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Abstract—This paper studies the problem of data collection
in sensor-augmented RFID networks: how to quickly obtain the
error-bounded data from sensor-augmented RFID tags. Existing
data collection protocols require all tags to transmit their sensor
data to the reader, which incurs a significant transmission
overhead in the star-shaped RFID network. To greatly reduce
the transmission overhead, this paper proposes a new Sampling-
based Information Collection (SIC). By exploring the correlation
of sensor data, SIC estimates an error bound based on some
randomly-sampled data and the user-defined error threshold.
The data within the error bound has no need to be transmitted
to the reader, thereby reducing the transmission overhead. We
address two challenges to minimize the execution time of SIC,
including how to optimize the sample size and frame size. We
conduct extensive simulations to evaluate the performance of
SIC and compare it with three major related work. The results
demonstrate SIC is 1 to 10 times faster than the state-of-the-art
solutions.

I. INTRODUCTION

Sensor-integrated Radio Frequency Identification (RFID)
tag technology enhances the ability of tags for providing
the sensor data to the reader. This feature benefits a lot of
applications where more detailed conditions of the products
are required. For example, Sensor-integrated tags can be used
to monitor the temperature of high-risk foods where bacteria
may multiply if the food is stored at the wrong temperature.
By monitoring the food’s temperature along with the time
dimension, we can analyze whether the food is polluted by
the bacteria.

With the rapid growth of RFID deployment, efficient data
collection from the massive amount of tags is attracting more
attention. Nowadays, there are two types of data collection
protocols: universal-set collection [1], [2] and certain-set col-
lection [3]. Both approaches have their merits. Universal-set
collection protocols return the data of all the tags but are
comparatively slower. Certain-set collection protocols [3] are
faster but only return the data of some user-defined tags. At
the core of these protocols are resolving collisions among
tag responses. The commonly used techniques are multiple-
hashing [1], Bloom filter [2] and some variants of Bloom
filter [2].

There are two fundamental limitations of existing protocols.
The first limitation is that existing protocols require complex
on-tag computations such as calculating specialized hash func-
tions and parsing a long bit vector, which increases the price
of the tag and is far from the Gen2 standard [4]. The second

limitation is that universal data collection still occupies the
channel too long and blocks other time-sensitive operations
such as missing tag identification. The fundamental reason is
too many tags need to transmit their data to the reader through
a low-rate channel.

A. Problem Statement & Proposed Approach

This paper addresses the problem of error-bounded data
collection in RFID systems. It can be formally defined as
follows: Let I = {i1, · · · , iNI

} represent the set of IDs of the
integrated tags and XI = {xI

1, · · · , xI
NI

} be the sensor data
of integrated tags. Knowing exactly IDs in I , our objective
is to design an efficient data collection protocol using which
a reader should quickly obtain all the sensor data XI with
the error threshold ϵ, which means the data obtained by
the reader, X̂I = {x̂I

1, · · · , x̂I
NI

}, should meet the following
requirements: |x̂I

j −xI
j | < ϵ, ∀ij ∈ I . The granularity provided

by such error-bounded data is more than sufficient, especially
considering that the sensors are rarely 100% accurate.

Error-bounded data collection problems have been widely
studied in the wireless sensor network literature [5], [6].
Existing solutions usually utilize temporal, spatial or data
correlation to predict the sensor data. However, we cannot
apply these solutions in RFID network due to the extremely
simple tag architecture. As the cost is the barrier for promoting
RFID, a tag should be as simple as possible. The prediction
models, that are required by the existing solutions, are too
complex to be implemented on tags. Besides, tags cannot
communicate among themselves, which also invalidates most
of existing solutions.

In this paper, we propose a Sampling-based Information
Collection (SIC) protocol. Based on some randomly-sampled
data, SIC can estimate an error bound within which all the
data has no need to be transmitted to the reader and can be
approximated by a common value. Intuitively, to achieve this
goal, SIC needs to choose an appropriate estimation model,
which is the central theme of this paper. Besides, to reduce
the modification to current devices, SIC uses the frame slotted
ALOHA protocol specified in the Gen2 standard [4] as its
MAC layer communication protocol. It consists of five steps
as follows: First, the reader initializes a time frame, during
which each tag randomly chooses a slot to transmit to the
reader. The time frame is terminated until the reader obtains
the satisfactory number of sampled data. Second, using these



data samples, the reader is able to estimate the error bound
based on the appropriate estimation model. Third, the reader
inform tags of the estimated error bound, and the tags within
the error bound are deactivated. Fourth, the reader initializes
another time frame to collect data out of the error bound. Fifth,
the reader uses the approximation value to replace the data of
tags within the error bound.

There are two key challenges in our work. The first chal-
lenge is the degree to which the precision of the estimated error
bound. An accurate error bound can minimize the number of
tags out of it, thereby reducing the overhead of outlier data
transmission. On the other hand, the accurate error bound is
obtained at the cost of a large sample size, which means a large
overhead of sample data collection. We explore a trade-off in
this regard and solve an optimization problem of minimizing
the total transmission time. The second challenge is to estimate
the number of data out of the error bound, which is required
to optimize the frame size for minimizing the execution time.
To address this challenge, we apply a light-weight estimation
algorithm based on the sampled data without bringing extra
communication overhead.

B. Our Contribution

Our major contributions can be summarized as follows:
• We propose a Sampling-based Information Collection

(SIC) protocol, which significantly compresses the trans-
mission overhead by collecting the error-bounded data of
the tag.

• We present a deep analysis on the optimization of core
system parameters, including sample size and frame size,
thereby minimizing the execution time of SIC.

• We evaluate the proposed protocol and compare them
with several universal-set collection protocols, including
Gen2, MIC [1] and BIC [2]. The simulation results
demonstrate that SIC is 1 to 10 times faster than the
state-of-the-art protocols.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the system
model and background knowledge. Section IV presents the
detailed design of the SIC protocol. Section V introduces the
estimation model of SIC. Section VI investigates the parameter
optimization to minimize the execution time of SIC. Section
VII evaluates the proposed protocol. Finally, Section VIII
concludes this paper.

II. RELATED WORK

Reading data from RFID tags is the most fundamental prob-
lem in RFID research. For example, in various of applications,
the reader is required to collect 96-bit IDs from tags for
identification, authentication and inventory verification pur-
poses. The prior research can be classified into two categories:
Aloha based [7]–[9] and Tree based [10], [11]. It is also the
basic of other specific protocols designed for certain goals,
such as missing tag detection [12], localization [13]–[15], tag
search [16], [17], inventory management [18]–[20] and object
tracking [21]–[23].

Recently, collecting more general, non-ID information from
RFID tags attracts much attention as the development of senor-
integrated tags. Chen et al. proposed a Multiple Hash infor-
mation Collection protocol (MIC) in [1]. MIC significantly
improves transmission efficiency by applying multiple hash
functions to resolve the tag collisions in the frame slotted
Aloha protcol. To handle the information collection problem
in multiple reader scenario, Zhang et al. [2] proposed a Bloom
filter-based protocol (BIC). BIC can fast identify the tags in
every region of the reader by using Bloom filter. Then, each
of them is able to fast read the information of tags in its own
region by leveraging a well-designed anti-collision technique.
Instead of collecting information from all tags, Yan et al.
[3] proposed a Tag-ordering protocol (TOP), which aims at
collecting information from a specific group of tags.

TABLE I
KEY NOTATIONS.

Notations Descriptions
I/M/O/U the set of integrated tags; sample tags; outlier tags; ordinary tags

N∗ the size of set ∗, ∗ can be I/M/O/U

| · |/|̂ · | set size; the estimated set size;
N(·)/U(·) normal distribution; uniform distribution

ϵ threshold of tolerable error
T1/T2 two kinds of waiting time in Gen2 protocol
TM/TO time for sampled data/ outlier data collection

p/p̂ the proportion of ordinary tags/ the estimated p
XI integrated information set XN = {xI

1, · · · x
I
NI

}
XM sample information set XM = {xM

1 , · · · xM
NM

}
XO outlier information set XO = {xO

1 , · · · xO
NO

}
XU ordinary information set XU = {xU

1 , · · · xU
NU

}
Q parameter controls the length of time frame f = 2Q

Q1/Q2 the optimal Q in the sample/outlier collection step
r̂ approximation of data fills in error bound
E maximum error of 95% confidence interval of p̂

III. SYSTEM MODEL

A. Model

Assume a single reader is deployed in the RFID system.
Equipped with multiple antennas, the reader has the ability
to cover the whole monitoring area. The reader is connected
to a host that has a database storing all the IDs of tags in
the system. Each tag integrates with a sensor for measuring
some physical parameters of the surrounding environment. The
reader remotely powers up a population of tags and applies
the Gen2 protocol to read their identification and information.
Table I lists the symbols used in this paper.

B. Gen2 Anti-collision Protocol

As our solution adopts Gen2 protocol for anti-collisions, the
process of Gen2 is detailed in this subsection. As shown in
Fig. 1, the protocol begins with a Query command, which
is issued by the reader to start a frame of f slot. The frame
size f is determined by a integer Q (range from 0 to 15)
embedded in the Query command. Receiving this command,
each tag generates a randomly number range from 0 to 2Q−1
to store on the slot counter. The tag whose slot counter equals
to zero, respond to the reader immediately. It backscatters a



16-bit random number (RN16) within T1 time, otherwise, this
slot is skipped by the reader. Once received the RN16, the
reader issues an ACK command embedded with the received
RN16 within T2 time for acknowledgement. If the RN16 is
lost due to channel error or collision, the reader respond a NAK
within T2 time. Once received ACK containing its RN16, the
tag responds its identification (96-bit EPC ID), along with the
control information PC and the error detection code CRC-16
within T1 time.

Reader

Tags

Fig. 1. Handshaking between the reader and the tag in Gen2 protocol.

To enquire on tag data, the reader issues a Req_RN com-
mand within T2 time after receiving tag’s ID. The RN16 is
also embedded in this command. Once received this command,
the tag with the same RN16 sends a 16-bit handle to
the reader, within T1 time. Then, the reader issues a Read
command embedded with the received handle , within T2

time. When receiving the Read command, the tag with the
same handle responds its data within T1 time. At this point,
a successful information collection transaction cycle in a slot
is done, the reader issues a QueryRep command within T1

time that instructs tags to decrement their slot counter by 1 to
start the new slot transaction cycle to repeat the above process.

During the time frame, the value of Q is updated according
to the number of responses in each slot. The reader holds
an integer Q and a float Q′ in its memory, which is all set
to the initial value Q0. Let △ be the adjusted step length
defined by the user. If the reader receives multiple responses
in the current slot, it updates the Q′ by calculating Q′ =
Q′+△; if the reader receives no response in the current slot, it
updates Q′ by Q′ = Q′−△; otherwise Q′ remains unchanged.
Once ⌊Q′⌋ ̸= Q, Q is updated to ⌊Q′⌋, and the reader issues
QueryAdjust command that instructs tags to recompute the
slot counter based on the updated Q.

Our protocol builds on Gen2 protocol because it is reliable
and is able to handle transmission errors such as packet loss
and bit-error, which are inevitable in practice due to white
noise or path loss. Besides, Gen2 is supported by off-the-shelf
RFID devices, which makes our protocol can be applied to the
current devices with slightly hardware modification.

IV. PROTOCOL DESCRIPTION

In this section, we present a detailed description of the five
steps of the proposed Sampling-based Information Collection
(SIC). Fig.2 gives a high overview of SIC. The following
assumptions are made: a) The reader and the host is connected
with a high speed link, being regarded as a whole. b) The

reader has limited resource to carry out simple computation.
At each execution turn, the steps that are done by the reader
are as follows:

1) Use Gen2 protocol detailed in Section III to collect
sampled data XM from randomly picked NM tags. The
reader first initializes a time frame of NI slots, where NI

is the number of integrated tags. Each tag responds to
the reader in a slot whose index is the least significant Q
bit of the random number generator RNG on tag, where
Q is a integer computed by Q = ⌊log2(NI)⌋. Only
the responses in the singleton slot (i.e., the slot without
collisions) can be successfully received by the reader.
When the number of received samples reaches NM , the
reader terminates the Gen2 execution. The sample tags
M are deactivated and do not respond to the reader in
the following step.

2) Compute the error bound based on the data samples
XM and error threshold ϵ. Let r̂ be the approximation
of the data fills in the error bound. The error bound is
represented by [r̂− ϵ, r̂+ ϵ]. r̂ is computed based on the
estimation model, which is detailed in the next section.

3) Tell tags whether they are within the error bound [r̂ −
ϵ, r̂+ϵ] by broadcasting a Select command embedded
with the upper-bound r̂ + ϵ lower-bound r̂ − ϵ. The tag
whose data within the error bound is called ordinary tag
which is represented by U and the tag whose data out of
the error bound is called outlier tag, which is represented
by O. The ordinary tags in U are deactivated and do not
respond to the reader in the following step.

4) Collect data of outlier tags O. The reader initializes a
time frame of NO slots, where NO is a estimated number
of outlier tags, which is computed based on the data
samples. The frame is terminated until all the tags have
been deactivated.

5) Complement the data of tags in U . As the reader knows
the IDs of integrated tags I , sample tags M and outlier
tags O after the above four steps, it also get the IDs of
ordinary tags U based on the equation U = I−M −O.
The data of these tags is approximated with r̂ because
they are within the error bound.

The actions followed by the tags are relatively sample, each
tag only needs to respond to the reader in the first, third and
fourth steps, the detailed process are as follows:

1) Report its information to the reader (identical to Step 1
above) compliance with Gen2 protocol.

2) Determine whether it is within the error bound by
checking two criteria: 1) xI

j < r̂− ϵ and 2) xI
j > r̂+ ϵ,

where xI
j is the sensor data of tag ij . If a tag meets none

of the above criteria, it is an ordinary tag, which can be
approximated by r̂ according to the user’s requirements.
Therefore, these tags can be deactivated. (identical to
Step 3 above)

3) Report its data to the reader if it is out of the error
bound (identical to Step 4 above) compliance with Gen2
protocol.
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Fig. 2. Workflow of SIC, which consists of five step that are sequentially executed

V. ESTIMATION MODEL

Our solution to compress the data transmission is based on
the insight that if we can bear error-bounded data, we can
estimate a error bound [r̂− ϵ, r̂+ ϵ] that covers the maximum
number of data values, and use r̂ to replace their exactly value
on the reader side, thereby reducing the data transmission of
these tags. The estimated error bound is computed based on
the sampled data XM , which is collected in the first step of
our protocol.

A. Estimation Algorithm
To maximum the number of tags within the error bound, we

adopt a proportion estimation model to derivate the optimal
[r̂ − ϵ, r̂ + ϵ] that maximum the proportion of data lies in
it. The detailed process is shown in Algorithm 1. Assume
the data samples XM = {xM

1 , ..., xM
NM

} are sorted in order
of increasing. At first, we set the lower-bound to xM

1 , and
use count to record the number of samples within the error
bound [xM

1 , xM
1 + 2ϵ]. If count is larger than max, we

update max with count and record lower-bound lb as xM
1 .

Then, we sequentially set the lower-bound of the interval to
xM
2 , ..., xM

Nm−max, and update max = count and lb = xM
i if

the number of tags within [xM
i , xM

i +2ϵ] (2 ≤ i ≤ Nm−max)
is larger than the current max. Finally, the algorithm return
the final lower-bound lb, upper-bound ub and the estimated
proportion p̂.

B. Theory Analysis
The theory foundation of proportion estimation model lies

in statistical sampling: given a uniform sample from a finite
population, what is the proportion estimation’s error bound?
The approach described in the above is valid whenever the
following two conditions are met:

Algorithm 1: Estimating the error bound

Input: Sorted Sample data XM = {xM
1 , ..., xM

NM
} and

the error threshold ϵ
Output: The error bound [lb, ub] and proportion p̂
max=0;
for i=1; i ≤ Nm; i++ do

count=0;
for j=i; xM

j ≤ xM
j + 2ϵ; j++ do

count++;
end
if (count ≥ max) then

lb =xM
j ;

max=count;
end
if (max ≥ Nm − i) then

return lb = xM
j , ub = xM

j + 2ϵ, p̂ = max/NM ;
end

end
return lb = xM

j , ub = xM
j + 2ϵ, p̂ = max/NM ;

• The sampling method is simple random sampling, and
the probability of success is the same for each trial.

• The sample is sufficiently large. According to a frequently
used thumb, the size is reasonable as long as Nm × p̂ >
0.5 and Nm × (1− p̂) > 0.5

Let p denote the proportion of ordinary tags fills in the error
bound. As NI ≫ NM , the sampling process in our protocol
can be regarded as a Bernoulli process.

Theorem 1 The Uniformly Minimum Variance Unbiased Es-



timation for p is p̂, the sample proportion p̂ = max
NM

.

Proof: Let f(max; p,Nm) be the probability of obtaining
max ordinary tags in Nm sampled data, it can be expressed
as:

f(max; p,Nm) =

(
Nm

max

)
pk(1− p)Nm−max (1)

The expectation value of p̂ is therefore given by

E[p̂] =

m∑
k=0

p× f(max; p,Nm)

= (1− p)Nm × (
1

1− p
)Nm × p = p

(2)

Therefore, p̂ is an unbiased estimator of p. The variance of p̂
can be represented by V ar(p̂) = p(1− p)/NM , which equals
to the Cramr-Rao lower bound for the variance of unbiased
estimators of p. Hence, p̂ is the Uniformly Minimum Variance
Unbiased Estimation (UMVUE) of p.

VI. PARAMETERS ANALYSIS

Recall from the previous section that the major overhead
of SIC is the data transmission between reader and tags. To
minimize the execution time, we may reduce the number of
responding tags or improve the efficiency of the time frame,
which can be achieved by optimizing sample size and time
frame, respectively.

A. Optimization of Sample Size

The sample size Nm is a key parameter that determines
the number of responding tags and affects the execution time.
If NM is too large, the estimated error bound is accurate
but incurs a large overhead of collecting sampled data. On
the contrary, if NM is too small, the estimated error bound
is unreliable, which may cover less ordinary tags and incur
a large overhead of collecting outlier tags. Essentially, the
sample size NM trades off between the time costs of sample
collection and outlier collection. To optimize NM , we first
calculates the time for collection sample tags TM and outlier
tags TO, respectively. Then, we formulate and solve a con-
straint optimization problem with minimizing TM + TO.

1) Overhead of Sampling: Consider that the transmission
overhead is always proportional to the number of collected
tags, the key challenge is translate into minimize the number
of sample tags and the outlier tags. The approximation of
estimated p̂ is usually justified by the central limit theorem.
The expression is:

p̂± z1−α

√
p̂(1− p̂)

NM
, (3)

where z1−α is the 1 − 1
2α quantile of a standard normal

distribution, α is the error quantile ranges from 0 to 1. When
α = 5%, z1−α = 1.96, and the error of the estimator p̂ is
E = 1.96

√
p̂(1−p̂)
NM

with 95% confidence level. Given an a
specific E, we can derivate the required sample size as follows:

NM = 1.962 × p̂(1− p̂)

E2
(4)

Therefore, the execution time of the sampling can be expressed
as TM = NM × t′, where t′ represents the average overhead
for collecting data from a tag.

2) Overhead of Collecting Outlier: If the estimated propor-
tion p̂ is exactly same with the actual p, the number of outlier
tags can be expressed as No = p̂× (NI −NM ). However, if
the sample size is to small, the error of p̂ can be extremely
large because an rough estimated error bound [r̂ − ϵ, r̂ − ϵ]
covers data of fewer tags. The maximum number of outlier
tags caused by inaccurate estimation is:

NO = (1− p+ E) (NI −NM ) (5)

The execution time can be expressed as TO = NO × t′

3) Joint Optimization: The total execution time is the sum
of TM + TO, which can be expressed as follows:

TM + TO = [NM + (1− p+ E) (NI −NM )]× t′

= [NM (p− E) +NI (1− p+ E)]× t′
(6)

Let f(E) be the (TM + TO)/t, we can get the following
equation by substituting (4) into the (6) and replacing p with
its approximation p̂:

f(E) =
1.962p̂(1− p̂)(p̂− E)

E2
+NI(1− p̂+ E) (7)

The derivative of f(E) with respect to E is:

∂f(E)

∂E
=

−192 p̂2 + 192 p̂3 +
(
96 p̂− 96 p̂2

)
E + 25E3 NI

25E3

(8)
Let g(E) be the numerator of the equation above, the equation
g(E) = 0 has at least one solution E among the real number.
Let a, b, c, d be the coefficients of g(E), we have a = 25NI ,
b = 0 c = 96p̂−96p̂2 and d = −192 p̂2+192 p̂3. To distinguish
the number of roots, we adopts the following discriminant:

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 (9)

Substituting a,b,c,d into (9), we have:

∆ = −4ac3 − 27a2d2

= 100NI(96p̂
2 − 96p̂)3 − 16875N2

I (−192p̂2 + 192p̂3)2

= 962 × 100NI × (p̂2 − p̂)2 × [(96p̂2 − 96p̂)− 675p̂2NI ]
(10)

As p̂2 − p̂ < 0, we have ∆ < 0, which means g(E)

has only one real root. Let A = 96 p̂3−96 p̂2

25NI
and B =

32 (p̂−1) p̂
√

p̂ (32−32 p̂+225 p̂ NI)/NI

125NI
, we can derive the root as

follows:

E = (A−B)
1/3

+
32p̂2 − 32p̂

25NI(A−B)1/3
(11)

The derivative of g(E) is:

∂g(E)

∂E
= 75E2NI − 96p̂2 + 96p̂ > 0 (12)

As g(E) is monotonically increasing according to (12), we de-
rive that g(E) < 0 when E < (A−B)

1/3
+ 32p̂2−32p̂

25NI(A−B)1/3
and



g(E) > 0 when E > (A−B)
1/3

+ 32p̂2−32p̂
25NI(A−B)1/3

. Therefore

f(E) is minimized when E = (A−B)
1/3

+ 32p̂2−32p̂
25NI(A−B)1/3

As E and p̂ are unknown parameters before collecting
sampled data. Our protocol has to dynamic compute their value
during the sample collection step. The data is processed in
pipelined execution, estimating the proportion p̂, calculating
the optimal E and updating the sample size after each 10
sampled data is collected. The collection process is terminated
until the number of collected sample tags exceed the latest Nm

B. Optimization of Q

In addition to the optimization of sample size. How to
set the appropriately frame size is a remaining problem for
minimizing the execution time of SIC. Many of prior work
has proved that the efficiency of the time frame is maximized
when the frame size equals to the number of responding tags
[24]. As the frame size is controlled by a integer Q in Gen2
protocol, to coincidence with it, in this subsection, we present
how to set the optimal Q in each collection round.

In the step of collecting sampled data, the frame parameter
Q1 is set to ⌊log2NI⌋ because all the tags in I are ready to
respond to the reader. In the step of collecting outlier tags,
as only the tags out of the error bound respond to the reader,
the frame parameter Q2 is set to ⌊log2NO⌋. Recall from the
previous subsection, NO is not known in advance but can be
estimated based on the sampled data XM . Based on (5), we
have

Q̂2 = ⌊log2 (1− p̂+ E) (NI −NM )⌋ (13)

To evaluate the accuracy of estimator Q̂2, we calculate the
variance of it. Assume the sampled data are randomly picked,
each picking can be regarded as independent. Recall that the
variance of p̂ can be expressed as p(1−p)/NM , which achieves
the maximum value when p = 0.5. Therefore, the variance
of p̂, V ar(p̂) ≤ 1

4NM
. Then, we can derivate the variance

of estimated NO, V ar(N̂O) ≤ (NI−NM )2

4NM
. Using the Taylor

series to approximate the moments of the transformed random
variable, we can get the following relationship:

V ar(Q̂2) ≈
[
∂ log2(NO)

∂NO

]
× V ar(N̂O)

≈ V ar(N̂O)

(ln 2×NO)2
≈ 1

2NM (1− p̂)2

(14)

C. Impact of Channel Errors

In the real-world environment, the communication channel
is error-prone. The white noise may corrupt the message
exchanged between the reader and tags, e.g., 0 becomes 1 or
1 becomes 0, which is called bit error. More seriously, some
message are even not detected at all due to the path loss. Most
of the literature focuses on minimizing the transmission bits
or execution time of the protocol. They usually adopt a time
efficient data structure, e.g., Bloom filter which is broadcast to
the tags. The data structure is required to be correctly received
by all tags in the system. However, it is a stringent requirement
due to the unavoidable channel errors.

Our protocol inherits the error handing mechanism of Gen2
[4], which packages a CRC(Cyclic Redundancy Code) along
with the transmission data. The receiver detects the bit error
by verifying the CRC of received message. If it fails the
verification of CRC, the whole message is been dropped. The
receiver considers it receives a invalid command and follow
the action detailed in Gen2 standard [4]. In most cases, if the
receiver is a tag, it resets a slots and waits for the subsequent
commands; if the receiver is a reader, it terminates the current
slot and starts a new slot. Similarly, if the receiver do not
receive the message after a period, it takes the similar actions
as receiving a invalid command.

Dropping the error message protects the correctness of
received messages, but incurs a lot of retransmissions, which
prolongs the execution time of our protocol. The increased
time is from the following two aspects: First, the path loss
and bit errors lead to the infinitive a part of singleton slots,
the reader has to start new slots to communicate with tags in
these slots which increases the execution time. Second, some
ordinary tags may miss the command for classifying outlier
tags. These ordinary tags cannot be deactivated and increase
the number of tags to be collected, thereby increasing the
execution time.

D. The Accuracy of SIC

A major concern of SIC is that it improves the time-
efficiency by sacrificing the accuracy of collected data. How-
ever, such concern is unnecessary due to the following two
reasons: First, SIC indeed sacrifices the precision of some data
(i.e., data in XU ). However, these data is most common in
the system, which generally refers to the normal condition,
containing litter valuable information for objects managcing
and tracking. Therefore, this approximation is acceptable in
most cases. On the contrary, data of outlier tags XO, that
is generally regarded important and valuable, can be collect
without losing cprecision.

Second, the accuracy of data measured by sensor may not be
high due to the internal error. As the large-scale RFID system
requires a mass of tags, which makes the user extremely
sensitive to the tag price, the tags are most likely to be in-
tegrated with low-price sensor that provides limited precision.
Therefore, the sensor data is inherently approximation of the
exactly value.

VII. EVALUATION

In this section, we implement SIC in python and evaluate
its performance by simulations. A large number of simulations
were carried out to evaluate the performance of SIC. At first,
we generated a series of data sets that follow different data
distribution to show its effect on the execution time of SIC.
Then, we varied the error threshold ϵ to test the performance
of SIC. Next, we varied E, which determine the sample size
to show the importance of optimization. Finally, the fourth
simulation set the packet loss rate to be fixed at 0%, 1.25%,
2.5%, 5%, 10%, 20%. For each error rate, the corresponding
execution time was recorded. Besides, we also implement three
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Fig. 3. The performance of SIC over data set with different normal distribution

prior protocols in python, namely Gen2 [4], MIC [1] and BIC
[2], and compared their performance with SIC side by side.

A. Simulation Settings

In our simulation, the communication parameter settings
follow the specification of the Gen2 standard [4]. We assume
the length of the information ready to be collected is 16
bits. The transmission rate between the reader and tag is
equivalent, both 40kb/s, namely, it costs 25us to transmit one
bit. Let Tpari be the backscatter-link pulse-repetition interval,
the waiting time between reader transmission and tag response,
and the waiting time between tag transmission and reader
response are T1 = 10Tpari and T2 = 3Tpari, respectively.
Because Tpari ≈ 25us, we have T1 = 250us, and T2 = 75us.
Without specific introduction, the results in the following
tables and figures are the average time of 100 turns.

B. Effects of Data Distributions

Data distribution is the major factor that determines the
effectiveness of SIC. In this subsection, we evaluate the perfor-
mance of SIC over data sets with different distribution. First of
all, as shown in Fig. 3, we generate five data sets whose values
follows normal distribution N(25, 0.5), N(25, 1), N(25, 2),
N(25, 3) and N(25, 4), respectively. Each data set has the
same size: 10K. Each value represents the sensor data of
a tag. We run SIC (ϵ = 1) 100 times based on these data,
and the execution time is shown in Fig. 3. Obviously, SIC
has a better performance when the data distribution has a
smaller standard error. For example, when data set follows
the distribution N(25, 1), SIC takes less than 30s to collect
all data from tags. By comparison, when data set follows the
distribution N(25, 4), the time cost increases to more than 75s
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Fig. 4. The performance of SIC over data set with different uniform
distribution

This is because the former data set has a small standard error,
which means the data is concentrated in a narrow range. As a
result, a fixed length error bound is able to cover more tags,
thereby reducing the execution time of collecting outlier tags.

Besides, we also test the performance of SIC over data
sets follows uniform distributions U(20, 25), U(18, 27) and
U(15, 30). The data set has the same size:10K and is shown
in Fig. 4. The execution time of the SIC is shown in Fig. 4. It
illustrates that execution time of SIC is longer with a narrower
range of uniform distribution. The underlying reason is the
same as the last experiment.

C. Effects of Error Threshold ϵ

SIC is the only protocol that provides data with varying
degree of precision guaranteeing. We assume there are 5K
tags whose data value follows a normal distribution N(25, 1),
we vary the error threshold of the sensor data to test the
performance of the SIC. The results are shown in Fig. 5. We
find that the execution time is decreased with the increases
of ϵ. Specifically, SIC costs more than 120s to collect data
when ϵ = 0.25 but a remarkable reduction of execution time
is found when ϵ = 4, where SIC only takes 8s to collect
all the data. The above results reveals that SIC has a better
performance when we can bear a larger ϵ. This is not doubt,
because the larger error tolerance always means more tags
can be approximated by the estimated value and fewer outlier
tags need to be collected. An extreme setting is ϵ = 0, which
means the user rejects any approximation. Then, SIC works
as a traditional Gen2 and brings none benefits.
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Fig. 7. Execution time of SIC with different packet
loss rate.

TABLE II
THE STATISTICS OF EXECUTION TIME (SECONDS) ON DIFFERENT

PARAMETERS SETTING

E Mean Standard deviation Min Maximum
4 69.49 21.98 48.29 141.51
2 55.77 10.66 48.35 110.54
1 51.34 3.60 48.40 67.89

1/2 49.84 0.84 49.08 54.54
1/4 52.38 0.36 51.99 53.38
1/6 57.10 0.17 56.75 57.38
1/8 63.81 0.15 63.59 64.10
1/10 72.48 0.14 72.24 72.74

D. Effects of proportion error E

Recall from Section VI, E significantly affects the execution
time of collecting sampled data and outlier tags. In this
subsection, we assume there are 5K tags whose data value
follows the distribution of N(25, 1) and the required error
threshold ϵ = 1. We vary E from 4 to 1/10. Referring to
Fig. 6, we note that the execution time is first decreased and
then increased with respect to E. This is because a larger
E (e.g., E = 4) results in inaccurate estimated value, which
covers fewer tags and increases the execution time. On the
other hand, if E is too small (e.g., E = 1/8), the required
sample size significantly increases, more samples need to be
collected, which also increases the execution time. Therefore,
we need to choose an appropriate E to minimize the execution
time as we discussed in Section VI.

Table II gives a more detailed comparison of execution time
of SIC with different E. It is obvious that with the decreases of
E, the standard deviation of execution time is reduced, which
means the stability of our protocol is increased. This is because
the estimation model returns the error bound with a less
deviation. Meanwhile, the minimum execution time increases
with respect to E. This is because even if the sample size is
small (i.e., E is large), it might return an good estimation of
the error bound with a small probability, in this case, SIC can
be extremely small. But it is unwise to set a large E because
the average execution time is significantly increases.

E. Impact of Unreliable Channel

As we analyzed in Section IV, the transmission errors
prolong the execution time of SIC. In this experiment, we

set n = 1K, ϵ = 1, E = 0.5 and the data distribution is
set to N(25, 1). The packet loss rate varies between 0% and
20%. As shown in Fig. 7, the execution time increases with
the increases of packet loss rate. We find moderate increase in
the execution time when the packet loss rate is less than 5%,
but the growth rate significantly increases when the packet loss
rate is over 10%. Compared with the 0% setting, the execution
time is doubled when the packet loss rate is equal to 10%
and is septupled when the packet loss rate is equal to 20%.
This is because the probability of successful transmission is
significantly reduced with the increases of the packet loss rate.
Thus, the tags have to retransmit so many times, which leads
to remarkable increase in the execution time.

F. Protocol Comparison with Prior Work

Tables III and IV compare the execution time of SIC with
recent whole-set collection protocols include Gen2 [4], MIC
[1] and BIC [2], where SIC (ϵ = 1) and SIC (ϵ = 2) means the
SIC with different required error threshold. We first assume
the measured data follows the N(15, 1) distribution and the
number of tags varies from 1K to 9K. As shown in Table
III, SIC significantly outperforms the state-of-the-art BIC. For
example, the execution time of SIC (ϵ = 1) is only 57.3%
of the time need by BIC, when the number of tags equals to
5K. SIC (ϵ = 1) further reduces the execution time, costing
only 9.4% of the time needed by BIC. Although the proposed
SIC uses traditional Gen2 protocol to collect data from tags,
it still outperforms MIC and BIC because SIC only needs to
gather information from a part of tags that consist of sample
tags and outlier tags. It is little surprise that SIC (ϵ = 1)
outperforms SIC (ϵ = 1) because the latter one can bear a
large error threshold, which reduces the number of outlier tags
to be collected.

TABLE III
EXECUTION TIME (SECONDS) COMPARISON WHEN THE DATA FOLLOWS

NORMAL DISTRIBUTION N(15, 1)

NI Cen2 MIC BIC SIC (ϵ = 1) SIC (ϵ = 2)
1K 14.67 9.60 8.61 5.69 1.51
3K 44.57 28.79 25.82 15.16 2.85
5K 74.59 47.98 43.04 24.66 4.05
7K 103.58 67.18 60.26 34.34 5.82



Then, we test the performance of SIC with irregular distri-
bution. The test dataset consists of 4K data follow N(17, 2)
and 6K data follows N(15, 1). Table IV shows that SIC still
outperforms the state-of-the-art protocol. However, SIC with
ϵ = 1 has very similar performance with BIC. This is because
the irregular distribution values are scattered. A narrow error
bound can only cover a small number of outlier tags, which
narrows the gap between the execution time of SIC and BIC.
However, SIC is still a better choice, because the low-layer
protocol adopted by SIC is Gen2, which is more reliable
and can handle transmission errors. SIC with ϵ = 2 still
outperforms other protocols, costing only 50.9% of the time
needed by BIC when the number of tags equals to 7K.

TABLE IV
EXECUTION TIME (SECONDS) COMPARISON WHEN THE DATA FOLLOWS

IRREGULAR DISTRIBUTION

NI Cen2 MIC BIC SIC (ϵ = 1) SIC (ϵ = 2)
1K 14.67 9.60 8.61 8.60 4.38
3K 44.57 28.79 25.82 24.50 13.71
5K 74.59 47.98 43.04 40.49 22.85
7K 103.58 67.18 60.26 57.19 30.69
9K 134.94 86.37 77.47 73.40 40.58

VIII. CONCLUSION

This paper makes the following three contributions. First,
we formally define a new practical problem of information
collection with a tolerance for a certain error. Second, we
propose an Sampling-based Information Collection (SIC) pro-
tocol, which adopts a sample estimator to compress the data
transmission. SIC significantly improves the time-efficiency in
comparison to the state-of-the-art solutions, while being able
to guarantee an arbitrary data precision. Third, we investigate
how to set the sample size and frame length to optimize
the execution time of SIC. Finally, extensive simulations are
conducted to evaluate the performance of the proposed SIC.
The results show that SIC is 1 to 10 times faster than the
state-of-the-art solutions.
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