement a prototype of EBV on top of Bitcoin and compare
it with Bitcoin. Since the input structure in Bitcoin is different
from that in EBV, we also implement and run an intermediate
node. The intermediate node synchronizes blocks from the
Bitcoin mainnet, reconstructs the blocks as required in EBV,
and then sends the reconstructed blocks to the EBV node. We
are mainly interested in the performance of the EBV node.
The experimental results demonstrate that EBV reduces the
memory requirement largely, which is only 303.4 MB to date.
When setting the memory limit as the same, EBV can reduce
the block validation time and IBD time by 93.5% and 38.5%
separately at most.

To sum up, we mainly make the following contributions:
• We make an experimental analysis of problems brought

by the increasing size of UTXO set in UTXO-based
blockchains, including the long block validation time and
IBD time.

• We propose EBV, an efficient block validation mechanism
for UTXO-based blockchains. Based on the local bit-
vectors and proof attached in the inputs, EBV can check
the legitimacy of blocks with little memory requirement.

• We implement a prototype on top of Bitcoin to evaluate
EBV, whose experimental results demonstrate its low
memory requirement and acceleration of block validation.

II. PRELIMINARIES

In this section, we introduce the preliminaries related
to our work, including the UTXO model adopted by mas-



TABLE I: Abbreviation Table
Short Long Short Long

Ls Locking script Us Unlocking script

MBr Mekle Branch EV Existence Validation

UV Unspent Validation SV Script Validation

Tx Transaction ELs Enhanced Ls

IBD Initial Block Download

DBO DataBase-related Operations

UTXO Unspent Transaction Output

Fig. 2: UTXO model

sive blockchains and the UTXO set implemented by these
blockchains. To aid reading, a table describing the abbrevi-
ations used in this paper is shown by Table I.

A. UTXO model

In terms of the data model, the blockchain systems fall
into two categories, namely UTXO model [12] and account
model [13]. Compared with the account model, the UTXO
model has several advantages, such as parallel processing
and a higher level of privacy [14], with Bitcoin as the best-
known representative. In terms of parallel processing, the
UTXO model enables multiple people to transfer coins in one
transaction. The UTXO model also makes it harder to link
transactions to a single user, thus protecting privacy better.

Fig. 2 illustrates the UTXO model, where plenty of transac-
tions are packaged in a block. These transactions are logically
organized as a Merkle tree, with each one as a leaf in the tree.
A transaction is made up of various inputs and outputs [15].
Each output defines a Locking script (Ls), which locks the
output and specifies the condition to unlock it. Each input
attaches an Unlocking script (Us), which is used to unlock and
spend a previous output. Particularly, Ls specifies the address
eligible to spend the output, while Us proves the eligibility
with a signature. An output without being unlocked is known
as a UTXO [16]. To identify which output to spend, the input
also contains a hash field and a position field. Hash field refers
to the previous transaction creating the output, while position
field indicates the position of the output in that transaction. The
combination of hash and index is also named outpoint [17].

A block will be considered valid if and only if all the
transactions in it are legitimate (block validation). Further,

Fig. 3: UTXO set stored in the database

a transaction will be considered legitimate only if it passes
various checks, especially the checking of inputs (input check-
ing) [18]. Input checking includes three parts: 1) if the input
corresponds to an existent output (Existence Validation, EV),
2) if the output has been spent (Unspent Validation, UV),
and 3) if the execution result of Us plus Ls is true (Script
Validation, SV) [19]. To be more specific, SV works through
a stack-based scripting system, which typically checks if the
public key contained in Ls matches the signature in Us, whose
details can be found in [20].

B. UTXO set

In the existing design of the UTXO-based system, the input
checking involves accessing a local key-value database (e.g.,
LevelDB3), which maintains all the UTXOs and is also known
as ‘status database’ [21].

As shown in Fig. 3, the status database contains each UTXO
as an entry, with the outpoint as the key and Ls as the value.
Once a new block is received by a validator node, the outpoint
of each input in the block is used to fetch the corresponding
Ls from the database (i.e., ➊ Fetch). This operation exactly
performs both EV and UV concurrently. If none is returned,
the input and the block are considered invalid, which will be
discarded later. Otherwise, the returned entry will be used
for further validations, such as ➋ SV. If the block passes
all the validations, the block will be considered valid. All
the entries corresponding to the inputs in the block will be
deleted from the UTXO set (i.e., ➌ Delete), and all the
outputs will be inserted into the UTXO set as new entries
(i.e., ➍ Insert). All of Fetch, Delete, and Insert are database-
related operations (DBO), which are greatly influenced by the
database efficiency.

However, as time goes by, the UTXO set has increased by
a substantial margin. In retrospect of Fig. 1, the number of

3https://github.com/google/leveldb



0 1 2 3 4 5 6 7 8 9
Block height (590000+)

0

2

4

6

8

10

12

14

Ti
m

e 
(s

)

DBO
SV
Others

(a) Different parts of validation time in Bitcoin

0 1 2 3 4 5 6 7 8 9
Block height (590000+)

0

2

4

6

8

10

12

Ti
m
e 
(s
)

DBO
SV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Nu
m
be
r o
f i
np
ut
s

×104

#input

(b) Comparison of validation time and input count

Fig. 4: Time taken to validate a block in Bitcoin

UTXOs and the size of UTXO set in Bitcoin have increased
by 4.4x and 7.6x separately. Therefore, it is impractical to store
the UTXO set totally in the memory, especially for a resource-
constrained node. As indicated in Fig. 3, the majority of the
UTXO set is usually stored in the slow disk. To validate a
new block, the memory will firstly be accessed to fetch the
corresponding UTXOs. If not found, the disk will be further
accessed. When most of UTXOs are stored in the slow disk,
it usually takes a long time to perform the block validation.

III. PROBLEM ANALYSIS

In this section, we conduct several experiments to analyze
the problems brought by the long block validation time. The
experimental setup and hardware/software specifications are
the same as that in Section VI, which will be introduced in
Section VI-A later.

A. Long block validation time

After receiving a new block, a node will first perform the
block validation on it. Fig. 4a takes Bitcoin as an example,
depicting the validation time of ten blocks, whose block
heights vary from 590000 to 590009. For each block, we
divide the validation time into three parts: DBO (including
Fetch, Delete, and Insert operations), SV, and others. From
the figure, we can find that it takes several seconds to validate
a new block. Particularly, for the block of height 590004,
the block validation process even takes about 14 seconds. In
addition, it is easy to conclude that DBO takes up most of the

5 10 15 20 25 30 35 40 45 50 55 60 65
Block height (10000)

0

1

2

3

4

5

6

7

8

Ti
m

e 
(s

)

×104

DBO
SV
Others

0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

 o
f D

BO
 ti

m
e 

to
 IB

D 
tim

e

Ratio

Fig. 5: Time taken to perform IBD in Bitcoin

validation time. Also taking the block of height 590004 as an
example, more than 83.8% of the total validation time is used
for DBO.

What’s more, we compare the number of inputs with DBO
time and SV time in Fig. 4b. From the variation of three lines,
it is easy to find that the variation of SV time is consistent with
the number of inputs. However, the variation of DBO time is
a little inconsistent, especially for the block of height 590004.
Intuitively, DBO time is affected by two factors: the input
number and the average database-access time. Since there is
no large difference in the input number, the outlier of block
590004 should result from the inefficiency of the database. In
other words, this outlier demonstrates that inefficiency of the
database can possibly lead to a large DBO time and thus a
long block validation time.

B. Long IBD time

To study the relationship between block validation and IBD,
we conduct some experiments on the IBD process of Bitcoin.
From the genesis block to the block of height 650,000, the
IBD process is divided into 13 periods, each of which contains
50,000 blocks. IBD time during each period is also divided
into three parts: DBO, SV, and others, whose experimental
results are shown in Fig. 5. In general, the time taken to
perform DBO shows a rising trend, which is mainly caused
by two aspects. On one hand, there is an increasing number
of inputs in a block, which increases the frequency of DBO.
On the other hand, due to the increasing size of the UTXO
set, a single DBO may take much more time.

Besides, we also draw a line reflecting the ratio of DBO
time to IBD time in Fig. 5. It is easy to find that the DBO
time takes up over 50% of the total IBD time in the last five
periods. In other words, the long DBO time leads to slow
block validation and a long IBD process. What is interesting
in the figure is the last but two period, namely from block
500,000 to block 550,000. Besides, both DBO time and IBD
time experience a slight drop in this period. The reason for it
is the transient reduction of the UTXO set, which is resulted
from the rare consolidation actions [22].



Fig. 6: System overview of EBV

IV. SYSTEM DESIGN

In this section, we elaborate on the design of EBV. In
general, EBV changes the representation method of status data
and the input structures. For the status data, EBV replaces the
UTXO set with a bit-vector set. In terms of the input structure,
EBV adds proof data for each input. Starting with a description
of the threat model and an overview of EBV, we introduce the
details about the transaction proposal, transaction validation,
and block storage in EBV.

A. Threat model

We start by introducing the threat model. In general, our
threat model is exactly the same as Bitcoin. Particularly, we
assume that the computing power controlled by the adversaries
is less than 50%. We also assume that the adversaries cannot
break down the hypothesis of modern cryptography. In this
regard, the common hash algorithms (e.g., SHA-256 [23]) used
to build the Merkle tree and link the adjacent blocks cannot be
cracked. Besides, we make the same assumption as almost all
the mainstream blockchains that SHA-256 can resist collisions
well. Further, we assume that the adversaries cannot tamper
with data in remote nodes. In other words, if the data in a node
can be modified by the adversaries, the node and its computing
power are regarded as being controlled by the adversaries.

B. Overview

Fig. 6 depicts an overview of the EBV system. Comparing
Fig. 6 and Fig. 3, the most important differences between EBV
and the traditional blockchain (e.g., Bitcoin) include two parts:
1) local status database in a node; 2) input structure in the
transaction.

Instead of storing all the UTXOs as in Bitcoin, EBV
maintains a bit-vector set in the status database. The key in
the database is a block height, while the value is a bit-vector
indicating all the outputs in a block. In a bit-vector, each bit
represents if the corresponding output has been spent or not.

Fig. 7: Proposal of a new transaction

When a new block is appended to the chain, a new bit-vector
is inserted into the database. If an output in this block is spent,
the corresponding bit will be reset as 0. Since the size of a
bit-vector is at most a few KB, the space requirement of bit-
vectors for all the blocks is about hundreds of MB, which is
much smaller than that of the UTXO set.

As stated in Section II-B, Ls is required to conduct SV.
However, since no Ls is stored in the validator node’s status
database, Ls needs to be provided by the transaction proposer
reliably. As shown in Fig. 6, apart from the Us as in Bitcoin,
each input must be attached with an Enhanced Ls (ELs), a
Merkle Branch (MBr) [24], a block height, and an output
position. All of these will be detailed in the following sections.

C. Transaction proposal

This section describes how to propose a new transaction in
EBV. Also, it deals with the challenge of transaction inflation
encountered in this design.

1) Data structures of a transaction: As presented above,
since less data is stored in a validator’s status database, a
transaction is requested to attach more data for validation.
Toward this end, we introduce how to assemble a new trans-
action in EBV. A transaction mainly consists of two parts:
inputs and outputs. Since there is no difference in the outputs
part between EBV and Bitcoin, we focus on how to create the
inputs part.

As shown in Fig. 7, an input in EBV includes five fields,
namely MBr, Us, ELs, height, and position. MBr is a small part
of the Merkle tree, which includes all the sibling nodes along
the path from the tree root to the transaction containing the to-
be-spent output. The Us field in EBV is the same as Bitcoin.
Assume the to-be-spent output is contained in Block h, height
field will be set as h. Besides, if the output is indexed as the
p-th in Block h, the position field will be set as p. Compared
with Ls, which only contains the scripts in an output, ELs is
assigned the transaction containing the to-be-spent output. In
other words, ELs is exactly the leaf node in the above MBr.
It should be mentioned that although Ls is enough for SV,
providing the entire transaction as ELs is necessary. The reason
for it is that we make use of the MBr to do EV, whose hash
calculation is done based on the entire transaction.

2) Transaction inflation challenge: However, taking the
entire transaction as ELs also brings a challenge. Taking Fig. 8
as an example, transaction ‘i’ embeds transaction ‘j’ in its
input, while the latter further embeds transaction ‘k’, and the



Fig. 8: Inflation problem of transactions

(a) Replace the input with its hash

(b) Input bodies of transaction ‘j’ are not needed

Fig. 9: Deal with the transaction inflation

like. The size of transaction ‘i’ is expected to be more and
more inflated, which is referred to as a transaction inflation
problem.

To address this challenge, EBV replaces each input in
the transaction with the input’s hash, as shown in Fig. 9a.
Accordingly, only the hashes and outputs are involved in
building the Merkle tree. However, the input bodies will also
be transmitted and stored along with the transaction. This
change of input structure will not invalidate the input checking.
In particular, the outputs in ELs are enough for SV. Besides,
EV is done by comparing two Merkle tree roots, one of which
is stored in the validator’s header, and the other is calculated
based on the proof. Since the root in the header is created
without input bodies when packaging a block, the proof also
need not contain the input bodies. What’s more, ELs has
nothing to do with UV. Therefore, when taking transaction
‘j’ as ELs in transaction ‘i’, input bodies in transaction ‘j’

Fig. 10: Validation of a transaction

Fig. 11: Different positions of an output

are not necessarily required, as shown in Fig. 9b. Since the
transactions (e.g., transaction ‘k’) embedded by the inputs of
transaction ‘j’ are not needed in transaction ‘i’, the size of
transaction ‘i’ is reduced largely, thus avoiding the transaction
inflation problem.

D. Transaction validation

After receiving a transaction, a node has to validate the
legitimacy of this transaction. Therefore, we describe how to
perform the transaction validation in EBV and cope with the
challenge of fake positions as well.

1) Process of transaction validation: As stated in Sec-
tion II-A, the most important part of transaction validation
includes EV, UV, and SV. Since the SV process in EBV works
in the same way as the traditional ones, we focus on EV and
UV in this section. As shown in Fig. 10, EV is conducted
based on the MBr and height fields in the input, while UV
relies on the height and position fields.

To be more specific, the validator will first find the specific
header of height h in its local storage, and then figure out
Merkle tree root based on MBr and ELs. Concretely speaking,
hash values in MBr are calculated from the bottom up, with
the top one as the MBr root. If the MBr root is consistent
with that in the header, the output spent by this input will
be considered as existent, thus passing EV. To conduct UV,
the validator will first fetch the bit-vector from the database
with the height as key. Then, the bit of index position in the
bit-vector will be checked. If the bit is 1, the output will be
considered as unspent, thus passing UV. Since both sizes of
headers and bit-vectors are small, they can be totally stored
in the memory, which speeds up the transaction and block
validation largely.

2) Fake position challenge: Up to now, everything seems
to work well, but in fact, we intentionally omit an important
challenge: fake position value. Concretely speaking, since the



position field is provided by the transaction proposer, what if
the proposer provides a fake position?

Towards tackling this challenge, let’s take a new look at
the position value. As shown in Fig. 11, the position value we
needed and mentioned before can be considered as an absolute
position value, which is indexed from the first output in the
whole block. Taking the last output in Fig. 11 as an example,
its absolute position value is 4. From another point of view,
an absolute position value can be regarded as the sum of two
parts: a stake position value and a relative position value. Let
the first output in the same transaction as the example output
be a ‘stake output’. Stake position represents the position value
of the stake output, indexed from the first output in the whole
block. In Fig. 11, stake position of the example output is 3.
Relative position denotes the position value relative to the
stake output, which is 1 for the example output. It should be
noted that the input bodies are omitted from Fig. 11 to make
the figures more readable.

Since all the outputs in a transaction are provided in the ELs
field, relative position of an output can be easily acquired.
EBV requires the miner to add a stake position field for
each transaction when packaging a new block. With the stake
position field, the absolute position of an output can be easily
figured out. What’s more, since stake position is contained in
a transaction, its correctness can be guaranteed by MBr, which
also prohibits the proposer from providing a fake position.

E. Block storage

If all the transactions in a block and further the block pass
the validation, it will be stored locally by the validator node.
In this part, we present the process of block storage, especially
the update of the status database. Besides, we further optimize
the size of sparse vectors in the bit-vector set, to further reduce
the memory requirement.

1) Update of status database: The main process of block
storage in EBV is similar to that in Bitcoin, except for updating
the status database. In particular, the status database stores the
UTXO set in Bitcoin, while maintaining the bit-vector set in
EBV. Therefore, we detail the update of the bit-vector set in
this section. As shown in Fig. 12, to store a new block, a
new bit-vector indicating all the outputs in the block will be
created and inserted into the database. Meanwhile, the bits
corresponding to all the inputs will be reset as 0. If all the
bits in a vector have been reset as 0, this vector can be deleted
from the database, to reduce the memory requirement.

2) Vector optimization: As time goes by, more and more
bits in a vector will be reset as 0. We refer to a vector with
very few bits of 1 as a ‘sparse vector’. A sparse vector can
be represented by an index array of {i0, i1, ..., in}, where ik
represents a bit index of value 1, and n represents the count
of 1-value bits. Taking Fig. 13a as an example, since there is
only one 1-value bit in the 0-th bit-vector, it can be considered
as a sparse vector. This sparse vector can be represented by
an array of {3}, which indicates only the third bit has value
1. It is easy to find that only two bits (i.e., 112) are enough to

Fig. 12: Update of the bit-vector set

(a) Before optimization (b) After optimization

Fig. 13: Optimization of sparse vectors

represent the array of {3}, which is less than five bits in the
original vector.

In the implementation, we add a flag bit in the front of
each value to indicate the type of following bits, as shown in
Fig. 13b. If the flag equals 0, the following bits represent a bit-
vector. Otherwise, the following bits represent an index array.
Since the number of outputs in a block is less than 65536, 16
bits are enough to represent an index in the array.

V. SECURITY ANALYSIS

On the whole, EBV takes the same security model as
the mainstream blockchain systems (e.g., Bitcoin). It inher-
its almost all the working mechanisms from the traditional
blockchain system, except that it provides an alternative struc-
ture to maintain the status data. In other words, mechanisms
including locking/unlocking, PoW (Proof of Work) mining,
and building of Merkle trees remain the same. The status
data modified by EBV only changes the manner to check
the validity of an input. Therefore, in this section, we mainly
analyze the attacks trying to spend an invalid output, including
spending a nonexistent output and spending an already spent
output.

As for the first attack, the existence of an output can be
verified through the MBr, by calculating the hash values from
the bottom to the top. If the top hash value is the same as the
specific root stored by a node, this output can be considered
existent. Otherwise, the output is nonexistent, thus resisting the
attack. In terms of the second attack, each node stores the bit-
vectors locally to indicate if an output has been spent. Since



an attacker is less likely to tamper with the bit-vectors in other
nodes, the output can be prevented from being double-spent.
To sum up, EBV can resist various system attacks, which is
as secure as the traditional blockchain system.

VI. EVALUATION

In this section, we conduct multiple experiments to evaluate
our efficient block validation mechanism. Our experiments
are based on Bitcoin, which is the ancestor of UTXO-based
blockchains. Since the input structure in EBV is different from
Bitcoin, the ledger data cannot be synchronized from Bitcoin
to EBV directly. Therefore, we implement an intermediary
node to reconstruct the input data, which is presented in
Section VI-A. The evaluation metrics consist of four aspects:
memory requirement, block validation time, IBD time, and
propagation delay. In reality, we also considered the metrics
of memory/disk bandwidth or the LevelDB performance in-
dicators at the very start. Unfortunately, these bandwidth or
performance indicators seem to be less helpful to demonstrate
the conclusions. We repeat five times for each group of
experiments to decrease the experimental errors. However, for
the sake of space limitation and readability, we show only one
of these results in most figures, if all the five-time experimental
results verify the same arguments.

A. Experimental setup

All the evaluation of memory requirement, block validation
time, and IBD time can be done in a small cluster, while the
evaluation of propagation delay requires a large cluster. In this
section, we mainly describe the common experimental setup
for the former three metrics, leaving the specific experimental
setup for the propagation delay in Section VI-E. The small
cluster consists of three nodes, including an original Bitcoin
node, an intermediary node, and an EBV node.

Each node contains an Intel(R) Core(TM) i7-6500U
2.50GHz CPU, 8 GB RAM, and 2 TB HDD, with Ubuntu
16.04 as the operating system. The Bitcoin node runs Btcd
(v0.20.1-beta), which has already synchronized the entire
chain data from the mainnet. The intermediary node is used
to establish a new chain with inputs reconstructed, which will
be elaborated on later. The EBV node is exactly the node
applying the efficient block validation mechanism. Both the
intermediary node and EBV node are implemented on top of
Btcd.

The intermediary node firstly receives blocks from the
Bitcoin node, where the former and latter play the roles of
destination and source nodes respectively. However, instead of
storing the blocks directly, the intermediary node reconstructs
the blocks. To be more specific, a few fields are created
for each input in the block, including MBr, ELs, height,
and position. These new fields are combined with the corre-
sponding input together as the new input. All the new inputs
and other parts of the block are packaged as a new block,
which will be stored by the intermediary node. As for the
creation of MBr, the old block must be retrieved according
to the input. Therefore, apart from storing the new block,

15
-Q

1
15

-Q
2

15
-Q

3
15

-Q
4

16
-Q

1
16

-Q
2

16
-Q

3
16

-Q
4

17
-Q

1
17

-Q
2

17
-Q

3
17

-Q
4

18
-Q

1
18

-Q
2

18
-Q

3
18

-Q
4

19
-Q

1
19

-Q
2

19
-Q

3
19

-Q
4

20
-Q

1
20

-Q
2

20
-Q

3
20

-Q
4

21
-Q

1
21

-Q
2

Time (quarter)

0

1

2

3

4

Da
ta
 si
ze
 (G

B)

}
Reduced by 42.6%

Bitcoin
EBV
EBV w/o optimization

Fig. 14: Comparison of memory requirement

0 1 2 3 4 5 6 7 8 9
Block height (590000+)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m
e 
(s
)

Validation time

0

1

2

3

4

5

6

7

8

Co
un

t

×103

#Input

Fig. 15: Comparison of input count and validation time

the intermediary node also needs to maintain the relationship
between inputs/outputs and blocks. Concretely speaking, we
maintain a database to map from the input/output to the block
height. With the block height, we can easily retrieve the block
content from the chain.

After finishing the reconstruction of the new chain, the
intermediary node plays the role of a source node, which
synchronizes the new chain data to the EBV node. The
synchronization process from the intermediary node to a
destination node is exactly the one we make measurements.
This process will be compared with that between two original
Bitcoin nodes.

B. Memory requirement

In terms of the memory requirement, we only consider the
part used to validate inputs. This part refers to the UTXO set
for Bitcoin and bit-vector sets for EBV. In other words, the
memory space used to store other data (e.g., block headers
and unconfirmed transactions) is ignored in this section, since
it is the same in both Bitcoin and EBV. To evaluate the
effectiveness of vector optimization, we also measure the
memory requirement of EBV without optimization.

Fig. 14 depicts the experimental results starting from 2015.
It is easy to find that EBV reduces the memory requirement
significantly. Particularly, in contrast to the 4.3 GB in Bitcoin,



EBV occupies only 303.4 MB to date. Besides, by comparing
EBV and EBV without optimization, we can conclude that
the vector optimization approach brings large profits, which
reduces the memory requirement by 42.6%. Furthermore,
as time goes by, the vector optimization approach exerts a
growing influence on memory reduction. The reason for it is
that more and more outputs in a block will be spent, and the
corresponding vector is more likely to be a sparse vector.

C. Block validation time

To evaluate the time taken to validate blocks, we select
10 blocks starting from block height 590000. In consideration
of fairness, we set the value of memory limits as 500 MB for
both Bitcoin and EBV. In fact, 500MB is much larger than the
default value (100MB) hard-coded in Btcd and also the default
value (450MB) set in Bitcoin Core4 (another implementation
in C++). Therefore, we argue that it is reasonable to set the
memory limits as 500 MB in our experiments.

First, we compare the changing trends of the input count
contained in each block and the corresponding block validation
time, as shown in Fig. 15. From the figure, we can find that
the variation of block validation time is roughly consistent
with that of the input count. The reason for it is that all
the data needed to validate a block has been stored in the
memory. Without accessing the slow disk from time to time,
the validation process can be totally done in the memory.

In addition, Fig. 16a compares the block validation time
between Bitcoin and EBV. As expected, compared with Bit-
coin, EBV greatly reduces the block validation time. To be
more specific, as for the block of height 590004, EBV reduces
the validation time by 93.5%. Furthermore, different parts of
validation time in EBV are detailed in Fig. 16b, including EV,
UV, SV, and others. It is easy to find that it takes little time to
finish EV and UV, while most of the time is taken to do SV.

D. IBD time

We also evaluate the time taken to perform IBD. Similar to
Section VI-C, the memory limit is set as 500 MB for both
Bitcoin and EBV. The IBD time is recorded every 50,000
blocks, from the genesis block to the block of height 650,000.

Fig. 17a makes a comparison of IBD time between Bitcoin
and EBV, in the form of both boxplots and line plots. The
boxplot describes the variations of five groups of experiments,
while the line plot shows the average. By comparing the
line plots, we can draw the conclusion that EBV is able to
reduce the IBD time. In particular, by the block of 650,000,
EBV reduces the IBD time by 38.5%. Besides, compared with
Bitcoin, the IBD time of EBV increases more slowly. In other
words, the larger is the number of blocks, the greater are the
reduction effects brought by EBV. With regard to the boxplots,
the variations are quite small both in EBV and Bitcoin, which
demonstrate the stability of experimental results.

Detailed components of the IBD time are depicted in
Fig. 17b. From the figure, we can find that both EV and UV

4https://bitcoincore.org

0 1 2 3 4 5 6 7 8 9
Block height (590000+)

0

2

4

6

8

10

12

14

Ti
m
e 
(s
)

EBV
Bitcoin

(a) Comparison of the validation time

0 1 2 3 4 5 6 7 8 9
Block height (590000+)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

EV
UV
SV
Others

(b) Different parts of validation time in EBV

Fig. 16: Time taken to validate a block

take up a very small fraction of the total time, which also
confirms the efficiency of the new block validation mechanism.
Since it takes quite a large amount of time to do SV, interesting
research works in the future may be the optimization of SV.

E. Propagation delay

Apart from the reduction of IBD time, the acceleration
of block validation is also expected to reduce the propagation
delay of blocks, thus lowering the risks of blockchain forks and
enhancing system security. To demonstrate the improvement
of block propagation brought by EBV, we further conduct
the experiments to compare the propagation delays between
Bitcoin and EBV. For each system, we deploy twenty nodes on
AWS (Amazon Web Services) t2.medium instances dispersed
in five regions and set the number of gossip neighbors in each
node as two. We randomly pick a seed block and free it from
a node. After that, the time to receive the seed block by each
node is evaluated. The experiment is repeated five times to
make the results more credible.

Experimental results are shown in Figure 18, which is
consisted of boxplots and line plots. By comparing the line
plots of the averages, we can conclude that EBV can exactly
reduce the block propagation delays largely. Particularly, as
for the moment when all the nodes receive the seed block,
EBV can reduce the time by 66.4%. Besides, it is easy to find



5 10 15 20 25 30 35 40 45 50 55 60 65
Block height (10000)

0

1

2

3

4

5

6

7

IB
D 
tim

e 
(s
)

×105

EBV
Bitcoin

EBV (avg)
Bitcoin (avg)

(a) Comparison of IBD time

5 10 15 20 25 30 35 40 45 50 55 60 65
Block height (10000)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e 
(s

)

×105

EV
UV
SV
Others

(b) Different parts of IBD time in EBV

Fig. 17: Time taken to perform IBD

1 2 3 4 5 6 7 8 9 1011121314151617181920
#Node

0

5

10

15

20

25

Pr
op

ag
at
io
n 
de

la
y 
(s
) EBV

Bitcoin

EBV (avg)
Bitcoin (avg)

Fig. 18: Comparison of block propagation delays

that EBV has a lower variance than Bitcoin. The reason for it
is that EBV maintains all the status data in the memory, while
Bitcoin may maintain different parts of the status data in the
memory at different times of experiments.

VII. RELATED WORK

Although there are lots of works trying to improve
blockchain performance from the perspective of consensus
algorithms [25], [26], few of them give attention to the
optimization of block validation, which can have important
impacts on system security. According to different target lay-

ers, the small number of works to reduce memory requirement
or accelerate block validation can be generally divided into two
categories: database-layer and protocol-layer.

A. Database-layer optimization

Since the UTXO set is stored in a local database, a direct
and natural idea is to optimize the operations on the database.
The most representative one is BZIP [10], which adopts a
data compression approach. By analyzing the keys and values
stored in the UTXO set, BZIP identifies the redundancy
problem of both key and value domains. To deal with it, BZIP
designs two shorter representation methods for the key and
value respectively, which require less memory. However, BZIP
encounters two important problems in practice. First, it makes
use of the memory pointer to represent a value domain. These
memory pointers are volatile and will change completely if the
node crashes and restarts. Second, the paper argues that few
collisions are expected when taking a shorter representation
method. In fact, however, most indexes in the shorter key
representation by BZIP are distributed in a small interval,
which makes the collisions very common.

B. Protocol-layer optimization

Instead of totally relying on the locally cached data to
do validations, protocol-layer works make use of data from
the transaction proposers. More precisely, in the system of
this category, the transaction proposer attaches some proofs
along with the transaction, which can be used for validation.
These proofs are generated based on some novel structures,
such as the sparse Merkle tree [27] and the accumulator [28].
Apparently, EBV also belongs to this category.

As a representative to adopt the sparse Merkle tree, Edrax
organizes all the outputs in the tree, with each leaf in the tree
as an unspent output or nil [11]. In fact, Edrax goes to an
extreme to store almost nothing for the block validation in the
validators. When proposing a new transaction, the proposer
has to provide a branch of the sparse Merkle tree as proof.
Each validator only needs to store the tree root, which is
much smaller than the UTXO set. Although Edrax reduces the
memory requirement in the validators, it brings an extremely
heavy burden on the proposers. To be more specific, the tree
root is updated in each block. To make the proof consistent
with the tree root, each proposer has to update its local
proof for each new block, which brings too large calculation
overhead. What’s worse, the size of the sparse Merkle tree is
too large, whose tree height can reach 40. A branch in the large
tree will be large too, leading to significant network overhead.

More schemes make use of the accumulators to create
proofs, such as Utreexo [29], Boneh [30], and MiniChain [31]
Each node in these schemes only stores the accumulator
representation of the blockchain state, which is much smaller
than the UTXO set. When proposing a new transaction, the
proposer attaches proofs based on the accumulator. These
proofs can be used by other nodes to validate the inputs in
this transaction. However, these schemes also face some chal-
lenges. The size of proof in Utreexo has a positive relationship



with the count of UTXOs. In other words, a proof may be
larger and larger, as time goes by. As for Boneh, the dynamic
addition and removal of elements in the accumulator may lead
to its inefficiency. MiniChain requires the users to update the
nonmembership witness in time. Otherwise, the updating of
an old witness would be a time-consuming task, which brings
a heavy burden on the users.

VIII. CONCLUSION

As time goes by, a large proportion of the UTXO set
has to be stored in the slow disk, which reduces the effi-
ciency of block validation. The inefficient block validation
will further lead to a long delay of block propagation and
a long time of initial blocks download, which may lower
down the system security. To deal with these problems, we
propose EBV, an efficient block validation mechanism, which
reduces the memory requirement for block validation and
speeds up the validation process. EBV can support various
checkings of inputs, including EV, UV, and SV, which ensures
system security. We conduct multiple experiments to evaluate
EBV, whose experimental results demonstrate its reduction of
memory usage and acceleration of block validation.

ACKNOWLEDGMENT

This work is supported by Hong Kong Research Grants
Council General Research Fund PolyU 15216220 and
152124/19E, Key Research and Development Program of
Hubei Province NO.2021BEA164, National Natural Science
Foundation of China (Grant No.62072197), National Key
Research and Development Program of China under Grant
No.2021YFB2700700, the Technology Innovation Project of
Hubei Province of China under grant No.2019AEA171, Key-
Area Research and Development Program of Guangdong
Province No.2020B0101090005.

REFERENCES

[1] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web
and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[2] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[3] L. Brünjes and M. J. Gabbay, “Utxo-vs account-based smart contract
blockchain programming paradigms,” in International Symposium on
Leveraging Applications of Formal Methods. Springer, 2020, pp. 73–
88.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] D. McGinn, D. Birch, D. Akroyd, M. Molina-Solana, Y. Guo, and

W. J. Knottenbelt, “Visualizing dynamic bitcoin transaction patterns,”
Big data, vol. 4, no. 2, pp. 109–119, 2016.

[6] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-
Joancomartı́, “Analysis of the bitcoin utxo set,” in Proceedings of the
22nd International Conference on Financial Cryptography and Data
Security. Springer, 2018, pp. 78–91.

[7] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in Proceedings of the 13th IEEE International Conference on
Peer-to-Peer Computing. IEEE, 2013, pp. 1–10.

[8] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. Hua, H. Chen, K.-C. Li, and
H. Jin, “Blockp2p: Enabling fast blockchain broadcast with scalable
peer-to-peer network topology,” in Proceedings of the 14th International
Conference on Green, Pervasive, and Cloud Computing. Springer, 2019,
pp. 223–237.

[9] “Initial block download,” https://bitcoin.org/en/full-node#
initial-block-downloadibd.

[10] S. Jiang, J. Li, S. Gong, J. Yan, G. Yan, Y. Sun, and X. Li, “Bzip: A
compact data memory system for utxo-based blockchains,” in Proceed-
ings of the 15th IEEE International Conference on Embedded Software
and Systems (ICESS). IEEE, 2019, pp. 1–8.

[11] A. Chepurnoy, C. Papamanthou, and Y. Zhang, “Edrax: A cryptocur-
rency with stateless transaction validation.” IACR Cryptology ePrint
Archive, vol. 2018, p. 968, 2018.

[12] M. M. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian, M. P.
Jones, and P. Wadler, “The extended utxo model,” in Proceedings of
the 24th International Conference on Financial Cryptography and Data
Security. Springer, 2020, pp. 525–539.

[13] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[14] J. Zahnentferner, “Chimeric ledgers: Translating and unifying utxo-based
and account-based cryptocurrencies.” IACR Cryptology ePrint Archive,
vol. 2018, p. 262, 2018.

[15] K. Okupski, “Bitcoin developer reference,” in Eindhoven, 2014.
[16] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino, “A formal model of

bitcoin transactions,” in Proceedings of the 22nd International Confer-
ence on Financial Cryptography and Data Security. Springer, 2018,
pp. 541–560.

[17] R. O’Connor and M. Piekarska, “Enhancing bitcoin transactions with
covenants,” in Proceedings of the International Conference on Financial
Cryptography and Data Security. Springer, 2017, pp. 191–198.

[18] V. Vallois and F. A. Guenane, “Bitcoin transaction: From the creation
to validation, a protocol overview,” in Proceedings of the 1st Cyber
Security in Networking Conference (CSNet). IEEE, 2017, pp. 1–7.

[19] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. ” O’Reilly Media, Inc.”, 2014.

[20] H. Brakmić, “Bitcoin script,” in Bitcoin and Lightning Network on
Raspberry Pi. Springer, 2019, pp. 201–224.

[21] “Data storage in bitcoin,” https://en.bitcoin.it/wiki/Bitcoin Core 0.11
(ch 2): Data Storage.

[22] “Utxo consolidation report,” https://bitcoinops.org/en/
xapo-utxo-consolidation.

[23] H. Gilbert and H. Handschuh, “Security analysis of sha-256 and sisters,”
in International workshop on selected areas in cryptography. Springer,
2003, pp. 175–193.

[24] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proceedings of the Conference on the Theory and Appli-
cation of Cryptographic Techniques. Springer, 1987, pp. 369–378.

[25] M. Zhang, J. Li, Z. Chen, H. Chen, and X. Deng, “Cycledger: A scalable
and secure parallel protocol for distributed ledger via sharding,” in 2020
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2020, pp. 358–367.

[26] L. Lao, X. Dai, B. Xiao, and S. Guo, “G-pbft: a location-based and
scalable consensus protocol for iot-blockchain applications,” in 2020
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2020, pp. 664–673.

[27] R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse merkle trees,”
in Proceedings of Nordic Conference on Secure IT Systems. Springer,
2016, pp. 199–215.

[28] J. Benaloh and M. De Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in Workshop on the Theory and
Application of Cryptographic Techniques. Springer, 1993, pp. 274–
285.

[29] T. Dryja, “Utreexo: A dynamic hash-based accumulator optimized for
the bitcoin utxo set.”

[30] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumu-
lators with applications to iops and stateless blockchains,” in Annual
International Cryptology Conference. Springer, 2019, pp. 561–586.

[31] H. Chen and Y. Wang, “Minichain: A lightweight protocol to combat the
utxo growth in public blockchain,” Journal of Parallel and Distributed
Computing, vol. 143, pp. 67–76, 2020.


