Power Adjusting and Bribery Racing: Novel Mining Attacks in the Bitcoin System

Shang Gao, Zecheng Li, Zhe Peng, and <u>Bin Xiao</u> The Hong Kong Polytechnic University Nov 12, 2019

Outline

Bitcoin Overview

- Mining Attacks
- Power Adjusting Withholding
- Bribery Selfish Mining
- Discussion
- Conclusion

Bitcoin: Overview

- Blockchain based cryptocurrency
 - Decentralized ledger

• Price: more than 10000 USD in Aug, 2019.

Bitcoin: Overview

- Participants: miners.
- New transaction records: recorded in blocks.
- Block: header and body
 - Header: previous block header hash, Merkle root, nonce, ...
 - Body: transaction records
- Ledger: blockchain.

Bitcoin: Mining Process

• Mining process: miners adding new blocks into the blockchain.

Bitcoin: Mining Process

- However, finding a new block is not easy.
 - Finding a proper **nonce** in the header that satisfies the difficulty constraint: SHA256(SHA256(Block.Header)) < D.
 - Need to enumerate all possible value.
- A proper nonce is called proof of work (**PoW**)
- The firstly discovered miner will be rewarded (12.5 BTC).
- Multiple miners find blocks simultaneously: fork.
 - A miner can choose which branch it works on.
 - The longest branch is selected as the main chain.
 - Only blocks on the main chain can be rewarded.

Bitcoin: Mining Pool

- To reduce the reward variance, miners can work together as mining pools.
 - Reward can be shared based on each miner's contribution.
 - Mining pool will set a less difficult constraint D'(D' > D).
 - A nonce that makes D < Hash(header) < D' is called **PPoW** (partial proof of work).
 - A nonce that makes Hash(header) < D < D' is called **FPoW** (full proof of work).
 - FPoWs and PPoWs are called shares. Number of shares is proportional to mining power.
 - A pool miner's reward is calculated by:

Outline

- Bitcoin Overview
- Mining Attacks
- Power Adjusting Withholding
- Bribery Selfish Mining
- Discussion
- Conclusion

Mining Attacks: Overview

- Attackers can increase their reward of mining when deviating from honest mining strategies.
 - Selfish mining [FC'14]
 - Block withholding [CSF'15, Oakland'15]
 - Fork after withholding [CCS'17]
 - Bribery attacks [FC'16]

[FC'14] Ittay Eyal and Emin Gun Sirer. 2014. Majority is not Enough: Bitcoin Mining is Vulnerable. In *Proc. of the International Conference on Financial Cryptography and Data Security (FC).*[Oakland'15] Ittay Eyal. 2015. The Miner's Dilemma. In *Proc. of the IEEE Symposium onSecurity and Privacy (Oakland).*[CSF'15] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas Hobor. 2015. On Power Splitting Games in Distributed Computation: The Case of Bitcoin Pooled Mining. In *Proc. of the IEEE Computer Security Foundations Symposium (CSF).*[CCS'17] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yongdae Kim. 2017. Be Selfish and Avoid Dilemmas: Fork After Withholding (FAW) Attacks on Bitcoin. In *Proc. of the ACM Conference on Computer & Communications Security (CCS).*[FC'16] Joseph Bonneau. 2016. Why Buy When You Can Rent?. In *Proc. of the International Conference on Financial Cryptography and Data Security (FC).*

Mining Attacks: Overview

- Attackers can increase mining strategies.
 - Selfish mining [FC'14]
 - Block withholding [CSF'15, O

mining when deviating from honest

These attacks also work for other PoW based cryptocurrencies!

Cryptography and Data Security (FC).

[Oakland'15] Ittay Eyal. 2015. The Miner's Dilemma. In Proc. of the IEEE Symposium on Security and Privacy (Oakland).

[CSF'15] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas Hobor. 2015. On Power Splitting Games in Distributed Computation: The Case of Bitcoin Pooled Mining. In *Proc. of the IEEE Computer Security Foundations Symposium (CSF)*.

[CCS'17] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yongdae Kim. 2017. Be Selfish and Avoid Dilemmas: Fork After Withholding (FAW) Attacks on Bitcoin. In *Proc. of the ACM Conference on Computer & Communications Security (CCS).*

[FC'16] Joseph Bonneau. 2016. Why Buy When You Can Rent?. In Proc. of the International Conference on Financial Cryptography and Data Security (FC).

Mining Attacks: Selfish Mining

- An attacker will not publish the discovered block.
 - Continue mining on the discovered block as a private branch.
 - Publish the private chain when others discover a block (cause a fork).
 - Making others waste power when the private branch is selected as the main chain.

Mining Attacks: Selfish Mining

- An attacker will not publish the discovered block.
 - Continue mining on the discovered block as a private branch.
 - Publish the private chain when others discover a block (cause a fork).
 - Making others waste power when the private branch is selected as the main chain.
 - Also may **lose** when the private branch is not selected as the main chain.
 - Need 1/3 mining power of the Bitcoin system to ensure a higher reward.

Mining Attacks: Block Withholding (BWH)

- An attacker splits its power into innocent mining (mining solely) and infiltration mining (mining in pools).
 - Innocent mining: behaves exactly as honest mining.
 - Infiltration mining: only submits PPoWs (discards discovered FPoWs).
- Infiltration mining harms pools' reward, but makes other miners more profitable.

Mining Attacks: Block Withholding (BWH)

- BWH can be better than honest mining when splitting properly.
 - Regardless of mining power
- Real-world BWH: Eligius pool lost 300 BTC in 2014.
- It can be a "miner's dilemma" when two pools use BWH against each other.
 - Both pools will choose to attack under the Nash equilibrium.
 - Both pools always suffer from a loss due to BWH attacks (similar to the "prisoner's dilemma").

Pool 1 Pool 2	no attack	attack
no attack	$(r_1 = 1, r_2 = 1)$	$(r_1 > 1, r_2 = \tilde{r}_2 < 1)$
attack	$(r_1 = \tilde{r}_1 < 1, r_2 > 1)$	$(\tilde{r}_1 < r_1 < 1, \tilde{r}_2 < r_2 < 1)$

• FAW = BWH + Selfish Mining.

- Splitting power into innocent mining and infiltration mining (as with BWH).
- Infiltration mining withholds FPoWs, and submits when others find blocks (as with selfish mining).
 - Pool's reward: damaged by withholding FPoWs.
 - Other's reward: damaged by forks.

• Better than BWH.

- The attacker can be rewarded from the fork (when attacker's branch becomes the main chain).
- Lower bound is BWH (when attacker's branch is never selected).

- Better than BWH.
- Break the dilemma: we may have a winner.
 - The smaller pool will always lose.
 - The larger pool may win.
 - Becoming a pool-size game.

- Better than BWH.
- Break the dilemma: we may have a winner.
- Fixed innocent-infiltration mining ratio
 - What if the value of one part of reward changes? E.g. shared reward becomes more "attractive"?

Mining Attacks: Bribery Attacks

- When forks occur, attacker can bribe others to increase the chance of winning.
 - Sending "anyone can claim" transactions on attacker's branch
 - If bribes are considerable, others may be willing to work on attacker's branch.
 - Attacker may get more than 50% mining power in a short period (possible double-spending).
 - Cost too much bribes to revert a long branch.

Outline

- Bitcoin Overview
- Mining Attacks
- Power Adjusting Withholding
- Bribery Selfish Mining
- Discussion
- Conclusion

PAW: Observation

 In FAW, the value of the shared reward will change after infiltration mining finds an FPoW.

Case 1: *smaller* the pool, *higher* the chance to win in forks.

- When the pool size is small, I can share more profit if I allocate more power into it.
- Even when forks occur, I have a high chance to get a share.

The share is more attractive!

Case 2: *larger* the pool, *less* the chance to win in forks.

- Even when I allocate more power, I still get little shared reward.
- When forks occur, I only get very few shares

The share is less attractive!

PAW: Observation

 In FAW, the shared reward's value will change after infiltration mining finding an FPoW.

Why not adjust my power splitting after finding an FPoW!

- PAW = \underline{P} ower \underline{A} djusting + FA \underline{W}
 - Splitting power into innocent mining and infiltration mining (as with FAW).

- PAW = Power Adjusting + FAW
 - Splitting power into innocent mining and infiltration mining (as with FAW).
 - When infiltration mining finds an FPoW, adjust power splitting strategy.

- PAW = **P**ower **A**djusting + FA**W**
 - Splitting power into innocent mining and infiltration mining (as with FAW).
 - When infiltration mining finds an FPoW, adjust power splitting strategy.

• PAW = Power Adjusting + FAW

- Splitting power into innocent mining and infiltration mining (as with FAW).
- When infiltration mining finds an FPoW, adjust power splitting strategy.
- Infiltration mining withholds FPoWs, and submits when others find blocks (as with FAW).

• PAW = Power Adjusting + FAW

- Splitting power into innocent mining and infiltration mining (as with FAW).
- When infiltration mining finds an FPoW, adjust power splitting strategy.
- Infiltration mining withholds FPoWs, and submits when others find blocks (as with FAW).
- How to adjust power?
 - Based on the optimizing function.

$$R_{a}^{P}(\tau_{1}, \tau_{2}) = (1 - \tau_{1})\alpha + \beta \cdot \frac{\tau_{1}\alpha}{\beta + \tau_{1}\alpha} + \qquad \underset{\tau_{1}, \tau_{2}}{\operatorname{arg max}} \operatorname{R}_{a}^{P}(\tau_{1}, \tau_{2}), \\ \tau_{1}\alpha \cdot \left(\frac{(1 - \tau_{2})\alpha}{1 - \tau_{2}\alpha} + (c \cdot \frac{1 - \alpha - \beta}{1 - \tau_{2}\alpha} + \frac{\beta}{1 - \tau_{2}\alpha}) \cdot \frac{\bar{\tau}\alpha}{\beta + \bar{\tau}\alpha}\right), \qquad 0 \leqslant \tau_{1} \leqslant 1, \quad 0 \leqslant \tau_{2} \leqslant 1.$$

 Allocating more power to infiltration mining when the share is more attractive; less power when less attractive.

PAW: Higher Reward

- Better than FAW.
 - We can ensure PAW = FAW with an additional constraint: $\tau_1 = \tau_2$ (not adjusting).
 - Without the additional constraint, PAW will get a better result (higher reward) than FAW.

PAW: Avoiding Dilemma

- Avoiding the "miner's dilemma".
 - Pool-size game: smaller pool will lose, larger pool may win.

Outline

- Bitcoin Overview
- Mining Attacks
- Power Adjusting Withholding
- Bribery Selfish Mining
- Discussion
- Conclusion

BSM: 0-Lead Racing

- 0-lead racing: two branches of the same length racing in the system.
 - Other miners have no difference in working on which branch
 - Typical scenario: selfish mining

Case 1, *A* finds a block: he will get a reward and continue mining on the current branch. Case 2, **A** does not find: he will switch to the main branch (if necessary) and continue mining.

No difference between blue and pink branches!

BSM: Observation

- When 0-lead racing occur, attacker can "lure" others to work on his branch.
 - Increase the chance of winning in forks with little cost.

Why not bribe others (with little cost) to work on my branch!

BSM: Bribery Selfish Mining

BSM = <u>Bribery attacks</u> + <u>Selfish</u> <u>Mining</u>

- Publish the private branch when public branch catches up to cause O-lead racing in selfish mining.
- Including bribery transactions when mining the new private block.
- When mining the second private block, transferring the money back and including new bribery transactions.

BSM: Higher Reward

- More venal miners = better chance of wining in forks
 - A critical parameter in selfish mining: the ratio of venal miners
 - Can be more profitable than selfish mining with a proper amount of bribes.

Attacker's dominant strategy (BSM VS selfish mining). bribes = 0.02; B = BSM; S = Selfish mining

BSM: Higher Reward

- More venal miners = better chance of wining in forks
 - A critical parameter in selfish mining: the ratio of venal miners
 - Can be more profitable than selfish mining with a proper amount of bribes.
- How much to pay for bribes?
 - Almost nothing! As long as bribes > 0.
 - Profit-driven miners: something is better than nothing

BSM: The Venal Miner's Dilemma

- What if the attacker races with venal miner?
 - For miner A and B, their dominant strategy is mining on attacker's branch.
 - A and B are harming each other's profit, while making the attacker more profitable!

BSM: The Venal Miner's Dilemma

- What if the attacker races with venal miner?
 - For miner A and B, their dominant strategy is mining on the attacker's branch.
 - A and B are harming each other's profit, while making the attacker more profitable!
 - When more venal miners are involved, there will be a "venal miner's dilemma".
 - All venal miners choose to accept the bribes (mine on the attacker's branch), but will suffer from a lost comparing with none acceptance.

$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Accept at $0'_o$	Deny at $0'_o$
Accept at $0'_o$	(-2.58% , -0.62%)	(-6.44%, 1.63%)
Deny at $0'_o$	(3.85% , -1.85%)	(0.45%, 0.45%)

BSM: Venal Miner's Dilemma VS Miner's Dilemma

• Differences between the "miner's dilemma":

	Venal Miner's Dilemma	Miner's Dilemma
Participants	1 attacker, 2 venal miners	2 attackers, and other miners
Beneficiary	Attacker	Other miners
Victim	Venal miners	Attackers
Good property for the attack?	Yes	No

Outline

- Bitcoin Overview
- Mining Attacks
- Power Adjusting Withholding
- Bribery Selfish Mining
- Discussion
- Conclusion

Discussion: Attack Strategy Space

• PAW: power splitting related.

- The idea of power adjusting can be used to other power splitting related attacks, after some part of reward value changes.
 - E.g., power adjusting + BWH = PA-BWH.
- BSM: 0-lead racing related.
 - The idea of bribery can be applied to other 0-lead racing related attacks.
 - E.g., Bribery + FAW = B-FAW; Bribery + PAW = B-PAW.

Discussion: Countermeasure

- PAW detection.
 - Power adjusting is hard to be detected.
 - Not always happen: only after infiltration mining finds an FPoW.
 - Non-frequent power adjusting is legal and acceptable for honest miners.
 - PAW can be detected via BWH/FAW detection.
 - BWH detection: statistic (PPoW/FPoW ratio).
 - FAW detection: stale FPoWs.
 - Timestamp based detection: synchronize miner's time; verify timestamp field.
- PAW attacker can use Sybil nodes when detected to get more profit.

Discussion: Countermeasure

• Bribery countermeasures.

- Restrict the use of "anyone can claim" transactions.
 - Sacrifice the flexibility and programmability.
- Miners should preferentially choose the branch containing the transactions which they
 previously received.
 - Unrealistic to assume all miners adopt this approach.
- Pool managers should expel pool miners who submit FPoWs containing bribes.
 - Avoiding bribery racing in FAW/PAW.
 - Pool miners should leave pools when pools accept FPoWs containing bribes.
- Bribery related attacks are hard to be avoided.
 - Greedy.
 - Out-of-band transactions.

No silver bullet

Outline

- Bitcoin Overview
- Mining Attacks
- Power Adjusting Withholding
- Bribery Selfish Mining
- Discussion
- Conclusion

THANK YOU