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Abstract—The Domain Name System (DNS) plays a crucial role in the Internet. However, it is vulnerable to many attacks such as the
cache poisoning attack and DDoS attack. Though some countermeasures have been proposed, they still have some limitations. In this
paper, we propose B-DNS, a blockchain-based domain name system, which can provide a secure and efficient DNS service. B-DNS
fills up two shortcomings of current blockchain-based DNS, namely computation-heavy Proof-of-Work (PoW) protocol and inefficient
query, by building a Proof-of-Stake (PoS) consensus protocol and an index of domains. We propose a novel way to quantitatively
compare the security of B-DNS and legacy DNS in terms of attack success rate, attack cost, and attack surface. Our experiments show
that the probability of a successful attack on B-DNS is 1% of a successful attack on legacy DNS, the attack cost goes up a million times
in B-DNS, and the attack surface of B-DNS is far less than that of legacy DNS. The query performance evaluation of B-DNS shows that
B-DNS can achieve similar or even less query latency than state-of-the-art commercial DNS implementations.
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1 INTRODUCTION

IP addresses are unique identifiers of Internet resource.
Anyone who wants to visit some specific resources must

know their IP addresses. However, it is hard to remember
alphabetized domain names compared with numerical IP
addresses. Accordingly, the DNS is designed to provide a
domain name to IP address mapping service so that people
could approach resources on Internet easily by only remem-
bering their domain names. Unfortunately, researchers have
exposed several vulnerabilities in current DNS such as the
weak verification mechanism and single point failure of
name servers, which causes different attacks.

The weak verification mechanism of current DNS leads
to the cache poisoning attack [1], [2]. In cache poisoning
attacks, attackers can send well-crafted response packets
when a recursive resolver updates cache. Once a forged
DNS entry is injected into the cache successfully, clients
under the victim recursive resolver will be redirected to
a phishing website when they visit the affected domain.
The biggest banks of Brazil, Bandesco was reported to be
attacked in this way [3].

The single point failure makes legacy DNS vulnerable
to DDoS attacks. Currently, DNS domains are structured in
a tree and each node stores a bunch of IP addresses of its
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sub-domians. Once the name server of a critical domain is
under the DDoS attack, the service of its sub-domains will
be disrupted. In this way, DDoS attacks that targeting key
servers can significantly collapse the availability of partial
legacy DNS [4]. The more essential the server, the more
serious the consequence of the DDoS attack. In 2016, a DNS
service provider Dyn was attacked in this way [5].

Several methods have been proposed to address these
attacks. Approaches against the cache poisoning attack can
be categorized into two types: employing the Domain Name
System Security Extensions (DNSSEC) [6] and increasing
the entropy of query packets [7], [8], which provides more
information for recursive resolvers to distinguish a valid re-
sponse packet. Methods to mitigate the DDoS attack mainly
focus on storing more resource records in the cache [9], [10],
which makes domains can still be resolved even its parent
domain is under attack.

However, we observe that there are still some limi-
tations in these countermeasures as they aim to defend
attacks rather than repair the vulnerabilities. We noticed
that DNSSEC suffers from low deployment rate by launch a
quick scan over the Alexa top 1000 .com/.net/.org domains
and found only 3% domains support DNSSEC. Merely
increasing the entropy of query packets can decrease the
success rate of attack to some extent. However, as the
development of computation power and network band-
width, this defense becomes weaker and weaker. In DDoS
defense, there exist the probability that queried domains are
not cached. Moreover, these methods do not work when
authoritative servers are under attack. As to the T-DNS, its
security depends on the TLS protocol, which employs cer-
tificates issued by the certificate authority (CA). However,
the centralized CA is not secure since it suffers from the
single point failure and unauthorized issued certificates.

Facing these challenges and inspired by the promising
features of blockchain, we intend to build a secure do-
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main name system based on the blockchain. In blockchain,
blocks are chained sequentially by encapsulating the hash
of their previous blocks as the PrevHash into headers.
Transactions are stored in blocks, and each block calculates
a MerkleRoot to provide an easy way to verify the in-
tegrity of transaction records. By combining PrevHash and
MerkleRoot, blockchain can guarantee the stored data is
tamper-proof. Additionally, blockchain’s underlying peer-
to-peer network provides great resilience to the single point
failure and DDoS attack. However, building a blockchain-
based DNS is quite tricky. It is not merely storing resource
records in the blockchain. Many challenges arise in the way
to implement a secure and efficient blockchain-based DNS
system.

• Stored Data are Immutable. Once a resource record
is written into the blockchain, it is hard to modify
the content. However, there exists the need to update
DNS records because domain owners may change
the IP addresses of their domains. Accordingly, some
new designs should be adopted to provide flexible
record updates.

• Blockchain Performance is Poor. The primary search
operation in the blockchain is slow while the name
service is time-sensitive. Therefore, some schemes
should be designed to speed up the search process
in a blockchain.

• New Vulnerabilities May be Introduced. Though
blockchain provides good features such as data
tamper-proof and DDoS resilience, it may introduce
new vulnerabilities such as inconsistent data across
nodes and mining attack, which are inherent prob-
lems of the blockchain [11]. Accordingly, how to
build a blockchain-based DNS without introducing
new security problems of the blockchain is a big
challenge.

In this paper, we propose B-DNS, a secure and efficient
domain name system based on the blockchain. B-DNS stores
DNS records as transactions and leverages an index to
accelerate blockchain searches to provide efficient name
service. B-DNS is compatible with the legacy DNS system,
i.e., recursive resolvers and users can interact directly with
B-DNS name servers. Our contributions can be summarized
as follows:

• We alleviate the computation-heavy PoW consensus
protocol utilized in current blockchain-based DNS.
By proposing a biased-coin flipping protocol and a
distributed random-number generation (DRG) pro-
tocol, B-DNS builds a Proof-of-Stake (PoS) consen-
sus protocol. The security of B-DNS PoS consensus
protocol will not be affected by the amount of com-
putation power.

• We address the problem of inefficient query in cur-
rent blockchain-based DNS. We build an index tree
for B-DNS and propose a search algorithm to in-
crease the query speed. Our experiment results show
that B-DNS can provide similar query performance
with state-of-the-art commercial DNS implementa-
tions.

• We propose a novel way to quantitatively compare
the security of B-DNS and the legacy DNS in terms of

the attack success rate, attack cost, and attack surface.
To the best of our knowledge, this is the first time that
researchers quantitatively compare the security of
blockchain-based systems with traditional systems.
Experiments show that B-DNS is much securer than
legacy DNS.

The rest of this paper is organized as follows: In Section
2, we introduce the background of legacy DNS and the
blockchain technology. Then, we bridge the gap between
the legacy DNS and B-DNS in Section 3. In Section 4, we
give the detailed design information of B-DNS. Section
5 presents experiment results related to the security and
performance of B-DNS. In Section 6, we discuss how B-DNS
handles some other potential attacks. Section 7 summarizes
the related work and we conclude our work in Section 8.

2 BACKGROUND

2.1 The Overview of Legacy DNS

DNS nameservers are organized as a tree, and the names-
pace is separated into layers. In each layer, the namespace
is partitioned into non-overlapping regions called domains.
A domain owner formulates the domain policy and keeps
track of its sub-domains. The root node of DNS tree is called
the root zone, which stores the delegation information of its
leaf nodes. The leaf node domains of the DNS tree are called
the top-level domain (TLD). There exist different kinds of
TLDs, of which the most widely-used ones are country-code
TLD (ccTLD) and generic TLD (gTLD). The third level of the
DNS tree is usually represented as the second-level domain.

Each domain operates several authoritative servers,
which stores DNS records in the form of resource record.
There are many types of resource record such as A/AAAA,
NS, and SOA. The A/AAAA resource record is responsible for
IPv4 and IPv6 address resolution. The NS record stores the
name of a authoritative server. Since DNS is hierarchical, a
query packet should traverse from the root zone to the target
authoritative server layer-by-layer, which is called recursive
resolution.

2.2 The Problems of Legacy DNS

A DNS query packet utilizes the transaction ID (TXID)
to distinguish a valid response packet from forged ones.
However, the recursive resolver typically increments TXID
from zero, which makes it easier to guess. An attacker can
first initiate a query to the recursive resolver and then forge
response packets, which try all possible TXIDs, to deceive
the recursive resolver that it is a valid response packet [2].
Once the recursive resolver accepts the forged packet, the
attacker succeeds in poisoning the cache. Dan Kaminsky
proposed an improvement to the cache poisoning attack
and made it more effective [12]. Kaminsky’s attack adds a
non-existent sub-domain name to the victim domain. For
example, it sends a query for the ns1.example.com when it
wants to poison the cache of example.com. Accordingly, if
the first trial failed, a Kaminsky attacker can immediately
launch another attack, which queries for ns2.example.com.
After evolving to the Kaminsky’s attack, the danger of the
cache poisoning attack increases significantly.
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Additionally, the DDoS attack that targets legacy DNS
often happens. Once a higher-level domain is under the
DDoS attack, the availability of its sub-domains could be
greatly degraded. In history, the root server and some TLD
authoritative servers have been attacked by DDoS attack
several times [4]. Some attacks did succeed in disabling
the victim DNS servers and caused parts of the Internet
experiencing severe domain resolution problems.

2.3 Blockchain
The blockchain technology is derived from the Bitcoin,
which was proposed in 2009 by Satoshi Nakamoto [13]. A
blockchain system is intrinsically a distributed ledger. Par-
ticipants collaborate with each other to maintain the system
operation and periodically elect node to write new content
into the ledger through Byzantine fault tolerant consensus
protocol [14], [15]. Tamper-proof is one of the main features
provided by the blockchain. Specifically, all transactions are
put in the leaf nodes of a Merkle Tree and an iterative
calculation process will proceed until the MerkleRoot is
calculated, which is encapsulated in the block header so
that the user can easily verify the integrity of the transaction
data. Moreover, blocks are chained sequentially by calculat-
ing the hash value of the previous block’s header, which
is called the prevHash. It is very tough to calculate a valid
PrevHash value so that once a transaction is confirmed (i.e.,
has 6 sequential blocks), subverting it can be exponentially
hard. Accordingly, the combination of MerkleRoot and
prevHash constitutes the cornerstone of the tamper-proof
feature of the blockchain.

3 FROM LEGACY DNS TO B-DNS
In this section, we describe the changes from legacy DNS to
B-DNS to provide a smooth transition. We also discuss some
considerations when designing B-DNS and give a formal
definition of the B-DNS blockchain.

3.1 What’s the Differences?
The difference between legacy DNS and B-DNS is mainly
reflected in three aspects: the management of DNS records,
the way that name servers structured, and the domain
resolution of domain names.

In legacy DNS, DNS records are managed by domain
owners, who operate authoritative name servers. In this
case, domain owners can update, add, or delete DNS
records by changing the resource records in authoritative
name servers. In B-DNS, as DNS records are stored in the
blockchain, the management of DNS records are conducted
by different types of transactions.

In legacy DNS, name servers are structured in a tree.
The name servers in each layer store the IP addresses of
their sub-domains. By contrast, B-DNS name servers are
structured in a peer-to-peer network. Each name server
either stores a full copy or metadata of the blockchain.

In legacy DNS, the domain resolution is conducted
by the recursive resolver, who maintains a cache to store
frequently-queried DNS records. Once a queried domain
name is not cached, the resolver will conduct recursive
resolution to acquire the asked DNS record. In B-DNS, as
DNS records are stored in blockchain, end-users can directly
query the name servers with complete blockchain data.

3.2 Considerations of B-DNS’s Consensus Protocol

Current mainstream blockchain consensus protocols in-
cludes PoW, PoS, and Practical Byzantine Fault Tolerance
(PBFT).

PoW has been widely studied and verified for its se-
curity and performance. However, an empirical study on
the Namecoin has exposed some problems of using PoW
in blockchain-based naming system [16]. A PoW system is
always exposed to 51% attack, which can only be prevented
by enlarging the system’s overall computation power. More
computation power brings in extra resource consumption,
which introduces additional system maintenance cost. Bit-
coin’s security is guaranteed by its huge computing power,
whose annual electricity consumption is around 61.4 TWh.
Moreover, for smaller or newer PoW blockchain systems, it
may only require 5% of Bitcoin’s computing power to reach
51% of its computing power, which is easy and affordable.
Though adopting merged mining with Bitcoin provides a
viable solution to the above problem, the high maintenance
cost it introduces will become the burden on system main-
tenance.

PBFT consensus protocol can enable high-throughput
transaction processing, low-latency confirmation, and good
security properties. However, its excessive usage of the
network to transmit consensus packets makes it difficult to
scale to larger sizes. Experiments have demonstrated that
the throughput of PBFT consensus protocol drops exponen-
tially after the number of nodes exceeds 64.

The PoS consensus protocol assigns the blockchain gen-
eration right based on the amount of stake controlled by
each node. The proportion of stake determines the probabil-
ity of being selected. In addition, compared with the PBFT
protocol, PoS is more scalable because once the leader is
selected, consensus is reached. Based on the above consid-
erations, we chose PoS as the B-DNS consensus protocol.

3.3 Formal Definition of B-DNS Blockchain

We give the formal definition of B-DNS blockchain in this
section. In B-DNS, the leader election is conducted accord-
ing to discrete-time units.
Definition 1. (Slot). In B-DNS, time is divided into discrete

units called slot, which is represented as slj , j ∈ Z+.

All the registries are equipped with roughly synchro-
nized clocks that could indicate the current slot. Each slot
owns a slot leader Lj , who is responsible for issuing a
new block. However, limited by the network latency, the
leader election process cannot be executed slot-by-slot. Ac-
cordingly, a larger time unit epoch is also defined.
Definition 2. (Epoch). The epoch is defined as a set of

adjacent slots. Each epoch consists of R slots and
is denoted as ex, x ∈ {1, 2, ...}. Specifically, ex =
{slxR+1, slxR+2, ..., sl(x+1)R}.

Definition 3. (Block). A block Bj issued at slot slj contains
the current state stj ∈ {0, 1}λ, data d ∈ {0, 1}∗, the
slot number slj and a signature σ = Signski(stj , d, slj)
signed using the private key ski of the slot leader Ri.

Definition 4. (Genesis Block). The genesis blockB0 contains the
list of registries identified by their public keys and stakes
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S0 = {(vk1, s01), ..., (vkn, s0n)} and initial randomness ρ0,
which is used to seed the leader election function.

Definition 5. (Blockchain). A blockchain relative to the genesis
block B0 is a sequence of blocks B1, ..., Bn associated
with a strictly increasing sequence of slots. The length of
a chain len(C) = n is its number of blocks. The block Bn
is the head of the chain, denoted head(C). B-DNS treats
the empty string ε as a legal chain and by convention set
head(ε) = ε.

Definition 6. (State). The state is defined as a string st ∈
{0, 1}λ that represents the balance of each account.
Specifically, the state stj of Bj is equal to H(Bj−1),
where H is a prescribed collision-resistant hash function.
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Fig. 1. The 4-layer architecture of B-DNS. The data layer stores DNS
records. The index layer maintains a domain index. The consensus
layer ensures data consistency. The network layer provides peer-to-peer
connections.

4 SYSTEM DESIGN

In this section, we introduce the detailed design information
of B-DNS according to the 4-layer architecture, which is de-
picted in Fig. 1. B-DNS’s 4-layer architecture provides good
extensibility, and the loosely-coupled relationship between
different layers makes it possible to upgrade a layer solely
in the future without changing the operating logic of other
layers.

4.1 Data Layer

In the data layer, B-DNS stores DNS records as transac-
tions in the blockchain. Since blockchain transactions are
immutable once confirmed, we propose a new format called
operation records to store resource records. There are three
types of operation records in B-DNS: registration, update,
and revocation.

Registration. In legacy DNS, the right of domain reg-
istration is controlled by official registries (e.g., Verisign)
and registrars (e.g., GoDaddy). In B-DNS, to be compatible

with legacy DNS, new domain names still should be reg-
istered with the corresponding registries. After successfully
registered, the new domain record with its valid period are
signed and encapsulated into a registration record by the
registry. Additionally, the address (i.e., hash of public key)
that is controlled by the domain owner is also added to the
registration record. The registry signature enables the slot
leaders to verify whether the record is legitimate, while the
address of the domain owner is left for further update.

Update. Dynamic update is one of the major concerns
when designing the B-DNS. Considering a scenario where
the IP address changes, the corresponding registration
record needs to be updated to map to new address. The
update operation is defined to meet these requirements.
Similar to the registration record, the update record is signed
and broadcasted by the registry. However, an update record
needs to redeem its corresponding registration record first,
which can only be conducted by its domain owner. Other-
wise, it cannot pass the verification and will not be included
in the blockchain.

Revocation. As the name suggests, the revocation record
is used to terminate the ownership of a domain name. An
expired domain will be revoked automatically. The registry
will issue a revocation record to terminate its ownership.
Similar to the update record, the revocation record should
first redeem its registration or update record.

The idea of operation record is inspired by Bitcoin’s
scripting system. Bitcoin scripting system only allows the
change of coins’ ownership in a transaction. Operation
record not only enables the change of domain ownership but
also can change the transaction content. B-DNS blockchain
also stores the stake of each registry as well as their public
keys in the block header. The stake information updates
every epoch, which makes the PoS consensus protocol in
accordance with the latest state.

4.2 Index Layer

In the index layer, B-DNS maintains an index to increase
the search speed. Searching DNS records in a blockchain
is time-consuming as data are structured in a linked list.
However, DNS service is time-sensitive. If the target record
is located in the latest block, a DNS query needs to take
a long time. In this case, we build an index tree to map
domain names to their IP addresses, where keys are hashes
of domains and values are corresponding IP addresses. B-
DNS also encapsulates a IndexHash into the block header,
which stores the hash value of the index of current block.
The IndexHash enables B-DNS name servers to verify the
correctness of generated indexes.

We design an update algorithm and a search algorithm
for our constructed index, which are presented in Algorithm
1 and Algorithm 2. The update algorithm can recursively
insert new records into the tree. It first compares the target
value with the root node value. Then, the tree can route
to the target node so that we could insert new value. The
worst-case complexity of the update algorithm is O(log2 n),
where n is the number of nodes in the tree. The search
algorithm works on an updated tree. It first checks the root
node. If the root node is empty then returns an error. Other-
wise, it goes down according to the node’s value. Searching



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. X, XXX 20XX 5

Algorithm 1: The Update Algorithm
Data: domain name: key; IP address: val
Result: An updated index tree
initialization;
while receiving a new block do

validate the received block;
key = hash(domain name);
val = IP address;
if node.root = null then

return a new tree with node(key, val);
endif
if key < node.key then

return node = node.left;
else if key > node.key then

return node = node.right;
else

node.val = val;
endif

end

Algorithm 2: The Search Algorithm
Data: A DNS query
Result: updated index tree
initialization;
key = domain name;
while receiving a new query do

parse the DNS query;
if node.root == null then

return null;
endif
if key < node.key then

return node.left.key);
else if key > node.key then

return node.right.key);
else

return node.val;
endif

end

0 0 1 1 0 ... 1 0 1 0

1 0 0 1 ... 0 1 0 1

0

contain? valid

revoked

block i-1 block i block i+1------

yes

no

domain name

------

Revocation List

Valid List

contain?
no

yes

contain? valid
yes

no

revoked

Fig. 2. B-DNS’s revocation checking workflow.

TABLE 1
Summary of notations

Notation Description

Ri The i-th registry
vki The verification key of registry Ri

ski The secret key of registry Ri

si The stake held by registry Ri

slj The basic time unit, called slot
Lj The slot leader in slot slj
ex A set of continuous time slots, called epoch

Bi The block issued in slot sli
sti The state of the blockchain in slot sli
σ The signature calculated by the slot leader

C The current blockchain, used in πPoS

C A set of candidate blockchain, used in πPoS

Sx The stake distribution {(vk1, sx1 ), ..., (vkn, sxn)}
ρx The randomness used to select slot leaders

a specific domain takes time O(log2 n) in the worst case,
where n is the number of domains in the updated tree.
In this way, B-DNS can find the target value in the index
promptly.

We also establish two bloom filters, which consist of
a revocation list and a valid list, to enable fast domain
revocation checking. The workflow of B-DNS revocation
checking algorithm is depicted in Fig. 2. B-DNS first checks
whether the domain name is in the revocation list. If not, the
domain name must be valid. Otherwise, we check whether
the domain name is in the valid list. If not, the domain name
must be revoked. If it is in the valid list, we need to find this
domain in the blockchain for a certainty.

4.3 Consensus Layer

In the consensus layer, B-DNS implements a PoS consensus
protocol to ensure the consistency of DNS records. A leader
election function is executed every epoch to select block
generators. The B-DNS PoS consensus protocol ensures that
a registry Ri holds the probability proportional to its stake
si to be elected as the block generator:

P (Ri) =
si∑n

m=1 sm

In B-DNS, the stake of a registry is defined as the number
of domains registered with it. However, this number is zero
before the system initialization. In this case, all participants’
stakes are set as si = 1

n in the genesis block so that all
the registries have equal probability to be elected as the
slot leader in the first epoch. In B-DNS, the stake updates
every epoch since the distribution of registered domains is
continually changing.

The key point is to construct a progressive protocol that
can select leaders according to the pre-defined probability.
The B-DNS PoS consensus protocol flips a p̃i-biased coin to
achieve this goal where

p̃i =
si∑n

m=i sm
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If the output of this biased coin is 1, then the i-th registry is
selected as the slot leader. Otherwise, the protocol proceeds
and it flips a p̃i+1-biased coin where

p̃i+1 =
si+1∑n

m=i+1 sm

Note that p̃n = sn/sn = 1 so that this protocol always
outputs a deterministic slot leader.

In B-DNS, the randomness seeds are generated distri-
butionally. All the registries follow a distributed random-
number generation (DRG) protocol to generate a distributed
number, which acts as the seed in the p̃i-biased coin flipping.
The DRG protocol contains three phases:

• Commitment Phase. When epoch ex starts, each
registry Ri samples a uniformly random string ui
and randomness ri for the underlying commit-
ment scheme, generates shares {σi1, σi2, ..., σiN} ←
Deal(N, ui) and encrypts these shares under the
public key of registry R1, R2, ..., RN . Finally, Ri
posts the encrypted shares and commitments
Com(ri, ui) onto the blockchain.

• Reveal Phase. In the reveal phase, the registryRi dis-
tributes the key to open its commitment by posting
Open(ri, ui) onto the blockchain.

• Recovery Phase. When all shares {σi1, σi2, ..., σiN}
distributed by Ri are available, the other registries
can compute Rec(σi1, σ

i
2, ..., σ

i
N ) to reconstruct ui.

Then, the randomness for the next epoch is calcu-
lated by u1 ⊕ u2 ⊕ ...⊕ uN .

By leveraging the proposed DRG protocol and p̃i-biased
coin flipping protocol, the B-DNS PoS consensus protocol
can select leaders proportional to their stakes. Then, we
introduce the detailed PoS consensus protocol in Fig. 3,
which defines the operations each registry should follow
as well as the corresponding encryption mechanisms that
ensure the data consistency.

4.4 Network Layer

In the network layer, B-DNS provides three interfaces to
enable different types of communication with different enti-
ties. In this case, B-DNS not only communicate with peers,
but also provides domain name service to resolvers and end-
users.

The interface between B-DNS name servers is similar to
current blockchain systems, i.e., peer-to-peer communica-
tion. To be compatible with legacy DNS, B-DNS’s network
layer is designed to be able to respond to queries from
recursive resolvers and end-users. In this case, B-DNS name
servers can generate response packets according to the
format of resource record and send back to the recursive
resolvers and end-users. A B-DNS name server can respond
to the query directly by fetching the required DNS record
from the blockchain.
B-DNS Name Servers to B-DNS Name Servers: The inter-
actions between B-DNS name servers are mainly responsible
for data transmission.

inv. It allows a node to advertise its knowledge about the
blockchain.
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Protocol ΠPoS

ΠPoS is operated by a set of registries {R1, ..., Rn}.
It proceeds as follows:

1.Initialization. At the very begining, each reg-
istry Ri generates its secret key and verification key
(ski, vki) and puts it into the genesis block. Then, the
registry Ri sets the local blockchain C = B0 = (S0, ρ0)
and the initial state st0 = H(B0).

2.Chain Extension. In a typical slot slj , each online
registry Ri performs the following jobs:

1) Update Stake. In epoch ex, each registry up-
dates its stake using the data drawn from lat-
est block. The stake distribution is updated as
Sx+1 = {(vk1, sx+1

1 ), ..., (vkn, s
x+1
n )}.

2) Update Randomness. In epoch ex, a registry
Ri needs to update the randomness ρx for the
upcoming epoch. They will communicate with
each other and come up with a random number
ρx+1 via the DRG protocol, which is used to
seed the leader election function for epoch ex+1.

3) Collecting Valid Chains. Once a registry Ri is
selected as the slot leader in slot slj , it needs to
collect all valid chains and put them into a can-
didate chain set C. Then, the registry Ri verify
whether all the candidate chains are valid. In
this case, Ri computes C ′ = maxvalid(C,C),
sets C ′ as the current chain C = C ′ and sets
state st = H(head(C ′)).

4) Issuing New Block. If Ri is the slot leader
in the slot slxR+j of epoch ex, it generates
a new block BxR+j = (st, d, sl, σ), where st
is the state of the former block (i.e., st =
H(BxR+j−1)), d ∈ {0, 1}∗ is the stored oper-
ation records data and σ = Signski(st, d, sl) is
a signature on (st, d, sl).Ri appends the newly-
generated block to the current chain C ′ = C|B,
broadcasts block BxR+j , sets C ′ as the new
current chain and sets state st = H(BxR+j).

3. Broadcasting Operation Records. Once a client
registers a domain with registry Ri, Ri will create an
operation record op and broadcast it.

Fig. 3. The B-DNS PoS consensus protocol. Each registry should follow
it to extend the blockchain and broadcast valid operation records.

getblock. A name server sends this message with its
highest block number to get a list of unstored blocks from
its peers.

getdata. This is used to respond to inv message. After
receiving an inv message, a B-DNS name server checks if
there are any unstored DNS records. If so, it sends a getdata
message to require the lost records.

getmerklepath. When a light node wants to verify whether
a record is valid, it needs to query a random full node the
corresponding Merkle path.
B-DNS Name Servers to Recursive Resolvers: In this
interface, B-DNS acts as an authoritative name server that
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replies to DNS queries. On receiving a DNS query, a B-DNS
name server directly fetches the queried DNS record from
the stored blockchain and responds to it. In addition, if a
recursive resolver wants to use the B-DNS name service, it
simply sends a DNS query to a B-DNS name server directly.
B-DNS Name Servers to Users: B-DNS is designed to be
compatible with the legacy DNS. Accordingly, clients can
interact with B-DNS name servers directly by adding their
IP addresses to its resolv.conf file. If the queried B-DNS name
server is a full node, it could easily fetch the required DNS
record from the blockchain. By contrast, if the queried B-
DNS name server is a light node, which only stores the
headers of the blockchain, the query will be redirected to
a full node.

1. www.example.com? 4. send me block 200

5. block #2006. 66.66.66.66

Client
Light Node Full Node

NS Index

2. #block of 

“www.example.com”?

3. block 200

Fig. 4. The query operations in B-DNS. The light node will randomly
choose a full node to obtain the queried record and merkle proof.

We finally discuss the difference of query operation
between legacy DNS and B-DNS. In legacy DNS, name
servers need to traverse the DNS tree from root servers
to authoritative name servers. By contrast, as B-DNS name
servers are structured in a peer-to-peer way, the query
process is different as shown in Fig. 4. As a full node, the
B-DNS name server can respond to the client directly by
fetching the required DNS record from the blockchain. As
to the light node, the B-DNS name server needs to check
whether the queried DNS records are stored locally. If not,
the light node needs to query a full node to acquire the
requested DNS record.

5 EXPERIMENT

We implement a prototype of B-DNS in Golang according
to our 4-layer architecture. We also establish a testbed for
B-DNS on an i9-9900k server. We set up eight B-DNS nodes
and each acts as a registry that stores a full copy of the
blockchain. Each node is a 2 GB memory, 2 CPU, Ubuntu
18.04 virtual machine and the hypervisor is Vmware Work-
station 15.0.4. We also set up a commercial DNS implemen-
tation PowerDNS Recursor 4.1.10 as a comparison. As to
the DNS record dataset, we use publicly accessible DNS
traces provided by the CAIDA to generate transactions [17].
Our blockchain consists of around 100,000 DNS entries. In
our experimental blockchain, all operation transactions are
signed using the ECDSA scheme and encapsulated in the
form of registration records. We also craft a query dataset,
which consists of 20,000 domain names, to test the lookup
performance and resilience of B-DNS name servers.

We design two sets of experiments to evaluate the secu-
rity and performance of B-DNS. In the security evaluation,
we compare the security properties between legacy DNS
and B-DNS from three dimensions: the probability of a suc-
cessful attack, the attack cost, and the attack surface. In the

performance evaluation, we test whether B-DNS provides
acceptable performance.

5.1 Security Evaluation

In security evaluation, we conduct three experiments to
compare the security between legacy DNS and B-DNS in
terms of the probability of a successful attack, the attack
cost, and the attack surface.

5.1.1 The Probability of A Successful Attack
In this experiment, we compare the probability of a success-
ful attack against legacy DNS and B-DNS. In legacy DNS,
a successful attack means that the attacker has generated
a response packet with identical transaction ID and port
number as the query packet. Its probability can be calculated
as:

Psuccess =
b ∗ t

α ∗ (β − γ) ∗ θ ∗ s
We list the meaning of these notations in Table 2. In

B-DNS, since we adopt a different architecture, the attack
methods against B-DNS is different. As all records are stored
in the blockchain, some nodes maintain a cache to facilitate
the query service. In this case, if an attacker wants to poison
the cache, it needs to tamper with corresponding data stored
in the blockchain. This requires the attacker to rewrite the
blocks after the one that stores the queried record. In this
case, we argue that a successful poisoning attack requires
the attacker to catch up with the latest block. Therefore,
when the attacker’s stake is si and there are n nodes in
B-DNS, the probability of a successful attack is:

Psuccess = (
si∑i−1

m=1 sm +
∑n
m=i+1 sm

)
z

In Fig. 5, we draw the probability of cache poisoning
attacks against current DNS and B-DNS, respectively. We
can see that the probability of attacks against current DNS
increases linearly with the number of sent packets and
decreases with the number of authorities. We can also see
that the highest probability of an attack against current DNS
reaches 100%, which means an attacker will always succeed
as long as it sends enough forged packets.

On the contrary, the probability of attacks against B-DNS
increases with the number of controlled stake and decreases
with the depth of target block. Usually, the attacker’s con-
trolled stake is a constant. Even a small increase in the stake
is costly. In this case, the probability of a successful attack
against B-DNS can hardly exceed 0.6% in current setting.

We also conduct real-case experiments to evaluate the
probability. The results are shown in Fig. 6. We simulate an
environment with 100 B-DNS nodes, each with 1% stake.
Then we adjust the portion of attackers from 10% to 30%,
which means the number of malicious nodes is from 10 to
30. We also assume that the honest nodes’ chain is 6 blocks
longer than attackers’, which is the optimistic assumption
for the attacker. Then we start the system to generate 100
blocks. If the attackers’ chain catches up with honest nodes’
chain, we record that attackers succeed. Otherwise, honest
nodes win. We conduct the experiment 10000 times to
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Fig. 5. The calculated success probability of cache poisoning attacks against legacy DNS and B-DNS. In legacy DNS, as the number of attack
packets increases, the probability of success increases and will eventually succeed. In B-DNS, only when the attacker has a large number of stakes
and a small mining gap, there is a small probability of success.
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Fig. 6. The experimental success probability of cache poisoning attacks against B-DNS. Although the probability of success increases with the
attacker’s stake, it is still negligible compared to the success probability of traditional DNS.

calculate the probability according to the times that attack-
ers win. We get 100 possible success rates for each stake
distribution scenario. As we can see, even with 30% stake,
the success rate of cache poisoning attack against B-DNS is
tremendously small.

5.1.2 Attack Cost
In this experiment, we compare the attack cost for attackers
to launch attacks against legacy DNS and B-DNS. We think
a fair way to compare the attack cost in different systems is
when their success rates are equal. In this case, we consider
the case that the probability of a successful attack is 1%.
How much should an attacker pay to attack legacy DNS
and B-DNS?

For legacy DNS with 3 authority name servers, an at-
tacker needs to continuously send 126,835,750 packets to
reach the probability of 1%, which requires 12216.9 MB
traffic. For a network with 10 Mbps bandwidth, this attack
lasts for 9780 seconds, less than three hours. The cost to use
10 Mbps for 2.7 hours is just several dollars.

For B-DNS, if an attacker wants to succeed with 1%
probability, the stake it should own is shown in Table 3.
If B-DNS possesses 1,000,000 domains and registering one
domain requires 10 dollars, the attack cost ranges from
3,160,000 dollars to 4,320,000 dollars, which is far more than
that of attacking legacy DNS.
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TABLE 2
The notations used to represent the probability

Notation Description

α The range of transaction IDs (universally 216, or 65536
values)

β The range of source ports (conceptually 216)
γ The number of reserved ports (usually 210)
θ The number of authority name servers. Many domain

operate serveral authority servers with independent
public IP address. A recursive server normally queries
the closest one. Accordingly, θ is the product of all
public facing addresses used by recursive resolver and
authority servers.

b the bandwidth between the attacker and the victim
recursive resolver

t The time that the attacker is able to send forged
response packets

s The size of a response packet

p The probability that an honest node finds the next
block

q The probability that an attacker finds the next block
pz The probability that an attacker will never catch up

from z blocks behind
qz The probability that an attacker will catch up from z

blocks behind

TABLE 3
The amount of stake that attackers should hold to launch an attack with

1% success rate

Stake Depth Stake Depth Stake Depth

31.6% 6 38.6% 10 41.8% 14
34.1% 7 39.6% 11 42.4% 15
35.9% 8 40.5% 12 42.8% 16
37.4% 9 41.2% 13 43.2% 17

5.1.3 Attack Surface

In this experiment, we compare the security of legacy DNS
and B-DNS with respect to their attack surfaces. We define
the attack surface as the system’s actions that are externally
visible to its users and the system’s resources that each
action accesses or modifies. We first identify all resources of
the system that are potential targets of attacks. For current
DNS and B-DNS, the stored records and provided name
service are vulnerable to different kinds of attacks. Then,
we define the attack class as a set of attacks that employ
similar attack methods. In our experiment, we categorize the
common attacks against DNS as spoofing, denial-of-service,
hijacking, injection, and poisoning. Finally, we counte the
number of instances of each attack classes for DNS and B-
DNS, respectively. The results are concluded in Table. 4.

We can conclude that legacy DNS has more vulnerabil-
ities in all types of attack classes. In spoofing class, current
DNS has exposed 48 vulnerabilities while B-DNS only has
one. The closest attack class between current DNS and B-
DNS is the denial-of-service attack, where current DNS has
detected 24 vulnerabilities, double of B-DNS’s vulnerabili-
ties. As to the hijacking and poisoning classes, B-DNS does
not have such kind of vulnerabilities. Even the only one
injection vulnerability, the affected component of B-DNS is
its debug log, which does not affect the core parts of B-DNS
such as the name service. In a word, we can see the attack

of B-DNS is much smaller than that of current DNS, which
makes attackers more difficult to attack B-DNS.

5.2 Performance Evaluation
In performance evaluation, we conduct four experiments to
evaluate the performance of B-DNS.

5.2.1 Search Speed
In this experiment, we examine to what extent can index
speed up searching in the blockchain and whether adding
an index affects the overall performance. Specifically, we test
the search time in the blockchain with and without an index,
respectively. We tested the search speed of our index with
different record sets. The experiment results is illustrated in
Table 5. As we can see, the search time is very limited in
our constructed index. We also notice that the distribution
of search speed without an index is approximately linear,
which is because the search in a single chain needs to travel
from the very beginning to the target block. Therefore, as
the blockchain grows, the search time increases linearly.
However, in B-DNS, the search time grows logarithmically.

5.2.2 Space Cost
In this experiment, we investigate the space cost of the
B-DNS full node and light node, respectively. We use
31,535,998 DNS entries provided by CAIDA. We first test
the volume of a full node. The result is 887.41GB, which
is quite an affordable result. Considering the price of disks
nowadays, a registry can easily afford hundreds of drives.
Then, we test the space cost of a light node, which only
keeps the block header of a blockchain. The result shows
that it only needs 4.12 GB. Apparently, it is feasible for most
current DNS servers to operate a B-DNS name server.

5.2.3 Query Latency
In this experiment, we examine the query latency of B-DNS
and compare it with PowerDNS. Both of them are set up
in the lab without any cache warming up. B-DNS name
server is equipped with a full blockchain and an empty
cache. Correspondingly, the PowerDNS server is initialized
with an empty cache as well. We continuously query two
servers using pre-generated query packets and measure the
corresponding latency. The results are illustrated in Fig. 7a.
Explicitly, we find that B-DNS could achieve approaching
or even better lookup performance than PowerDNS. We
remark that this is because the PowerDNS server obtains
the queried IP address by recursive resolution while B-
DNS can fetch records from the locally-stored blockchain
directly. In recursive resolution, PowerDNS may suffer from
the network congestion and packet loss. By contrast, B-DNS
can provide more stable and efficient name service as long
as the record has been stored in the blockchain.

5.2.4 Flash-crowd Effect
In this experiment, we test the resilience of B-DNS when
it faces the flash-crowd effect. Specifically, the flash-crowd
effect in DNS refers to sudden upheavals in the frequency
of queried domain names. The server setting in this exper-
iment is the same as the former one. We start by contin-
uously sending DNS query packets to B-DNS server and
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TABLE 4
The comparison of attack surface between legacy DNS and B-DNS

Attack Class DNS B-DNS

Number Example Description Number Example Description

Spoofing 48
CVE-2020-6412
CVE-2018-6175
CVE-2017-5106

insufficient validation
incorrect handling of URL characters

insufficient policy enforcement
1 CVE-2018-10831 incorrect verifier accepts

spoof mining shares

Denial-of-Service 24
CVE-2020-6079
CVE-2018-8304
CVE-2018-19118

resource allocation vulnerability
DNS response
stack overflow

12 CVE-2018-17144
CVE-2016-10724

duplicate inputs
memory exhaustion

Hijacking 2 CVE-2015-4020 insufficient validation on SRV records - - -

Injection 15 CVE-2019-5168
CVE-2011-5276

iochecked service vulnerability
SQL injection vulnerability 1 CVE-2018-20586 injection to debug log

Poisoning 4 CVE-2018-5532
CVE-2015-4641

cached BIG F5 IP addresses
directory traversal vulnerability - - -
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Fig. 7. The performance of B-DNS. In figure (a), almost all B-DNS query latency is less than 20ms, while some PowerDNS’s latency exceeds
100ms. In figure (b), we can see that B-DNS is not affected by the flash-crowd effect while PowerDNS takes around thirty seconds to recover.

TABLE 5
The search performance in B-DNS with the constructed index tree

Records Number Route Times Search Time (ms)

136780 17.9 63.7
1467032 19.7 74.9
1803284 20.3 80.3
23190410 21.9 89.6
160403846 23.4 91.3

PowerDNS server for three hours. Then, we flipped the
popularity of queried domain names. Specifically, the most
popular domain name becomes the least popular and the
second popular domain name becomes the second least
popular, and so on. We measure the corresponding query
latency and use the median in each minute to illustrate
the trend as shown in Fig. 7b. We notice that the latency
of PowerDNS is much higher than that of B-DNS at the
very beginning and between 180-th to 210-th mins. This is
because of the uncached query, which requires PowerDNS
to launch recursive resolution. Specifically, when facing the
flash-crowd effect, the query latency of PowerDNS increases
substantially while that of B-DNS remains stable.

6 SECURITY ANALYSIS

In this section, we discuss how B-DNS handles the DDoS
attack and two other potential attacks: the Sybil attack and
the index attack.

6.1 DDoS Attack
B-DNS can provide great resistance against the DDoS attack.
The underlying blockchain distributes content to a large
number of nodes. In addition, the peer-to-peer structure of
B-DNS makes it hard to attack all the B-DNS name servers.
Though some name servers may be compromised by the
DDoS attack, it will not affect the overall name service.

6.2 Sybil Attack
Sybil Attack is a type of attack seen in peer-to-peer net-
works in which a node in the network operates multiple
identities actively at the same time and undermines the
authority/power in this system. In B-DNS, the Sybil attack
can be launched by one registry mispresenting the number
of domain names registered by it and so pretending to
control a huge amount of stake. We argue that in B-DNS
the cost to launch Sybil attack is tremendously high. A
registry cannot arbitrarily claim the amount of its registered
domains. The other nodes can easily check its real stake
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by quickly traversing the whole blockchian. In this case,
the only way to increase your stake is to register as many
domain as possible, which is costly and tardy. Additionally,
once a registry is caught to lie in its stake, B-DNS can
eliminate its domain registration power in a soft-fork, which
in turn warns the other registries to behave honestly.

6.3 Index Attack

The index attack is conducted by forging an incorrect attack
and send it to honest peers. This stems from the fact that
an adversary may try to create a fork when it generates
a new block. However, the same as Bitcoin, B-DNS sets a
security parameter 6, which represents that a block is stable
when it is 6-block deep in the blockchain. B-DNS can ensure
the correctness of the index by only converting the stable
portion of the blockchain. In addition, B-DNS encapsulates
the parameter IndexHash into the header. The parameter
IndexHash is the hash value of the latest index. It allows
each node to verify whether their index has been updated
to the latest state of the blockchain.

7 RELATED WORK

In this section, we introduce the related work on enhancing
the security and performance of legacy DNS, and efforts
that have been devoted to implementing blockchain-based
domain name systems.

7.1 DNS Security and Performance

Several methods have been proposed to defend against the
cache poisoning attack. Dagon et al. proposed to mix the up-
per and lower case spelling of the domain name in the query
packet so that the adversary can hardly guess the right
combination of upper and lower case letters [7]. Perdisci et
al. utilized wildcard domain names (e.g., ∗.example.com) to
prevent attackers from guessing correct domain names [8].
In this way, a recursive resolver can prepend random strings
to the queried domain name to distinguish valid response
packets. Klein et al. proposed a user tracking technique
to track user behaviors even if they use “privacy mode”
browsing on multiple browsers [18].

DNSSEC creates a trust chain from the root server to the
authoritative name servers, by which a recursive resolver
can check the query route of the response packet by verify-
ing the signatures [19]. However, though DNSSEC has been
proposed for decades, its deployment rate is still meager
nowadays [20]. Recent survey reveals that only 1% of .com,
.net, and .org domains enabled DNSSEC [21], [22]. Several
reasons account for this phenomenon: the sophisticated
deployment procedure of DNSSEC, additional cost [21],
and political reasons that some countries may be hostile
to the country where the root servers are located [8] (e.g.,
Cuba may deny DNS packets originated from the USA).
In addition, Shulman et al. conducted an Internet study
of the cryptographic security of DNSSEC-signed domains
[23]. They collected 2.1M DNSSEC keys and found that
35% are singed with RSA keys that share their moduli with
some other domain, and 66% use keys that are too short.
They concluded that this problem arises from the poor key

generation practices. Additionally, researchers proposed T-
DNS, which employs the transport-layer security (TLS) to
establish secure DNS channels [24].

Facing the DDoS attack, Pappas et al. increased the TTL
of NS records to ensure the availability of some crucial
domains, especially when their father domains are under
DDoS attacks [10]. Similarly, Ballani et al. proposed to build
a separate “stale cache” in the recursive resolver to store
the expired records [9]. In this way, if a recursive resolver
does not receive the response from the authoritative server,
it could use the stored records in the stale cache to complete
the query process. Besides, some other efforts were devoted
to evaluating the performance of the root servers under
DDoS attacks [4], which demonstrated that massive attacks
could overwhelm some root servers. In addition, Alieyan
et al. [25] proposed a DNS-based schema to detect botnet
by analyzing the query and response behaviours. Gao et al.
proposed several detection and mitigation methods for the
DDoS attack [26].

There are also some work on improving the performance
of DNS. Park et al. proposed CoDNS [27], a lightweight,
cooperative DNS lookup service that can be independently
and incrementally deployed to augment existing name-
servers. CoDNS is demonstrated to reduce the lookup la-
tency by 28-82%. Gao et al. focused on DNS’s update perfor-
mance, which consumes dozens of seconds to complete, and
proposed feasible improvement techniques [28]. Alouf et al.
introduced an analytical model to study expiration-based
caching systems based on renewal arguments and found
that no distribution maximizes the hit probability anywhere
in a network of caches [29]. Liu et al. proposed Contain-
erDNS [30], a scalable high-performance DNS for large-scale
container cloud platforms, which maximizes DNS’s perfor-
mance and scalability by optimizing packet processing and
using efficient memory and cache management.

7.2 Blockchain-based Name Service

Namecoin was proposed to build a blockchain-based
namespace [31]. It was forked from Bitcoin so that they share
lots of similarities such as the block size, mining interval,
and scripting system (with a few additions). Namecoin
adopts the merged mining to ensure its data consistency.
However, an empirical study on Namecoin shows that most
registered domains are inactive and squatted [16], which
is of great danger to a naming system [32]. Moreover, the
Bitcoin-like system is shown to be vulnerable to mining
attacks, which requires improvements [33]. Blockchain-DNS
[34] provided a browser-side name resolution service for
Namecoin. However, as Namecoin has many intrinsic prob-
lems, the usage of Blockchain-DNS is limited.

Ali et al. proposed Blockstack [35], a blockchain-based
naming and storage system. Blockstack introduced the vir-
tual chain so that it can introduce new functionalities with-
out forking the underlying blockchain. Blockstack also has
some advantages such as the cross-chain migration ability
and fast bootstrapping. These properties make it easier
to deploy the blockstack system. Yao et al. proposed to
introduce cloud computing to mitigate the low computa-
tional load of the blockchain, exploring ways to offload
computationally intensive work to cloud services so that
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low-computation devices in the DNS can participate in
consensus [36]. Stergiou et al. aim to mitigate the security
and privacy issues by presenting an IoT-based cloud system
[37], which offers a secure infrastructure for establishing B-
DNS.

8 CONCLUSION

In this paper, we propose B-DNS, a secure and efficient
blockchain-based DNS. B-DNS is compatible with current
DNS and can provide better defense against the cache poi-
soning attack and the DDoS attack. We propose a novel way
to quantitatively compare the security of B-DNS and legacy
DNS according to attack success rate, attack cost, and attack
surface and our experiments demonstrate the good security
of B-DNS. B-DNS can also provide efficient name service
compared with legacy DNS. Our work actively explored
the construction of the next-generation DNS infrastructure
and provides a potential solution for building domain name
systems for a wide area network, local area network, or
intranet.
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