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Data recovery techniques such as compressive sensing are commonly used in mobile crowdsensing (MCS) ap-
plications to infer the information of unsensed regions based on data from nearby participants. However, the
participants’ locations are exposed when they report geo-tagged data to an application server. While there are
considerable location protection approaches for MCS, they fail to maintain the correlation of sensory data, leading
to the existence of unrecoverable data. None of the previous approaches can achieve both data recovery and data
privacy preservation. We propose a novel location privacy-preserving data recovery method in this paper. Based
on our discovery that the adjacency relations of non-zero elements are key to the missing data recovery in a
crowdsensing data matrix, we design a correlation-preserving location obfuscation scheme to hide the participants’
locations under effective camouflage. We also design an encrypted data recovery scheme based on the homomorphic
encryption in order to avoid location privacy leakage from sensory data. Location obfuscation and data encryption
preserve the participants’ privacy, while the correlation-preserving and homomorphic properties of our method
ensure data recovery accuracy. Evaluations of real-world datasets show that our privacy-preserving method can
effectively obfuscate locations (e.g., yielding an average location distortion of 1.7𝑘𝑚 in a 2.4𝑘𝑚× 4𝑘𝑚 area for
successful location hiding), and it can efficiently achieve similar data recovery accuracy to compressive sensing
(which has no privacy protection).
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1 INTRODUCTION

The surge of sensor-rich mobile devices and the demand for pervasive sensing have led to a new sensing
paradigm, known as mobile crowdsensing (MCS) [14]. MCS can acquire various types of environmental
information (e.g., air quality [10][25], spectrum [5], noise pollution [43]) by exploiting mobile users as
sensors. Due to the limited budgets of application campaigners and the large size of sensing areas, there
are usually many unsensed regions whose data are unknown [34][35]. For example, participants are not
always available at every block of an urban area (unlike traditional specialized sensors in wireless sensor
networks), so the collected ambient noise data based on MCS tend to be very sparse [43]. In order to deal
with this data sparsity (missing) problem and to construct a comprehensive sensing map, data recovery
techniques are usually adopted to infer the missing data of blank regions based on reported data from
nearby locations [20][38][42]. Fig. 1 (Top) illustrates a typical process of data recovery-involved MCS
applications (a.k.a., compressive crowdsensing [34][38] and Sparse MCS [35]). The process consists of a
sensory matrix construction phase and a data recovery phase based on compressive sensing (CS)1.

Participants’ location privacy is at risk when reporting sensory data tagged with their actual locations
to the application server for data recovery [15][16]. In fact, participants would be reluctant to join a task
without appropriate privacy protection, leading to a failure of such a sensing paradigm. Considerable work
has been devoted to location privacy preservation for MCS [27]. We classify the existing approaches into
three categories and illustrate them in Fig. 1 (Bottom). Specifically, the cloaking-based approaches use a
coarse polygon area to replace a participant’s precise location [9][28]; the perturbation-based approaches
hide a participant’s location under an obfuscated location (the end of the arrow) with techniques like
differential location privacy [18][30][33][36]; and the encryption-based approaches treat locations as data
and encrypt both the location information (e.g., 𝑙1) and the sensory data (e.g., 𝑆1) for privacy preservation
based on cryptographic mechanisms [1][19].

Though effective in protecting location privacy, these approaches breach the data correlation required by
data recovery. As illustrated in Fig. 1 (Bottom), cloaking and encryption would destroy the indexing role
of locations, rendering the inputs (not matrices) invalid for CS-based data recovery. While perturbation
maintains a matrix with the same amount of data as the input, the deduction results of the missing
elements based on the perturbed matrix would be substantially deviated. For example, the 1st element in
the 1st row of the sensory matrix ought to be deduced from 𝑆1 and 𝑆2 according to CS, but it turns
out to be inferred based on 𝑆2, 𝑆4, and 𝑆5 after perturbation. Therefore, it is still necessary to design a
practical location privacy-preserving scheme that guarantees accurate data recovery.
In this paper, we propose a novel location privacy-preserving method, named Spatial Camouflage

Participants (SCP), to simultaneously conceal participants’ actual locations and guarantee data recovery
accuracy in MCS applications.

The building block of SCP is a conjecture: the inherent correlation that CS exploits for data recovery is
the horizontal and vertical adjacency relations of non-zero elements in the sensory matrix. Intuitively, the
data recovery results should be the same for those matrices that preserves this correlation. Based on this
insight, we design a correlation-preserving location obfuscation scheme to protect participants’ locations

1We consider compressive sensing as the data recovery technique in this paper, which we will explain in Section 3.1.2. Hence,
CS and data recovery will be used interchangeably hereafter.
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Fig. 1. A brief MCS process using CS for data recovery (Top) and some typical location privacy protection approaches
(Bottom). Briefly, CS infers the unknown elements (e.g., the 1st element in the 1st row) based on the values of some
known elements (e.g., 𝑆1, 𝑆2). Throughout the paper, a participant’s location is modeled as the grid in which he is
located. The grid is then mapped to an index of a sensory matrix (e.g., index (1, 3) represents 𝑆1 as the location of 𝑢1).

while still preserving their adjacency relations. Namely, for a sensory matrix in which elements are sensory
data and each element is indexed with the sensing location of its data, we migrate the elements of one row
(column) to another row (column) simultaneously. Furthermore, in order to perform location obfuscation
in a distributed way, a blind signature is adopted in order to securely assign the constructed obfuscation
to each participant. The accuracy of our obfuscation scheme is proven in theory and has been evaluated
in experiments.

Participants’ locations are not safe merely using location obfuscation. We note that the sensory data,
formed of attributes of corresponding locations, can be used as quasi-identifiers to infer the locations of
the participants. We define this privacy leakage threat as an inference attack. Specifically, given a sensory
matrix in which each participant’s location (i.e., index) is formally obfuscated, one can easily identify a
participant’s actual location as the index of its data in the recovered matrix (publicly available). In view
of this threat, we design a data recovery scheme based on homomorphic encryption for participants to
encrypt their data before reporting. Homomorphic encryption is widely used in privacy-preserving data
aggregation. We use additively homomorphic encryption (AHE) and vector homomorphic encryption
(VHE) to conduct secure computation for CS. AHE is first used to secure the report and distribution
of participants’ sensory data. Then we decompose the CS process into 7 atomic vector operations and
leverage VHE to encrypt the sensory matrix and perform these atomic operations on the ciphertexts.

Based on SCP, participants can report to the MCS application server securely with obfuscated locations
and encrypted data. Data recovery can be performed based on the secured reports with no accuracy loss.
The main contributions of this paper to the field can be summarized as follows:

∙ To the best of our knowledge, our work is the first attempt to protect participants’ location privacy
against passive monitoring and inference attacks, while maintaining data recovery accuracy.

∙ We make a conjecture on the inherent data correlation used in CS and theoretically prove its
correctness. From this conjecture, we propose a correlation-preserving location obfuscation scheme.
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The scheme obfuscates participants’ locations in a secure and distributed way by using blind
signature.

∙ We propose a homomorphic encryption-based data recovery scheme to avoid location privacy leakage
from the sensory data. The scheme leverages homomorphic vector encryption to perform CS in
several atomic operations.

∙ We prove the security of our SCP method in a well-defined security model and conduct extensive
experiments to evaluate its performance on real-world datasets. The results show that SCP can
yield effective location obfuscation (e.g., average location distortion of 1.7𝑘𝑚 for a 2.4𝑘𝑚× 4𝑘𝑚
area). SCP can also achieve similar data recovery accuracy to CS, while it is much better than the
baseline privacy-preserving compressive sensing (PPCS) [19].

2 RELATED WORK

We focus on the location privacy-preserving methods for data recovery in MCS. As shown above, locations
can be leaked indirectly with inference attacks on sensory data. Hence, both location privacy and data
security are relevant to our work. We will now review some previous work in these two areas.

2.1 Location Privacy-Preserving Approaches

Location privacy has been studied extensively because of the popularity of location-based services
(LBS) [39]. We classify recent efforts on location privacy into three categories: cloaking, perturbation,
and encryption.

As a widely used strategy, cloaking techniques aim to hide a precise location under a coarse area using
either spatial transformation or a set of dummy locations, e.g., [9][28]. Although it does enable anonymity-
based privacy, the cloaking strategy is criticized to be sensitive to adversaries’ prior knowledge [33].

To avoid this issue, a rigorous method of indistinguishability [2][3] has recently been adopted in location
perturbation in order to protect location privacy in LBS (i.e., differential location privacy). It involves
obfuscating a participant’s location in such a way that the calculated probabilities for its actual location
to be one of several locations are similar in terms of the Bayesian attack [2]. Such techniques shed light on
the design of privacy-preserving MCS tasks. Specifically, researchers in [18][30][33] focused on minimizing
participants’ overall travelling distance after having obfuscated their locations with differential location
privacy in the participant recruitment stage. In [32], how to design an optimal location obfuscation policy
for crowd coverage maximization under certain differential privacy protection was investigated. Wang et
al. [36] tried to reduce the data inference error when adopting differential location privacy.
Some schemes treat locations as data and propose to protect location privacy with data encryption

techniques [1][19]. In [1], partially homomorphic encryption was used jointly with a novel localization
structure in order to perform passive localization without leaking observers’ locations. Note that we also
adopt homomorphic encryption in SCP (Phase III), but for the privacy preservation of sensory data
against inference attacks. We protect location privacy using our correlation-preserving obfuscation scheme
(Phase II). Kong et al. [19] encrypted locations in a trajectory (represented as a vector) by adding several
public vectors to the trajectory vector before having performed trajectory recovery in the server.

We must highlight that these approaches are not effective for data recovery-involved MCS as they ignore
the impact of location protection on data recovery. First, the cloaking and encryption-based approaches
can destroy the location indices and provide invalid inputs (i.e., not matrices) for CS. Second, the existing
perturbation-based approaches breach the inherent correlation required by CS, yielding inaccurate data
recovery results. In contrast, our SCP method exploits and retains the inherent correlation used in CS to
obfuscate participants’ locations with no loss of accuracy for data recovery.
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2.2 Data Privacy-Preserving Approaches

Data privacy/security has received considerable attention in many fields, specially database manage-
ment [12] and MCS [8]. The former category generally focuses on privacy-preserving data publishing based
on techniques such as generalization and suppression (i.e., replacing the values of a specific description
with a less specific description [12]). In MCS, on the other hand, privacy issues are usually considered
together with data aggregation based on either data perturbation or cryptographic mechanisms.

Data perturbation involves adding noises with a known distribution to the original data while allowing
the computation of community statistics (e.g., the average aggregate) by using certain rules [13][40]. The
differential privacy technique modifies user data by adding controlled noise (e.g., drawn from a Laplace
distribution), which is believed to have a negligible effect on the query outcome. Based on differential
privacy, a privacy-preserving statistics publishing framework for crowdsourced data was proposed in [37].

Applying cryptographic mechanisms in privacy-preserving data aggregation is straightforward. Homo-
morphic encryption is a widely adopted cryptographic technique. It allows certain computations over
ciphertexts to be done in such a way that the decryption of the encrypted result matches the result of
computations over plaintexts. In [45], BGV homomorphic encryption was employed to support several
basic aggregation statistics (e.g., mean, variance) on encrypted data. AHE was introduced to protect
sensory data privacy and supported the sum aggregate in [21] and the expectation maximum-based truth
discovery in [23].
The problem settings (i.e., the aggregation process) discussed in existing work are different from

those of data recovery, which aims to infer missing sensory data using CS. Both [26] and [31] have
investigated privacy-preserving CS. Fully homomorphic encryption (FHE) was adopted in [26] to represent
any computation via a garbled combinational circuit and then evaluate it using encrypted input. Wang et
al. [31] criticized this FHE-based solution as being impractical and designed a problem transformation
mechanism to reconstruct compressed images with privacy protection. Unlike images stored with the
users, sensory matrices are constructed with participants’ data in the server. Thus, data privacy would
be exposed to the server if we encrypted sensory matrices based on the technique in [31].

In our SCP method, we decompose the CS process into a series of vector operations and leverage the
vector homomorphic encryption in [44] to design an efficient encrypted data recovery scheme. The sensory
data of participants are then protected to avoid location leakage from inference attacks.

3 PROBLEM STATEMENT

3.1 System Model: Mobile Crowdsensing

MCS tasks, especially in the urban environment, often have difficulty in getting sufficient samples due
to the limited budgets [35]. For example, in a noise monitoring task, we are only expected to collect
measurements that are sparsely distributed in the target area from participants [43]. To achieve full
coverage of the target area (e.g., noise estimation for every block), data recovery techniques are usually
adopted to infer the missing data of the overlooked regions in MCS. Below, we introduce the typical MCS
system, including its data structure and the CS-based data recovery technique that it uses.

3.1.1 Data Structure. During an MCS task, the target area is divided into uniform grids with h rows
and v columns. Sensory data are then collected for certain grids and are used to deduce the situation of
the whole area (see Fig. 1 (Top)). Both the scale and the elements in the sensory matrix are not fixed in
dynamic MCS scenarios, so sensing tasks should be conducted periodically to update the sensory matrix.
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Notation: We use boldface to denote matrices (e.g., A) and blackboard bold to denote sets and vectors
(e.g., L). We let A𝑖 and A𝑗 denote the 𝑖-th row and 𝑗-th column of A, respectively. We use superscript *
to denote a location-obfuscated version of a vector or a matrix (e.g., A*). We use Z for the integer space.

Definition 3.1 (Environment Matrix). Environment matrix G is an h× v matrix with each element
being the sensory data of a specific grid. G has no missing data.

Definition 3.2 (Index Matrix). Index matrix I is an h× v matrix, which indicates whether an element
is missing in matrix G (i.e., I(𝑖, 𝑗)=0 if G(𝑖, 𝑗) is missing, otherwise I(𝑖, 𝑗)=1).

Definition 3.3 (Sensory Report). The sensory report of participant 𝑢𝑖 (𝑖 ∈ [1, 𝑛]) is a tuple ⟨𝑙1𝑖 , 𝑙2𝑖 , 𝑆𝑖⟩,
where 𝑙1𝑖 ∈ L1=[2, ...,h+1] and 𝑙2𝑖 ∈ L2=[2, ..., v+1] are the row index and column index of the grid in
which 𝑢𝑖 is located, and 𝑆𝑖 denotes the sensory data. We will explain later why we number the indices
from 2.

Definition 3.4 (Sensory Matrix). Sensory matrix S is an h× v matrix consisting of the sensory data
of all participants with S𝑙1𝑖 ,𝑙

2
𝑖
= 𝑆𝑖. S can be represented by the element-wise production of G and I,

namely, S=G⊙ I.

Definition 3.5 (Recovered Matrix). Recovered Matrix ̂︀G is an h× v matrix constructed by deducing
the missing values in an S to approximate G based on data recovery techniques.

3.1.2 Compressive Sensing-Based Data Recovery. We perform data recovery based on CS, which is
proven to outperform (i.e., is more accurate than) most state-of-the-art data recovery methods (e.g.,
Singular Spectrum Analysis, K-Nearest Neighbors, Delaunay Triangulation) [20][41]. We define the CS

operation as f𝑐𝑠, thus ̂︀G = f𝑐𝑠(S). f𝑐𝑠 is carried out based on the low-rank property:

min 𝑟𝑎𝑛𝑘( ̂︀G)

𝑠.𝑡., ̂︀G⊙ I=S
(1)

However, it is difficult to solve this problem because it is non-convex. To relieve this pitfall, singular value

decomposition (i.e., ̂︀G = U ·V) is often adopted to rewrite rank minimization as minimizing the sum of
the decomposition matrices’ Frobenius norms:

min
U,V

𝜆 · (‖U‖2𝐹 + ‖V‖2𝐹 )+ ‖(U ·V)⊙ I-S‖2𝐹 (2)

which can be further represented as:

min
U,V

𝜆 · (
∑︁
𝑖∈[ℎ]

‖U𝑖‖2𝐹+
∑︁
𝑗∈[𝑣]

‖V𝑗‖2𝐹 )+
∑︁

(𝑖,𝑗)∈W

(⟨U𝑖,V𝑗⟩-S𝑖𝑗)
2

(3)

where 𝜆 is a Lagrange multiplier that allows a tunable tradeoff between rank minimization and accuracy
fitness, and vector W consists of the indices of the non-zero elements in I. To solve this optimization
problem, we use a gradient descent procedure [26] to estimate the two matrices iteratively:

U𝑖(𝑡+1)=U𝑖(𝑡)-𝛾(
∑︀

(𝑖,𝑗)∈W
V𝑗(𝑡) ·E𝑖𝑗(𝑡)+𝜆 ·U𝑖(𝑡))

V𝑗(𝑡+1)=V𝑗(𝑡)-𝛾(
∑︀

(𝑖,𝑗)∈W
U𝑖(𝑡) ·E𝑖𝑗(𝑡)+𝜆 ·V𝑗(𝑡))

(4)

where E𝑖𝑗(𝑡)=⟨U𝑖(𝑡),V𝑗(𝑡)⟩-S𝑖𝑗 denotes the approximation error for each sensory measurement, and
𝛾 > 0 is a small gain factor. U(0) and V(0) consists of uniformly random elements.
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3.2 Threat Model

Our security guarantees will hold under the honest-but-curious threat model. That is, all the involved
parties (i.e., the participants, the application server and the Crypt-Service Provider (CSP)) will perform
honestly according to the protocols; however, they may analyze the protocol and try to learn additional
information, especially the participants’ locations. Such privacy leakage may expose the participants to
unexpected surveillance and tracking [16]. We consider two forms of threat models:

∙ Passive Monitoring: For a specific participant, unauthorized parties (including the server, the
CSP, and other participants) could monitor the traffic of the participant to collect location related
information during an MCS task. In brief, if a participant reports data with its actual location,
then its privacy is at risk. Thus, participants’ locations should be reported securely.
However, even with obfuscation, such threats are still severe considering several deliberately designed
attacks based on passive monitoring. With Bayesian attacks, adversaries can predict the posterior
location of a participant based on prior knowledge of the actual location distribution and the
location obfuscation probability. Similarly, cryptographic analysis enables the passive observers to
predict participants’ actual locations based on the correlation between the density of the actual
and obfuscated locations. Finally, in Sybil attacks, an adversary can learn the obfuscation rules by
manipulating several fake identities.

∙ Inference Attacks: An application server can infer the actual location of a participant by analyzing
the data that it reports. Data is the attribute of a location; thus, it can be used as the quasi-identifier
for one’s location. Specifically, one’s data would appear in both the original report (with obfuscated
locations) and the final publication (with reordered locations). The server could easily find out
one’s actual location by matching the data in these two matrices. For example, if the server collects
⟨𝑆𝑖, 𝑙

*⟩ in 𝑢𝑖’s original report and finds data 𝑆𝑖 at 𝑙𝑖 from the final publication, then it can deduce
that 𝑢𝑖’s actual location is 𝑙𝑖. Hence, participants’ data should also be reported secretly.

Collusion attacks are not considered in our threat model and we will discuss it in Section. 7.
Design Objectives: Mobile users would be reluctant to participate in an MCS task until the above

threats are well mitigated. On the other hand, a sensing task would be uninformative if the mitigation of
privacy leakage causes inaccurate data recovery. To this end, the objectives of this paper are twofold.
First, participants’ location privacy is protected against passive monitoring and inference attacks during
data reporting and data analysis in MCS. Second, data recovery can be effectively performed based on
the secured reports, with no loss of accuracy. As far as we are aware, this work is the first attempt to
jointly consider these two objectives.

4 SPATIAL CAMOUFLAGE PARTICIPANTS METHOD

4.1 The Framework of SCP

To address the critical privacy concerns in MCS, we propose an efficient data recovery privacy-preserving
method known as spatial camouflage participants (SCP). SCP involves three entities: the participants,
the application server, and the crypt-service provider (CSP), and consists of three phases as shown in
Fig. 2. In Phase I, the participants perform correlation-preserving location obfuscation to hide their
actual locations under spatial camouflage constructed by the CSP. In Phase II, the server conducts secure
two-party computation with the CSP for data recovery based on the obfuscated and encrypted sensory
matrix, wherein sensory data is encrypted to avoid location leakage from inference attacks. Finally, in
Phase III, the recovered data is extracted by decryption and location reordering in the CSP for further
publishing.
We will now describe Phase I in Section 4.2, Phase II in Section 4.3, and Phase III in Section 4.4.
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Fig. 2. Framework of our SCP method. Phase I is conducted between the participants and the CSP for location
obfuscation. Phase II performs secure two-party computation for data recovery between the CSP and the application
sever. The CSP extracts the recovered data through decryption and location reordering in Phase III.

4.2 Correlation-Preserving Location Obfuscation

Our location obfuscation scheme is designed based on a conjecture on the inherent data correlation of the
sensory matrix. We will now describe our conjecture, then prove its correctness with a basic scheme, and
finally present our detailed design following the basic scheme.

4.2.1 Conjecture on the Inherent Correlation. Existing location perturbation-based approaches (e.g.,
differential location privacy) perturb each participant’s location separately. The non-zero elements in
the sensory matrix are redistributed using these approaches. As we mentioned above, although the
redistribution does not change either the number or the values of the elements, the deduced value of each
missing element would be significantly deviated. It seems that some correlation is breached during their
obfuscation operations.
We notice that, in the recovery process in Eq. 4, each missing piece of data is deduced using the

non-zero elements in the corresponding row and column, which we refer to as the horizontal and vertical
adjacent elements, respectively. Technically, the deduction result of a missing piece of data achieved by
CS would not change as long as the missing piece of data is still in the same line as its horizontal and
vertical adjacent elements. Thus, our conjecture is that the inherent correlation required by CS for data
recovery is the horizontal and vertical adjacency relations of non-zero elements in the sensory matrix. As
a result, the correlation is maintained if elements in the same row (column) are still found in the same
row (column) after obfuscation; otherwise, the correlation is breached.

4.2.2 Basic Scheme for Correctness Analysis. We first introduce a basic obfuscation scheme in order
to validate our conjecture. Our basic scheme assumes that sensory matrix S is available2. Motivated
by the conjecture, the basic scheme obfuscates the participants’ original locations (i.e., indices in S) by
moving the elements in one row (column) of S to another row (column) simultaneously. We notice that
such obfuscation operations are the same as performing elementary row and column transformation on
S (as shown in Phase I in Fig. 2). In this way, the basic location obfuscation process is defined by two
elementary matrices A and B, formalized as:

S*=A · S ·B (5)

2We introduce this assumption here in order to clarify the basic idea and prove our conjecture. Our final obfuscation scheme

can protect S from being revealed to each participant, the CSP, and the MCS server (see Sec. 4.2.3).
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where S* is the location-obfuscated version of S with participants’ actual locations hidden. According
to our conjecture, S* can preserve the data correlation of sensory matrix S during data recovery. Thus,

the recovered matrix (i.e., ̂︁G*) using S* should be equivalent to the result of performing elementary

transformation on the recovered matrix (i.e., ̂︀G) using S; in other words, our conjecture suggestŝ︀G*=A · ̂︀G ·B. We prove the accuracy of the basic scheme in Theorem 4.1.

Theorem 4.1. The basic location obfuscation scheme of SCP (Eq. 5) does not affect the accuracy of
CS-based data recovery.

Proof. The server takes S* as input, generates two decomposition matrices U* and V*, and estimates
U* and V* based on CS (Eq. 4).

f𝑐𝑠(S
*)= min ( 𝜆 · (‖U*‖2𝐹 + ‖V*‖2𝐹 )+ ‖U* ·V* ⊙ I*-S*‖2𝐹 )

↔ min (𝜆 · (‖U*‖2𝐹 + ‖V*‖2𝐹 )+ ‖U* ·V* ⊙ I*-A · S ·B‖2𝐹 )

↔ min ( 𝜆 · (
⃦⃦
A-1 ·U*⃦⃦2

𝐹
+
⃦⃦
V* ·B-1

⃦⃦2
𝐹
)+

⃦⃦
A-1 · (U* ·V* ⊙ I*-A · S ·B) ·B-1

⃦⃦2
𝐹
)

↔ min ( 𝜆 · (
⃦⃦
A-1 ·U*⃦⃦2

𝐹
+
⃦⃦
V* ·B-1

⃦⃦2
𝐹
)+

⃦⃦
(A-1 ·U* ·V* ·B-1)⊙ (A-1 · I* ·B-1)-S

⃦⃦2
𝐹
)

↔ min (𝜆 · (‖U‖2𝐹 + ‖V‖2𝐹 )+ ‖U ·V ⊙ I-S‖2𝐹 )
= f𝑐𝑠(S) (6)

where U=A-1 ·U*, V=V* ·B-1, I=A-1 ·I* ·B-1, and ‖U*‖2𝐹 =
⃦⃦
A-1 ·U*

⃦⃦2
𝐹
as elementary transformation

does not change the Frobenius norm of a matrix. By solving the above optimization problem with gradient
descent, matrices U* and V* are iteratively adapted to their final values. Then we have:̂︁G*=U* ·V*=A ·U ·V ·B=A · ̂︀G ·B (7)

Given the recovered matrix ̂︁G*, we can easily extract matrix ̂︀G=A-1 · ̂︁G* ·B-1 through an inverse
transformation of the corresponding obfuscation operation (i.e., location reordering, see Section 4.4).
Hence, we prove that our basic location obfuscation scheme in Eq. 5 does not affect the CS-based sensory
matrix recovery results. �

The accuracy of this basic scheme validates our conjecture about the data correlation of CS-based data
recovery (i.e., the adjacency relations of non-zero elements).

4.2.3 The Design of Our Location Obfuscation Scheme. Our basic scheme assumes that sensory matrix
S is given during obfuscation. Meanwhile, in order to avoid location privacy leakage, all entities (the
participants, the CSP, and the application server) are not supposed to acquire such an actual location-
indexed matrix, as discussed in Section 3.2. Thus, the obfuscation operations of the basic scheme (i.e.,
elementary row and column transformation) should be performed by the participants distributively.
Simply, the participants can report their location indices to the CSP, which then assigns a same

obfuscated location index for participants with the same location index (a.k.a., in the same row or
column). The participants could also share their locations with each other to negotiate a correlation-
preserving obfuscation. However, these näıve solutions expose participants’ locations to the CSP or other
peers. In contrast, in SCP’s correlation-preserving location obfuscation phase (Fig. 3), the CSP constructs
location obfuscation for all location indices and distributes the encrypted obfuscation to all participants.
Each participant can only access the obfuscation of its own location index with an assigned token in this
process. The following is a detailed description of the process:
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∙ Setup. SCP first generates an RSA public key (𝑒,𝑁) and a private key (𝑑,𝑁), with 𝑁 as the public
modulus. The public key is sent to all participants. SCP also constructs two obfuscation vectors L*

1

and L*
2 by performing permutation encryption [22] (a typical transposition cipher) on L1 and L2.

It is important to note that a permutation key is only used once per task. L*
1 and L*

2 refer to the
obfuscated row index ℓ*1 for ℓ1 ∈ L1 and column index ℓ*2 for ℓ2 ∈ L2, respectively.

∙ Step 1: Token Query. Participant 𝑢𝑖 chooses a random number which is prime to 𝑁 , calculates
a query 𝑞𝑖=𝑙1𝑖 · 𝑟𝑒 mod 𝑁 for its row index, and sends this blinded message to the CSP to request a
token. Another query for its column index is also constructed (with a different 𝑟) and sent to the
CSP separately3.

∙ Step 2: Token Answer. On receiving a query 𝑞𝑖, the CSP calculates 𝑎𝑖=(𝑞𝑖)
𝑑 mod 𝑁=(𝑙1𝑖 ·

𝑟𝑒)𝑑 mod 𝑁 with its private key and sends 𝑎𝑖 back to requester 𝑢𝑖.
∙ Step 3: Token Calculation. The participant removes the blinding factor 𝑟 to get the token for
its obfuscated index 𝜏(𝑙𝑥𝑖 )=𝑎𝑖 · 𝑟−1 mod 𝑁=(𝑙1𝑖 )

𝑑 mod 𝑁 .
∙ Step 4: Obfuscation Distribution. The CSP perturbs the location index vectors L*

1 and L*
2 with

tokens, and constructs two encrypted obfuscation vectors ̃︁L*
1=[𝜏(ℓ1) · ℓ*1, ℓ1 ∈ L1] and ̃︁L*

2=[𝜏(ℓ2) ·
ℓ*2, ℓ2 ∈ L2] for the x-indices and y-indices. ̃︁L*

1 and ̃︁L*
2 are then distributed to all participants.

∙ Step 5: Obfuscation Calculation. Each participant uses the index token it acquires to extract

the obfuscated index of its location: (𝑙1𝑖 )
*=̃︁L*

1(𝑙
1
𝑖 )/𝜏(𝑙

1
𝑖 )=𝜏(𝑙1𝑖 ) · (𝑙1𝑖 )*/𝜏(𝑙1𝑖 ). Note that the minimum

value of location indices is set to be 2, as 𝜏(ℓ1=1)=1 cannot protect the obfuscation (ℓ1)
* from

being revealed by other participants.

In fact, Steps 1-3 follow the blind signature process in [6], whereby a user can obtain a signature on a
message from a signer without revealing the message to the signer. Here, the CSP is the signer that signs
on the blinded location indices of each participant. Such a signature then acts as a token to access the
corresponding obfuscated location index generated by the CSP. In this way, obfuscation information can
be shared securely without revealing participants’ actual locations. We will discuss the security of this
process in Section. 5.1.

Theorem 4.2. Our correlation-preserving location obfuscation scheme can retain the data recovery
accuracy of CS.

Proof. We can construct the elementary matrices A and B mentioned in the basic scheme in
Section 4.2.2 based on L*

1 and L*
2 with:

A𝑖𝑗=

{︃
1, 𝑖𝑓 L*

1(𝑗)=𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖, 𝑗 ∈ L1 (8)

B𝑖𝑗=

{︃
1, 𝑖𝑓 L*

2(𝑖)=𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖, 𝑗 ∈ L2 (9)

Such a bijection from vector L*
1 and L*

2 to matrix A and B assures that participants with the same
location row (column) index uniformly migrate their indices to a same row (column). According to
Theorem 3.1, the horizontal and vertical adjacency relations can thus be preserved, which guarantees
that our location obfuscation scheme will not impact the accuracy of CS-based data recovery. �

At the end of this phase, all participants acquire their obfuscated location indices (one for the row
index, another for the column index), which are then used to replace the actual geo-tags in their reports.

3For simplicity, we only describe the obfuscation process for participants’ location row indices, the same process applies to

their location column indices.
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Fig. 3. Phase I: Correlation-preserving location obfuscation.

4.3 Encrypted Data Recovery

Even with obfuscation, a participant’s location would still be exposed to potential adversaries via inference
attacks, which use the participant’s sensory data as quasi-identifiers for its location. In order to mitigate
such attacks during data recovery, we design an encrypted data recovery scheme that is homomorphic
to CS operations. Similar to location obfuscation, the data encryption should also be conducted on the
participants’ sides. As a result, existing homomorphic data encryption schemes for CS, such as PPCS
in [19], become ineffective by assuming that participants in one row can use the same private key.

In contrast, SCP aims to encrypt sensory data at the participant’s end and to perform secure two-party
computation for CS-based data recovery between the application server and the CSP based on the
collected encrypted data. In the following section, we will briefly introduce the adopted cryptographic
primitives before going into the design details.

4.3.1 Cryptographic Primitives. Our scheme uses two cryptographic primitives: additively homomorphic
encryption AHE(·) and integer vector homomorphic encryption VHE(·).

∙ AHE(·): We use hash-ElGamal [7] as AHE(·) because only a constant addition to the encrypted
data is needed in our scheme, and hash-ElGamal can be implemented very efficiently. More details
on hash-ElGamal can be found in Appendix A.

∙ VHE(·): As we will show later, the CS process involves a series of vector operations. Hence, in order
to perform CS on the encrypted data efficiently, SCP refers to the integer vector homomorphic
encryption scheme VHE(·) in [44]. Given an integer vector X ∈ Z𝑚

𝑝 , VHE(·) generates a matrix

Ψ ∈ Z𝑚×𝑛
𝑝 (𝑚 < 𝑛) as the secret key, which satisfies:

ΨC=𝜔X (10)

with C ∈ Z𝑛
𝑝 as the encrypted vector, and 𝜔 as an integer parameter. This symmetric encryption

scheme can support the basic homomorphic operations that we need, including vector-vector
addition (±𝑣), vectors’ inner-production (×𝑣), and vector-constant multiplication (×𝑐), based on a
key-switching technique. More details of VHE(·) are presented in Appendix B.
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Fig. 4. Phase II: CS-based data recovery on the location-obfuscated and data-encrypted sensory matrix.

4.3.2 Detailed Design. In this phase, the participants report location-obfuscated and AHE-encrypted
data to the server (Step 1). Then the server perturbs (masks) the sensory data and transmits them to the
CSP (Step 2), which decrypts the AHE and constructs VHE-encrypted vectors (Step 3) for later secure
CS (Steps 4-9). As shown in Fig. 4, the detailed procedure is as follows:

∙ Setup. The CSP first generates its AHE public and private key pairs. The public key is sent to the
server and the participants. Next, the two SVD decomposition matrices U* and V* are generated
with uniformly random elements. Furthermore, the CSP constructs the VHE private key4 Ψ0 for
the encryption of U* and V* and the private key Ψ1=vec(Ψ′

0 ·Ψ0)
𝑇 for the encryption of received

perturbed data, where vec(A) denotes the column vector consisting of all the elements in matrix A.
∙ Step 1-3: Prepare Sensory Data for CS. Participant 𝑢𝑖 encrypts sensory data 𝑆𝑖 with the
AHE public key and sends data tuple ⟨AHE(𝑆𝑖), (𝑙

1
𝑖 )

*, (𝑙2𝑖 )
*⟩ to the server. On receiving the location-

obfuscated and data-encrypted reports, the server generates random masks (𝛿1, ..., 𝛿𝑛) for all sensory
data and sends the masked sensory data vector S𝑝=[AHE(𝑆𝑖+𝛿𝑖), 𝑖 ∈ [𝑛]] to the CSP.
Next, the CSP decrypts S𝑝 with its AHE private key and obtains vector [𝑆𝑖+𝛿𝑖, 𝑖 ∈ [𝑛]]. It then
computes the VHE for each masked data point using Eq. 10 under key Ψ1 to obtain 𝑛-vectors
[VHE(𝑆𝑖+𝛿𝑖)], and for U*

𝑖 and V*
𝑗 with Ψ0 to obtain VHE(U*(0)) and VHE(V*(0))5. These

VHE-encrypted ciphertexts are then sent to the server to initiate further computation.
∙ Step 4: Remove the Masks. Receiving 𝑛 encrypted vectors of sensory data, the server removes
the mask for each vector by performing a vector-constant addition operation VHE(𝑆𝑖+𝛿𝑖)-𝑐𝛿𝑖 to
obtain VHE(𝑆𝑖). It then constructs S* with S*

(𝑙1𝑖 )
*,(𝑙2𝑖 )

*=VHE(𝑆𝑖) and also constructs a vector

W*=[((𝑙1𝑖 )
*, (𝑙2𝑖 )

*), 𝑖 ∈ [𝑛]], recording the obfuscated indices. This step will not trigger key-switching
or key updating in the VHE protocol.

∙ Step 5-8: Compressive Sensing on the Encrypted Data. SCP aims to decompose the CS
process of Eq. 4 into 7 atomic operations, which are homomorphic to the corresponding VHE

4Without loss of generality, we allocate the same private key to U𝑖 and V𝑗 . One can easily extend the protocol by generating

a different private key for each vector.
5U* is encrypted by row, while V* by column.
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Fig. 5. Decomposing the CS iteration equation (Eq. 4) into 7 atomic vector operations. Each atomic operation between
plaintexts is homomorphic to a basic VHE operation (in the shadowed blocks) between VHE encrypted data. For
example, VHE(U𝑖) ×𝑣 VHE(V𝑗) is the homomorphic inner products operation for ⟨U𝑖,V𝑗⟩. We only present the
decomposition of the updating function of U𝑖, while V𝑗 can be adapted in the same way.

operations on the VHE-encrypted data (see Fig. 5). During each iteration, for the 𝑖-th row of U*,
the server first calculates the approximation errors of all elements in S*

𝑖 based on matrices obtained
from the previous iteration (we ignore the iteration number 𝑡 for simplicity):

VHE(U*
𝑖 )×𝑣 VHE(V*

𝑗 )-𝑣 VHE(S*
𝑖𝑗), (𝑖, 𝑗) ∈ W* (11)

First, in the vector multiplication operation, the CSP adjusts the secret key from Ψ0 to Ψ1 according
to the protocol (i.e., key updating). Under key Ψ1, the subtraction operation gives the encrypted
approximation errors VHE(E*

𝑖𝑗). In fact, a key-switching process is avoided here as we deliberately
encrypt the sensory data with Ψ1, thus saving the transmission cost of the key-switching matrix.
Then the server sends the approximation errors to the CSP for decryption (without their indices),
and the CSP returns them in plaintext. In this way, #1, 2 in Fig. 5 are realized by Steps 5-6 in
Fig. 4. Here, we decrypt the error matrix in order to perform the subsequent operations without
key-switching.
The server proceeds to perform a series of constant-vector operations (# 3, 5, 6 in Fig. 5) and
vector-vector addition operations (# 4, 7 in Fig. 5) based on VHE(U*

𝑖 ), VHE(V*
𝑗 ), and E*

𝑖 (denoted
as CS𝑒𝑛𝑐 in Fig. 4), which involve no key-switching or key updating and generate matrix VHE(U*)
for this iteration (Step 7). Similarly, we update each column of matrix VHE(V*) (Step 8). Such an
adaptation process stops until the predefined iterations (or certain stopping criteria) are achieved.

∙ Step 9: Compute the Final Estimation. Given the final version of the two SVD decomposition

matrices VHE(̂︁U*) and VHE(̂︁V*), the server performs ×𝑣 operation between each row of VHE(̂︁U*)

and each column of VHE(̂︁V*), and it obtains VHE(̂︁G*) with each element a VHE-encrypted vector.

Estimation VHE(̂︁G*) is then sent to the CSP.

This phase results in an output of location-obfuscated and VHE-encrypted recovered matrix VHE(̂︁G*)
on the CSP side.

4.4 Decryption and Location Reordering

After the encrypted data recovery process at the server, the CSP can extract the recovered matrix in

plaintext by decryption and location index reordering. First, each element in VHE(̂︁G*) is decrypted
using Eq. 10: ̂︂G*

𝑖𝑗=⌈Ψ1 ·VHE(̂︂G*
𝑖𝑗)/𝜔⌋, 𝑖 ∈ L1, 𝑗 ∈ L2 (12)

Then the CSP uses the elementary matrix A and B constructed in Eq. 8 and Eq. 9 to reorder the location

indices and obtains the recovered matrix with ̂︀G=A-1 · ̂︁G* ·B-1. Finally, matrix ̂︀G is returned to the
server for further data publishing. The decryption and reordering process can also be carried out at a
specific and authenticated requester, which acquires key Ψ1, and matrix A and B from the CSP.
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We point out that the abovementioned process is just one round of SCP. In the dynamic scenarios in
which MCS tasks are performed periodically, SCP should also be conducted successively upon receiving
an updated sensory matrix to protect participants’ privacy in each task.

5 SECURITY ANALYSIS

In this section, we will present a security analysis of SCP’s location obfuscation scheme and encrypted data
recovery scheme in terms of the two threat models, passive monitoring and inference attacks, separately.

5.1 Privacy Preservation Against Passive Monitoring

Our SCP method protects participants’ location privacy from passive monitoring through correlation-
preserving location obfuscation. We have already discussed the accuracy of the obfuscation scheme in
Section. 4.2.2. In the following section, we will analyze the security of the location obfuscation process
and the encrypted data recovery process against passive monitoring. A discussion of how SCP mitigates
several potential attacks is also presented.
Security During Obfuscation. The obfuscation process of SCP is conducted between each participant

and the CSP. As mentioned, SCP follows the blind signature process to distribute the obfuscation
information. In this way, our obfuscation scheme inherits the blindness and unforgeability property
of blind signature [6]. The blindness guarantees that the CSP cannot know the actual location 𝑙1𝑖 of
participant 𝑢𝑖 given query 𝑞𝑖, which means participants’ actual locations are secure during location
obfuscation. Meanwhile, the unforgeability assures that no one can construct valid tokens except the CSP
(who keeps the secret key as a signer). Thus, 𝑢𝑖 can only obtain the obfuscated location indices for its
own row and column, which guarantees the security of the obfuscation information.
Security During Data Recovery. The server and the CSP conduct data recovery together. The

participants replace their locations with the obfuscated ones in the reports to the server, so the server
can only monitor obfuscated locations during data recovery (Step 1 in Fig. 4). The CSP, on the other
hand, stores the actual-obfuscation mappings locally; however, it can only access the perturbed sensory
data with no location tags (Step 2 in Fig. 4). Hence, the participants’ location privacy is well protected
against both the server’s and the CSP’s monitoring during data recovery.
Security Against Attacks. We analyze the location privacy-preserving capacity of SCP under

Bayesian attacks [2], cryptographic analysis [11], and Sybil attacks [24], which are designed based on
monitoring the transmissions.

In Bayesian attacks, an adversary is assumed to have prior knowledge about the distribution of mobile
users’ actual locations, denoted as 𝜋(𝑙𝑜𝑐=(ℓ1, ℓ2)) with ℓ1 and ℓ2 the row and column index, and it
is supposed to know some information about the location obfuscation probability 𝑃 (𝑙𝑜𝑐*|𝑙𝑜𝑐) [2][36].
Our SCP method proposes to hide a participant’s actual location (i.e., the row and column indices
of the corresponding grid) by obfuscating it to another grid in the h × v grids. The obfuscation of
one’s location row and column index are drawn from uniform distribution on L1 and L2 separately.
Thus, the probability of transforming row ℓ1 to each of the h rows is the same (i.e., 𝑃 (ℓ*1|ℓ1)=1/h), and
𝑃 (ℓ*2|ℓ2)=1/v for column ℓ2. Then SCP obfuscates location 𝑙𝑜𝑐 to each grid with the same probability
𝑃 (𝑙𝑜𝑐*|𝑙𝑜𝑐)=𝑃 (ℓ*1|ℓ1) · 𝑃 (ℓ*2|ℓ2)=1/(h · v). As the obfuscation probability is indifferent to the actual
location, an adversary can only deduce one’s actual location based on prior knowledge of the distribution
(i.e., calculating 𝑃 (𝑙𝑜𝑐|𝑙𝑜𝑐*)=𝜋(𝑙𝑜𝑐)), which means that SCP can preserve participants’ location privacy
under Bayesian attacks.

Furthermore, the permutation encryption technique that we use in location obfuscation is secure against
cryptographic analysis [11], which tends to infer the decryption key of permutation by matching the
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known language statistics with the ciphertexts’ statistics. Specifically, in our case, an obfuscated location
with more participants than another location is considered to be from a more popular location. However,
MCS usually recruits participants to cover the targeted area evenly6. Thus, all obfuscated locations would
basically have the same number of participants, presenting no useful statistics for cryptographic analysis.
Finally, we discuss the security of our obfuscation scheme under Sybil attacks [24]. An adversary

of the Sybil attacks could forge multiple identities and manipulate each identity to submit a different
location query during SCP’s location obfuscation phase. After having acquired the obfuscated location
for each query from the CSP, the adversary could identify the actual obfuscated location mappings for
the queried locations (i.e., the permutation key). This would possibly cause the location privacy leakage
of the participants whose obfuscated locations are known. However, unique private/public key pairs
can be assigned to each participant to securely communicate with the server and the CSP during the
registration [45]. In this way, an adversarial participant is actually unable to access the others’ obfuscated
locations, making the deduction of one’s actual location based on its obfuscation impossible. Hence,
participants’ location privacy is secure even under Sybil attacks.

5.2 Privacy Preservation Against Inference Attacks

SCP’s CS-based encrypted data recovery phase protects participants’ sensory data and mitigates inference
attacks against their location privacy.

During the preparatory steps of this phase (Steps 1-3 in Fig. 4), the sensory data are AHE-encrypted
under CSP’s public key, so the server cannot reveal the received data; the CSP, on the other hand, can
decrypt the AHE ciphertext with its private key, but it can only obtain data that is already masked by
the server. In the following data recovery steps, homomorphic vector operations are conducted on the
VHE-encrypted sensory data and decomposition matrices in the server (Steps 5,7,8 in Fig. 4). The CSP
only receives intermediate approximation errors (Step 5 in Fig. 4) and the final encrypted estimation
matrix (Step 9 in Fig. 4), which reveal nothing about the participants’ raw sensory data.
When encrypting data with VHE, we ignore the noise term introduced in the original protocol (see

Appendix B). This is because in our case, the CSP would not share (old) secret keys with other entities,
so there is no need to introduce noise terms to prevent other entities from learning new secret keys
based on the old ones (a.k.a., known plaintext attacks). Some may argue that the server can access both

encrypted matrix VHE(̂︁G*) and the recovered matrix ̂︀G, likely leading to known plaintext attacks. We
emphasize that the server cannot map the ciphertexts to their corresponding plaintexts through index

matching between these two matrices (i.e., by regarding VHE(̂︂G*
𝑖𝑗) as the encryption for ̂︂G𝑖𝑗) as the

matrix has been transformed during obfuscation. Hence, publishing ̂︀G would not result in data leakage
or location exposure.

Overall, the CSP gets to know ̂︁G* and ̂︀G, and the server can acquire AHE(S*) and ̂︀G, but none of
them can deduce matrix S or S* based on the available information at hand. Both locations and data
privacy are well protected in our SCP method.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

6.1.1 Datasets. We evaluate our SCP method on two real-world datasets taken from SensorScope [17].

6Privacy preservation in MCS task assignment is not within the scope of this paper. One can refer to [33].
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∙ LUCE: We use the ambient temperature and humid measurements of SensorScope’s LUCE
deployment. The target area, the EPFL campus (260𝑚× 400𝑚), is divided into 90 equal-sized grids
(29𝑚× 40𝑚) with 41 grids deployed with at least one sensor.

∙ Glacier: We use the ambient temperature and humid measurements of SensorScope’s Plaine Morte
(a glacier) deployment. The target glacier (2.4𝑘𝑚 × 4𝑘𝑚) is divided into 64 equal-sized grids
(0.3𝑘𝑚× 0.5𝑘𝑚), of which 14 are deployed with at least one sensor.

As the environment matrix is not available, we use the assumptions postulated in [4] instead of validating
the (approximate) low-rank property [29] to show the feasibility of performing CS-based data recovery on
these datasets. Specifically, we divide the target areas as above to yield an even data distribution, and the
recorded measurements contain small data uncertainty (i.e., there is little noise in the sampled entries, so
the missing values can be inferred accurately). We emphasize that these two assumptions would remain
satisfied in SCP. In other words, the correlation-preserving property of SCP can preserve the evenness of
data distribution (i.e., data in the same row (column) of the sensory matrix are still found in the same
row (column) after location obfuscation, and vice versa), while the encryption scheme introduces no noise
to the sensory data to enlarge data uncertainty. For a grid with more than one sensor, we use the mean
value of the sensors’ measurements as the grid’s data. During the evaluation, data about the sensed grids
are used to deduce the missing elements of the environment matrix.

6.1.2 Baselines. We compare the data recovery performance of SCP with CS-based data recovery
(CS) [29] and privacy-preserving compressive sensing (PPCS) [19]7. Briefly, CS follows the process
described in Section. 3.1.2; PPCS encrypts each row of a sensory matrix by adding several public vectors
to it. PPCS’s encryption is not effective in MCS, where the values of missing data in a row are all 0.
Thus, in a row of encrypted data, elements with the same value are the ciphertexts of the missing data
and the other elements are the encryption of the participants’ data. We can then recover the (weighted)
sensory data by subtracting from their ciphertexts the ciphertext of the missing data.

6.1.3 Metrics. To evaluate location obfuscation performance, we calculate the location distortion of an
obfuscation as:

𝑙𝑑(𝑖)=
√︁
(((𝑙1𝑖 )

*-𝑙1𝑖 ) · 𝑔𝑥)2+(((𝑙2𝑖 )
*-𝑙2𝑖 ) · 𝑔𝑦)2 (13)

where 𝑔𝑥 and 𝑔𝑦 are the row and column granularity of the grids. A larger 𝑙𝑑 indicates a stronger
privacy-preserving capability against passive monitoring.

Furthermore, we evaluate the data recovery accuracy with two metrics named recovery difference ratio

(R𝑑) and recovery error ratio (R𝑒). R𝑑 describes the differences between the data recovered by (̂︂G(·)) and

the data recovered by CS (̂︂G𝑐𝑠):

R(·)
𝑑 =vec(|̂︂G(·)-̂︂G𝑐𝑠| ⊘ ̂︂G𝑐𝑠) (14)

where ̂︂G(·) consists of the recovered data based on method (·) (CS, SCP, or PPCS), and ⊘ denotes

element-wise division. A small R(·)
𝑑 indicates that method (·)’s recovery performance is similar to CS.

On the other hand, we iteratively regard one element in the sensory matrix as a missing piece of data,

and use method (·) to deduce its value based on the remaining sensory data. Then we calculate R(·)
𝑒 by

comparing the recovered value with the true value:

R(·)
𝑒 (𝑖)=[|𝑆𝑖-̂︁G𝑖(𝑙

1
𝑖 , 𝑙

2
𝑖 )|/𝑆𝑖], 𝑖 ∈ [𝑛] (15)

7Both CS and PPCS cannot protect location privacy. We adopt them merely for the comparison of data recovery accuracy.
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Fig. 6. CDF of location distortion with SCP. The distortion magnitude is 1𝑚 for LUCE , and 10𝑚 for Glacier.

where ̂︁G𝑖= f(·)(S𝑙1𝑖 𝑙
2
𝑖
=0) denotes the recovered matrix based on the 𝑆𝑖-removed matrix S. A large R(·)

𝑒

indicates that method (·) introduces a large recovery error.
Finally, the data recovery iteration is set to 1000 for all three methods. We implement SCP and the

baselines using Matlab, and we conduct our experiments on a workstation with 4GB memory and a
2.94GHz Intel(R) CPU.

6.2 Experimental Results

6.2.1 Location Obfuscation Performance. We first investigate the location distortion of SCP with
Eq. 13 to evaluate its location obfuscation performance. As shown in Fig. 6, the distortions between
the participants’ original locations and the obfuscated locations are enormous. For example, 50% of the
participants in LUCE obtain a distortion of more than 160𝑚, while the distortions for 50% participants
in Glacier are more than 1.5𝑘𝑚. The average distortion for participants in LUCE and Glacier are 173𝑚
and 1.7𝑘𝑚, respectively. Compared to the size of the target areas (260𝑚 × 400𝑚 and 2.4𝑘𝑚 × 4𝑘𝑚),
the obtained distortions are relatively large. Meanwhile, the distortions are random (with no obvious
pattern). Hence, our SCP can provide effective spatial camouflage for participants.
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Fig. 7. Recovery accuracy analysis of the LUCE dataset.

6.2.2 Data Recovery Accuracy. Next, we examine the data recovery performance of SCP by comparing
it with CS and PPCS. We first compare the difference between the two in terms of recovery (i.e., Eq. 14)
using two measurements and two datasets. Fig. 7(a) and Fig. 7(b) show the distributions of R𝑠𝑐𝑝

𝑑 (CS v.s.
SCP), R𝑝𝑝𝑐𝑠

𝑑 (CS v.s. PPCS), and R𝑐𝑠
𝑑 (CS v.s. CS) for temperature and humidity data in LUCE, where
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Fig. 8. Recovery accuracy analysis of the Glacier dataset.

R𝑐𝑠
𝑑 represents the recovery difference ratio8 between two runs of CS. As shown, distribution of R𝑠𝑐𝑝

𝑑 is
similar to distribution of R𝑐𝑠

𝑑 , which means SCP introduces no additional recovery error compared to CS.
On the other hand, the PPCS method shows bigger recovery difference compared to the other two. We
can observe a more obvious performance advantage of SCP over PPCS in the tests for Glacier (Fig. 8(a)
and Fig. 8(b)). For example, in terms of the temperature data in Glacier, the biggest difference ratios of
R𝑠𝑐𝑝

𝑑 and R𝑐𝑠
𝑑 are both around 0.25 for all the data points, while 20% of the data points’ difference ratios

exceed 0.5 (i.e., R𝑝𝑝𝑐𝑠
𝑑 > 0.5) under PPCS.

In order to gain more insights into recovery accuracy performance, we investigate the data recovery
error (i.e., Eq. 15) of the three methods by iteratively regarding each sensory measurement as missing
and inferring its value based on the other measurements. The results of the analyses of LUCE and Glacier
are shown in Fig. 7(c) and Fig. 8(c), respectively. As expected, SCP can yield a similar recovery error to
CS, and PPCS shows a much bigger recovery error than CS. For example, the recovery error of PPCS
(i.e., 0.4) is twice each of the errors of CS and SCP (i.e., 0.2) for Glacier. SCP succeeds in maintaining
the recovery error of CS in all the tests, which validates both the correctness of Theorem 3.2 and the
effectiveness of CS-based encrypted data recovery in SCP.

6.2.3 Execution Cost. Finally, we analyze the execution cost of three methods. The statistics about
execution times are illustrated in Table 1. In all the tests, SCP requires around 6 times the execution
time (mainly taken up by the homomorphic operations) of the two baselines. The comparatively high
time cost is a sacrifice for the protection of participants’ locations and data. In real deployment, the
computation process of SCP is conducted in the application server, which has a strong computational
capacity to assure a real-time response. We also emphasize that the update operations of U’s rows and
V’s columns (Steps 5-8 in Fig. 4) can be carried out in parallel to further reduce the time cost.

Compared to traditional CS, SCP requires some additional communication: Steps 1, 2, and 4 in Phase
I (see Fig. 3) and Steps 2, 3, 5, and 6 in Phase II (see Fig. 4). For example, we assume a 50× 50 sensory
matrix with 60 sensory data (each 10bit) and assume the size of an encrypted location and the size of an
AHE (VHE) ciphertext to be both 100bit. Then, for Phase I, the levels of data exchange for Steps 1, 2,
and 4 are 2× 100, 2× 100, and 2× 50× 100. Altogether, this phase increases 1.3KB of communication
for each participant, which can be considered as a negligible overhead for mobile users; furthermore, for
Phase II, the levels of additional data exchange between the server and the CSP in Step 2, 3, 5, and 6 are

8The difference exists due to the random initialization of matrices U and V.
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Table 1. Execution times of CS, SCP and PPCS.

Execution time (s) CS SCP PPCS

LUCE
Temperature 0.75 4.62 0.76

Humid 0.76 4.61 0.78

Glacier
Temperature 0.31 1.87 0.3

Humid 0.3 1.88 0.31

100× 60, (50× 50+50× 50+60)× 100, 1000× 60× 100, and 1000× 60× 10 for 1000 iterations, which
amounts to around 870KB. This cost is also very light for the server and the CSP.

7 DISCUSSION

Limitations. In our SCP method, if the CSP and the application server collude with each other, then the

participants’ locations would unfortunately be revealed. Specifically, the server could decrypt AHE(̂︁S*)
and recover S from S* with the AHE private key and the permutation key (i.e., A and B) of the CSP.
Collusion can also take place between the participants and the server. In this case, the server could
construct obfuscated actual location mappings of the malicious participants. For an honest participant
who reports with an obfuscated location, the server can deduce its actual location if its obfuscated location
is recorded in the mappings. The impacts of such a participants-involved collusion are decided by the
distribution of malicious participants’ locations. In other words, if the malicious group covers each row
and each column of the sensory matrix, then all other participants’ location privacy would be breached.
However, at least max(h, v) malicious participants are needed for this purpose, which is not feasible in
real scenarios. Finally, we point out that collusion between the participants and the CSP would not put
other participants’ locations in danger.
Hence, SCP only works when there is no collusion between the server and the CSP. Meanwhile, SCP

cannot protect one’s location privacy if some participants in its corresponding line (row and column)
collude with the server. This also specifies the security boundary of our method.
Implications. The implications of the proposed method are twofold. First, when designing location

privacy-preserving methods for MCS applications, the impacts of location protection on data analysis
should be carefully considered and well mitigated. Traditionally, location privacy and data analysis are
studied in the data collection step and the data analytics step separately. However, as two essential steps
of MCS tasks [42], the processed data in the former step will inevitably impact the analytical results of the
latter. Even with perfect privacy protection, poor analytical results would destroy the application. In other
words, it is important to preserve participants’ location privacy, but the protective techniques should be
compatible with corresponding data analysis tasks. Second, we emphasize that our SCP method, especially
the conjecture on the data correlation of CS-based data recovery (Section. 4.2.1), is promising in providing
privacy-preserving reconstruction for matrices compressed by CS (e.g., images [31]). For example, owners
can perform elementary transformation on the visual matrices (i.e., images) before outsourcing them to
the cloud for reconstruction9, thus protecting the images’ privacy with no reconstruction accuracy loss in
a lightweight way.

9Images can be compacted by CS sampling to save storage. The reconstruction process for the compressed images is usually

outsourced to the cloud due to its high computational complexity.
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8 CONCLUSION AND FUTURE WORK

By taking both effective location protection and accurate data recovery into consideration, for the first
time, we have proposed a novel location privacy-preserving method (i.e., SCP) for MCS in this paper. A
conjecture on the inherent data correlation required by CS has been presented with theoretical proof.
Based on this conjecture, we designed a correlation-preserving location obfuscation scheme to provide
spatial camouflage for participants’ locations. In addition, we identified the threat of location privacy
leakage with sensory data as quasi-identifiers. To this end, an encrypted data recovery scheme was designed
to protect participants’ data based on homomorphic encryption techniques. The proposed method was
verified with both a security analysis and extensive experiments on real-world datasets. The results show
that participants’ locations can be obfuscated with sufficient distortions comparable to the size of the
target area, and missing data can be recovered with similar accuracy to CS.
As to future work, we will look into the privacy preservation of data recovery for high-dimensional

sensory matrices. In fact, CS is only adequate for two-dimensional environment matrices, while for matrices
with higher dimensions (e.g., noise tensor in [43]), the tensor decomposition technique is commonly used.
Hence, we plan to extend our method by tailoring it to support tensor decomposition-based data recovery.
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A HASH-ELGAMAL ENCRYPTION

Let G=⟨𝑔⟩ be a multiplicative cyclic group of order 𝑝 and 𝐻 : G → Z𝑀 be a cryptographic hash
function, where 𝑀 is a sufficiently large integer. One can generate a public key pk=(g, y) where 𝑦=𝑔sk

with sk ∈ Zp as a randomly chosen secret key. Given pk and sk, message 𝑚 ∈ Z𝑀 is encrypted
using: 𝑐 = (𝑔𝜌, (𝑚+𝐻(𝑦𝜌)) mod 𝑀) = (𝑐1, 𝑐2) for a random value 𝜌 ∈ Z𝑝. The ciphertext 𝑐 can be
masked (which equals constant addition) by anyone with any chosen random mask 𝜇 ∈ Z𝑀 with:
𝑐 = (𝑐1, (𝑐2+𝜇) mod 𝑀) = (𝑐1, 𝑐2). Finally, a masked message can be obtained by decrypting 𝑐:

�̂� = 𝑐2-𝐻(𝑐1
sk) mod 𝑀= (𝑐2+𝜇)-𝐻(𝑐sk1 )= ((𝑚+𝐻(𝑔sk𝜌))+𝜇)-𝐻(𝑔sk𝜌)= 𝑚+𝜇

B INTEGER VECTOR HOMOMORPHIC ENCRYPTION

Let X ∈ Z𝑚 be an integer vector to be encrypted and C ∈ Z𝑛 be the ciphertext of X. The secret key is a
matrix S ∈ Z𝑚×𝑛 that satisfies SC=𝜔X+E, where E is a noise vector and 𝜔 is an integer much bigger
than |S| and |E| (| · | denotes the maximum value in a vector or a matrix).

(Key-switching) The encryption process is based on a key-switching technique, which allows changing
a key-ciphertext pair to another specific secret key while still encrypting the same vector. Briefly, suppose
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the secret key and the ciphertext vector for vector X ∈ Z𝑚
𝑝 are S ∈ Z𝑚×𝑛

𝑝 and C ∈ Z𝑛
𝑝 and the desired

secret key is S′ ∈ Z𝑚×𝑛′

𝑝 . A key-switching matrix M ∈ Z𝑛′×𝑛
𝑝 is constructed such that S′M=S+E for

some noise matrix E with small magnitude. If S′ is in the form of [I,T], which is a concatenation of an
identity matrix I and some matrix T, then the key-switching matrix can be constructed by:

M=

(︂
-TA+S+E

A

)︂
where A ∈ Z(𝑛′-𝑚)×𝑛 is a random matrix. The new ciphertext vector can then be defined as C′=MC.

(Encryption and decryption) Let I be an 𝑚×𝑚 identity matrix, then I(𝜔X)=𝜔X. Matrix I can
be treated as a secret key and 𝜔X as a ciphertext. Given the actual secret key S, one can switch I to it
with key-switching, by which a new ciphertext C=M𝜔X can be obtained. Based on S, the decryption
process is straightforward: X=⌈SC/𝜔⌋.

(Operations on the encrypted data) This scheme supports the homomorphic operations for vector
additions, and inner products. For two plaintext-ciphertext pairs (X1,C1) and (X2,C2) with secret key
S1 and S2, these operations work as follows:

∙ Addition. Key-switching is first used to convert the two different keys to the same one S′. The
ciphertexts are transformed to C′

1 and C′
2 accordingly. Then the valid encryption for X1+X2 can be

computed as C′
1+C′

2 with the secret key S′.
∙ Inner Products. The valid encryption for X1 · X2 that should be computed is ⌈vec(C1 · C𝑇

2 )/𝜔⌋.
Meanwhile, the secret key should be updated to vec(S𝑇

1 · S2)
𝑇 (i.e., key updating10).

As to the vector-constant operations, the encryption for X1+𝑎 is C1+𝜔[𝑎𝑇 , 0, ..., 0]𝑇 , while the encryp-
tion for 𝑎 · X1 is 𝑎 · C1, both under the secret key S1 and without key updating.

Received February 2018; revised April 2018; accepted September 2018

10Key-switching adjusts a secret key to another key, while key updating is for the decryption of encrypted operation results.
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