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Abstract—Verifiable Searchable Symmetric Encryption (SSE)
enables reliable search over encrypted, privacy-preserving data
on untrusted clouds. Most existing SSE designs only focus on
keyword-file search. However, a more difficult but useful search,
range search over encrypted numerical values remains unsolved.
Moreover, the fairness of search in the mutual distrusted scenario
without public verification, where data users may maliciously
deny the results after the local result verification, is not well
addressed yet. In this paper, we take the first step to study the
public verification problem atop the blockchain for encrypted
numerical search. We design a novel verifiable SSE scheme
named Slicer based on a Succinct Order-Revealing Encryption
(SORE) scheme to achieve range search on numerical data. Our
search results are verifiable, updated and privacy-preserving by
SSE and maintaining the forward security. We illustrate the
security and practicality of our design through rigorous analysis
and extensive evaluations respectively.

Index Terms—Verifiable search, searchable symmetric encryp-
tion, privacy-preserving, blockchain, cloud data

I. INTRODUCTION

Outsourcing data to clouds has become a strong trend for
data owners to relieve from great storage cost and heavy
online burden. Since the outsourced data may involve private
information, e.g., medical records or business secrets, data
owners usually encrypt the data while maintaining the ability
to search over it. Some powerful and generic techniques like
multi-party computation and homomorphic encryption cannot
be applied to this scenario due to practical inefficiency despite
high security. To this end, searchable symmetric encryption
(SSE), which is a structured encryption based on symmetric
encryption, has been extensively studied [1], [2] owing to its
prominent efficiency.

Most traditional SSE schemes assume that clouds are hon-
est but curious, which means they will honestly follow the
stipulated protocols but attempt to learn information about the
outsourced data. This assumption, however, does not always
suffice in practical scenarios where dishonest clouds may
deviate from the protocols and return non-conforming results.
To alleviate this concern, verifiable SSE has become one of
the focuses of active research (e.g., [3], [4], [5], [6], [7], [8]).
Nevertheless, there still remain the following three limitations
that have not been well addressed.

First, most verifiable SSE schemes [4], [5], [7], [8], [9], [10]
are limited to the keyword-file search type, and incapable of
range search over the data content. However, numerical data
exists ubiquitously in the real world, such as ages in medical
records, and transaction values in business secrets. How to

enable the encrypted search over numerical data is challenging,
since the solution of employing the traditional keyword-file
search to traverse all values is totally infeasible.

In addition, many existing verifiable SSE designs [3], [6],
[71, 8], [9], [11] let data users locally verify the search results
based on the assumption that data users will honestly report the
verification outcome. In practice, to avoid paying search fees,
data users are strongly motivated to repudiate the search results
despite of their correctness. Therefore, public verification of
search results is highly desired to ensure fairness in this
scenario, where data users and clouds are mutual distrusted.
To achieve this, we should properly address two challenges: 1)
The public verification cannot reveal any privacy of original
data; 2) The process of public verification needs to be trusted.
A recent work ServeDB [12] enables verifiable range queries
over encrypted data, but its verification requires the decryption
of data, which violates the first rule. Several designs [13],
[14], [15] based on blockchain have been proposed to tackle
the problem. Unfortunately, none of them support the range
search over numerical data and excessive data is required to
be stored on blockchain.

Lastly, data updates are also significant in real-world ap-
plications. This requirement entails the following two main
challenges. First, the data freshness should be guaranteed in
the multi-user scenario where data users may not be the data
owner. Data users need to be convinced that the search results
are from the newest data. Moreover, forward security [16],
which prevents the insertion operation from leaking whether
the newly added data matches former searches, is another
important privacy requirement for data dynamics.

In this paper, we are the first to investigate the public
verification problem for encrypted numerical search with dy-
namic data. To support numerical search, we devise a Succinct
Order-Revealing Encryption (SORE) scheme that works like
a slicer to slice an order condition into several slices, each
of which can be treated as a keyword search. Further, we
design the public verification algorithms for these slices, using
multiset hash and RSA accumulator. We adopt the blockchain
as the trusted party to fairly execute the public verification and
guarantee the data freshness. We also incorporate the trapdoor
permutation to achieve forward security so that insertion
privacy can be guaranteed. In general, our contributions are
summarized as follows:

+ We take the first step to propose a framework, Slicer, to

provide verifiable encrypted search over numerical data



by using blockchain. It supports public verification so that
fairness can be ensured in the mutual distrusted scenario.

e« We step over from the normal keyword search to the
numerical search by devising the SORE scheme. Based
on that, we design a novel verifiable and secure SSE
scheme, including Build, Search and Insert protocols.

o We strictly prove the correctness and security of the pro-
posed SORE scheme and the encrypted search protocol.

+ We implement a prototype and conduct extensive exper-
iments to evaluate the performance. The result validates
the effectiveness and efficiency of our design.

The rest of this paper is organized as follows. We first re-
view related literatures in Section II and give the preliminaries
in Section III. We then introduce the system model in Section
IV and describe our design in Section V. We further analyze
the design in Section VI and present the evaluation in Section
VII. Section VIII finally concludes our paper.

II. RELATED WORK
A. Reliable Searchable Encryption

Verifiable searchable encryption enables users to verify
search results returned by untrusted clouds. They can be
normally categorized into two types according to the under-
lying encryption scheme, i.e., verifiable searchable symmetric
encryption and verifiable public key encryption with keyword
search. Chai and Gong [3] propose the first verifiable sym-
metric searchable encryption based on a trie-like index named
PPTrie. But it only provides keyword-file search on static data.
In [11], Stefanov et al. achieve the verifiability of dynamic
SSE by comparing the message authenticated code and further
support forward security. Bost et al. [6] improve Stefanov’s de-
sign and present generic solutions for verifiable SSE. ServeDB
[12] designs a tree-based index with cube encoding to support
verifiable range queries over dynamic encrypted data. Ge et
al. [9] propose a verifiable SSE that supports efficient data dy-
namic update by using a novel accumulative authentication tag.
GSSE [7] enables generic and verifiable encrypted search over
dynamic data by leveraging Merkle Patricia Tree (MPT) and
multiset hashing. It also designs a timestamp-chain structure
to prevent replay attacks. Liu et al. [8] propose a verifiable
searchable symmetric encryption scheme that supports data
update for the multi-user setting. Nevertheless, all these SSE
schemes cannot provide public verifiability, which enables the
verification process to be delegated to a third-party auditor
(TPA) without privacy leakage. Soleimanian and Khazaei [10]
propose two publicly verifiable SSE constructions upon basic
cryptographic primitives. Based on the public key encryption,
Zheng et al. [4] propose the first verifiable attribute-based
keyword search (VABKS) scheme over static data. Sun et al.
[5] present an efficient verifiable conjunctive keyword search
scheme (VCKS) for dynamic data. However, these designs
remain inefficient and require an extra trusted party due to the
underlying asymmetric encryption scheme.

There are also some novel research directions that utilize
emerging techniques to enhance the reliability of searchable

encryption. Some attempts have been made to achieve reliable
search over encrypted data by delegating the query processing
to trusted execution environment (TEE) [17], [18]. However,
these solutions require trusted hardware on clouds and the
memory size of an enclave is quite limited. Besides, the
search results in their designs cannot be publicly verified
since all search processes are sealed in the TEE. Recently,
blockchain technology has been used to devise verifiable
searchable encryption schemes [13], [19], [14], [15]. In [13],
Hu et al. directly store the whole encrypted indexes on the
blockchain and execute the search through the smart contract.
This solution may incur a considerable cost of gas since
the storage on the smart contract is expensive. To alleviate
the burden of the smart contract, Cai et al. [19] offload the
storage of encrypted files and indexes to the decentralized
storage systems. Their design only supports keyword search
over append-only encrypted data due to the immutability of
blockchain. In [14], Guo et al. design a verifiable and forward-
secure SSE scheme by virtue of the blockchain. Li et al. [15]
design a similar system with some improvements in terms
of file deletion and on-chain storage. The blockchain-based
designs can solve the problem of public verifiability, providing
efficient and verifiable query services [20].

We list state-of-the-art related studies on verifiable SSE
in Table I. To the best of our knowledge, our Slicer is
the first system that supports all desired features including
data dynamics, numerical comparison, data freshness, forward
security and public verifiability.

B. Numerical Comparison over Encrypted Data

Order Preserving Encryption (OPE) [21] enables the numer-
ical comparison by directly encrypting the plaintexts, making
the ciphertexts preserve the numerical order of plaintext-
space. CryptDB [22] utilizes OPE to support functionally
rich queries over encrypted databases. OPE cannot guarantee
the semantic security of the underlying encryption. It is also
vulnerable to inference attacks since the order and frequency
of plaintexts are revealed. To solve this problem, Chenette et
al. [23] propose the first efficient order-revealing encryption
(ORE) scheme, which allows the public comparison between
ciphertexts. It reveals the location of the first bit where two
ciphertexts differ. Lewi and Wu [24] introduce two new ORE
constructions for small domains and large domains respec-
tively. Their design only leaks the location of the first different
block instead of a bit. In [25], Demertzis er al. present a
range SSE scheme by employing a novel tree-like directed
acyclic graph. Guo et al. [26] design an enhanced ORE scheme
to further reduce the leakage for range queries in key-value
stores. All schemes above do not consider the verifiability of
the numerical comparison when clouds become dishonest.

III. PRELIMINARIES

In this section, we briefly present some related preliminaries
that will be used in our solution design.



TABLE I: Comparison with State-of-the-Art Verifiable Searchable Encryption Schemes

Designs? ‘ Dynamics"‘ Numerical comparison | Freshness® | Forward securityd‘ Public verifiability®
[3] X X N/A N/A X
[11], [6] v x N/A v X
[12] v Vv X X X
9] v X X X X
Traditional designs 7] v X X X
[8] Vv X X X X
[10] X X N/A N/A VA
[4] X X N/A N/A X
[5] vV X X X Vv
[13], [14], [15] v x v v v
Blockchain-based designs [19] X X Vv v VA
Ours Vi Vv v v v

2 We exclude TEE-based solutions because they can achieve arbitrary functionalities through customized programs. But they cannot provide public

verifiability due to the encapsulation of TEE.

b The dynamics covers operations including addition, update and deletion over the encrypted data.

¢ The data freshness can be verified by the data user without the online participation of the data owner. 'N/A’ means the freshness property does
not apply to the design because it is either a static-data scenario or a single-user scenario (the owner is the user).
’N/A’ means the schemes without data addition inherently do not support forward security.

¢ The integrity of the search result needs to be publicly verified in case of malicious data users.

A. Blockchain and Smart Contract

A blockchain is a distributed ledger that offers reliable
storage for transaction information in a decentralized network.
The blockchain data is transparent and immutable due to the
underlying hash chain technique and consensus protocols. It
can also provide a trusted environment for program execution
via the smart contract, e.g., Ethereum. However, due to the
limited storage and computation resources, the smart contract
charges fees for the execution, rendering itself not suitable for
massive data storage and complicated programs.

B. Cryptographic Primitives

Symmetric Encryption. A symmetric encryption scheme usu-
ally consists of three algorithms { K Gen, Enc, Dec}: KGen
takes the security parameter A as input and returns a secret
symmetric key Kg; Enc takes the key Kr and a plaintext m
as input and returns a ciphertext m’; Dec takes Kr and m’
as input and returns the plaintext m.

Pseudo-Random Function. Define pseudo-random function
(PRF) F : Kx X — Y, if for all probabilistic polynomial-time
(PPT) distinguishers D, there exists a negligible function negl
such that: |[Pr [DF+0) (1%) = 1] — Pr [DHO) (1Y) =1]| <
negl(X), where k is randomly chosen from /C and f)(-) is a
truly random function from X to ).

Trapdoor Permutation. A trapdoor permutation is a function
that can be computed in one direction easily, but difficult
in the inverse direction without the trapdoor. Formally, 7
is a trapdoor permutation if for any PPT adversary A,

Pr {y & M,z <+ A1, pk,y) : mp(x) = y} < negl(A)
while 7, (7,/(z)) = 2 and 7, (mpk(z)) = z. Here pk
and sk are generated public key and secret key respectively,
and 7, (-) and 7,!(-) can be efficiently calculated.

Multiset Hash Function. The multiset hash function maps
a multiset to a fixed-size string. Define a triple of PPT
algorithms (#H,=y;,+) and it is a multiset hash function
if for multiset M and N:

o H(MUN) =y H(M)+y H(N).

In this work, we employ the MSet-Mu-Hash construction

in [27]. It is defined as H(M) = [[,cp H(b)™>, where M
is a multiset of elements of a countable set B and M, is the
number of times that b appears in M. H(-) is a poly-random
function that maps a set to a finite field GF'(q). It is proved
that H is multiset collision resistant under the discrete log
assumption.
RSA Accumulator. The RSA accumulator is a collision
resistant ADS based on strong RSA assumption that can
provide authentication for sets. Compared with Merkle Hash
Tree, which is another ADS that can provide existence proofs,
the proof in the RSA accumulator is constant-size and leaks no
extraneous information. The bilinear-map accumulator works
like the RSA accumulator, but requires much more storage for
the public key. The functions of the RSA accumulator that we
use in this work are as follows [28]:

« Setup(1*) takes 1* as input and outputs a random -
bit modulus n that satisfies: n = pq, where p and ¢ are
random safe primes. It also generates a generator g €
QR,\{1}, where QR,, is the group of quadratic residues
modulo n.

o Accumulation(X) takes a set of prime numbers X as
input and outputs the accumulation value Ac using Ac =
¢g*? mod n, where x,, is the product of all numbers in X,

ie, vy =[[,cx
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Fig. 1: Verifiable encrypted search using blockchain.

o MemWit(z) can generate a proof of existence for the
member element. It outputs the membership witness for
the element = € X as: mw = ¢“»/* mod n.

o VerifyMem(x, mw) can verify the validity of the mem-
bership witness. It takes the element x and the corre-
sponding witness mw as input, and outputs True if
mw” mod n equals Ac, otherwise returns False.

To find prime representatives for input elements, we employ
the method proposed in [29] and denote it as Hpyime(-). It
can be seen as a random oracle that outputs random prime
numbers.

IV. SYSTEM MODEL

In this section, we present our model of verifiable encrypted
search over numerical data.

A. Framework Architecture

As shown in Fig. 1, our search framework is comprised
of four parties, i.e., data owners, data users, clouds and
blockchain. The data owner outsources his encrypted data
and established indexes to clouds for their storage and search
services. He also gives his secret keys to authorized data users
so that they can generate search tokens on their own. The
blockchain can publicly verify the results returned by clouds
via smart contract.

The workflow starts from the initialization of the data owner.
In addition to the data, indexes and secret keys, the data
owner also generates the authenticated data structure (ADS)
and sends it to the blockchain. When the data user wants
to search over the encrypted data, he calculates the search
tokens and gives it to the blockchain as well as the payment
for the cloud’s search services. Then the cloud retrieves the
search tokens and executes the search to get the results. It also
returns the proofs for further result verification on blockchain.
The verification is performed by the smart contract using the
received search tokens, results and proofs. If the verification
passes, the payment will be transferred to the cloud, otherwise
it will be refunded.

B. Threat Model

We regard the data owner and blockchain as fully trusted
parties. The data owner faithfully builds the encrypted in-
dexes and ADS, and delivers them with encrypted data.

The blockchain guarantees the trusted storage and program
execution via underlying consensus protocols. For data users,
we model them as quasi-honest, which means they are honest
about secret keys maintenance and search token generation.
But they may become dishonest about the result verification
after receiving search results and proofs from clouds. They
can save the search fees if they deliberately deny the returned
results regardless of their correctness. For the clouds, we
assume two aspects of dishonest behaviors. First, the cloud
may maliciously return incorrect or incomplete results due
to commercial interests or security vulnerabilities. The other
aspect is that they might attempt to learn the content of the
outsourced data for further abuse.

V. SLICER DESIGN
A. Technical Overview

We denote the numerical database as a list of key-value pair
records, i.e., DB = {(R,v)}, where R is the unique record
ID and v is the corresponding numerical value. The range
search over numerical data is usually comprised of two types,
i.e., equality search and order search. The former one means
searching for records that have a certain value while the latter
represents the search for records whose value is smaller or
greater than the given value. Formally, a query consists of a
value v and a matching condition mc = {“=",“>",“<"}.

The equality search can be seen as a variant of traditional
keyword-file search, where the value becomes the file and the
record ID is the keyword. Therefore, some previous schemes
like multiset hash functions [27] can be adopted to facilitate
the result verification by computing a set hash for each value.
Nevertheless, these schemes cannot be directly applied to the
order search due to the excessive amount of values. Our
intuition for solving the order search verification is to slice
the entire value field under the order condition into a fixed
number of slices like a slicer. Each slice can be seen as a
unique tuple and the total number is only the bit count of
the value. The original value satisfies the order condition if
and only if it contains the same slice. We manufacture this
slicer via the design of Succinct Order-Revealing Encryption
(SORE) scheme.

B. SORE Scheme

Design Rationale. First, we need the smallest ciphertext space
to compose a lightweight ORE scheme, because the verifica-
tion cost is high on the blockchain. To this end, we generate
only one ciphertext for each bit rather than the divided block.
In order to avoid the one-by-one comparison on ciphertexts,
we tokenize the orders and convert the computation to the
tuple matching. Specifically, we embed the order relations
into the encryption so that the order can be regarded as a
one-bit value. Based on the left/right framework [24], we
devise the tuple to make sure there exists one and only one
common tuple matched if the ciphertext satisfies the query
condition. Therefore, the order comparison between two values
is transformed to the exact match among tuples, which can be
further exploited to build encrypted indexes.



SORE Construction. We present our construction based on
positive integers for simplicity since all numerical values in
practical can be transformed into this form through scaling.
Given a b-bit integer v, let v; represent the ith bit of the value,
and Vi1 denote the bits from 1 to ¢ — 1, i.e., the entire prefix
of v;. We use v; to denote the inverse value derived by the
bitwise NOT operation of v;. Let F : {0,1}* x {0,1}** —
{0,1}* be a secure PRF. During the setup phase, given a
security parameter \, our scheme outputs a uniformly random
PRF key k as the secret key. Let || denote the concatena-
tion operation. We define the core part of SORE scheme
IT = {SORE.Token, SORE.Encrypt, SORE.Compare} as
follows:

o SORE.Token(k, v, oc): Given the queried value v and the
order condition oc € {*“>”, “<”}, the algorithm generates
query tokens to find all answers a satisfying v oc a. For
each i € [1,0], it computes a tuple tk; < v);_1||v;[loc.
Then it shuffles all tuples and outputs corresponding PRF
values as tokens tk = {Fy(tk1), Fy(tkz2), - , F(tkp)}.

o SORE.Encrypt(k, v): For each bit i € [1,b], it computes
a tuple ct; < v|;_1||0;||emp(v;, v;), where emp(v;, v;) €

“>” “<”} denotes the comparison result between v;
and v;. Then the algorithm randomly shuffles all tu-
ples and outputs their PRF values as ciphertexts ct =
{Fk(Ctl),Fk(CtQ), e 7Fk(Cﬁb)}.

o SORE.Compare(ct, tk): Given the ciphertexts ct =
{Fi(ct1), Fy(cta), -, Fy(cty)} and the query tokens
tk = {Fy(tk1), Fx(tka), -, Fr(tky)}, the algorithm
checks whether they have one and only one value in
common. If the common value exists, output True.
Otherwise, output False.

We give an illustrative example of our SORE scheme in
Fig. 2. Suppose we have two plaintexts, i.e., 5 = (0101) and
8 = (1000), to be encrypted, and two query conditions, i.e.,
6 = (0110) and 4 = (0100), to be executed. Among the
tuples generated by the corresponding algorithms, we mark
the matched tuples for the two comparison results. Since the
tuples are shuffled, the matched bit index can be concealed
during each single query.

C. Building Encrypted Indexes and ADS

Algorithm 1 presents the building process of the encrypted
indexes and ADS. Following SORE.Encrypt, we generate the
tuples (line 1 to 4) and produce the encrypted indexes (line 5 to
16) and ADS, i.e., RSA accumulator (line 17 to 20), together
with the values. To enable the forward security, we employ
the trapdoor permutation [16] to make the updated values
unlinkable to previous searches until the newest search token
is issued. Specifically, we first generate a random trapdoor and
two tokens GG; and G using the PRF G. GG; and G5 can hide
the true values and be further used to build the indexes via the
PRF F'. Note that we use the concatenation of the trapdoor
and a self-incremental counter ¢ to index the encrypted R via
l and d. As for the RSA accumulator, we first get a random
hash through the multiset hash function H on the qualified
result set for each w, i.e., the original value v or tuple ct;.

Algorithm 1: Build: Indexes and ADS Building
Input

: PRF key K; encryption key Kp; key-value
database DB; secure PRFs {F, G}; multiset
hash function H; random oracle function
Hprime~
Output: Encrypted index I; ADS information (X, Ac).

1 foreach (R,v) € DB do

fori: =1t b do
L ct; < vi—1|villemp (0i,v;);

Put (R, ct;) into DB;

s W N

W

Initialize a dictionary I for indexes, T' for trapdoor
states and S for set hashes;

6 foreach w € {v} U {ct;} do

7 Randomly generate a trapdoor tg;

8 T.put(w, (to,0));

9 G1 + G (K,w||]l); G2 + G (K,wl|]2); ¢ < 0;

10 | h<+ Hp);

11 foreach R € DB(w) do

12 1+ F(Gq,tollc);

13 d + F(Ga,to||c) @ Enc(Krg, R);
14 Iput(l,d); c+ +;

15 h < h+y H(Enc(Kg, R));

16 | Sput(to0]|G1]|Gz,h);

17 Initialize a list X for primes;
18 foreach (g,h) € S do
19 L z < Hprime(gllh); X.add(x);

20 Ac + Accumulation(X);

21 Send (I, X, Ac) to the cloud,;

22 Send Ac to the blockchain;

23 Send (K, Kg,T) to the data user;

Then we calculate a prime representative for the concatenation
of the search token and corresponding set hash, and get the
accumulation value Ac by accumulating all primes. Ac is sent
to both the cloud and the blockchain while the prime list X
will be uploaded only to the cloud for the generation of proof,
known as verification object (VO). Moreover, the data user
keeps the trapdoor states for further search requests.

D. Data Insertion

As shown in Algorithm 2, the forward-secure insertion
protocol follows the similar procedure as the Build protocol.
The main trick that achieves the forward security during the
insertion lies in the trapdoor update when w has been searched
before (line 12 to 16). Specifically, the data owner needs to
use the trapdoor permutation 7 to get a new trapdoor based
on the former one via 7, (), where sk is the secret key of
m. The new trapdoor is saved to the state dictionary together
with the update times j.

E. Verifiable Search Protocol

Algorithm 3 describes the search token generation exe-
cuted by the data owner in the Search protocol. Following



plaintext 5=(0101)

ciphertexts

tuple ‘null||1||'>" ‘ oflof'< ‘ ‘01|\1|\->- ‘ ‘omuouw

‘ null [0 <’

| anan> | | sonan> | [oopay> |

shuffled tuple ‘ ofjof < ‘ ‘OlOHOH‘C

‘null||1||'>" ‘ oL 1] ">

‘ 001" ‘ ‘ null [ 0] <

BT

query 6=(0110)>x?

querytple | nutfjof> | | ofui> | [orgugs | fowgons | faangoge | | onape || ogogre | [ owgoe

shuffled tuple ‘ TEES ‘ ‘ RS ‘ ‘011||0||'>" ‘null||0||’>" ‘ RS ‘ ‘null\|0\|‘<" ‘omuouw

‘01|10||'<- ‘

Fig. 2: An illustrative example of SORE.

Algorithm 2: Insert: Forward-Secure Insertion

Input : PRF key K encryption key Kg; trapdoor
secret key sk; key-value pairs to insert DBY;
secure PRFs {F, G'}; multiset hash function
‘H; random oracle function Hy,pipme.

Output: Updated encrypted index I; updated ADS
information (X, Ac).

1 foreach (R,v) € DB do

2 for i =1 to b do

3 L cti < v—1]|0;[[emp (03, v;);

4 Put (R, ct;) into DBT;

5 Initialize a list X for primes to add;

6 foreach w € {v} U {ct;} do

7 G1 + G (K,w||1); Go + G (K,w|2); ¢+ 0;
8 | if T.find(w) =L then

9 h «— H(¢);

10 Randomly generate a trapdoor ¢; j < 0;
Tl T.put(w, (t,7));

12 else

13 t,j « T.get(w);

14 h = S.pop(t[|F]|G1[|G2);

15 t<—7rs_kl(t);j++;

16 T.put(w, (t,5));

17 | foreach R € DB’(w) do

18 I+ F(Gy,t|c);

19 d <+ F(Ga,t||c) ® Enc(Kg, R);

20 Iput(l,d); c+ +;

21 h < h 4y H(Enc(kr, R));

2 S.put(t)|j|G1]|G2, h);

23 4 Hyrime (7| G1||G2llh); X T.add(xt);

24 X+~ XUXT,;

25 Ac + Accumulation(X);

26 Send (I, X, Ac) to the cloud;
27 Send Ac to the blockchain;
28 Send T to the data user;

Algorithm 3: Search: Search Token Generation
Input : PRF key K; encryption key Kg; trapdoor
public key pk; query value v; matching
condition mc; secure PRFs {F,G}.
Output: Search tokens sts.
1 User.Token

2 if me e {“>7,“<”} then
3 for i =11t b do
4 L thi < vt |vil|me;
5 Randomly shuffle {tk;};
6 W «+ {tki};
7 else
L W« {v};
9 Initialize a list sts for search tokens;
10 foreach w € W do
u if T.find(w) #L then
12 tj,j « T.get(w);
13 G1 + G(K,w|l); G2 + G (K,w|2);
14 StS.add((tj,j,Gl,Gg));
15 | Send sts and payment to the blockchain;

SORE.Token, the data owner first produce the token list
{tk;}. Along with v, he then generates the corresponding
search tokens for each item, including the trapdoor, the update
times, (G; and Ga, if it exists in the trapdoor states. Finally,
he sends the search tokens and the payment to the blockchain.

After retrieving the search tokens from the blockchain,
the cloud starts the search as shown in Algorithm 4. The
cloud will traverse from the newest indexes by using PRF on
the concatenation of the newest trapdoor ¢; and the counter
c. After each traversal, it computes the previous trapdoor
using 7, (t;), where pk is the public key of the trapdoor
permutation, and proceeds the next round. When all traversals
end, the algorithm calculates the set hash on the result list
and derives the prime number accordingly. The membership
witness of the prime will be generated from MemWit as
mentioned in Section III, and then sent to the blockchain with



Algorithm 4: Search: Cloud Search

Input : Search tokens sts; trapdoor public key pk;
secure PRF {F'}; multiset hash function H,
random oracle function Hy,jme.

Output: Encrypted matched results er; verification

objects {vo}.

1 Cloud.Search

2 foreach (t;,j,G1,G2) € sts do

3 for i = j to 0 do

4 for c =0 until 1.find(l) =L do

5 l(*F(Gl,tiHC);

6 r 4+ F(Ga,ti|lc) & I.get(l);

7 er.add(r); ¢+ +;

8 tio1 + mpr(ts);

9 h <= H(er); & < (Hprime(t;]7]G1]|G2[|h);
10 vo < MemWit (x);

11 Send er and vo to the blockchain;

the results.

Algorithm 5: Search: Result Verification

Input : Search tokens sts; encrypted matched results
er; verification objects {vo}; multiset hash
function #, random oracle function Hy,ime;
encryption key Kr.

Output: Verification result vr.

1 Blockchain. Verify

vr < True;

foreach (t;, j, G1, G2, er,vo) do

b= H(er): ¢ (Hyrime(t;]13]1G1 [ Gal|h):
vr < VerifyMem (z,vo);
if vr=False then

| Refund the payment;

DS - U I N L

Proceed the payment;
9 The data user decrypts all er using Dec(Kg,er);

We present the result verification by the blockchain in
Algorithm 5. It only needs to reproduce the prime number
based on the search tokens and corresponding results. Then
VerifyMem of the RSA accumulator will be invoked to
validate the correctness of the VOs.

F. Extensions

Data Deletion and Update. Although the data deletion cannot
be directly supported by our scheme, but it can be addressed
by duplicating the original construction [16]. In another word,
we can use one instance for all inserted data while the other
one stores all deleted data. In this way, the final search result
becomes the difference of the corresponding results from the
two instances. As for the update on one record, it can be
regarded as a combination of one deletion operation and one

insertion operation. Note that we do not allow a repetitive
insertion of the same record ID in both instances since the ID
is unique.

Data with Multiple Attributes. Our design can be easily
extended to data with multiple attributes a, ie., DB =
{(R,{(a,v)})}, which is a more popular and practical data
type. Specifically, we can incorporate the attribute name a
into the token and the ciphertext, i.e., tk; < allvj;—|villoc
and ct; < alv);_1||v;||cmp(v;, v;), for each value.

VI. DESIGN ANALYSIS

We perform a formal analysis on the correctness and secu-
rity of our SORE scheme and encrypted search protocol.

A. Correctness and Security on SORE scheme

Our SORE scheme is inspired by the ORE schemes in
[23], [24], [26]. We devise the lightweight scheme to enable
the efficient encrypted search and public verification while
remaining comparable security. In this subsection, we present
the correctness analysis of SORE and discuss its leakage.
Correctness Analysis. We prove the correctness by giving the
proof of the following theorem:

Theorem 1. Given the PRF key k, two values x,y, and the
order condition oc € {“>", “<”}, write tk + {Fj(tky),
Fy(tks), ---, Fy(tky)} generated by SORE.Token(k,x)
and ct <+ {Fy(ct1), Fi(ctz), ---, Fy(cty)} generated
by SORE.Encrypt(k,y). = oc y stands if and only if
SORE.Compare(ct, tk) =True.

Proof. Because secure PRF is applied to both sides,
SORE.Compare(ct,tk) can be reduced to the compari-
son between {z|;_1||z;||oc} and {yj;—1||7:|lcmp(7i,vi)} be-
fore shuffle. We first argue that if {z;_|lz;|loc} and
{yji—1lgillemp(Fs, yi) } have tuples in common, the amount of
the tuples must be 1. We will give the proof by contradiction.
Since the length of the tuple is determined by the bit index
due to the prefix, the same tuple must share the same index.
Suppose we already have an identical tuple at index m,
i.e., Tm-1llTml|0C= Yjm_1[[Ym|lcmp(Ym: ym). This means
Tim—-1 = Yjm—1 and T, = Y,. Then we assume there exists
another common tuple at index n. If n < m, since xz,, = yn,
then x,, # v, must stand, which contradicts the assumption
of the common tuple at n. If n > m, then x),_1 # yj,—1
because x,, # ym. It also violates the previous assumption.
Thus, the claim follows.
Next, we prove the correctness in two situations:

e Suppose x OC y stands. Let m be the smallest index
where the bit value differs, ie., Tj;—1 = Ym—1 and
Tm = Ym. Because m is the smallest differing bit index,
the order between = and y coincides with that between
Xy and Yy, which means oc = emp(Ym, Ym). Then
SORE.Compare(ct, tk) outputs True since the tuple
at index m is the desired common one.

« Suppose that SORE.Compare(ct, tk) =True, i.e., there
exists one and only one common tuple, and let m be the
bit index of the tuple. Now we have z|,,_1 ||z [|l0c=



Yim—1[Ym lemp(Ym, Ym), which means 2,1 = Yjm—_1,
T = Ym, and 0C= cmp(Ym, Ym) all hold. Apparently,
the order between x and y is determined by that between
ZTm and y,, since it is the first differing bit. Then = oC
y follows.

O

Leakage Discussion. Solely adopting our SORE scheme leaks
the index of the first differing bit among query tokens or
among ciphertexts. Specifically, given a list of query tokens
generated by SORE.Token, we can find out the leakage
between any two values by counting how many common
tuples exist. The leakage among the ciphertexts that produced
by SORE.Encrypt can be learned likewise. Nevertheless,
the risk brought by the leakage among ciphertexts can be
eliminated by Build and Insert protocol. It is because the
indexes are derived through secure PRF and stored in a history-
independent dictionary, which totally conceals the relation-
ships among ciphertexts. As for each pairwise comparison
between query tokens and ciphertexts, the SORE.Compare
has no leakage owing to the semantic security of PRF and
the shuffle operations. The formal security analysis of the
encrypted search equipped with SORE is presented in the next
subsection.

B. Security on Encrypted Search

In this subsection, following the security notion of SSE
[11, [2], [30], we prove the security of our encrypted search
protocol. Before presenting the security theorem, we first give
the formal definitions of our four leakage functions. After the
data owner initially builds the encrypted indexes and ADS, we
have the following information leakage:

L£rUDBY = (|1, 1d])p, |2lq)

where DB is the record-value pairs. (|{|,|d|) are bit lengths
of the encrypted index I and p is the size of I. |z| is the bit
length of the prime number, ¢ denotes the size of the prime
list X. When the data user issues a search request to the cloud,
the leakage captured by the server is defined as:

‘Csearch(vjmc) - ({tj,j7 G1,Ga, {{l,d, er)ci}j Jh,z, vo}n)

where v is the queried value and mc is the queried matching
condition. This leakage is a n-size list of search tokens and
corresponding results. ¢;, j, G1, G2 form the search token and
{{l,d,er)c,}; are matched indexes and encrypted results in
each loop. h is the multiset hash, x is the prime representative
and vo is the verification object. The leakage function during
the data insertion can be defined as:

Einsert(DB+) = (<|l+|, |d+|>p+v ‘.’E+|q+) ’

where DB is the inserted records. (|I*|,|d*|),+ are newly
added indexes whose size is pT. |zT| is the bit length of
the added prime number and ¢+ is the number of primes.

Moreover, we have a leakage function to track repeated
queries:

Erepeat (Q)

(erm {r, {{l,d, er)ci}j ,h,x}) ,

where @) is 7 number of historical queried tokens and M, .,
is a symmetric bit matrix that records the repeat information.
All elements in M., are initially set to 0. If the ¢-th search
token is identical to the j-th one, then M; ; and M ; are equal
to 1. Given the above leakages, we adopt the simulation proof
technique and give the following security definition:

Definition 1. Ler Q2 = (KGen, Build, Search, Insert) be our
encrypted search scheme, and let Lbuild - psearch - pinsert g,
Lrepeat pe the leakage functions. For a PPT adversary A
and a PPT simulator S, we define the games Real 4()\) and
Ideal 4 s(\) as follows:

Real 4(\): The data owner generates a private key K
using KGen(1*). A chooses a dataset DB and asks the data
owner to build encrypted indexes and ADS via Build. Next, A
repeatedly requests a polynomial number of verifiable queries
or data insertions. To respond, the game runs Search or
Insert with corresponding inputs. Eventually, A returns a bit
that the game adopts as the output.

Ideal 4 5(\): A selects a dataset DB, and S builds sim-
ulated indexes and ADS based on the given leakage LY.
Next, A repeatedly requests a polynomial number of verifiable
queries or data insertions. To respond to the queries, S
generates the simulated search tokens and results based on
L£3¢areh and L7°P¢ . In response to insertion, S updates the
indexes and ADS based on L£™*¢™. Finally, A returns a bit
that the game adopts as the output.

We say 0 is adaptively secure with (LPvid, —[search
Limsert - preveat) Jeakages if for all adversaries A, there
exists a simulator S such that: Pr[Real4(\) =1] —
Pr[Ideal 4 s(A\) = 1] < negl(\), where negl(\) denotes a
negligible function in .

Theorem 2. ) is adaptively secure with (Lbuild - psearch
Linsert . preveat) iy the random-oracle model if F,G are
secure PRFs, and (Enc, Dec) is CPA-secure.

Proof. We first define random oracles {Op, Og, Omp,
Oprime} and then sketch the execution of the simulator S.
At the build-up phase, S generates the simulated indexes and
ADS based on L%, Specifically, it includes p entries of |I|-
bit and |d|-bit random string pairs, i.e., (I, d’), as the indexes,
and ¢ number of |z|-bit random prime numbers denoted as .

Given the first query (v, mc), if mc is “=", S simulates

I = O¢(K'||v||1) and G = Og(K'||v]|2) as the tokens,
where K’ is a random string. Otherwise, S first generates b
number of tuples v);_;||v;|mc and then randomly pick each
one to produce G| = Og(K'||vj_1]|vi][mc||1) and G, =
Oc (K'||v}i—1][vil|me[|2). A random trapdoor ¢/, j, G} and Gy
form a simulated search token. For ¢ from j to 1, the random
oracle O is programmed so that O (G} |/t;||c) = I on ¢
from O to ¢; to find the matched indexes, where ¢; randomly
generated in each loop. For each matched entry, S operates O



to satisfy Op (G5 ||ti||c) @1 = Or(Ky||o) ® R, where Op is
a random oracle, « is a random string and R is the record
ID. Moreover, O,,;, is programmed so that O,,,({er}) =
B/, where k' is a random string. Oppime is programmed to
meet Oprime (t;]|7]|G11|G5||h") = 2’. Then a simulated vo’ is
generated through the membership witness algorithm using x’.
At last, for each matched entry r, S sets M, to 1 and records
corresponding information.

For the subsequent queries, S will generate the tokens
and check whether each token appeared before through M’.
If yes, S returns the repeated matching entry and generates
vo' accordingly. Otherwise, S will simulate the query tokens
and corresponding results in the same way as the first query
process. Eventually, S updates M’ and stores the repetition
information.

To respond to each adaptive data insertion request, S
simulates p™ entries of random indexes and ¢t number of
random primes, who have the same sizes as stated in Linsert,

Due to the pseudo-randomness of PRFs and the semantic
security of symmetric encryption, it is infeasible for A to
distinguish between the real outputs and the simulated ones.
The definition of forward security in [16] requires the insertion
should not reveal any information about the added keywords.
Our L£"%¢"t only contains some random strings and numbers
as well as their amounts, thus meeting forward security.

O

C. Correctness of Verifiable Search

We prove the correctness of verification in terms of sound-
ness and completeness.

Definition 2. We say a verifiable query algorithm is correct
if for any PPT adversary A, the following experiment has
negligible possibility to succeed:

o A chooses a key-value dataset DB. The algorithm con-
structs the indexes and ADS based on DB, and gives the
ADS state Ac to A;

o To respond to a query Q, A outputs a result {rs},, and
a proof {vo},, to the query user. A performs a successful
attack if the proof passes the verification using Ac and R
satisfies: {R|R ¢ Q(DB) AR € {rs},} # ¢ V{R|R €
Q(DB)AR ¢ {rs},} # ¢.

Theorem 3. ) is correct if the multiset hash function and
prime representation function are collision resistant, and the
underlying RSA accumulator is secure.

Proof. We give the proof by contradiction. The first case, i.e.,
{R|IR ¢ Q(DB) A R € {rs},} # ¢, indicates that there
exists a record R in the result that does not satisfy Q(DB).
The second one means that some records that conform to
the query condition are not included in the result. Let rs’
be the result containing the incorrect or incomplete records
and the corresponding proof be vo’. Due to the security of
the RSA accumulator [28], the membership witness of an
element cannot be forged. It means that if vo’ can pass
the verification, the true rs shares the same multiset hash
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or the same prime representative with rs’. This violates the
assumption of collision-resilience of the multiset hash function
and prime representation function. O

VII. IMPLEMENTATIONS AND EVALUATION

To demonstrate the practical efficiency of our design, we
implement a prototype!, including the data owner, data user
and clouds in Python 3.8.0 and the blockchain in Solidity.
We perform the evaluation on a machine with 19-9900K CPU,
32 GB memory and 1 TB SSD. For cryptographic primitives,
we employ AES-128 for the symmetric encryption, HMAC-
128 for the pseudo-random function, and RSA implementation
for the trapdoor permutation. We evaluate the time cost and
overhead size based on randomly simulated key-value records,
where the value has 8, 16 and 24 bit settings.

A. Building Performance

Fig. 3 presents the time cost of our Build protocol. We
evaluate the time of index building and ADS building at three
bit settings based on the records of 10K, 20K, 40K, 80K, 160K
entries. As we can see from Fig. 3a, the time cost of index
building raises linearly in all cases as the amount increases.
It only takes roughly 38s to build encrypted indexes 160K
records of 8-bit values. As for the ADS building in Fig. 3b,
the time cost for 8-bit values is almost a constant value, i.e.,
around 0.5s for any amount of records. This is due to the
limited value space under the 8-bit setting. Regarding the 16-
bit and 24-bit settings, the ADS building time increases rapidly
as the growing amount incurs larger value space.

We show the storage cost of the indexes and the ADS during
the building phase in Fig. 4a and Fig. 4b respectively. The

'Online at https:/github.com/tripleday/Slicer.
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index storage is proportional to the amount of records since
each record maps to a constant number of index entries. For
the storage of ADS, i.e., the size of the prime list, upon 8-bit
values, it keeps constant as 0.04MB due to the aforementioned
value space. Under the other two settings, the storage grows
linearly but still remains at a practical level.

B. Search Performance

To evaluate the performance of search, we select random
numbers to execute the protocol and average the outcomes.
Fig. 5 depicts the time of cloud search, including the result
generation and VO generation, for the equality search and
order search. For the result generation time of equality search
in Fig. 5a, the time rises faster on the 8-bit values than the
16-bit values because the number of qualified results is larger.
In contrast, the time costs for order search in Fig. 5c under
two settings both increase due to the similar number of results.
Although the result generation for equality search costs more
time than order search, its VO generation time in Fig. 5b keeps

shown in Fig. 6b and Fig. 6c¢, the size of encrypted results
under all settings is proportional to the amount of records. As
for the VO in Fig. 6d, its size under the 8-bit setting is always
smaller than 60 Bytes, whereas the size of 16-bit setting slowly
increases and levels off due to the constant number of tuples.

C. Insertion Time

We pre-load 160K amount of records and assess the inser-
tion efficiency in terms of indexes and ADS. In Fig. 7, we can
find that as the number of inserted records increases, the time
cost grows in similar proportions. We can see that when the
bit count achieves up to 24, the ADS takes much more time to
compute since the amount of prime numbers becomes larger.

D. Gas Consumption

We list the gas cost of the smart contract conducted on
Rinkeby testnet in Table II. The data insertion in our design is
very cheap in gas since it only needs to change a storage value
of the ADS on smart contract. It only costs 29,144 gas per
time regardless of the amount of items to insert. Regarding
the gas of result verification for an equality search, it costs
around 94, 531 gas, i.e., approximately 0.28% when ETH is at

10



TABLE II: Gas cost of smart contract

Operations Gas cost
Deployment 745,346 gas
Data insertion 29,144 gas
Result verification 94,531 gas

the price of 3000$. The gas appears practically low because
the verification of the ADS can be be finish in O(\).

VIII. CONCLUSION

Many traditional verifiable SSE schemes are limited to
keyword-file search and leave the range search blank. In
this paper, we conduct pioneering investigation on the public
verification problem atop blockchain for encrypted search over
numerical data. Our proposed solution, Slicer, realizes verifi-
able and secure range search by adopting a novel SSE scheme
and guarantees the fairness via public verification. We utilize
the blockchain technology to achieve fresh search result. Given
data updates, our solution is also privacy-preserving due to
the forward security function implementation. We prove its
security via formal analysis and show the efficiency through
extensive experiments.
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