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Abstract—Most of commercial navigation products provide
route planning service for users. However, they only consider
a single metric such as distance, time or other costs, while
ignoring a critical criterion: safety. In a smart city, people may
prefer to find a safe walking route to avoid the potential crime
risk as well as obtain a short distance. This problem can be
specified as a Multi-Objective Optimization Problem (MOOP).
Many methods were proposed in the past to solve the multi-
objective route planning, the Multi-Objective Evolutionary Ap-
proach (MOEA) is considered as the most popular one. However,
MOEA is non-optimized when used in a large-scale road network
and becomes computationally expensive when handling a large
population size. In this paper, we propose a Multi-Objective
Hyper-Heuristic (MOHH) framework for walking route planning
in a smart city. In the search framework, we design a set
of low level heuristics to generate new routes. Moreover, we
adopt reinforcement learning mechanism to select good low-level
heuristics to accelerate searching speed. We further improve the
Reinforcement Learning based Multi-Objective Hyper-Heuristic
(RL-MOHH) algorithm and implement a parallel version (RL-
PMOHH) on General Purpose Graphic Process Unit (GPGPU).
Extensive experiments are conducted on the safety-index map
constructed from the historical urban data of the New York city.
Comprehensive experimental results show that the proposed RL-
PMOHH is almost 173, 5.3 and 3.1 times faster than the exact
multi-objective optimization (EMLS) algorithm, the RL-MOHH
algorithm and the parallel NSGA-II (PNSGA-II) algorithm
respectively. Moreover, both RL-MOHH and RL-PMOHH can
obtain more than 80% Pareto optimal solutions in a large-scale
road network.

Index Terms—Multi-Objective Optimization; Hyper-
Heuristics; Route Planning; Safety Index; Parallel Computing.

I. INTRODUCTION

CRIME is a serious issue all over the world which gives
rise to widespread fear in cities and brings huge losses

to peoples’ health and properties. The crime rate has increased
over the past decades in many major cities due to the expansion
of cities and increasing density of people. A recent report
published by Federal Bureau of Investigation (FBI) [1] shows
that there are estimated 1,197,704 violent crimes occurred
nationwide, an increase of 3.9% from the 2014 estimate.
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Although safety is the first priority factor in guiding our
daily lives, people often have very limited information about
how safe/dangerous of an area in a city, especially for travellers
who come to an unfamiliar city for the first time. Travellers
often need a visiting walking route to inform them which
region is safe in the city. However, most of commercial
products (Google map, Baidu map and AutoNavi Map) only
design an optimal path considering a single metric such as
distance, time or other costs, while ignoring a critical criterion:
safety. In a smart city, citizens and travellers urgently need an
application to provide them a safe and short route rather than
only considering a single metric. Some cities (e.g. New York
City) provide safety heat map by pinning occurred crimes in a
city map, but they are very rough safety heat map which only
give a safety score of a district. In this paper, we first propose
the concept of safety index to give fine-grained description
of crime risk in a region. Then, we formulate the problem as
a multi-objective route planning in a road network, with the
goal of determining routes with low potential crime risk as
well as short travel distance. While most of commercial map
applications can provide optimal routes in terms of a single
objective such as travel efficiency, distance or other costs, we
take the crime risk into account and design a safety-aware
route for users.

It is well known that multi-objective route planning is
an NP-complete problem. Multi-Objective Evolutionary Ap-
proaches (MOEA) such as SPEA2 and NSGA-II are widely
used in solving this problem. However, they becomes compu-
tational expensive when handling a large-scale road network
and a large initial population. Therefore, we propose a nov-
el algorithm, Reinforcement Learning based Multi-Objective
Hyper-Heuristic (RL-MOHH) for multi-objective route plan-
ning in a large-scale smart city. Then, we implement parallel
RL-MOHH (RL-PMOHH) on GPGPU based on the Compute
Unified Device Architecture (CUDA) framework to further
accelerate search speed. Finally, we develop a safe walking
route planning application in the smartphone to conduct a real-
world case study based on safety index map.

The contributions of the paper is as follows:
• Low-level Heuristics: We design a set of low-level heuris-

tics based on hop transition to explore solution space,
these low-level heuristics are easy-to-implement and can-
not result in circular route or break point in the path;

• Reinforcement Learning: The reinforcement learning
based heuristic selection can make solutions converging
to the optimal Pareto front quickly and improve the
solution quality significantly;

• Parallel Implementation: The parallel operation of
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population initialization, heuristic selection and non-
dominated sorting can greatly improve efficiency.

We conduct extensive experiments and show that the pro-
posed RL-PMOHH algorithm is almost 173, 5.3 and 3.1 times
faster than the exact multi-objective optimization (EMLS)
algorithm, the RL-MOHH algorithm and the parallel NSGA-
II (PNSGA-II) algorithm respectively. Moreover, both RL-
MOHH and RL-PMOHH can obtain up to 80% Pareto optimal
solutions in a large-scale road network. It is worth noting
that the proposed reinforcement learning based parallel hyper-
heuristic framework is a generic approach which is also
suitable for other MOOP problems.

The rest of this paper is organized as follows. Section
II briefly presents some relevant work. Section III gives
the system overview and the problem definition; Section IV
introduces the co-training learning based safety index infer-
ence; Section V details the proposed RL-MOHH for route
planning; Section VI describes the parallel implementation of
RL-MOHH and analyzes the time complexity; Section VII
evaluates the proposed algorithm in a large-scale road network;
Section VIII draws the conclusion and discusses the future
work of this paper.

II. RELATED WORK

The multi-objective route planning is widely applied for
QoS routing in the communication network, motion design in
the robotic control and navigation in the transportation system.
It is well known that the route planning with multi-objective
is an NP-complete problem [2].

There are two main methods to solve the Multi-Objective
Optimization Problem (MOOP): priori method and posterior
method. The former one converts a multi-objective problem
into a single-objective problem. Some work uses the priori
method to solve the multi-objective route planning [3], [4],
[5], [6], [7]. By using a weighted-sum function, all objectives
are transformed into a single objective. The priori method
only obtains a particular trade-off solution according to the
weight vector. However, the weights for different objectives
are determined by user preference before search. The bias will
be imposed during the whole optimization process. Moreover,
it is always difficult to determine the weight vector before
search due to different magnitudes among multiple objectives.
Therefore, the solution of the priori method is often non-
optimized.

The posterior method first gets a set of Pareto optimal
solutions. Then, the planner selects the most suitable one from
the Pareto optimal set according to the user preference. The
user preference can be also defined as a weight vector for
multiple objectives. In the posterior method, the weight vector
is determined after optimization process. The planner is able to
know the range of each objective according to Pareto optimal
solutions. Thus, it is easy to design the weight vector by
normalizing all objectives into the same order of magnitude.
The posterior method can be classified into two types: exact
method and heuristic method.

Some exact posterior methods are based on the Dijkstra’s
algorithm to get exact Pareto optimal solutions for route

planning. Martins proposes a label setting algorithm (MLS)
for the shortest path problem [8]. MLS is a direct modification
of the classic Dijsktra’s algorithm in which the min operator
is replaced by a dominance test. Then, an extension of Mar-
tins’ label setting algorithm (EMLS) is proposed Gandibleux
[9]. EMLS modifies the non-dominated test by concerning
the weakly non-dominated labels since these labels can im-
prove the determination of efficient paths. Although above
algorithms can obtain optimal solutions, the computational
complexity is extremely high when they are applied to a
large-scale network. The Genetic Algorithm (GA) based on
meta-heuristics has emerged as an effective method to get
optimal (or near optimal) solutions for the MOOP problem
[10]. Many multi-objective genetic algorithm are proposed
such as the Niched Pareto Genetic Algorithm (NPGA) [11],
the Multi-Objective Genetic Algorithms (MOGA) [12], the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [13] and
the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [14]. Among all above algorithms, NSGA-II presents
superior performance on not only benchmark problems, but
also real-world applications[15]. Therefore, many work adopts
NSGA-II in the multi-objective route planning problem from
communication networks, to robotic systems and navigation
services[16], [17], [18], [19]. However, the heuristic operations
such as crossover and mutation in GA may lead to the
circular route or break point in a route. Thus, they need extra
overhead to repair the newly generated path. Therefore, these
NSGA-II based multi-objective route planning methods only
implemented and validated in small-scale networks. It is still
challenging to obtain solutions as accurate as the exact Pareto
optimal set in a large-scale graph network.

The hyper-heuristic approach is a generic method to deter-
mine the optimal heuristics by selecting from a set of easy-
to-implement low-level heuristics [20]. Compared with the
regular heuristic operations in GA, the well-designed low-
level heuristics for route planning problem will not result in
irrational or infeasible paths. Therefore, some work applies
hyper-heuristics to the route planning [21], [22]. However,
these work only take a single objective into account.

Due to the large population of initial solutions, GA and
hyper-heuristic approaches are extremely time consuming,
especially the non-dominated sorting algorithm to evaluate so-
lutions for multi-objective optimization. In order to accelerate
the search efficiency, some work adopt the improved NSGA-
II with fast non-dominated sorting [23], [24], [25], and the
other work implement the parallel GA and hyper-heuristic
algorithms based on the naive non-dominated sorting in multi-
core platform [26], [27], [28], [29]. Both methods still have
the O(MN2) time complexity (M objectives and N solutions
in the initial set).

III. SYSTEM OVERVIEW

This section shows the whole system architecture and gives
some notations and definitions that are required as background
for other sections.
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A. System Architecture

The safety-aware route planning system is composed of a
database with historical crime data and safety index map, a
GPU-based planning server and a smartphone application as
shown in Fig. 1.

Crime Data Safety Index Map 

GPGPU-based 

Route Planning Sever 
Smartphone

Applications

User-specified 

Weight Vector

Safety-aware 

Optimal Routes

Database

Updated Safety 

Index Map 

Fig. 1: System Architecture

As aforementioned, most of map services and commercial
navigation products only provide users a short or time efficient
route, while ignore a critical metric safety. Therefore, we
propose a novel idea ”Safety Index” which allows people know
more about the crime risk distribution in a city. Moreover, we
can give some safety-aware routes for citizens or travellers
based on the safety index map.

Safety Index: Safety Index (SI) represents the potential
crime risk of a region in a certain period. There are some
very rough safety heat maps, such as NYC crime. These safety
heat maps only provide safety index with very low granularity
(e.g. the safety index of each district in a city). Thus, they
cannot be used for route planning. A nature way to assess the
safety index is to associate it with the crime rate (number
of crimes per 100,000 residents). The SI is modeled as a
function of two types of crime rates: the violent crime (murder,
aggravated assault, rape and robbery) rates and the property
crime (burglary, larceny, motor vehicle theft, and arson) rates
[1]. We calculate the SI as follows:

SI = N
[
αRT

v + (1− α)RT
p

]
, (1)

where RT
v and RT

p are the violent crime rate and property
crime rate in a certain time period T of day respectively, α is
a weight which reflects the severity of the crime, N [•] is a
function that scales the SI to an index between 0 and 100.

This model provides a static SI value. However, it is unable
to compute the real-time SI with dynamic factors. Since an
area may be safe in daytime but becomes unsafe at night,
the SI can be seen as a spatial and temporal-related variable.
Therefore, in a smart city, it is crucial to conduct urban safety

analysis to build a periodically updated safety-index map in
fine granularity for travellers and citizens.

In our work, we obtain the SI for each road segment
according to the spatial and temporal-related features extracted
from multiple cross-domain urban location-based data. The
bigger the SI, the higher the probability of crime may occur
on the street. With the fine-grained SI, we can construct the
safety index map for a city. The SI values will be updated
every two hours.

GPGPU-based planning server: In our work, we build a
GPGPU-based planning server to provide navigation services
based on Kepler CUDA. The server conducts route planning
according to the updated safety index map and user-specified
parameters.

GPGPU enables bidirectional flow exchange between CPU
and GPU which has dramatically promoted the parallel com-
puting, which are widely applied in different domains, such
as scientific computation, medical treatment, finance, bioin-
formatics, artificial intelligence etc. [30]. CUDA is one re-
markable many-core architecture. Kepler CUDA simplifies
the creation of parallel programs and further revolutionizes
the high performance computing mechanisms by offering
much higher processing power. Kernel is a basic concept in
CUDA as an executable task. When a kernel is launched,
it always running on on grids of thread blocks. Commonly,
threads are logically divided into blocks assigned to a specific
multiprocessor which are scheduled in groups of 32 parallel
threads, i.e. wraps. Streaming Multiprocessor of Kepler CUDA
allows four wraps scheduled concurrently. The Kepler CUDA
supports up to 64 wraps (i.e. 2048 threads). When a wrap
is scheduled, all threads which perform the same instruction
on different data will execute concurrently. Otherwise, treads
will deviate resulting in wrap divergence that are executed
sequentially.

Smartphone application: Finally, we develop an application
on smartphone to provide users a safety-aware navigation
service. The application uses heat map to show the current
safety index distribution. It also gives two extreme routes
(safest route and shortest route) and one optimal route based
on user preference (user-specified weight vector).

B. Problem Definition
The route planning is defined as searching an optimal path p

between the source and destination nodes in a graph G(V,E)
considering two objectives: distance and safety.

Here we give some notations:
• V = {v1, v2, ..., vN} ∈ V is a set of vertexes of graph G

denoting road intersections (N is the number of vertexes);
• E = {e1, e2, ..., eM} ∈ E is a set of edges of graph G

denoting road segments connecting two vertexes in V (M
is the number of edges);

• A path p is a sequence of nodes {vs, v2, ...vd} from the
source node vs to the destination node vd;

• ci,j is the non-negative cost of the jth objective assigned
for the ith edge (i ∈ [1,M ] and j ∈ [1,K], K is the
number of objectives). Specifically, K equals to 2 in this
paper, ci,1 and ci,2 are costs of the ith edge for distance
and safety index respectively;
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• Let fj(p) be the total cost of all edges in path p for the
jth (j ∈ [1,K]) objective. Then, f(p) is the objective
vector for path p: f(p) = ⟨f1(p), f2(p), ...fK(p)⟩.

A feasible path is composed of a sequence of road segments
from the source node to the destination node. Obviously, there
are too many feasible paths for a given source and destination
pairs in the road network of a city. We need to find the optimal
one from them. The “optimality” can be precisely defined in
the single-objective route planning. For example, the shortest
path is to find an optimal path such that the total length is
minimized. However, this concept is not straightforward in
the multi-objective problem. Commonly, we make a trade-off
among all objectives and try to obtain Pareto optimal solutions.

Definition 1. Pareto Optimal Solution: A path p, when
compared with any other path q, its objective vector satisfies
the following conditions:

fj (p) ≤ fj (q) , ∀j ∈ [1,K]
∃i ∈ [1,K], fi (p) < fi (q) .

(2)

We say that p dominates q or q is dominated by p, which
can be represented as p ≺ q. If there is no solution dominates
p, it is called a non-dominated solution, i.e. a Pareto optimal
solution. The other dominated solutions are called feasible
solutions.

Definition 2. Pareto Optimal Set (Pareto Front): A Pareto
optimal set (denoted by P) belonging to a feasible solution set
(denoted by F) satisfies following condition:

∀p ∈ P,P ⊆ F, @x ∈ F, x ≺ p. (3)

The representation of the Pareto optimal set in the objective
space is Pareto front as shown in Fig. 2.

safety

distance

Pareto front

Pareto optimal solutions

Feasible solutions

Fig. 2: The Pareto Front

Thus, the problem of multi-objective route planning is to
find a safe route from the Pareto optimal set P such that the
total cost C is minimized.

C=min
K∑

j=1,p∈P

ϖjfj (p),
K∑
j=1

ϖj = 1, (4)

where ϖj ∈ [0, 1] is the weight of the jth objective according
to the user’s preference which can be set using the smartphone
application.

IV. SAFETY INDEX MODELING

In this section, we briefly introduce the U-safety system
[31], [32] which is used multiple cross-domain urban data to
infer safety index throughout a city with high fine granularity.

A. Feature Extraction and Feature Fusion

In this work, we collect a large volumes of cross-domain
urban data in New York City. These data include urban map,
housing rent and density data, population, positions of police
stations, POIs, crime records, and taxi trajectories. In the U-
safety system, an urban map is divided into disjointed grids
(e.g., the granularity of 200m 200m). We infer the SI of each
grid based on the collected urban data.

Feature Extraction: From the collected urban data, we
extract various features that can be divided into two categories:
spatially-related and temporally-related features.

The spatially-related features include police-station-related
features Fs, POI-related features Fp, and housing-related fea-
tures Fr.

The number of police stations and the distance to them in
a region have a strong correlation with crime risk in the area.
Therefore, we consider two features: the number of police
stations in the grid (fn) and the distance to the nearest police
station for each grid (fd). The POIs of a region often stands
for the function and social environment of the region. It is a
good complementary to SI inference. In this work, we select
12 types of POIs such as transportation spot, hospital, factory,
shopping mall and supermarket, food and beverage, sport,
park, education, entertainment, company, hotel and residential
area (f1

p , f
2
p , ..., f

12
p ) as features for each grid. In some extent,

housing illustrates the economic condition and population
density. Therefore, we identify following two housing-related
features: the number of housing in affecting region fh and the
average rent of housing in affecting region fr.

The temporally-related features include traffic-related fea-
tures Ft and human-mobility-related features Fh. The traffic
flow has the influence on the urban safety. Thus, we extract the
following two features from the spatial trajectories of vehicles
traversing the grid in one hour: the number of vehicles in
affecting region ft and the average speed of vehicles fv .
Human mobility is also contributing to urban safety index
inference. Therefore, we identify the following two features
for each grid: the number of people arriving at the affecting
region fa, and the number of people leaving from the affecting
region fl. These features are extracted from the taxi trajectories
which record the pickup and drop off locations in each trip.

Feature Fusion: Feature fusion is to generate more effective
feature representation. In our work, we adopt Sparse Auto-
Encoder (SAE) [33] to automatically learn the high-level fea-
ture representation of the input original features. The structure
of SAE is shwon in Fig. 3.

In the encoder module, the input vector ⟨x1, x2, ..., xN ⟩ of
SAE are the original features to be fused. Then, the input
vector is mapped into a middle vector ⟨h1, h2, ..., hK⟩ through
a parameter matrix W1. The middle vector is seen as the the
feature representation of the input original features. Finally, the
decode module reconstruct features ⟨y1, y2, ..., yN ⟩ from the
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Fig. 3: The structure of SAE

feature representation through a parameter matrix W2. After
training the SAE model, we can derive the parameter matrix
W1, and thus, the feature representation can be obtained from
the original features.

For the spatially-related features, the input original features
vector X is in a form ⟨fn, fd, f1

p , ..., f
12
p , fh, fr⟩. Different

from the spatially-related features, the temporally-related fea-
tures will change with the time in a day, thus each temporal
feature is extended into 24 features extracted in each past hour.
Hence, the input vector X of temporally-related features is in
a form ⟨f1

t , ..., f
24
t , f1

v , ..., f
24
v , f1

a , ..., f
24
a , f1

l , ..., f
24
l ⟩.

B. Co-Training Learning based SI Inference

We propose the co-training learning method to infer the
safety index of a city. It adopts two separated classifiers to
integrate the spatial and temporal features. The proposed co-
training framework is shown in Fig. 4.
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Fig. 4: The co-training learning framework

There are two classifiers in the co-training learning frame-
work. One is the Spatial Classifier (SC) with the input vector
of spatially-related features. It models the spatial relationship
between crime events in various locations. The other one is

the Temporal Classifier (TC), which takes temporally-related
features as input to describe the temporal dependency of crime
events for a location. Since each classifier can get a safety in-
dex, to generate final SI score, we merge these two safety index
via a weight matrix W = [WSWT ]. WSi and WTi represent
weights assigned to the ith safety index predicted by SC and
TC, which need to satisfy the condition WSi + WTi = 1.
The parameters in the weight matrix W are learned from
the training data, which can be dynamically adjusted. The
precision of safety index inference can reach 90.2% with the
co-training learning method in U-safety system.

V. PROPOSED ROUTE PLANNING ALGORITHM

In this section, we introduce the proposed parallel hyper-
heuristic approach to multi-objective route planning.

A. Hyper-Heuristic framework

The hyper-heuristic operates on search space of heuristics
rather than search space of solutions [20]. It aims to tackle
the problem indirectly by selecting which method to adopt in
which step of the solving process. The basic search framework
is shown in Figure 5.

In this paper, we extend the hyper-heuristic search method
to solve the multi-objective route planning problem. The
procedure of the search method is as follows.

• First, we generate an initial set of feasible solutions
(denoted by P0) with population size of Ns. A feasible
solution is a sequence of nodes {vs, v2, , vk, , vd} from the
source node vs to the destination node vd. In a given road
network, each node vk has an integer ID. So a solution
is encoded as a sequence of integers. In other to quickly
obtain the feasible solutions, we use A* algorithm [34]
with different weights for each objective. Since we deal
with the problem as a single-objective route planning
for each individual solution and solve it using the priori
method, most of solutions in the initial set are not Pareto
optimal.

• Second, we choose a low-level heuristic for each path p ∈
Pt based on the heuristic utility. This operation generates
an intermediate solution set P ′

t .
• Third, the planner will make comparison of all individuals

in the union set composed of Pt

∪
P ′
t and evaluate

the quality of each solution. The non-dominated sort
algorithm is adopted to conduct the solution comparison.
The top Ns solutions are chosen to generate the next
solution set Pt+1. The reinforcement learning algorithm
is used to update the utility of selected low-level heuristic
according to the optimality of the generated solution.

• Finally, all operations are executed iteratively until stop-
ping conditions are met. In our work, stopping condi-
tions are the maximum iteration number and the average
crowding distance which is detailed in Section VII-A.

• To further improve the efficiency of the hyper-heuristic
search approach, we parallelize the above framework on
the GPGPU with the specific design of parallel non-
dominated sort algorithm. The extended parallel hyper-
heuristic approach is detailed in Section VI.
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Fig. 5: The hyper-heuristic framework

B. Low-level Heuristics

Unlike GA designing three regular heuristic operators: re-
production, crossover and mutation, the low-level heuristics
in hyper-heuristic search approach are implemented based on
specific applications. We design 6 types of low-level heuristics
as shown in Fig. 6. To accelerate the online search speed, a
preliminary process of finding the neighboring hops for each
node is done in the map construction. We only store at most
3-hop paths for one intersection. Thus, the low-level heuristic
is to simply change a certain m-hop path to other feasible n-
hop path (e.g. 1-hop path to 2-hop path). For each individual
solution, the start intersection for hop transition is randomly
chosen and we only take the forward hops of the feasible
path into account. Applying the low-level heuristics on the
feasible solution can gradually extend the search space based
on the initial solution set P0. Then, the reinforcement learning
mechanism will guide the search towards a region of Pareto
optimal solutions.

1-hop path set 

2-hop path set 3-hop path set 

vi vj vi

vi+1 vi+2

vj

Low level heuristic:

1-hop to 3-hop 

Hop

Transition 

Fig. 6: Low-level heuristics

C. Reinforcement Learning based Heuristic Selection
We consider two heuristic selection methods as follows:
• Random Selection, choose a low-level heuristic function

randomly in each iteration.
• Reinforcement Learning, assign a utility value to each

low-level heuristic and choose the heuristic according to
these values. The utility of each low-level heuristic is
updated at each step based on the quality of the generated
solution. The reinforcement learning mechanism is used
to reward or punish the utility values.

We adopt a Q-learning algorithm for reinforcement learning
based mechanism. The algorithm is composed of a set of states
S , a set of actions A per state and the Q(s, a) as the state-
action pairs and their corresponding values. These elements
are detailed below:

State (s): is a four-tuple ⟨p, nodes, hops, direction⟩. p is a
feasible path of the current feasible set Pt. nodes is a randomly
selected start intersection in path p for hop transition. hops
represents the number of edges from the start intersection to
the end intersection nodee in the path p for hop transition.
direction is the angle between the start intersection and the
next intersection. We consider 8 directions including north,
east, south, west, northeastern, southeastern, northwestern and
southwestern, each covering a sector of 45 degrees.

Action (a): is the hop transition defined in Subsection IV-B,
i.e. the low-level heuristic.

Q-Value (Q(s, a)): is the value of a certain state-action
pairs, i.e. the utility of the low-level heuristic. The updating
of Q-Value is defined as:

Q(st, at) = r + γmax
a∈A
{Q(st+1, a)}, (5)

where st is the current state and st+1 is the new state after
taking action at on the current state. r is the immediate reward
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function. γ ∈ [0, 1] (set to be 0.5 in experiments) is the
discount factor which determines the importance of future
rewards. γ is close to 0, the system will tend to consider the
current rewards. Otherwise, the system will consider the future
rewards.

Reward function is important in a reinforcement learning
algorithm. The purpose of this function is to reward an
improving state while punish the degraded one. In this paper,
the reward value r is calculated according to the quality of the
feasible path p in a state.

r = (F(pt+1)−F(pt)), (6)

where F is the non-dominated front rank for path p which is
detailed in Section V-D.

Initially, all low-level heuristics of each node are assigned
with equal utility (Q-value). If we get a better solution, the
reward function will return a positive value to enhance the
utility of the selected low-level heuristic. Otherwise, the utility
will be reduced by a negative value. Tournament selection
is used to choose the low-level heuristics according to the
utilities. The probability of being selected for a low-level
heuristic is the proportion of its utility to the cumulative
utilities of all heuristics. In order to build a better estimation
of the optimal Q Matrix, we adopt the ϵ-greed policy for
exploration in the training process. It means that we choose
a random low level heuristic with probability ϵ, and choose
a low-level heuristic with the highest utility with probability
1-ϵ.

D. Solution Evaluation and Selection

We use the non-dominated sorting algorithm to evaluate the
quality of a given solution. As shown in Fig. 7, the Pareto
optimal front is composed of a set of non-dominated solutions
P1. We assign a front rank F(p) = 1 for all path p ∈ P1.
Then, we identify non-dominated paths in the rest solutions
excluding paths p ∈ P1. This identified new non-dominated
solutions are assigned the front rank F(p) = 2. The sorting
process is continued until all solutions are classified into a
certain front.

Front rank 1

Front rank 2

Front rank 3

safety

distance

A

B

d
i

Fig. 7: Solution evaluation

We also adopt the concept of crowding distance to compare
two solutions in the same front. The NSGA-II only computes

the crowding distance considering solutions in the same non-
dominated front, the less crowded points are selected to the
next feasible solution set since it can preserve uniform spread
of solutions and avoid many solutions from converging to a
region. This cannot truly reveal the density of a point. For
example, from Fig. 7, we notice that point A is more crowded
than point B. But the NSGA-II will select point A because it
is less crowded than B in the non-dominated front rank 2. To
overcome this counter-intuitive solution selection, we redefine
this distance as the average distance within k-nearest solutions.

D =
1

k

k∑
i=1

di. (7)

Then, we can compare solutions according to these two
attributes: non-dominated front rank F and crowding distance
D. We define a path p is superior to a path q if

F(p) < F(q) OR
D(p) > D(q) when F(p) = F(q). (8)

VI. PARALLEL IMPLEMENTATION ON GPGPU

The framework of Hyper-Heuristic algorithm is very similar
to Evolutionary Algorithm (EA). The same parts include
initialization, metaheuristic-based search and evaluation. Many
works implement the parallel EA on GPGPU according to
concurrent operations on multiple individuals in the popula-
tion. These steps can be easily parallelized due to the indepen-
dence of different individual solutions. However, the Hyper-
Heuristic framework has a non-dominated sorting which needs
to compare every pair of solutions to identify the front rank
for each individual. Some previous works try to design the
parallel Hyper-Heuristic algorithm on multi-core platform.
However, they implement the algorithm based on the naive
non-dominated sorting which still has a high computational
complexity. In this section, we design the parallel Hyper-
Heuristic algorithm according to the fast non-dominated sort-
ing. The fast non-dominated sorting in NSGA-II requires to
calculate two variables for each solution i: (1) the domination
count ni (the number of solutions dominate the solution i); (2)
the dominated set Si (a set of solutions dominated by solution
i). The detailed fast non-dominated sorting is as below:

Steps 1 to 14 find the first non-dominated front with
complexity O(KN2

s ) (K is the number of objectives and Ns

is the population size of solutions). Steps 15 to 26 calculate the
rest fronts iteratively with complexity O(N2

s ). Therefore, the
overall computational complexity of the fast non-dominated
sorting is O(KN2

s ). The fast non-dominated sorting requires
to maintain Si for each solution P [i] to find higher-level front
rank. Due to the different size of Si in each iteration, it is hard
to implement concurrent execution on GPGPU. So, we record
the dominance relationship (stored in a Ns×Ns matrix Domh

on host CPU/Domd on GPU device) among different solutions
rather than obtain the set of Si in each iteration. This approach
identifies the first non-dominated front by comparing each
pair of solutions and get the dominance relationship matrix.
Then, it finds the next non-dominated front according to the
matrix. Finally, the procedure continues until all fronts are
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Algorithm 1 Fast Non-dominated Sorting Algorithm

Input: P [Ns][K]: Solution Matrix, K objectives
Output: FR[Ns]: Front Rank Array

1: ni ← 0, Si ← ∅ (i ∈ [0, Ns]);
2: for j = 1 to Ns do
3: if j ̸= i and P [j] ≺ P [i] then
4: ni ← ni + 1;
5: else if j ̸= i and P [j] ≽ P [i] then
6: Si ← Si ∪ {j};
7: end if
8: end for
9: for i = 1 to Ns do

10: if ni = 0 then
11: FR[i]← 0;
12: end if
13: end for
14: Pfr ← {P [i]|FR[i] = 0}, fr ← 1;
15: while Pfr ̸= ∅ do
16: Q← ∅;
17: for all i (P [i] ∈ Pfr) do
18: for all j (P [j] ∈ Si) do
19: nj ← nj − 1;
20: if nj = 0 then
21: Q← Q ∪ {j}, FR[j]← fr + 1;
22: end if
23: end for
24: end for
25: fr ← fr + 1, Pfr ← Q;
26: end while
27: return FR[Ns];

identified. Algorithm 2 gives the pseudo-code of the parallel
non-dominated sorting.

Algorithm 2 is the main thread on Host CPU to assign
the front rank for each solution. In Step 6, we adopt CU-
DAQuickSort [35] to sort Pd using the objective 1 as key.
The complexity of CUDAQuickSort is O( Ns

NT
log(Ns)). NT

is the maximum number of threads executed concurrently for
a task. In Step 9, we launch the Kernel FFR (as shown in
Algorithm 3) to identify the first front rank of solutions by
checking dominance among objectives 2 ∼ K. This requires
(K−1)N2

s comparisons concurrently executed by NT threads.
Therefore, the complexity of Kernel FFR is O( 1

NT
(K−1)N2

s ).
In Step 15, we launch the Kernel AFR (as shown in Algorithm
4) to identify the next front rank. It needs Ns computations
with complexity O( 1

NT
Ns). In the worst case, suppose that

each solution belongs to a front rank, the while loop will be
executed Ns times. Thus, the overall complexity of finding
the rest front ranks is O( 1

NT
N2

s ). Since in our platform,
the number of concurrently executed threads NT supported
by GPGPU is much greater than the solution population
size Ns, the complexity of parallel non-dominated sorting is
O(log(Ns) +KNs).

VII. EVALUATION

In this section, we carry out experiments to evaluate the
performance of the proposed approach. We compare the Ran-

Algorithm 2 Parallel Non-dominated Sorting Algorithm

Input: Ph[Ns][K]: Solution Matrix on Host CPU
Output: FRh[Ns]: Front Rank Array on Host CPU

1: fr ← 1; ◃ current front rank to identify
2: FRh[i]← −1; ◃ initialize FRd on Host CPU
3: Domh[Ns][Ns]← 0; ◃ initialize Domh on Host CPU
4: Pd[Ns][K]← Ph[Ns][K]; ◃ initialize Pd on GPU device
5: Domd[Ns][Ns]← 0; ◃ initialize Domh on GPU device
6: KCUDAQuickSort(Pd[Ns][0]); ◃ launch kernel

CUDAQuickSort on GPU device to sort Pd according to
objective 1

7: synchthreads(); ◃ synchronize GPU Device
8: Ph[Ns][K]← Pd[Ns][K];◃ copy Pd to Ph on Host CPU
9: KFFR(Pd[Ns][K], FRd[Ns], fr); ◃ launch kernel PNDS

on GPU device to perform parallel non-dominated sort
10: synchthreads(); ◃ synchronize GPU Device
11: FRh[Ns]← FRd[Ns]; ◃ copy FRd to FRh on Host

CPU
12: Domh[Ns][Ns]← Domd[Ns][Ns]; ◃ copy Domd to

Domh on Host CPU
13: nassign ← CountAssigned(Domh[Ns][Ns]); ◃ the

number of solutions assigned by front rank
14: while nassign < Ns do ◃ not all solutions are assigned a

front rank
15: KAFR(FRd[Ns], Domd[Ns][Ns], fr, nassign); ◃

launch kernel PNDS on GPU device to perform parallel
non-dominated sort

16: synchthreads(); ◃ synchronize GPU Device
17: fr ← fr + 1;
18: end while

dom Selection based MOHH (RS-MOHH), the Reinforcement
Learning based MOHH (RL-MOHH) as well as the parallel
version of both algorithms (RS-PMOHH and RL-PMOHH)
with the NSGA-II [14] and Parallel NSGA-II (PNSGA-II)
[29] in terms of both computation time and solution quality.
Moreover, the Extended Martins’ Label Setting (EMLS) [9]
algorithm is used to get the exact Pareto optimal solutions.

A. Experiment setup

We carry out experiments on an Intel SandyBridge E5-2609
(4-core, 2.4GHz) CPU with 32GB main memory (run the serial
program) and a GPU NVIDIA Tesla Kepler k20c (run the
parallel program). The GPU has total 2496 CUDA cores and
5GB GDDR5 global memory. The compute capability is 3.5.
The safety index is established by analyzing the relationship
between the crime risk and various urban data. The urban data
includes historical crime data, taxi trip data, housing rent price,
population, position of police stations and other POIs (Point
Of Interests) [31]. Then, a safety index map is constructed
based on a large amount of data collected form New York
city as shown in Fig. 8a. For each road segment of the city, it
has a value ranging from 0 to 1 that indicates the safe level
of the road (0 is very safe and 1 is very dangerous).

We apply all approaches to 3 network instances from
small to large size including a partial region of Manhattan
(RN1: 5382 intersections and 6483 road segments), Manhattan
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Algorithm 3 Kernel to identify the first front rank

1: Kernel FFR(Pd[Ns][K], FRd[Ns], Domd[Ns][Ns], fr)
2: i← blockIdx.x× blockDim.x+ threadIdx.x;
3: if FRd[i] = −1 then
4: n[i]← 0; ◃ n[i] is the number of solutions that

dominate Pd[index]
5: for j ← 0 to i do
6: Domd[j][i] = Check(Pd[j][1 : K − 1], Pd[i][1 :

K − 1]); ◃ check dominance between Pd[j] and Pd[i]
according to objectives 2 ∼ K

7: if Domd[j][i] = 1 then ◃ Pd[j] ≽ Pd[i]
8: n[i]← n[i] + 1;
9: end if

10: end for
11: if n[i] = 0 then
12: FRd[i]← fr;
13: end if
14: end if
15: EndKernel

Algorithm 4 Kernel to assign all front ranks

1: Kernel AFR(FRd[Ns], Domd[Ns][Ns], fr, nassign)
2: i← blockIdx.x× blockDim.x+ threadIdx.x;
3: if FRd[i] = fr then ◃ Pd[i] is assigned front rank
4: for j=0 to Ns do
5: if Domd[j][i] > 0 then
6: Domd[j][i]← Domd[j][i]− 1;
7: end if
8: end for
9: for j=0 to Ns do

10: n[j] = sum(Domd[j][0 : Ns − 1])
11: if n[j] = 0 then
12: FRd[j]← fr + 1;
13: nassign ← nassign + 1;
14: end if
15: end for
16: end if
17: EndKernel

district (RN2: 27051 intersections and 33358 road segments)
and New York city (RN3: 125383 intersections and 160124
road segments) as shown in Fig. 8b.

The utilities are trained based on 200000 source and desti-
nation pairs in the map before experiments. Thus, we do not
activate the learning process in the on-line planning.

To make the comparison as fair as possible, all algorithms
adopt the same initial population size (Ns=200) and exactly
the same initial routes. They will be stopped until either the
loop reaches the maximum iteration number (IMAX=200) or
only one non-dominated front rank exists in the population and
the ∆D is smaller than a given predefined threshold (set to
be 10 in experiments). To eliminate the impact of different
magnitudes on metric measurements, all solutions of each
objective are normalized to the range of [0, 1] according to
the min-max normalization.

(a) Safety index map
 

 

 (b) Abstraction of road network
Fig. 8: Map construction

∆D = D (Pt+1)−D (Pt) , (9)

where D(P ) is the average crowding distance of all individuals
in the population P .

The detailed parameter settings are summarized in Table I.

TABLE I: Parameter settings
NSGA-II MOHH

Parameters Values Parameters Values
population size 200 population size 200
maximum iteration 200 maximum iteration 200
crossover rate 0.9 exploration rate ϵ 0.1
mutation rate 0.2 discount factor γ 0.5

B. Metrics

We consider two metrics: efficiency and solution quality.
Efficiency: We use the computation time to evaluate the

efficiency of the proposed method. The computation time of
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EMLS has taken as the baseline. We compute the speed-up
ratio (denoted by ϕ) of all other methods to the EMLS. The
ratio is defined as:

ϕ = TEMLS/Tx. (10)

Solution Quality: The optimal solution ratio (denoted by δ)
is adopted to evaluate the accuracy of the proposed method.
It defined as the proportion of exact optimal solutions to the
total number of obtained solutions.

δ = Nexact/Ntotal. (11)

To evaluate the solution quality in a fine-grained manner,
we define the average error (denoted by ρ) to measure the
extent of convergence to exact Pareto optimal solutions. It is
the average distance of σi, which is the minimum Euclidean
distance from each obtained solution to the real Pareto optimal
solution as shown in Fig. 9.

ρ =
1

Ns

Ns∑
i=1

σi, (12)

where Ns is the size of the initial population.

safety

distance

Pareto Front

Obtained Solutions

 
i

Fig. 9: The minimum distance to the Pareto optimal front

C. Results

We carry out experiments on each network instance with 50
independent runs and calculate an average of obtained results.
For an individual run, the source and destination nodes are
randomly selected from the network.

To illustrate the detailed solving processes of these al-
gorithm, we plot the growth of solutions in the first non-
dominated front rank versus the iterations in an individual run.
From Fig. 10, we observe that the proposed RL-PMOHH can
quickly generate better solutions and the number of solutions
in the first non-dominated front rank increases up to the
whole population size rapidly. However, the curve of RS-
PMOHH presents linear growth trend which is much slower
than RL-PMOHH. This proves that the pre-trained utilities
by reinforcement learning can effectively guide the planner
toward to the optimal solutions.
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Fig. 10: The number of solutions in the first non-dominated
front rank

Fig. 11 gives all solutions obtained when those algorithms
meet the stopping condition. The figure shows that RL-
PMOHH gets better accuracy in converging to the exact Pareto
optimal front.
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Fig. 11: Comparison of solutions

Table II and III show the comparison of the efficiency and
the accuracy. The experiment results show that the proposed
RL-MOHH performs the best among serial programs in all
network instances. It is almost 33 and 1.3 times faster than
EMLS and NSGA-II respectively. RL-PMOHH also outper-
forms other parallel programs, which achieves about 173 and
3.1 times speedup than EMLS and PNSGA-II respectively.
Comparing with the RL-MOHH, the RL-PMOHH with paral-
lel implementation on GPGPU yields an average 5.3 times
performance improvement. Moreover, both RL-MOHH and
RL-PMOHH can obtain up to 80% Pareto optimal solutions
even in a large-scale road network.

We develop a safe walking route planning application in the
smartphone to conduct a real-world case study. As shown in
Fig. 12, the application will give 3 options: two extreme routes
(the shortest one and the safest one) and one trade-off route
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TABLE II: Comparison of efficiency

Network
Computation Time (msec) / Speed-up Ratio (ϕ)

EMLS NSGA-II RS-MOHH RL-MOHH PNSGA-II RS-PMOHH RL-PMOHH
RN1 14376 / 1 580(±20.8) / 24.79 766(±34.1) / 18.77 445(±25.3) / 32.31 261(±15.2) / 55.08 296(±16.8) / 48.57 85(±8.9) / 169.13
RN2 48383 / 1 1928(±72.5) / 25.09 2428(±97.6) / 19.93 1580(±61.4) / 30.62 865(±44.5) / 55.93 987(±48.6) / 49.02 281(±17.1) / 172.18
RN3 151110 / 1 6089(±215.2) / 24.82 8155(±235.8) / 18.53 4202(±165.3) / 35.96 2602(±96.2) / 58.07 2915(±108.8) / 51.84 847(±42.7) / 178.41

TABLE III: Comparison of accuracy

Network
Optimal Solution Ratio (δ) / Average Error (ρ) ×10−2

EMLS NSGA-II RS-MOHH RL-MOHH PNSGA-II RS-PMOHH RL-PMOHH
RN1 100% / 0 68.5%(±2.5%) / 3.83 46.3%(±2.1%) / 5.51 86.2%(±1.8%) / 1.37 67.3%(±2.3%) / 3.61 45.7%(±2.1%) / 5.31 87.5%(±1.4%) / 1.34
RN2 100% / 0 65.2%(±2.3%) / 3.92 45.4%(±2.1%) / 6.73 82.4%(±2.2%) / 1.82 64.5%(±2.5%) / 4.03 43.6%(±1.7%) / 6.84 83.4%(±1.9%) / 1.62
RN3 100% / 0 62.8%(±2.5%) / 4.66 42.1%(±2.0%) / 7.69 80.9%(±2.0%) / 2.76 62.5%(±1.9%) / 4.82 40.6%(±2.2%) / 7.49 81.6%(±1.5%) / 2.11
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(c) Routes for travelling at 23:00
Fig. 12: Walking routes planned by the smartphone application for travelling at different time periods

according to user’s preference (the default weight vector is
⟨0.4, 0.6⟩, and the vector can be set by users before planning).
Fig. 12a - 12c show planning results at different time of Day.
The crime risk increases greatly when the time gets later in
the day. The application can change the route according to
updated safety index of the map and well support users to
avoid roads with high crime risk.

VIII. CONCLUSION

In this paper, we consider the safety index in navigation
services, and propose a Reinforcement Learning based Multi-
Objective Hyper-Heuristic (RL-MOHH) scheme for route
planning in a smart city. A set of easy-to-implement low-level
heuristics is designed based on the hop transition to explore
the solution space. A Q-learning algorithm is operating on the
heuristic space to guide the search toward to the Pareto optimal
front. Moreover, we implement a parallel RL-MOHH (RL-
PMOHH) algorithm on GPGPU to accelerate search speed.
Furthermore, we develop the safe walking route planning
application in smartphone and carry out a real-world case
study on the safety index map constructed by a large amount
historical urban data from New York city. Extensive experi-
mental results show that the proposed algorithm is superior

than NSGA-II/PNSGA-II on both the efficiency and optimal-
ity. However, the proposed MOHH/PMOHH frameworks still
need a lot of time to train utilities of the low level heuristics.
In our future work, we will implement a more efficient online
learning algorithm to improve continuous learning ability of
MOHH/PMOHH.
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