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Minimal Perfect Hashing-based Information
Collection Protocol for RFID systems

Xin Xie Xiulong Liu Keqiu Li Bin Xiao Heng Qi

Abstract—For large-scale RFID systems, this paper studies the practically important problem of target tag information collection,
which aims at collecting information from a specific set of target tags instead of all. However, the existing solutions are of low
time-efficiency because of two reasons. First, the serious collisions among tags due to hashing randomness seriously reduce the
frame utilization, whose upper bound is just 36.8%. Second, they cannot efficiently distinguish the target tags from the non-target tags
and thus inevitably collect a lot of irrelevant information on non-target tags, which further deteriorates the effective utilization of the time
frame. To overcome the above two drawbacks, this paper proposes the minimal Perfect hashing-based Information Collection (PIC)
protocol, which first leverages lightweight indicator vectors to establish a one-to-one mapping between target tags and slots, thereby
improving the frame utilization to nearly 100%; and then uses the novel data structure called Minimal Perfect Hashing based Filter
(MPHF) to filter out the non-target tags, thereby preventing them from interfering with the process of collecting information from target
tags. Sufficient theoretical analyses are also presented in this paper to minimize the execution time of the proposed PIC protocol.
Extensive simulations are conducted to compare the proposed PIC protocol with prior works side-by-side. The simulation results
demonstrate that PIC significantly outperforms the state-of-the-art protocols in terms of time-efficiency.

Index Terms—UHF RFID, TDMA protocol, perfect hashing, time-efficiency
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1 INTRODUCTION

RADIO Frequency Identification (RFID) technology, with
many attractive properties such as small size, low

manufacturing cost and remote access, has been deployed
in various applications such as modern supply chains [1],
inventory monitoring [2], [3], [4], [5], [6], object tracking
[7], [8], [9], [10], and theft surveillance , etc. A typical RFID
system is composed of a controller, a reader and numerous
tag-attached objects [11], [12]. The tag, a microchip being
attached to the antenna [13], has a distinct serial number
acting as the identity of a person or object [14]. It commu-
nicates with the reader through a wireless channel. The tag
antenna draws in energy from the RF waves to power the
chip, which generates a signal back to the reader. The reader
can convert the radio waves reflected back from the tag into
digital information, which is sent to the central controller
who can make use of this information to support various
applications.

The wide usage of RFID is envisioned in a scenario of
“Internet-of-Things”, a world in which billions of objects
can report their location, identity and other characteristics
(e.g., price, place of origin and expiration date) over a single
wireless channel. Such a huge volume of data will pose a
challenge in terms of time-efficient information collection.
In such a vision, an important problem is how to time-
efficiently collect the information from a specific set of target
tags. Note that, we do not concern with the information
on the non-target tags due to various practical reasons. For
example, the RFID devices have a low-rate communication
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channel, hence, given a limited time window, we obviously
should let the reader collect information from the tags with
high priorities. These high-priority tags are called target
tags. Another example is in a multi-tenant warehouse, the
tags of a tenant are called target tags from the view of this
tenant, and the tags belonging to other tenant are called
non-target tags. A tenant obviously concerns more with the
information on the target tags.

To address the problem of target tag information collec-
tion, an immediate solution is to use theQ protocol specified
in the EPC Class-1 Gen-2 (C1G2) standard [15] in which all
tags including target ones and non-target ones contend for a
common slotted time frame. Each tag calculates a uniformly
distributed hash function to randomly choose a time slot to
report its stored information. A tag is able to successfully
report its information if and only if it exclusively occupies a
slot. On the contrary, if two or more tags simultaneously
transmit information in the same slot, the reader cannot
resolve any of them due to signal corruption. Because of
the inherent randomness nature, the Q protocol suffers from
serious tag collisions, which result in that the frame utiliza-
tion is up to 36.8%. More seriously, the Q protocol cannot
distinguish the target tags from the non-target tags, and just
collect a lot of irrelevant information from non-target tags.
This further wastes the limited channel resources. Another
straightforward solution is to let the reader poll the ids of
target tags one by one [16]. A tag listens to the channel
and will report its information once it finds that its id
was just queried in the last time slot. Although simple,
the polling method is also of low time-efficiency due to
the heavy transmission of tag ids whose length is 96-bit
long. To avoid the transmission of tag ids and improve the
frame utilization, [17] proposed the Multi-hash Information
Collection protocol (MIC) to obtain more singleton slots
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that contain successful transmission. Moreover, the reader
is able to know the information received in the current slot
is from which tag, because it knows the mapping between
tags and slots by pre-computing. However, MIC is still of
low time-efficiency because it does not consider the serious
interferences from non-target tags. To resolve this issue,
the state-of-the-art protocol called Enhance Tag Ordering
Protocol (ETOP) [18] leverages a tag ordering vector to filter
out the non-target tags for preventing them from interfering
with the collection of target tags; and obtain a reporting
order for target tags, thereby reducing the collisions among
target tags. However, also due to hashing randomness,
ETOP cannot completely avoid the collisions among target
tags. It still requires the heavy polling method to query the
information on the collided target tags, which renders its
inefficiency.

This paper proposes a time-efficient Perfect hashing-
based Information Collection protocol (PIC) to completely
filter out non-target tags and obtain a one-to-one mapping
between target tags and slots. Then, the reader can collect
the information from target tags without any collisions.
Specifically, PIC consists of four phases: assignment phase,
filtering phase, polling phase, collection phase. In the first
phase, PIC uses multiple lightweight indicator vectors to
recursively assign an exclusive slot to each target tags. In
the second phase, PIC constructs a data structure called
Minimal Perfect Hashing based Filter (MPHF), which is an
array of w elements, each element is the fingerprint of a
target tag, where w is the number of target tags. Then, the
reader broadcasts the MPHF to filter out most of the non-
target tags, thereby preventing them from interfering with
the collection of target tags. In the third phase, a few non-
target tags that are not filtered out by MPHF due to false
positives will be deactivated by polling methods. In the
fourth phase, the target tags arranging in a non-collision
order will report their information one by one. Here, we face
two technical challenges as follows. The first challenge is in
setting an optimal length of the indicator vector. Although
a long indicator vector can assign more target tags to ex-
clusive slots, it also incurs more transmission overhead. The
second challenge is in setting the false positive required in
the filtering phase. If the false positive is set to a quite small
value, less non-target tags will be left, but it requires a long
fingerprint for each target tag and begets more transmission
overhead. On the contrary, if the false positive is set to a
large value, it requires less transmission for MPHF due to
the shorter fingerprint for each target tag. However, more
non-target target tags will be left to the heavy polling phase.
Clearly, it is important to set a proper indicator length in the
assignment phase and a proper false positive in the filtering
phase. In this paper, we propose sufficient theoretical anal-
yses to optimize these parameters thereby minimizing the
total execution time of PIC. The contributions made in this
paper can be summarized as follows.
• We propose a novel protocol called Perfect hashing-

based Information Collection protocol (PIC) to collect the
information from a specific set of target tags. Compared
with prior work, our PIC can completely prevent the inter-
ferences from non-target tags and also avoid the collisions
among target tags.
• We propose sufficient theoretical analyses to inves-

tigate the impact of the parameters involved in PIC, and
optimize their values to minimize its execution time.
•We conduct extensive simulations to compare the pro-

posed PIC protocol with prior works side-by-side. The sim-
ulation results demonstrate that our PIC significantly out-
performs the state-of-the-art protocol by reducing 30%∼50%
of the execution time.

The rest of paper is organized as follows. Section 2
provides a brief review of prior works. Section 3 presents the
system model and problem statement. The detailed design
of PIC is described in Section 4. Section 5 presents how to
optimize system parameter to minimize the execution time
of PIC. Section 8 conducts extensive simulations to evaluate
the performance of PIC and compares it with the related
works. Finally, we conclude this paper in Section 9.

2 RELATED WORK

One of the most fundamental tasks in RFID systems is
to exactly identify the tag IDs. The key challenge is in
resolving the serious tag collisions, which occur when two
or more tags choose the same time slot to report their
IDs. The solutions fall into three categories, frame-slotted
ALOHA-based protocols [19], [20], tree-based protocols [21]
and compressed sensing-based protocols [22], [23], [24].
ALOHA-based protocols divide the total time frame into
multiple slots. Each tag randomly chooses one slot from
the time frame to respond to the reader with its ID. Fun-
damentally, it is a Time Division Multiple Access (TDMA)
communication mechanism. As for Tree-based protocols, the
reader broadcasts a 0/1 string to query the tags. A tag
responds with its ID once it finds that the queried string
is the prefix of its ID. A reader identifies a tag ID when only
one tag responds. Finally, the most advanced compressed
sensing-based protocols [22], [23], [24] treat tag collisions
as a sparse rate-less code across the tags IDs, and they
introduce a compressive sensing algorithm to identity tags
from collisions signals, which are commonly regarded as
useless in previous studies. The experiments results of the
prototype implemented on the customized RFID devices
reveal that the compressed sensing-based techniques can
significantly improve the time-efficiency [24].

With the development of sensor-augmented tags, RFID
tags can provide not only the IDs but also various infor-
mation such as temperature, humidity and light intensity.
Due to the low communication rate of RFID channel, how
to collect information from massive tags is a challenging
problem. Chen et al. designed a protocol to improve the
utilization of the time frame by using multiple hashing
functions to resolve tag collisions in the time frame [17].
Yue et al. proposed a Bloom filter-based protocol [25] to
collect tag information in the multi-reader scenarios, which
can let each reader efficiently obtain the ID set of tags
that are within its interrogation range. In some application
scenarios, we may only desire to collect the information
generated by a specific set of target tags. For the problem of
target tag information collection, Yan et al. proposed a tag-
ordering vector based protocol to filter out the non-target
tags [18], and thus prevent them from interfering with the
collection of target tags. Moreover, the tag-ordering vector
can also avoid executing the collision slots and empty slots.
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However, the target tags that are mapped to the collision bit
will report their information only when their IDs are queried
by the RFID reader. Due to the transmission of target tag IDs
that are 96-bit long, it is still of low time-efficiency.

3 PRELIMINARY AND PROBLEM DEFINITION

3.1 System model
In our model, the RFID system is composed of three
components: a central controller, an RFID reader, and a
large number of tags. The central controller is connected to
the RFID reader via a high speed network link, and has
powerful computation and storage capability. It controls
the reader to interrogate the RFID tags, and then tackles
the data reported from the reader. The reader is equipped
with multiple antennas to cover a large number of tags.
The tags are powered up by the radio waves transmitted
by the reader, and then communicate with the reader by
backscattering the RF carrier according to the commands
received from the reader. The passive tags are required to
implement a set of mandatory commands defined by EPC
global Class1 Gen2 (C1G2) standard [26]. In addition, it pro-
vides flexibility for manufacturers to implement customized
commands in conformance with the standard (e.g., random
number generator and lightweight hash function). Each tag
contains a 96-bit ID according to C1G2, which is a unique
identifier of the RFID tag. The central controller stores all
the IDs of the tags within the interrogation range and knows
all mandatory and customized commands implemented on
tags. Thus, it is able to predict the action of the tags.

3.2 Communication Model
The reader periodically broadcasts synchronization com-
mands to create a slotted time frame. Upon receiving the
command of starting frame, a tag will randomly choose a
slot from the time frame and respond to the reader with
their IDs or information in that slot. We assume that the
communication channel between the reader and the tags is
reliable, and the communication errors are handled by low
level protocols, i.e., tags can correctly receive commands
from the readers and the reader can correctly detect the
responses from the tags. The main notations used in this
paper are summarized in Table 1.

3.3 Problem Definition
This paper addresses the problem of collecting information
from target tags. Formally, the problem is defined as follows:
given a set of registered tags U with size u and a set of target
tags W with size w. Here, W is a subset of U, i.e., W ⊆ U. We
want to use the RFID reader to efficiently collect information
from W. This problem may arise in many applications. For
example, a consumer may want to collect detailed product
information on items in his/her shopping list.

4 DETAILED DESIGN OF THE PIC PROTOCOL

In this section, we will present a novel protocol called Per-
fect hashing-based Information Collection (PIC) protocol.
Before presenting the detailed protocol design, we discuss
the limitations of the existing solutions, which motivates

TABLE 1
Main notations.

Notations Descriptions
U set of tags in the interrogation zone, u = |U|
W set of target tags, w = |W|

MPHF minimal perfect hashing filter
H(·) lightweight uniform hash function
F (·) fingerprint generation function
r random seed
a num of assigned target tags
V indicator vector, v = |V |
d length of fingerprint
x load factor of the indicator vector, x = w/v

c average cost for assigning a target tags
p proportion of assigned target tags
l length of the queried information
ρ ratio of target tags to integrated tags, ρ = w/u

vi length of indicator vector in ith round
wi num of unassigned target tags before ith round

∆wi num of target tags assigned in ith round
pf false positive probability of the filter
pe error probability of falsely identifying tags

Rr/Rt reader to tags/tags to reader rate

us to take further effort to study this problem of target
tag information collection. Then, we give the overview of
the proposed PIC protocol. PIC consists of four phases:
assignment phase is to assign each target tag with an exclusive
slot; filtering phase is to filter out the non-target tags, and
thus preventing them from interfering with the collection
of target tag; polling phase is to deactivate the non-target
tags that are not filtered out due to false positives; collection
phase is to collect the information from target tags without
any interferences from non-target tags and also without any
collisions among target tags.

4.1 Motivation

To collect the information stored in RFID tags, an immediate
method is to let the reader query the tag IDs one by one,
and a tag will respond with the stored information once it
finds its ID is queried. Although this method is simple, it
is low-efficient due to the heavy transmission of tag IDs.
Alternatively, to avoid the redundant transmission of tag
IDs, [27] proposed a hashing-mapping method. Specifically,
each tag uses its ID to calculate the randomly distributed
hash function H(id, r) mod f to choose a slot to reply its
information, where r is a publicly known seed received from
the reader, and f is the number of slots in the forthcoming
frame. We can predict which slot an arbitrary tag will choose
to reply its information (i.e., the mapping between tags
and slots), because we know all the tag IDs as well as all
the hashing parameters. Then, when the reader successfully
receives a tag response, we could know this information
is from which tag, although this tag did not reply its ID.
The hashing-based method is much more efficient than
the polling-based method, because it does not require the
transmission of tag IDs. The reader can collect a tag infor-
mation when only one tag replies in a slot, which is called
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Fig. 1. Overview of the minimal perfect hashing-based protocol (PIC)

singleton slot. However, because of hashing collisions, two
tags may choose the same slot to reply their information.
Then, the reader cannot successfully receive any of them due
to signal corruption. Such type of slots are called collision
slots. Moreover, the empty slots in which no tag replies are
also wasted. The throughput i.e., the ratio of singleton slots,
is up to 36.8% [27], which becomes the new bottleneck. With
the same motivation of improving frame utilization in many
high-level literatures [18], [25], [27], [28], [29], [30], this paper
proposes the minimal perfect hashing technique to establish
a one-to-one mapping between target tags and slots in time
frame. Based on this bijective mapping between target tags
and slots, we can build a better Bloom filter (i.e., MPHF) to
efficient filter out non-target tags, and thus preventing them
from interfering with the collection of target tags. Besides,
each target tag can also transmit its information to the reader
based on this mapping to completely avoid the collisions
among target tags.

4.2 Protocol Overview
The basic idea of PIC is to completely resolve target tag
collisions and completely deactivate non-target tags during
the time frame. PIC consists of four major phases: assign-
ment, filtering, polling and collection as shown in Fig 1.
The assignment phase is to resolve collisions among target
tags by assigning each each target tag to an exclusive slot
in the time frame whose size equals the number of target
tags. It consists of multiple assignment rounds, during an
arbitrary round, the reader first predicts the hashing result
of each target tag to construct an indicator vector. Then,
it broadcasts this indicator vector to assign a slot index to
tags that hash to the bits containing one target tag, which
ensures each target tag is assigned to an exclusive slot.
Since the non-target tags also receive the indicator vectors
during the assignment phase, they are also mapped to
slots in the time frame. To completely deactivate non-target
tags, in the filtering phase, we first propose the Minimal
Perfect Hashing Filter (MPHF) technique to filter out most
of non-target tags. However, due to the probabilistic nature

1 1 0 0

tag x

1 0 01 ...

tag y

z

tag x is assigned to slot : a+z

tag y is not assigned because it maps to `0' bit

 H(id,r) mod v

v ar

Parameters 

V

Fig. 2. V is the indicator vector broadcast by the reader, and each bit
whose value is one in V represents an assigned tag. a is the total
number of assigned tags in previous rounds, and z is the number of
ones prior to the representative bit of tag x.

of bloom filtering, a small ratio of non-target tags will be
mistakenly recognized as target tags. Since we know all the
ids and the used hash parameters, we could predict which
non-target tags are mistakenly recognized as target tags. To
completely eliminate these tags, in the polling phase, we let
the reader poll the IDs of them one by one, and the tags
who find their IDs are polled will turn into inactive state.
Finally, in the collection phase, the reader starts a time frame
to collect information from target tags. Since all non-target
tags have been deactivated in filtering and polling phases
and all target tags have been assigned to distinct slots in the
assignment phase, each target tag can send the data stored
on it without collisions, and the reader can exactly know the
sender of each received data package. In the following, we
will present the detailed processes of the above four phases.

4.3 Assignment Phase
To remove target tag collisions, the reader starts the assign-
ment phase to assign target tags in set W to w consecutive
indexes range from 0 tow−1. The assignment phase consists
of multiple rounds, during an arbitrary round, says i, the
reader broadcasts an indicator vector, says Vi, to assign a
part of target tags to their slot indexes. Let Wi be the number
of unassigned target tags at the beginning of ith round.
To construct Vi, the reader hashes each tag in set Wi to
a representative bit in Vi with index of H(id, r) mod vi,
where id is the target tag ID, r is a random seed, and vi is
the size of Vi. In Section 5.1, we have presented how to set
vi according to the number of unassigned tags wi. As to the
construction of the indicator vector, a bit in the Vi is set to
‘1’ if only one target tag is mapped to this bit; a bit in the Vi
is set to ‘0’ if no or more than 2 target tags are mapped to
this bit. The reader then broadcasts the indicator vector Vi,
the vector size vi, the random seed r and the total number
of tags that have been assigned in previous rounds, a.

With the vector size vi and random seed r, a tag
calculates H(id, r) mod vi to find out the location of its
representative bit in Vi. If its representative bit is ‘0’, the
tag will not be assigned (e.g., tag y in Fig. 2); in contrary,
if the representative bit is ‘1’, the tag will be assigned (e.g.,
tag x in Fig. 2). This scheme guarantees that each target tag
is assigned to an exclusive slot. For an arbitrary tag whose
representative bit is ‘1’, it calculates the assigned slot index
by summing the number of ‘1s’ before its representative bit
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in the vector and the number of target tags that have been
successfully assigned in previous rounds. The assigned tags
ignore the the following indicator vectors and are handled
in the subsequent filtering phase for determining whether
they are target tags. Because the reader knows all the IDs
in the system and all the IDs of target tags, it can pre-
compute the set of tags that can be assigned by indicator
vector Vi, thus knowing the updated set of unassigned tags
after broadcasting Vi, namely Wi+1. With Wi+1, the reader
starts the next assignment round, says i + 1, for further
tag assignment. Once the reader finds out there are no
unassigned target tags, the assignment phase is terminated.

Let wi denote the number of target-tags that participate
in the i-th assignment round. The number of target tags
that can be successfully assigned in this round is expected
to be

(wi

1

)
( 1
vi

)(1 − 1
vi

)wi−1 × vi ≈ wie
−wi

vi , where e is the
natural constant. For example, if we set the length of the
indicator vector to the number of target tags that have not
yet been assigned, wi × 1

e target tags will be assigned,
i.e., 1

e ≈ 36.8% of the non-assigned target tags will be
assigned in each round. Now, let’s consider the transmission
overhead of this case. The indicator vector is w-bit for the
first round; it is w(1− 1

e )-bit for the second round, because
w(1− 1

e ) target will participate in this round on expectation;
w(1 − 1

e )2-bit for the third round; w(1 − 1
e )i−1-bit for the

i-th round. The total transmission overhead is calculated as∑+∞
i=1 w(1− 1

e )i−1 = we[1− (1− 1
e )+∞], by relaxing, whose

upper bound is we. That is, the transmission complexity of
the slot assignment phase is just O(w).

4.4 Filtering Phase

Although we have assigned each target tag to an exclusive
slot to avoid collisions among them, each non-target tag in
the interrogation zone can also be assigned to these slots by
the indicator vectors. Since the number of non-target tags
are usually much larger than that of target tags, the non-
target tags cause serious collisions and prevent the read-
er from efficiently collecting information from target tags.
Hence, before starting the time frame to collect information
from target tags, we need to deactivate all the non-target
tags at first.

In the filtering phase, the reader first broadcasts a data
structure called Minimal Perfect Hashing Filter (MPHF) to
efficiently filter out most of the non-target tags, thereby
preventing them from interfering with the information col-
lection of target tags. Fundamentally, MPHF is a filter that
consists of w elements, and each of them is a d-bit finger-
print of the correspond target tag. The reader sequentially
sends each fingerprint in MPHF in a slot of the forthcoming
time frame. If a tag who plans to reply in the x-th slot
finds that the x-th fingerprint in MPHF does not match
with its own fingerprint, it will recognize that it is a non-
target tag and will keep silent in that slot. Thus, most of
non-target tags can be filtered out, and won’t interfere with
the information collection from target tags. Each fingerprint
is computed based on the ID of the correspond target tag.
We will introduce several suitable fingerprint generators
F (·) in Section 7.1, including uniform hash, id slicing and
Cyclic Redundancy Checksum. The broadcasting order is
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Fig. 3. Exemplifying the process of the assignment phase

based on the slot indexes assigned to target tags in the
previous phase.

4.5 Polling Phase
When the fingerprint is relatively long, a non-target tag
can be successfully recognized and filtered out with a high
probability. However, due to the probabilistic nature of
Bloom filtering techniques, a small ratio of non-target tags
cannot be deactivated. As we know all the tag IDs and the
hashing parameters used in filtering phase, we can predict
which non-target tags pass the filtering phase and still keep
active. To completely deactivate these non-target tags, in
phase three, the reader broadcasts the IDs of such left non-
target tags. If a tag finds that its ID is broadcasted by the
reader, it knows that it is a non-target tag and will keep
silent in the final reporting phase.

4.6 Collection Phase
Finally, the reader applies the frame-slotted protocol to
collect information from target tags. At the beginning of
this phase, the reader issues a Query command to start a
time frame of w slots. When receiving the Query command,
each tag loads the slot index, which is obtained in phase
one, in its slot counter. The tag whose slot counter sc equals
zero immediately transmits its information to the reader. We
can confirm that only one target tag responds to the reader
during each slot of the time frame because we have assigned
tags in set W to distinct slots in phase one and deactivated
all tags in set U −W in phase two. As a result, information
sent by an arbitrary target tag can be successfully received
by the reader. At the end of each slot, the reader broadcasts
a QueryRep command to start the next slot. After receiving
QueryRep command, each tag decreases its slot counter by
one, i.e., sc = sc−1 and responds to the reader immediately
if its slot counter equals zero.

In summary, after the assignment phase, each target
tag is assigned to an exclusive slot, i.e., there is a one-to-
one mapping between target tags and the same number
of slots. After the filtering phase, most of the non-target
tags are filtered out by MPHF broadcasted from the reader.
However, a small number of non-target tags still remain
active due to false positives of MPHF. In the polling phase,
the reader deactivates these left non-target tags that pass the
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Fig. 4. The mapping results of tags in set U and slots

check of MPHF. In the collection phase, the reader listens to
the channel, and receives the information from each target
tag in a non-collision order. Since our protocol deactivates
all non-target tags with high-efficient MPHF and removes
tag collisions in frame slotted Aloha, the throughput of PIC
is improved to be 100%, which significantly improves the
efficiency of target tag information collection.

4.7 Illustrative Example

For clarity, we give an example to illustrate the operations
of the proposed PIC protocol. In this example, there are
ten tags U = {id1, id2, · · · , id10}, and four among them
are target tags W = {id1, id4, id6, id9}. As illustrated in
Fig. 3, the slot assignment phase consists 3 rounds in this
example. In each round, the reader generates an indicator
vector by hashing each non-assigned target tag to a bit. As
exemplified in Fig. 3, idi is mapped to the bit with index
of H(idi, r) mod 4, and this bit is called the representative
bit of idi. In the indicator vector, ‘1’ indicates that only one
tag is mapped to this bit; ‘0’ indicates that no or more than
two tags are mapped to this bit. After generating such an
indicator vector V1, the reader broadcasts it to the tags. Each
tag receives this vector and checks its representative bit. If
the representative bit is 0, the tag is not assigned because
it shares this bit with other tag(s); If the representative bit
is 1, the tag will be assigned to the slot with index of
(a + x), where a indicates the number of target tags that
are successfully assigned in previous rounds, and x is the
number of ‘1s’ preceding this bit.

For example, in the first round, id9 is successfully as-
signed to the slot with index of (a+x) = (0+0) = 0, where
a is obviously 0 because no target tag has been assigned
yet, and x = 0 because no bit ‘1’ appears preceding its
representative bit. On the contrary, id1, id4, and id6 are not
assigned, because they are mapped to the same bit due to
hashing collision (their representative bit is 0).

The non-assigned target tags (i.e., id1, id4, and id6)
need to participate in the second round. id1 is successfully
assigned to the slot with index of (a + x) = (1 + 0) = 1,
where a = 1 because one target tag (i.e., id9) has been
assigned in the previous round, and x = 0 because no bit ‘1’
appears preceding its representative bit.

The remaining non-assigned target tags (i.e., id4 and id6)
need to participate in the third round. id4 is successfully

TABLE 2
Fingerprints of tags

tag fingerprint tag fingerprint
id1 1111 id6 1101
id2 0001 id7 1111
id3 0010 id8 1110
id4 1100 id9 0101
id5 0001 id10 1011

slot 4slot 3slot 2slot 1

id6id4id1id9

0101

assigned to id9

fingerprint of id9

1111 1100 1101

sent in

Fig. 5. The MPHF structure consists of w = 4 elements, each of them is
a d = 4-bit fingerprint of a target tag

assigned to the slot with index of (a + x) = (2 + 0) = 2,
where a = 2 because two target tag (i.e., id9 and id1) have
been assigned in previous rounds, and x = 0 because no bit
‘1’ appear preceding its representative bit. id6 is successfully
assigned to the slot with index of (a + x) = (2 + 1) = 3,
where a = 2 because two target tag (i.e., id9 and id1) have
been assigned in previous rounds, and x = 1 because one bit
‘1’ (i.e., the bit to which id4 is mapped) appears preceding
its representative bit. So far, each target tag is successfully
assigned to an exclusive slot in the time frame. It should
be noted that each non-target tag also receives V1, V2 and
V3 and is assigned to a slot accordingly. We do not describe
how the non-target tags do in the example for the purpose
of clarity. But note that, non-target tags also participate in
this phase and eventually choose a slot in random manner.
Fig. 4 shows the final mapping between tags and slots, in
which each target tag occupies a slot that contains no other
target tags but may contain one or more non-target tags.

Next, the reader starts the filtering phase and constructs
a Minimal Perfect Hashing Filter (MPHF). Suppose the
fingerprint of each tag is shown in Table 2. The constructed
MPHF is shown in Fig. 5, which consists of 4 fingerprints
with each is 4-bit. Then, the reader broadcasts the finger-
prints of the target tags to filter out non-target tags. The
broadcasting order is: id9’fingerprint → id1’fingerprint →
id4’fingerprint → id6’fingerprint. Specifically, the reader
first broadcasts ‘1011’, and the non-target tag id8 can be
deactivated because it has a different fingerprint ‘1110’.
Second, the reader broadcasts ‘1111’, which deactivates non-
target tags id2 and id3 because they have different finger-
prints ‘0001’ and ‘1100’. Third, the reader broadcasts ‘1100’,
and the non-target tag id7 is deactivated because it has a
different fingerprint ‘1111’. Finally, the reader broadcasts
‘1101’ to deactivate non-target tags id5 and id10. Because we
choose a large enough fingerprint length, all non-target tags
have been deactivated in the filtering phase. Thus, we skip
the polling phase and start a time frame containing 4 slots to
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collect information from 4 target tags, and these target tags
will report the information stored on them in the following
order: id9 → id1 → id4 → id6.

5 PARAMETER OPTIMIZATION

In this section, we study how to optimize the parameters
involved in our PIC protocol to minimize the transmission
overheads of its assignment, filtering and polling phases,
which mainly dominate its time-efficiency. We find that the
length of bit vector v and the length of fingerprint d are
two key parameters that affect the transmission overhead
during the assignment phase and deactivating phase (i.e.,
filtering + polling), respectively. Later in this section, we will
present how to set proper values for v and d to minimize the
transmission overhead.

5.1 Transmissions in Assignment Phase
To minimize the transmission overhead in the assignment
phase, the key is to choose a suitable vi during each as-
signment round. If we use a large vi, obviously, a large
number of target tags can be assigned by this indicator
vector. However, the transmitting overhead of this round
will increase accordingly. On the contrary, if we use a small
vi, the assignment efficiency will be low, the probabilities of
assignment collisions (i.e., more than one target tags share a
common representative bit) will become serious. Hence, in
this section, we propose theoretical analysis to optimize the
vi to minimize the transmission overhead c per tag, which
is the ratio of transmission overhead to the number ∆w of
target tags that are successfully assigned to exclusive slots.

In an arbitrary round, says i, we know the total trans-
mission overhead includes the indicator vector with size of
vi and the used parameters 〈vi, r, a〉. Since each parameter
is 16-bit, the total transmission overhead in this round is
vi + 64 bits. Let ∆wi denote the number of target tags that
are successfully assigned by this indicator vector, the per tag
transmission overhead can be calculated as follows:

c =
vi+64

∆wi
. (1)

The number of assigned tags is expected to be:

∆wi = wi×
(

1− 1

vi

)wi−1
. (2)

By substituting Eq. 2 into Eq. 1, we can obtain the following
equation:

c =
vi+64

∆wi
=

vi+64

wi×
(

1− 1
vi

)wi−1 ≈
vi+64

wi×e−
wi
vi

(3)

Since wi is known to us, c is a function of vi. To simplify this
function, we substitute the load factor xi, which is the ratio
of wi to vi in the above equation; then, we have:

c =
1 + 64xi

wi

xi × e−xi
(4)

To compute the minimum value of c, we take the first-order
derivative of Eq. 4 and set the right side to 0. Then, we have:

dc

dxi
=

xie
−xi× 64xi

wi
−
(

1+ 64xi

wi

)
(1−xi) e−xi

x2i e
−2xi

=0

⇒ 64x2i +wixi − wi = 0

(5)
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Fig. 6. The length of indicator vector with respect to wi

The equation 64x2i + wixi − wi = 0 have two solutions:

xi =
−wi ± wi ×

(
1 + 256

wi

) 1
2

128
(6)

Since xi is necessary to be a positive number as wi and vi
are both positives, we can confirm one available solution:
xi = −wi+wi(1+256/wi)

1/2

128 . From Eq. 5 and Eq. 6, we know
dc
dxi

< 0 when 0 < xi <
−wi+wi×(1+256/wi)

1/2

128 and dc
dxi

> 0

when xi >
−wi+wi(1+256/wi)

1/2

128 . Therefore, with the increase
of xi, the value of c first increases and then decreases, and c
is minimized when:

xi =
−wi + wi × (1 + 256

wi
)

1
2

128
. (7)

Since vi = wi/xi, we can also calculate the value of vi that
minimizes the value of c:

vi =
128(

1 + 256
wi

) 1
2 − 1

=
wi

128

[
1 +

(
1 +

256

wi

) 1
2

]
(8)

Therefore, to minimize c, in each assignment round, we
should set vi based on Eq. 8. For clearly representing the
relationship of vi and wi, we plot vi with respect to wi in
Fig. 6. We observe that vi is in proportion to wi. When
wi is small, e.g., wi = 10, vi is set to 2 times of wi. But
when wi is large, e.g., wi > 100, we can find that vi ≈ wi.
This is because when wi is small, parameters account for
the majority of transmission overhead 〈vi, r, a〉, in this case,
we need to assign the small set of remaining target tags
in as fewer rounds as possible to reduce the parameter
transmissions.

5.2 Total Transmissions in Filtering&Polling Phases
To completely deactivate non-target tags, we use a hybrid
method containing probabilistic filtering phase and pre-
cise polling phase. The communication overhead of these
two phases are determined by the length d of fingerprint.
Specifically, if we use a small d, the transmission overhead
of MPHF is obviously small. However, a large number of
non-target tags will be left to the polling phase due to the
high false positive rate of MPHF. Then, the transmission
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overhead of polling phase will increase accordingly. On
the contrary, if we use a long fingerprint, the transmission
overhead of polling phase will be reduced. However, the
overhead of the filtering phase will increase. Hence, in this
section, we propose theoretical analysis to optimize the
length d of the fingerprint to minimize the total transmission
overhead of filtering and polling phases.

We assume the fingerprints are pseudo-random values.
For a certain d, the communication overhead of MPHF is
w × d bits. the false positive probability of MPHF can be
expressed as (1/2)d. After filtering phase, the number of
left non-target tags can be expressed as (u − w)(1/2)d. To
remove these tags, the reader issues ids of them one by one,
incurring a polling overhead of 96 × (u − w) × (1/2)d bits.
Therefore, the total overhead Td for completely deactivating
non-target tags can be expressed as:

Td = w × d+ 96× (u− w)× (1/2)d (9)

To compute the minimum value of Td, we take the first-
order derivative of Eq. 9 and set the right side to be 0. Then,
we have:

w × d− 96× (u− w)× 2−d × ln 2 = 0. (10)

Solving the above equation, we have

d = −
ln
[

w
96 ln 2×(u−w)

]
ln 2

≈ − log2

(
w

u− w

)
+ 6, (11)

which provides guidance on how to set d to minimize the
communication overhead. We observe that d is determined
by the ratio of the number of target tags to the number of
non-target tags. Substituting Eq. 11 into Eq. 9, we can obtain
the optimal Td as follows:

Td = w×
[
− log2

(
w

u−w

)
+7.5

]
(12)

6 PERFORMANCE ANALYSIS

In this section, we theoretically analyze the expected execu-
tion time of PIC and compare it with the existing protocols.
We also elaborate on the reasons why our PIC protocol
outperforms the state-of-the-art protocols.

6.1 Expected Execution Time of PIC

Since PIC consists four phases, in the following, we present
the overhead of each phase respectively.
•Assignment phase: In this phase, we assume that the

reader broadcasts k indicator vectors {V1, V2, · · · , Vk} to
assign tags in set W. The length of indicator vectors Vi is
denoted as vi. Therefore, the total length of indicator vector
is
∑k

i=1 vi bits. Let wi and ∆wi denote the number of target
tags before broadcasting the ith indicator vector and the
number of assigned target tags by the i-th indicator vector.
We have vi = ∆wi×c, where c is the minimum transmission
overhead per tag. The total transmission overhead in the
assignment phase, denoted as Tm, can be expressed as
follows.

Tm =
k∑

i=1

∆wi × c+ 64× k, (13)

where 64 × k represents the overhead of broadcasting the
parameters. Because c is a concave function of wi, we can
represent it as c(wi). According to Jensen’s inequality, we
have the following expression:

Tm
k∑

i=1

∆wi

≤ c


k∑

i=1

∆wi × wi

k∑
i=1

∆wi

+
64× k
k∑

i=1

∆wi

. (14)

Because
k∑

i=1

∆wi = |W|, by substituting it into the Eq. 14,

we have the following inequality.

Tm ≤ |W| × c
(

k∑
i=1

∆wi ×
wi

|W|

)
+ 64× k. (15)

As ∆wi = wi×qi and qi ≈ 1/e, we can simplify it as follows:

Tm ≤ |W| × c
(

k∑
i=1

qi ×
w2

i

w

)
+ 64× k

≈ |W| × c
(

k∑
i=1

w2
i

e× |W|

)
+ 64× k

≈ w × c


[
1−

(
1− 1

e

)2
k
]
× w[

1−
(
1− 1

e

)2]× e× w
+ 64× k

≤ |W| × c
(

w

2− 1
e

)
+ 64× k

≈ |W| × c (0.613w) + 64× k.

(16)

From the above equation, we can conclude that Tm is linear
in w. The coefficient of w decreases with the increase of w.
For example, when w = 200, the communication overhead
is Tm ≈ 4.16w. When w = 1, 000, the communication
overhead of assignment phase is only Tm ≈ 2.88w bits.
•Filtering and Polling phases: To deactivate non-target

tags, the communication overhead is composed of broad-
casting the minimal perfect hashing filter and polling IDs
of the non-target tags that are not filtered out. Given the
specific values of u and w, the minimized transmission
overhead of the filter phase has been given in Eq. 12.
•Collection phase: In the collection phase, each target

tag is able to transmit to the reader without collisions, and
the overhead of this phase, denoted as Tr , can be expressed
as Tr = |W| × l, where l is the length of the information
and |W| represents the number of target tags. The common
length of l includes 1 bit of the Boolean type, an 8-bit integer
and a 16-bit float. Let Rr denote the bit rate from the reader
to tags and Rt denote the bit rate from the tags to reader,
we obtain the expected execution time of PIC:

TPIC = (Tm + Td)/Rr + Tr/Rt. (17)

The execution time of PIC is also linear in w, and the
coefficient is affected by the values of w and u. For example,
when w = 1, 000 and u = 10, 000, we have Tm ≈ 2.9w
bits, Td ≈ 10.6w bits. As a result, TPIC is given as
TPIC ≈ w × 13.5/Rr + n× l/Rt in this case.
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6.2 Execution Time of the Polling Protocol
The polling protocol is a direct solution for collecting in-
formation from target tags [16]. In polling protocol, the
reader only needs to broadcast IDs of target tags one by one.
Each tag listens to the channel and sends its information to
the reader if it finds that its id is broadcast by the reader.
This protocol incurs a communication overhead of 96w bits.
Therefore, the execution time of polling protocol TPA is
given as follows:

TPA = n× 96/Rr + n× l/Rt. (18)

Although, the execution time of polling protocol is also
linear in w, the coefficient of w equals to be 96 + l, which is
much larger than that of PIC. For example, when l= 8, PIC
incurs a 20n bits broadcasting overhead. Meanwhile, polling
protocol costs 104n bits, which is five times that of PIC.
Obviously, PIC significantly reduces the communication
overhead than the polling protocol.

6.3 Execution Time of Enhanced Tag Ordering Protocol
To reduce the communication overhead, the state-of-the art
protocol ETOP [18] uses a compact partition Bloom filter,
i.e., Tag Ordering Vector (TOV), to represent target tags
in set W and avoids time-consuming transmissions of IDs.
TOV consists of several partitions, and each target tag is
mapped to one of them by hashing its ID. Each partition is
also divided into multiple segments, and the tags in these
partition will be further mapped to a bit in each segment by
hashing its ID multiple times with different seeds. A tag can
know whether it is a target tag by checking if all bits it maps
to are 1s. If all of them are bit ‘1’, it is a target tag; otherwise
it is a non-target tag. A major contribution of TOV is that the
reporting order of target tags is encoded in it. Specifically, if
the number of ‘1’-bit in a segment equals to the number of
tags in the correspond partition, we call it ordering segment.
Each tag in this partition can respond to the reader based on
their locations in the ordering segment. Let To be the length
of the TOV, the communication overhead of broadcasting
TOV is To/Rr bits. However, a small set of target tags cannot
be filtered out due to the false positive of TOV, which can be
expressed as pf ≈ (1 − e−80n/To)(1 − e−ws/80) [18], where
s is the number of segments in each partition. Thus, the left
non-target tags can be filtered out by broadcasting their IDs,
which incurs a communication overhead of pf × 96 bits.
Except polling IDs of the left non-target tags, we also need
to poll the IDs of some conflicting tags in the partitions that
have no ordering segment. According to [18], the number of
conflicting tags can be presented as g = w3×802

To
. Therefore,

the total overhead of polling operation incurs a communica-
tion overhead of [g+(u−w)×pf ]×96 bits. Finally, since all
collisions have been removed, to collect information from
target tags incurs a communication overhead of w × l bits.
In conclusion, the total transmission overhead of ETOP is
calculated as follows:

TETOP = [To + 96c+ 96(u− w)pf ]/Rr + w × l/Rt (19)

Obviously, the execution time of ETOP is also linear in w.
As the authors focus on minimizing the energy consumption
per tag, how to optimize the TETOP is not discussed in [18].
Based on our observation, the coefficient of ETOP is smaller
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Fig. 7. Comparison of MPHF and the TOV when w = 1, 000 and s = 4

than that of polling protocol but larger than that of PIC. For
example, when w = 1, 000, u = 10, 000, l = 8, s = 4 and
To = 20w, ETOP incurs a communication overhead of 34.6w
bits, which is 1.58 times that of PIC.

6.4 Advantages of PIC

Although the time complexity of the proposed PIC and the
state-of-the-art ETOP protocol are both O(w), PIC takes
much less time due to the small coefficient of w. To in-
vestigate the reasons why our PIC outperforms ETOP, we
analyze each phase of these two protocols and find two
major advantages of PIC. First, the minimal perfect hashing
filter used in PIC is more compact than the tag ordering
vector used in ETOP, because it leverages the locations of
target tags (i.e., assigned slots) to filter out non-target tags.
Thus, when broadcasting a same length MPHF and TOV,
the false positive probability of MPHF is much smaller than
that of TOV. See Fig. 7 for illustration, the false positive
probability of MPHF is only 58% of the TOV. Therefore,
the number of left non-target tags after broadcasting MPHF
is only half of that after broadcasting TOV, which incurs a
small polling overhead. Second, MPHF assigns each target
tag to an exclusive slot in the time frame, thus each tag
can send its information in the assigned slot to avoid colli-
sions. Meanwhile, due to the random mapping, some target
tags are conflicted in TOV, it has to further poll their IDs,
which incurs additional communication overhead, further
prolongs the execution time of ETOP.

6.5 Lower Bound on the Required Execution Time

To show the high efficiency of PIC, we also present the lower
bound on the execution time of target information collection
based on compact approximator. The results revels that the
execution time of PIC is very close to the lower bound. First,
the absolute lower bound of collecting l-bit information
from w target tags is exactly to be w×l bits [25]. To meet this
lower bound, the utilization ratio of the time frame should
be 100% and each tag in W should know which slot to send
its information to the reader. Since the tags in W frequently
changes according to the user’s specification, the reader has
to issue some message to tell tags whether they are target
tags in this execution. Thus, the actual overhead is always
larger than w × l bits.
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As far as we know, the compact approximator, which is
an array of bits, is the most space-efficient tool to represent
a set. According to a well known conclusion in information
theory, in a system with u interrogated tags and w target
tags, if 1 < w � u, a compact approximator, that allows for
identifying w target tags with a false positive probability pf ,
is larger than w log2(1/pf ) bits [31]. Therefore, broadcasting
the compact approximator caused at least w log2(1/pf ) bits
overhead. Besides, to remove the non-target tags caused by
false positive of compact approximator, the reader has to
issue pf × (u − w) × 96 bits to poll their IDs. As a result,
the total overhead of compact approximator-based solution
is lower bounded by:

TLB = w×log2(1/pf +(u− w)×96×pf +w×l/Rt. (20)

We take the first-order derivative of pf and set the right
side to 0. Then, we have the optimal pf that minimizes TLB

as follows:
dTLB

dpf
= w × log2(1/pf ) + (u− w)× 96× pf = 0

⇒ pf =
w

(u− w)× 96× ln 2
≈ 0.015w

u− w
.

(21)

By substituting the optimal pf into Eq. 20, we obtain the
optimal communication overhead:

TLB = |W| ×
[
log2

(
u− w
w

)
+ 7.5

]
/Rr + w × l/Rt. (22)

From Eq. 9 and Eq. 22, we find out that TLB + Tm/Rr =
TPIC , indicating that without consideration the overhead
for assigning tags to exclusive slots in the time frame,
PIC achieves the theoretical lower bound on the execution
time of target information collection based on the compact
approximator. This well explains why PIC has better time-
efficiency than prior schemes.

7 DISCUSSION

In this section, we discuss some practical issues in PIC im-
plementation. We also discuss how to optimize the protocol
under some specific application scenarios.

7.1 Fingerprint Generator F (·)
In the filtering phase of PIC, the reader and tags should
share a fingerprint generation function F (·) to implement
the minimal perfect hashing filter. To fit for the RFID tag
with limited computation capabilities, the generation func-
tion F (·) should be lightweight and in accordance with
the off-the-shelf RFID tags. In the following, we list three
suitable generation functions.

First, we can simply take a slice of 96-bit id as the
fingerprint. This method is simple and direct but may not
work well when product information is encoded into the
ID. For instance, the EPC-ID encodes the category and
producer information, thus many tags may have the same
ID segments. Thus, the slices of distinct IDs may be easy to
collide with others, which affect the filtering efficiency of the
minimal perfect-hashing filter. Besides, the slicing operation
is not implemented by the off-the-shelf tags. Second, we can
also leverage the uniform hashing function H(·), which is

usually used for mapping a tag to a slot in the frame slotted
Aloha. Although some well-designed hash function, e.g.,
MD5 and SHA1, may produce a better fingerprint with less
collision but they are not supported by off-the-shelf tags.
Third, we can use the Cyclic Redundancy Checksum (CRC)
function, which is usually used to control the transmission
error between the reader and tags. According to EPC C1G2
standard, each RFID tag should carry a CRC precursor to
check the received data. As we know, the CRC precursor is
occasionally used and works well as a hash function. Thus,
we can leverage the produced CRC code as the fingerprint of
EPC ID. Although there are two types of supported CRC on
C1G2-complaint RFID tags: the 16-bit CRC-16 and the 5-bit
CRC-5, we can only apply CRC-16 because CRC-5 produces
a 5-bit CRC code, which is too short and easy to be collided
with other CRC-5, generated by different ids. Meanwhile,
CRC-16 has a much smaller collision probability of 1/65536,
which is long enough to meet our requirements. The de-
tailed computation of CRC-16 is as follows: Let R(y) denote
the CRC-16 of y; we can obtain R(y) based the equation
y << 16 = G(x)Q(x) + R(y), where Q(x) is an integer
and G(x) = 1100000000000011 [26]. In conclusion, both the
uniform hash function and CRC-16 function are suitable for
generating fingerprint. They are both lightweight enough
and leverage the current functions on commercial RFID tags.

7.2 Electronic Product Code (EPC)
In PIC design, we assume the IDs in set U are randomly
generated within [0, 296 − 1]. In fact, this is always not true
in the real application. As we known, Electronic Product
Code (EPC), proposed by EPCglobal, is commonly used ID
in the logistic and warehouse management. EPC is designed
as a universal identifier that provides a unique identity for
every physical object anywhere in the world. It consists of
4 segments, including an 8-bit EPC header, 28-bit manager
number, 24-bit object class and 36-bit serial number. If two
items belong to the same category, most bits of their IDs are
the same. Leveraging this feature, we can further improve
the efficiency of PIC.

Instead of constructing a filter based on the IDs in set
W, we can add an additional filter phase, which is used to
filter tags from unrelated class. Since an item class usually
contains multiple items, the number of target classes is
usually much smaller than that of the tags. In the added
filter phase, the reader broadcasts a filter based on the target
classes, which incurs a much smaller overhead compared
with broadcasting a filter based on target tags. As a large
amount of tags from unrelated class have been deactivated,
the reader can construct a shorter bit vector in the forthcom-
ing filtering phase.

7.3 Without the Exact Knowledge of IDs in U
In PIC design, we assume the reader exactly knows the IDs
of all the tags in set U. However, in a dynamic RFID system
where tags move in and move out frequently, it is hard to
ensure that the reader always holds the up-to-date records
of IDs in U. In this subsection, we present an enhanced PIC
protocol, which can work without exact knowledge of IDs
in set U. To obtain the up-to-date IDs in set U, we can let
the reader execute the identification protocol before running
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PIC. However, the ID identification protocol is too time-
consuming, which is several times of that of PIC. To reduce
the overhead of ID identification protocol, we have to run
it once after a long period (such as once an hour/day, for
instance). That is, we may not have the exact set of tags at
some time.

Fortunately, with some modification, the original PIC
can work well even when the reader does not know the
exact IDs in the system. The modified PIC drops off the
polling phase because we do not know the exact set of
tags in the interrogation range. Therefore, it only consists of
three phase as follows: In the first phase, the reader assigns
each target tag to an exclusive slot in the time frame. This
phase is same as the original assignment phase of PIC. In
the second phase, the reader broadcasts a minimal perfect
hashing filter to filter out non-target tags. As the reader has
no knowledge of U, it cannot give an optimal d to optimize
the time-efficiency of this phase; therefore, the enhanced PIC
chooses a relatively large 16-bit fingerprint, which is large
enough to filter most of non-target tags. There is no polling
phase in the enhanced PIC protocol. As the reader does
not know the exact tags in set U, we cannot know which
non-target tags in set U pass the check of MPHF. Finally,
the reader issues a request to query information from all
active tags. As the second phase cannot ensure all the non-
target tags have been deactivated, we may detect three types
of slots during the time frame: singleton slots, collision
slots and empty slots. Only the target tag in singleton slot
can successfully transmit its information to the reader. The
empty slot represents the target tag that maps to this slot
and is no longer in the system, and the reader needs to
remove it from the tag set. The collision slot represents some
non-target tags mapped to this slot. To collect information
from the target tag in this slot, the reader needs to poll the
ID at the end of this phase.

A major problem of the enhanced PIC is that the respons-
es in singleton slots are regarded as transmitting from the
target tags. However, this assumption is not always true.
If a target tag is not in the system, and a non-target tag,
unknown to the reader, happens to map to the slot assigned
to this target tag, the reader cannot detect the absence of
this target tag and mistakenly thinks that the information
received in this slot is sent by the original target tag. Let pe
denote the probability of this kind of error, we have:

pe =
m

w
× s

w
×
(

1− 1

w

)s

, (23)

where s and m denote the number of unknown tags and
missing tags, respectively. If s and m are small enough, we
can limit the value of pe under an acceptable level. Thus, we
need to periodically execute the ID identification protocol to
prevent the values of s and m from becoming too large.

8 PERFORMANCE EVALUATION

In this section, we conducted extensive simulations to eval-
uate the performance of the proposed PIC and compared
it with the state-of-the-art protocol ETOP and the lower
bound on the execution time of the compact approximator.
In what follows, we first present the detailed simulation
settings used in this paper. Then, we conducted simulations
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Fig. 8. The assignment overhead per tag with respect to w in simulations

to investigate the transmission overhead in each phase of
PIC. Finally, we compare PIC with ETOP and the lower
bound side-by-side.

8.1 Simulation Setting
The simulation setting is based on the C1G2 standard [26].
which specifies the tag-to-reader transmission rate to be ei-
ther 40−460kb/s in the FM0 encoding format or 5−320kb/s
in the Miller modulated subcarrier encoding format, and the
reader-to-tag transmission rate to be about 26.7 − 128kb/s.
In our simulation, we consider that the system works on
low bit rates and set both the reader-to-tag transmission
rate and the tag-to-reader transmission rate to be 64kb/s.
In this case, the execution time of the above protocols
is proportional to the number of total transmission bits.
Therefore, we can use the transmission bits as the metric to
evaluate the performance of the proposed protocol. Without
specific illustration, the presented results are averages over
100 simulation runs. In each run, the IDs of interrogated
tags U are randomly picked from [0, 296 − 1], and target
tags are randomly picked from U . As ETOP [18] does not
provide optimal parameters for minimizing the execution
time, when comparing with ETOP, we set the length of the
partition Bloom filter to be 24w and the number of segments
each partition to be 4 in the simulations, which is a time-
efficient setting of ETOP and was used for time comparison
with other method in the literature [18].

8.2 Overhead of Assigning Target Tags
We first investigate the transmission overhead of minimal
perfect hashing mapping, which assigns each target tag in
set W to an exclusive slot in the time frame. Fig. 8(a) shows
per tag assignment overhead when we vary w from 500 to
3, 000. We observe that the per tag overhead is decreased
with the increase of w. For example, when w = 500, the per
tag overhead is 4.4 bits; when w = 3, 000, the per tag over-
head reduces to 3.2 bits. This is because, when w is large,
the parameter transmission overhead will be shared by a
large number of tags and thus is negligible. Whereas, when
w is small, the parameter transmission overhead accounts
for a large proportion of total overhead, which increases
the per tag overhead significantly. The results in Fig. 8(b)
further support the conclusion that the per tag construction
overhead is reduced with the increase of w; However, the
descending rate decreases with the increase of w, and the
average overhead per tag approaches to 2.73 bits.
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Fig. 10. Comparing the time-efficiency of each protocol. ρ ∈ {0.5, 0.05, 0.005}. For each ρ, l is 16 bits and u varies from 5,000 to 30,000.
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Fig. 11. Comparing the time-efficiency of each protocol. l ∈ {1 bit, 8 bits, 32 bits}. For each l, ρ is 0.05 and u varies from 5,000 to 30,000.
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Fig. 9. Transmission overhead vs. the length of fingerprint

8.3 Impact of d on the Execution Time of PIC
Then, we investigate how d affects the execution time of
our PIC protocol. We set u = 20, 000, w = 1, 000, l = 16 and
vary the value of d from 1 to 16. The results depicted in Fig. 9
show that with the increases of d, the total transmission
overhead first decreases and then increases. This is because
when d is small, the minimal perfect hashing filter can only
deactivate a small number of non-target tags. Thus, we
have to poll massive IDs to deactivate the left non-target
tags, which incurs a significant polling overhead as shown
in Fig. 9. On the other hand, when d is large, almost all

the non-target tags have been removed. In this case, the
further increasing in d has little impact on reducing the
polling overhead, instead, it increases the filtering overhead.
As a result, when d exceeds a certain threshold, the total
overhead begins to increase. We observe that the total trans-
mission overhead is minimized when d = 10, whose value
approaches 30,000 bits, which is only half of the overhead
required when d = 5. The observed optimal d = 10 matches
well with the theoretical optimal value computed based on
Eq. 12. The results of this set of simulations highlight the
importance of optimizing the fingerprint length d.

8.4 Overhead in Each Phase of PIC
We then investigate the overhead of each phase under differ-
ent parameter settings to investigate which phase dominates
the overall time-efficiency of PIC. We set u = 20, 000, l = 4
and vary w from 1, 000 to 10, 000 to study the overhead of
each phase. Fig. 12 shows the proportion stays stable with
the increases in the number of target tags. The filtering phase
always accounts for the largest proportion of execution time
in our settings. Thus, to further improve the efficiency of
PIC, the key challenge is to improve the filtering phase.

8.5 Comparison with Prior Work
We evaluate the performance of PIC by comparing it with
the ETOP and LB. To allow different application scenar-
ios, we use different parameters combinations to test the



13

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Number of target tags

0.0

0.2

0.4

0.6

0.8

P
ro

p
o
rt

io
n

 o
f 

to
ta

l 
o
ve

rh
e
a
d Assignment phase

Polling phase

Filtering phase

Collection phase

Fig. 12. The proportion of transmission overhead of different phases in
the number of tags in the interrogation zone fixed at 20, 000 and the
number of target tags range of [1000, 10000].

0 100 200 300
0

10,000

20,000

30,000

40,000

50,000

PIC
ETOP

The x-th simulation

 O
ve

rh
ea

d 
/ b

its
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performance of these protocols. First, we assume that the
length l is 16 bits, and set the proportion of target tags ρ
to be 0.5, 0.05 and 0.005. For each ρ, u varies from 5,000
to 30,000. Fig. 10 illustrates the comparison in terms of
transmission bits among ETOP, PIC and LB. We observe
that PIC significantly outperforms ETOP in all scenarios by
significantly reducing the transmission bits. For example,
when ρ = 0.5, u = 10, 000, the number of transmission
cost of ETOP is 186, 710 bits, while PIC and LB transmit
132, 849 bits and 118, 158 bits, respectively. Compared with
ETOP, PIC reduces the transmission bits by 28.8%, and is
only 1.13 times that of LB. This improvement is due to the
high efficiency of the minimal perfect hashing filter used
by PIC. Another observation is the gap between ETOP and
PIC increases with the increase of ρ. For example, when
ρ = 0.005 and u = 10, 000, PIC is 44.3% faster than ETOP
and is only 1.29 times of the lower bound. The gap between
ETOP and PIC becomes larger with the increases of u. And
the gap between PIC and ETOP also becomes larger with
the decreases of ρ.

Next, we set ρ = 0.05 and set l to 1 bit, 8 bits and 32
bits, respectively. For each value of l, we change the number
of the total tags from 5, 000 to 30, 000. As shown in Fig. 11,
the gap between ETOP and PIC decreases as the increases
of l. For example, when we set l = 1 and u = 25, 000,
PIC is 51.3% faster than ETOP, whereas, when l increases
to 32 bits, PIC only saves 26.5% in terms of transmission

cost. This observation matches our expectations because our
technique mainly improves the efficiency of deactivating
non-target tags. With the increases of l, the overhead of re-
porting information is increased, thus accounting for a larg-
er proportion of total overhead. As a result, the overhead
of deactivating non-target tags accounts becomes relatively
small. The benefit brought by PIC naturally has less effect to
the total execution time.

Finally, Fig. 13 compares the stability of PIC and ETOP.
We set u = 20, 000, ρ = 0.05 and execute each protocol
300 times. Unsurprisingly, PIC always outperforms ETOP.
The variation in time of ETOP is mean ± 9.3%, and the
variation in time of PIC is only mean ± 3.8%. The worst
performance of PIC is 64% of ETOP, that is, PIC has a more
stable performance compared with ETOP.

9 CONCLUSION

This paper studies the problem of target tag information
collection in large-scale RFID systems, and proposes a novel
protocol called Perfect hashing-based Information Collec-
tion (PIC). Compared with prior work, PIC can completely
prevent the interferences from non-target tags and also
avoid the collisions among target tags in a more efficient
way. To minimize the transmission cost of PIC, we propose
sufficient theoretical analyses to optimize the parameters
that have significant impact on its time-efficiency. Extensive
simulations are conducted to evaluate the performance of
the PIC protocol. The simulation results demonstrate that
PIC significantly outperforms the state-of-the-art protocol
and its transmission overhead is very close to the lower
bound on the required execution time.
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