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Abstract—This paper considers applying simultaneous
wireless information and power transfer (SWIPT) technique
to cooperative clustered wireless sensor networks, where
energy-constrained relay nodes harvest the ambient radio-
frequency (RF) signal and use the harvested energy to for-
ward the packets from sources to destinations. To this end, we
first formulate the energy-efficient cooperative transmission
(eCotrans) problem for SWIPT in clustered wireless sensor
networks as a non-convex constrained optimization problem.
Then by exploiting fractional programming and dual de-
composition, we develop a distributed iteration algorithm for
power allocation, power splitting and relay selection to solve
the non-convex optimization problem. We find that power
splitting ratio plays an imperative role in relay selection.
Our simulation results illustrate that the proposed algorithm
can converge within a few iterations and the numerical
analysis provides practical insights into the effect of various
system parameters, such as the number of relay nodes, the
inter-cluster distance and the maximum transmission power
allowance, on energy efficiency and average harvested power.

Index Terms—Power allocation, cooperative relaying, wire-
less information and power transfer, clustered wireless sensor
networks.

I. INTRODUCTION

Maximizing energy efficiency for data transmission be-
comes one of the most important design considerations
in energy-constrained wireless sensor networks (WSNs).
Moreover, in a clustered WSN, the relay nodes near
cluster heads (CHs) will deplete their energy rapidly due
to carrying out heavy tasks of data forwarding. Such
nonuniform energy consumption may easily cause the
network disconnected. It has been shown in [1] that co-
operative transmission is more effective to balance energy
consumption among nodes and improve energy efficiency
of data transmission in WSNs. Recently, there have been
some research efforts on developing cooperative schemes
in clustered WSNs [2]–[5], in which sensors within a
cluster relay data packets to nearby clusters using co-
operative communication. A key element of cooperative
transmission schemes is the selection and coordination of
cooperative nodes.

In the meanwhile, energy harvesting technology has also
been recognized as a promising cost-effective technique
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to maximize energy efficiency in WSNs. Unlike the con-
ventional energy harvesting technique, which scavenges
energy from the natural sources such as solar, wind and
thermal, wireless power transfer (WPT) is an emerging
energy harvesting technique, where sensors charge their
batteries from electromagnetic radiation [6]. In WPT,
green energy can be harvested through either strongly
coupled magnetic resonances or radio frequency (RF)
signals. The former requires that each sensor as an energy
receiver to mount a coil tuned to resonate at exactly the
same frequency as the coil on the energy transmitter [7]–
[10]. However, in practice, sometimes it is difficult to
mount a resonant coil in a small sensor. Moreover, energy
transfer based on magnetic resonances is usually activated
by near field induction from more powerful nodes (e.g.,
base stations and vehicles). Clearly, the application of this
technology has some limitations in certain applications
where there are no base stations near sensor nodes or the
vehicle cannot travel or migrate very close to sensors, such
as in wild forests and steep mountains.

On the other hand, compared to strongly coupled mag-
netic resonances, radio frequency (RF) signal can convey
both energy and information simultaneously. Thus it is a
promising energy source of wireless power transfer [11],
since it can achieve both wireless information transmis-
sion and energy transfer, even in a hostile environment.
Recently, a RF-based energy harvesting technique, called
simultaneous wireless information and power transfer
(SWIPT), becomes very appealing since it utilizes both
information and energy carried by RF signals at the same
time, and potentially offers great possibility to replenish
the energy of sensor nodes. The core idea of SWIPT is that
the receiver has two circuits to perform energy harvesting
and information decoding separately [12].

SWIPT as an appealing energy harvesting technique has
been applied to various types of wireless communication
networks [13]–[21]. In [13], Lee, et. al. considered the
application of SWIPT to cognitive radio networks. SWIPT
for multi-antenna systems also attracts much attentions
from researchers. In [14], Zhang, et. al. studied a three-
node multiple-input multiple-output (MIMO) broadcasting
system with SWIPT. Furthermore, Chen, et. al. extended
the work in [14] by considering SWIPT in large-scale
MIMO systems employing energy beamforming. In [16],
Xu, et. al. studied a multiuser multiple-input single-output
(MISO) broadcast SWIPT system. In [17], Chen, et. al.
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analyzed the tradeoff of wireless energy and information
transfer for limited-feedback multi-antenna systems. In
the meanwhile, the application of SWIPT in orthogonal
frequency division multiple access (OFDMA) systems has
gained the attention in academia. The resource alloca-
tion algorithm was designed in [18] for energy efficient
communication in OFDMA systems with SWIPT as an
optimization problem. Subsequently, Zhou, et. al. [19]
provided the optimal design for SWIPT in downlink mul-
tiuser orthogonal frequency division multiplexing (OFDM)
systems.

Energy harvesting in wireless cooperative networks is
particularly important as it can enable information relay-
ing. In [20], the problem of SWIPT in an amplify-and-
forward (AF) wireless cooperative network was studied. In
[21], Ding, et. al. considered the application of SWIPT to
wireless cooperative networks with one source-destination
pair and multiple energy harvesting relays. However, these
existing works did not consider how to optimally allocate
transmit power and provide power splitting ratio to max-
imize energy efficiency. Compared to existing works in
the literature, the contribution of this paper is that (i) we
address the problem of energy efficient data transmission
between clusters in WSNs by integrating RF-based SWIPT
with cooperative relay, and (ii) we provide the optimal
solution of power allocation, relay selection and power
splitting to maximize system energy efficiency.

In this paper, therefore, we consider applying SWIPT
to wirelessly charge the relay nodes with low energy in
clustered WSNs. The superiority of this scheme lies in
two aspects: (i) the network system can enjoy the benefit
of cooperative transmission using intermediate sensors as
relays in significantly saving energy; (ii) the relay nodes
can be powered by the harvested energy as the energy
compensation for data forwarding. This work aims at
determining the optimal transmission power and relay
selection, and finding the optimal power splitting ratio for
energy harvesting and information decoding so that the
system energy efficiency is maximized.

To this end, we first formulate the energy-efficient
cooperative transmission (eCotrans) problem for SWIPT
in clustered WSNs as a non-convex optimization problem
constrained by the minimum harvested energy, the min-
imum system data rate, and the maximum transmission
power. The non-convex optimization problem is solved by
an iteration algorithm which combines nonlinear fractional
programming and dual decomposition via appropriate ob-
jective function and optimization variable transformations.
It is worth noting that although we employ a similar math-
ematical method to that in [18], [28] for formulating and
solving the energy efficiency maximization problem, our
work in this paper is significantly different from the work
in [18], [28], which aimed at finding optimal policies of
power allocation, subcarrier allocation and power splitting
for energy efficiency optimization in OFDMA systems,
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Fig. 1. A clustered wireless sensor network with SWIPT consisting of
3 clusters.

instead of solving the problem of cooperative transmission
with relay selection and energy harvesting in clustered
WSNs.

Furthermore, we provide a distributed algorithm for
power allocation, power splitting and relay selection. In
particular, we find that power splitting ratio plays an
imperative role in relay selection and it depends on the
minimum harvested energy requirement. Finally, our sim-
ulation results demonstrate that the proposed algorithm can
converge within a few iterations and its energy efficiency
depends on the number of relay nodes and the inter-cluster
distance. More importantly, we observe that the maximum
allowed transmission power has a limited impact on av-
erage harvested energy. Compared to existing algorithms
without adopting energy harvesting or energy efficiency
maximizing, our proposed algorithm can achieve higher
energy efficiency and more remaining energy.

II. SYSTEM AND COMMUNICATION MODELS

In this section, we first introduce the system model and
communication model, and then formulate the optimiza-
tion problem for energy-efficient resource allocation in a
clustered WSN with SWIPT.

A. System Model

We consider a wireless sensor network consisting of
multiple clusters of sensor nodes and a sink node as shown
in Fig. 1, where sensor nodes are statically and randomly
scattered over the sensing field. Each sensor node has a
single antenna. The sink node is responsible for collecting
data from all the sensor nodes. The nodes within the
same cluster are distributed closely around the cluster head
(CH), and can cooperate on signal transmission and/or
reception. Suppose that the cluster head (CH) in a cluster
(the source) wants to transmit data to the CH of its nearby
cluster (the destination). Since the transmission distance
is relatively long between clusters, the source can first
broadcast the data to the member nodes in the cluster,
select the “best” relay from a set of potential cluster
member nodes, and then use this relay to aid the source-to-
destination communication. Clearly, the transmission is the
single-relay-selection cooperative communication scheme.
It is worth noting that the destination here refers to the
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Fig. 2. A block diagram of the receiver model with SWIPT.

CH of the source’s nearby cluster instead of its final data
sink node. In general, the CHs of two adjacent clusters
can communicate directly or by one-hop relay. If the sink
node is far away from the source, it may require multiple
hops.

To enable SWIPT, each CH works as both an in-
formation transmitter and a power transferrer. While a
source CH transmits data to its relay/destination node, in
practice, the RF energy is also transferred to the node. The
receiver harvests the RF energy from the source CH and
uses the energy to replenish its rechargeable battery as a
compensation for supporting the energy consumption of
forwarding. In particular, to concurrently decode informa-
tion and harvest energy from the received radio signals,
the receiver node is composed of a power splitting unit,
an energy harvesting unit, a conventional signal processing
core unit and a rechargeable battery, as shown in Fig.
2. Since the signal used for decoding the information in
the receiver cannot be used for harvesting energy due to
hardware circuit limitations [12], we employ a separated
information decoding unit and energy harvesting unit.

In this paper, we adopt a practical dynamic power
splitting (DPS) scheme, which is implemented by power s-
plitting unit at the receiver, to enable the receiver to harvest
energy and decode information from the same received
signal at any time. The core idea of the DPS scheme is that
a receiver i dynamically splits the received signal into two
power streams in the radio frequency (RF) front end with
power splitting ratio ρIi and ρEi as shown in Fig. 2, which
are used for decoding information and harvesting energy,
respectively, where 0 ≤ ρIi ≤ 1 and 0 ≤ ρEi ≤ 1. In order
to improve energy efficiency, we adopt the cooperative
communication scheme in a decode-and-forward (DF) and
time division relaying manner. As shown in Fig. 1, the
energy harvesting cooperative transmission is carried out
in two phase as follows.

Phase 1: The intracluster broadcasting transmission.
When a CH has data to transmit, it first broadcasts a
request-to-send (RTS) message to the cluster member
nodes (CNs) within the same cluster to contend for the
shared wireless channel. Once receiving the RTS message,
the member nodes reply a clear-to-send (CTS) message to
show being ready to communicate. These ready CNs also
belonging to the receiving cluster form the set of candidate
relays. After the RTS/CTS exchange, all candidate relay
nodes will calculate their priority according to some pre-

defined policies, which will be described in Section IV-D,
based on the available channel state information fed back
by RTS/CTS messages. The cluster member node with the
higher priority will transmit and “win” the competition to
serve as the relay for cooperative data transmission.

Phase 2: The intercluster cooperative transmission. Af-
ter the relay is determined, the source sends out data
to the relay/destination. The relay/destination first tries
to direct the received data flow to the signal processing
unit to decode and detect whether the minimum targeted
data rate is satisfied, following the DPS approach. If the
detection is successful and there is some energy left, the
remaining signal flows will be directed to the energy
harvesting unit, and the harvested energy will be used to
support relay transmission. Then the source and relays will
simultaneously transmit the packets to the destination (i.e.,
the CH of the receiving cluster).

The single-relay selection cooperative scheme is fully
distributed and easy to implement. The underlying reasons
are that it is much simpler than the multi-relay cooperation
[2]. The former only selects one “best” relay to forward
data while the latter requires the distributed space-time
coding or beamforming. In particular, the selected relay
can use the energy harvested to support relay transmission
so as to avoid its energy being drained.

B. Communication Model

We consider two types of transmission modes for wire-
less communications: direct transmission mode (DT) and
cooperative relay transmission mode (RT). Depending on
whether the relay is helpful, each source may work in
either the DT mode or the RT mode. Let Ps and Pr be
the transmission power of source s in Phase 1 and relay r
in Phase 2, respectively; Ns and Nd be the set of cluster
member nodes (CNs) of source node s (the CH in the
transmitting cluster) and the destination node d (the CH
of the receiving cluster), respectively. Then the candidate
relay set N = Ns ∩Nd. We assume that all the links are
symmetrical, i.e., the channel from node i to node j is
the same as the channel from node j to node i, and the
channel from the source to the relay/destination follows
quasi-static block fading. The channel is unchanged over
the block time T and independently and identically dis-
tributed from one block to the next, following a Rayleigh
distribution. The use of such channels is motivated by
prior research [12], [20]. We take a relatively short block
duration compared to the minimum coherence time of the
channel and interference such that both the channel and
interference can be treated as unchanged during each block
transmission. Let hsd and hsr, r ∈ N , denote the channel
gains between source s and destination d and between
source s and its relay r, respectively, hrd, r ∈ N , denote
the channel gain from relay r to destination d, and σ2

sd,
σ2
sr and σ2

rd denote the variances of the additive white
Gaussian noise (AWGN) in the corresponding channels.
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It is shown in [22], [23] that it is difficult to obtain
perfect channel state information (CSI) due to noisy chan-
nel estimation and the unavoidable delay between the
time channel estimation is performed and the time the
estimation result is used for actual transmission. Therefore,
we will consider imperfect CSI in this paper, i.e., the
receiver knows the value of CSI, and both the transmitter
and the receiver know the distribution of CSI, since
transmitting CSI information would lead to extra overhead
and considerable additional complexity.

To perform relay selection and power allocation, the
source can obtain the channel gains by the feedback of
the CTS message in Phase 1 via the dedicated control
channel. To elaborate, in practical implementation, during
the training period, i.e., RTS/CTS exchange in Phase 1,
before data transmission in the first time slot, the source
transmits training signals by RTS message so that the
relay and the destination measure the SR and SD channels
and get the corresponding channel gains, respectively. The
relay then transmits training signals in the second time slot
to the destination so that the destination measures the RD
channel and obtain its channel gain. The measured channel
gains can be fed back to the source by CTS message on
dedicated reverse control channels. Since all the links are
assumed to be symmetrical, the source can obtain the SR
and SD channel gains.

The normalized effective channel gains can be rep-
resented by asd = |hsd|2/σ2

sd, asr = |hsr|2/σ2
sr, and

ard = |hrd|2/σ2
rd, where hij = kijL−α

ij , Lij is the
distance between transmitter i and receiver j, α is a
constant path loss exponent and kij is a normalization
constant depending on the radio propagation properties of
the environment. As aforementioned, source s via direct
link would actively transmit data in both time slots while
source s via relay link would only transmit data in the first
time slot. Thus, the end-to-end data rate from source s to
destination d during the two phases is given by

Rsd =


B log(1 + ρIdasdPs), DT mode
B
2 min(log(1 + ρIdasdPs + ρIdardPr),

log(1 + ρIrasrPs)), RT mode,
(1)

where B denotes the base-band width and the rate is
scaled by 1

2 since the entire transmission takes two phases.
A criterion to decide the working mode of the source
in selective DF mode was given in [25], that is, using
relay is advantageous when min

(
ρIrasr, ρ

I
dard

)
> ρIdasd.

Otherwise, the relay keeps inactive in the relay phase.
In particular, the effect of best relay selection on the rate

for the RT mode is reflected by the following two aspects.
(1) Best relay selection as a single relay cooperative
scheme can avoid the complex mathematical expression
for data rate since compared to multi-relay cooperative
schemes, single-relay cooperation requires neither coop-
erative beamforming nor distributed space time coding
[3]. (2) Best relay selection can ensure that the candidate

relay that can provide the maximum data rate is always
selected as the actual relay of source s as shown in
relay selection subalgorithm in Section IV.D. Moreover,
the increase of the number of relays will increase the
cooperation overhead and degrade the energy efficiency
of cooperative communication, i.e., more cooperators may
lead to less energy-efficiency [26]. This also motivates us
to adopt the best relay selection.

We first consider the data rate Rsd in the RT mode.
Let Psd indicate the total transmission power between
source s and destination d in the two phases. As mentioned
in Section II-A, the harvested energy from the source is
used by the relay as the energy compensation of data
forwarding. This means that the harvested energy may not
be enough for data forwarding to ensure the minimum
data rate requirement, as shown in constraint C5. In this
case, the relay has to consume part of its own energy
for data forwarding. Therefore, the total consumed power
should be the sum of the transmission powers of the source
and the relay, i.e., Ps,d = Ps + Pr. If the harvested
energy from the source is sufficient for data forwarding,
then Ps,d = Ps. Clearly, the transmission power of relay
r, Pr, includes two parts: one is the harvested power,
denoted by Pr,harv , from the source, which is given by
Pr,harv = ηρEk Ps |hsk|2 [18], where 0 < η < 1 is the
energy conversion efficiency. The other is the power from
the relay itself, denoted by Pr,own. Therefore, we have
Pr = Pr,harv + Pr,own.

We can observe from (1) that the achievable rate is
maximized when the amount of decoded information at
the relay node is the same as the destination, i.e.,

1 + ρIdasdPs + ρIdardPr = 1 + ρIrasrPs. (2)

Together with Psd = Ps+Pr and Pr = Pr,harv +Pr,own,
we obtain Ps =

ρI
dard

ρI
rasr+ρI

dard−ρI
dasd

Psd,

Pr,own =
ρI
rasr−ρI

dasd−ρI
dardηρ

E
k |hsk|2

ρI
dard+ρI

rasr−ρI
dasd

Psd.
(3)

In the DT mode, we can easily obtain Ps = Psd and
Pr = 0. Let λsd be the equivalent channel gain given by

λsd =

{
ρI
rasrρ

I
dard

ρI
rasr+ρI

dard−ρI
dasd

, RT mode,
ρIdasd, DT mode.

(4)

Accordingly, by introducing a binary indicator ϑs, which
is 1 if source s transmits data in the DT mode, and 0 in
the RT mode, we can unify the data rate as

Rsd =
B

2
(1 + ϑs) log (1 + λsdPsd) . (5)

We can observe from (5) that as the equivalent channel
gain in (4) is directly proportional to power splitting ratio
ρI , increasing ρI can improve the unified data rate.

III. PROBLEM FORMULATION

In this section, we formulate the SWIPT based resource
allocation optimization problem for cooperative transmis-
sion, aiming to maximize system energy efficiency.
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A. Network Energy Efficiency

Let K denote the set of CHs in the network and |K| =
K, and N denote the candidate relay set for source s and
|N | = N . We assume ts,r is a binary indicator which
is 1 if relay node r is selected for forwarding data from
source s, and 0 otherwise. Next, we give the definition of
the weighted system throughput.

Definition 1 (Weighted System Throughput). The weight-
ed system throughput is defined as the weighted sum of the
data rates that all the sources deliver to the destinations
in the network and is given by

U(P, ρ, T ) =
K∑

s,d=1

N∑
r=1

αrts,rRsd [bit/s] (6)

where P = {Psd ≥ 0, ∀s, d ∈ K}is the power allocation
policy, ρ =

{
ρIi , ρ

E
i ≥ 0, ∀i ∈ K ∪N

}
is the power split-

ting policy and T = {ts,r ∈ {0, 1} , ∀s ∈ K, r ∈ N}.
Let αr denote a non-negative weight which accounts

for the priorities of different receivers to enforce certain
fairness and is specified by the application layer. In prac-
tice, proportional fairness and max-min fairness can be
achieved by varying the values of αr over time [24].

On the other hand, by considering the constant circuit
power consumption and the inefficiency of power ampli-
fier, we model the weighted power consumption as

UTP (P, ρ, T ) = KPCH +KNPCR +

K∑
s,d=1

N∑
r=1

εts,rPsd (7)

where PCH > 0 and PCR > 0 denote the constant circuit
power consumption in the CH and relay node, respectively.
Thus the first two terms indicate the total circuit power
consumption in the K CHs and all relay nodes. The last
term is the total power dissipation in the power amplifiers
of all sources and the corresponding relays. ε ≥ 1 is a
constant which accounts for the inefficiency of power
amplifier in the source and relay nodes.

Next, we give the definition of weighted energy effi-
ciency similar to [18].

Definition 2 (Weighted Energy Efficiency). The weighted
energy efficiency of the considered system is defined as the
total average number of bits successfully conveyed by the
sources and relays to the destinations per Joule consumed
energy and is given by

Ueff (P, ρ, T ) =
U(P, ρ, T )

UTP (P, ρ, T )
(8)

Compared to the energy efficiency in [18], the harvested
energy at the receiver is not taken as the replenishment for
the total system power consumption, which is because that
from the whole network system point of view, the total
energy of the whole system does not get replenished but
is recycled and transferred from one node to another so as
to achieve energy balance.

B. Optimization Formulation

As aforementioned in Section II, the power splitter splits
the received signal yr in ρIi : ρEi , such that the portion
of the received signal,

√
ρIi yr, is sent to the information

decoding unit and the remaining signal strength,
√
ρEi yr,

drives the energy harvesting unit. Using the signal received
at the input of the energy harvesting unit, similar to [20],
the harvested energy at receiver k from transmitter s
during a half of the block time, T/2, is given by

Qk = ηρEk ts,kPs |hsk|2 (T/2) (9)

where 0 < η < 1 is the energy conversion efficiency.
In this paper, we aim to provide the optimal power

allocation policy P∗, power splitting policy ρ∗, and re-
lay selection policy T ∗ such that the weighted energy
efficiency is maximized. To this end, the energy-efficient
cooperative transmission (eCotrans) problem for SWIPT
in clustered WSNs can be formulated as

OPT− 1 max
P,ρ,T

Ueff (P, ρ, T ) (10)

Subject to

C1 : Qk +QC,k ≥ Emin
k , ∀k ∈ K,

C2 :
N∑
r=1

ts,rPsd ≤ Pmax
sd ,∀s, d ∈ K

C3 : PCH + εts,rPsd ≤ Emax

C4 :
K∑
s=1

N∑
r=1

ts,rRsd ≥ Rmin,∀d ∈ K,

C5 :

N∑
r=1

ts,rRsd ≥ Rmin
d ,∀s, d ∈ K′,

C6 : ts,r ∈ {0, 1} , ∀s ∈ K, r ∈ N ,

C7 :

Nr∑
r=1

ts,r ≤ 1,∀s ∈ K, C8 : ρEmin ≤ ρEi ≤ ρEmax

C9 : ρImin ≤ ρIi ≤ ρImax, C10 : ρEi + ρIi ≤ 1, ∀i

where C1 is energy harvesting constraint which specifies
that the sum of the harvested energy Qk and the remaining
energy QC,k should be bounded by the minimum re-
quired energy transferred to receiver k, Emin

k . We assume
Emin

k ≥ QC,k so as to guarantee the harvested energy
Qk ≥ 0. Transmission power constraint C2 ensures that
the power radiated by transmitter s is upper bounded by
maximum transmission power Pmax

sd . Power consumption
constraint C3 restricts the maximum power supplied by the
source for supporting the power consumption on its circuit
and power amplifier to the maximum battery capacity
Emax. C4 is a quality of service (QoS) constraint for
the system that the aggregate network throughput should
satisfy the minimum system data rate requirement, Rmin.
Note that although Rmin is not an optimization variable
in this paper, we can strike a balance between energy
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efficiency and aggregate system throughput by varying its
value. C5 is the minimum required data rate Rmin

d for the
delay constrained services of receiver d, and is specified
by the application layer, and K′ denotes a set of receivers
having delay constrained services. C6 and C7 are relay
selection constraints which require that each relay node is
only allocated to at most one source exclusively. C6 and
C7 implicitly impose a fairness constraint, since each relay
node is only allocated to at most one source exclusively. In
other words, the relay allocated to a source is not allowed
to forward the data from other sources. This implies that
a weaker source also has a higher chance to be selected
as a relay. C8 specifies that the power splitting ratio for
harvesting energy is limited by the constant lower bound,
ρEmin, and upper bound, ρEmax. These bounds reflect the
limited capability of receivers in splitting the received
power. ρImin and ρImax in C9 denote the constant lower
and upper bounds of the power splitting ratio for decoding
information, respectively, where ρEmin+ ρImax = 1 and
ρEmax+ρImin = 1. C10 reflects that the power splitting unit
as shown in Fig. 2 is a passive device and no extra power
gain can be achieved during the power splitting process.

The key challenge in solving the optimization problem
OPT-1 in (10) is its lack of convexity due to the fractional
form of the objective function and the couplings of opti-
mization variables {P, ρ, T } in constraints C1-C5 and the
objective function.
C. Transformation of Objection Function

We now transform the objective function in OPT-1
problem in the fractional form into an equivalent one in
the subtractive form via nonlinear fractional programming
[27]. Without loss of generality, we define the maximum
weighted energy efficiency q∗ as

q∗ =
U(P∗, ρ∗, T ∗)

UTP (P∗, ρ∗, T ∗)
= max

P,ρ,T

U(P, ρ, T )
UTP (P, ρ, T )

(11)

We introduce the following important theorem for solving
the OPT-1 problem in (10).

Theorem 1. The optimal resource allocation policies
(P∗, ρ∗, T ∗) achieves the maximum energy efficiency q∗

if and only if
max
P,ρ,T

[U(P, ρ, T )− q∗UTP (P, ρ, T )]

= U(P∗, ρ∗, T ∗)− q∗UTP (P∗, ρ∗, T ∗) = 0 (12)

for U(P, ρ, T ) > 0 and UTP (P, ρ, T ) > 0

Proof: It follows from (6) and (7) that U(P, ρ, T ) > 0
and UTP (P, ρ, T ) > 0 are satisfied and Ueff (P, ρ, T ) is
well defined. The remaining proof can be completed by
following a similar approach to that in [28, Appendix A].

Theorem 1 reveals that for any optimization problem
with an objective function in fractional form, there exists
an equivalent objective function in subtractive form, e.g.,
U(P, ρ, T )−q∗UTP (P, ρ, T ) in the considered case, such
that both problem formulations lead to the same optimal
resource allocation policy.

D. Iterative Algorithm for Energy Efficiency Maximization

We now propose an iterative algorithm based on the
Dinkelbach method [27] for solving the optimization prob-
lem OPT-1 in (10) with the equivalent objective function
U(P, ρ, T )− q∗UTP (P, ρ, T ). The proposed algorithm is
described in Algorithm 1.

Algorithm 1 Iterative algorithm for OPT-1 problem
Input:
Itermax: maximum number of iterations;
ϵ: an infinitesimal number;
q: energy efficiency;
j: iterative index;

Output:
{P∗, ρ∗, T ∗}: optimal resource allocation policy;
q∗: maximum energy efficiency;

1: j ← 1, q ← 0;
2: while j ≤ Itermax do {Main Loop}
3: Solve the optimization problem in (13) for a given

q and obtain resource allocation policies {P, ρ, T }
4: if U(P, ρ, T )− qUTP (P, ρ, T )<ϵ then
5: return {P∗, ρ∗, T ∗} = {P, ρ, T } and q∗ =

U(P,ρ,T )
UTP (P,ρ,T )

6: else
7: Set q = U(P,ρ,T )

UTP (P,ρ,T ) and j = j + 1
8: end if
9: end while

Algorithm 1 can be described briefly as follows. In
each iteration of the main loop, we solve the transformed
OPT-2 problem in (13) for a given parameter q via dual
decomposition and obtain an alternative optimal policy
(P, ρ, T ) of power allocation, power splitting and relay
selection. Then we update parameter q and use it to solve
the main loop problem in the next iteration until the
condition U(P, ρ, T ) − qUTP (P, ρ, T ) < ϵ is satisfied,
which implies that the iterative algorithm converges and
the obtained allocation policy achieves optimum, i.e.,
(P, ρ, T )→ (P∗, ρ∗, T ∗).

The transformed problem (OPT-2) for given energy
efficiency q can be given by

OPT− 2 max
P,ρ,T

U(P, ρ, T )− qUTP (P, ρ, T ) (13)

Subject to constraints C1-C10.
Next, we verify the convergence of the iterative algo-

rithm in Algorithm 1.

Theorem 2. The proposed algorithm of energy efficiency
maximization in Algorithm 1 converges to the optimal
energy efficiency if the optimization problem (13) can be
solved in each iteration.

Proof: See Appendix A.
In fact, the transformed objective function has an in-

teresting pricing interpretation from the economy point of
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view. U(P, ρ, T ) indicates the system profit due to data
cooperative transmission while UTP (P, ρ, T ) represents
the associated cost due to energy consumption. The op-
timal value of q indicates a scaling factor for balancing
profit and cost.

Although the transformed optimization problem (OPT-
2) has an equivalent objective function in subtractive form
which is easier to handle, there are still two obstacles in
tracking the problem. First, ρIi and ρEi are coupled with the
power allocation variables in both the objective function
and constraints C1, C4 and C5, which complicates the so-
lution. Second, the binary constraint C6 on relay selection
variables creates a disjoint feasible solution set and makes
constraints C1-C5 become the combinatorial constraints,
which is a hurdle for solving the OPT-2 problem.

In order to strike a balance between solution tractability
and computational complexity, we handle the above issues
in following two steps. In the first step, due to the integer
constraint ts,r ∈ {0, 1}, problem OPT-1 is a mixed integer
programming problem, which is in general non-convex and
NP-hard. Thus, we first adopt the time-sharing relaxation
technique that has been employed in [18], [29]–[32] to
guarantee the convexity and tractability of the optimization
problem. We relax the relay selection variable ts,r in C6
to a real number between 0 and 1, i.e., 0 ≤ ts,r ≤ 1. Then
ts,r can be interpreted as a time-sharing factor for the K
sources to utilize relay node r.

In the second step, we introduce a new auxiliary variable
P̃sd, which is defined as P̃sd = ts,rPsd and represents the
actual transmitted power from source s to its destination
d through relay node r. In addition, we assume that the
power splitting ratio for information decoding at relay
r is the same as that at the corresponding destination
d, i.e., ρIr = ρId. This is justified since if ρIr ̸= ρId, it
can be observed from (4) that the update of ρIr at relay
node r depends on the update of ρId at its destination d
in the proposed power splitting subalgorithm, and vice
versa, which greatly increases the computation complexity
and consumes much more energy for exchanging a large
number of intermediate computation messages.

As for the suboptimality caused by the assumption, let
ρI∗d and ρI∗∗d denote the suboptimal and optimal power
splitting ratios for information decoding at destination d,
respectively, and we can obtain ρI∗

d

ρI∗∗
d

=
ρI
rasr

ρI
rasr+ρI

d(ard−asd)

for RT mode and ρI∗d = ρI∗∗d for DT mode. The latter is
because the channel gain λsd is not related to ρIr . Clearly,
for RT mode, when ard → asd, ρI∗d will approximately
equal ρI∗∗d . In practice, this case occurs frequently since
the relay usually lies in the middle between the source
and the destination, and the channel gain ard between the
relay and the destination is close to the channel gain asd
between the source and the destination.

Based on this assumption, we follow the approach in

[18] and approximate the data rate as

R̃sd =
B

2
(1 + ϑs) log

(
ρIdλ̃sdP̃sd/ts,r

)
(14)

which is a tight approximation for high SINR, i.e.,
λsdPsd ≫ 1. Indeed, high SINR can be guaranteed since
a minimum required system data rate Rmin is set to
guarantee a desired system data rate. λ̃sd is defined as

λ̃sd =

{ asrard

asr+ard−asd
, RT mode,

asd, DT mode.
(15)

To remove the associated non-convexity, we can rewrite
constraint C1 as

C1′ : ηts,kPs |hsk|2 (T/2) +
QC,k

ρEk
≥ Emin

k

ρEk
, (16)

Next, we explore the convexity of the transformed OPT-
2 problem with approximate data rate R̃sd and auxiliary
variable P̃sd.

Theorem 3. The transformed OPT-2 problem with con-
straints C1′ − C10 is convex with respect to (w.r.t) the
optimization variables P̃sd, ρId, ρEd and ts,r.

Proof: See Appendix B.
Theorem 3 reveals that the transformed OPT-2 problem

in (13) has a zero duality gap and satisfies the Slater’s
constraint qualification. The zero-duality-gap result pro-
vides an avenue to obtain the optimal solution of the
primal problem in (13) derived from its corresponding dual
problem as will be seen later.

IV. DISTRIBUTED ALGORITHM FOR ECOTRANS
PROBLEM

In this section, we solve the transformed OPT-2 prob-
lem with the approximated data rate R̃sd in (14), relaxed
constraint C4 and constraint C1′ .
A. Dual Problem Formulation

The resource allocation policy is derived via solving
the dual problem of (13) with the approximated data rate
function. For this purpose, we first give the Lagrangian
function of the primal problem (13) by

L(w, η, µ, ν, υ, ϕ, φ,P, ρ, T ) (17)

=
K∑

s,d=1

Nr∑
r=1

αrts,rR̃sd − q(PT +
K∑

s,d=1

Nr∑
r=1

εP̃sd)

+
K∑

s,d=1

Nr∑
r=1

ws

(
HT ts,rPs +

QC,d

ρEd
− Emin

d

ρEd

)

−
K∑
s,d

µsd(P̃sd − Pmax
sd )−

K∑
s,d=1

νsd(PCH + εP̃sd − Emax)

+υ(
K∑
s,d

Nr∑
r=1

ts,rR̃sd −Rmin)− ϕ(

Nr∑
r=1

ts,r − 1)

+
K∑
s,d

Nr∑
r=1

ηd(ts,rR̃sd −Rmin
d )− φ

K∑
d=1

(ρEd + ρId − 1)
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where PT = KPCH +
∑K

s=1

∑Nr

r=1 PCR, HT =
η|hsd|2(T/2). Lagrangian multiplier w = [ws, s =
1, . . . ,K]T is for the inequalities of energy harvesting
constraint C1’, which denote the prices for the individ-
ual minimum transferred power of harvested energy in
C1. Lagrangian multiplier µ = [µsd, s, d = 1, . . . ,K]T

corresponds to transmission power constraint C2, which
represents the price for the individual maximum transmis-
sion power. ν = [νsd, s, d = 1, . . . ,K]T is Lagrangian
multiplier for power consumption constraint C3, which
indicates the price for the individual maximum power
consumption. Lagrangian multiplier υ is for QoS con-
straint C4, representing the price for the minimum data rate
requirement Rmin of the system. Lagrangian multiplier
η = [ηb, b = 1, . . . ,K]T is for the minimum required
data rate constraint C5. ϕ is Lagrangian multiplier for
relay selection constraint C7, denoting the price for a relay
corresponding to at most one source. Lagrangian multiplier
φ is for power splitting ratio constraint C10, reflecting
the price for no extra power gain during power splitting
process. On the other hand, the boundary constraints C8
and C9 on optimization variables are captured by the
Karush-Kuhn-Tucker (KKT) conditions when deriving the
resource allocation solution later.

The dual problem for the primal problem (13) is given
by

min
w,η,µ,ν,υ,ϕ,φ

max
P,ρ,T

L(w, η, µ, ν, υ, ϕ, φ,P, ρ, T ) (18)

Based on zero-duality-gap result, we know that the
solution of the OPT-2 problem in (13) can be derived
from its dual problem in (18).

We use an iterative approach to solving the dual problem
(18) as follows. In each iteration, given dual variables
w, η, µ, ν, υ, ϕ and φ, we first calculate the primal vari-
ables P, ρ and T by applying the KKT conditions; Then
by using the primal variables, we update the dual variables
via the subgradient method. In the following, we give
the corresponding distributed subalgorithms for power
allocation, power splitting and relay selection.
B. Power Allocation Subalgorithm

Power allocation subalgorithm aims to determine the
optimal transmission power at the source in Phase I and
at the relay in Phase II, satisfying the constraints of
maximum power consumption and minimum data rate
requirement (QoS requirement). Using standard convex
optimization techniques and the KKT conditions [33], for
a given q, in each iteration of the Dinkelbach method, the
power allocation policy is given by

P ∗
sd =

[
(αr+υ + ηd)B(1 + ϑs)

2 ln 2(Φsd,r)

]Pmax
sd

0

(19)

where Φsd,r = qε+µsd + νsdε − wsHT , and HT =

η |hsd|2 (T/2). Here operator [x]
b
a is defined as [x]

b
a =

max(a,min(x, b)). If source s and Pmax
sd can be con-

sidered as a water vessel and its maximum water level,

respectively, it is clear that different sources have different
maximum water levels, and the power allocation in (19)
has the form of multi-level water-filling, which can be
interpreted as adaptively allocating transmission power
according to a certain law and channel state. Usually, the
link with good channel gain will always be allocated more
power, that is, be filled more water up to its maximum
water level in the vessel, in order to maximize transmission
rate. However, the power allocation in (19) is not exactly
multilevel water filling since the water-level in allocating
power on source s, i.e., (αr+υ+ηd)B(1+ϑs)

2 ln 2(Φsd,r)
, is not only

directly proportional to the priority of the source via
variable αr, but also depends on the channel gains among
the source, relay and destination.

C. Power Splitting Subalgorithm

Power splitting subalgorithm aims at determining the
optimal power splitting ratio at the receiver so as to
guarantee that the harvested energy at the receiver is no
less than the minimum required power transfer while the
aggregated data rate is no less than the minimum system
data rate requirement. In practice, the power split for ener-
gy harvesting and that for information decoding contradict
with each other, that is, the increase of ρEi will lead to the
decrease of ρIi . The optimal power splitting policy can be
obtained by solving the following maximization problem

max
ρE
d
,ρI

d

(αr+υ + ηd)ts,rR̃sd − ws
ϖd

ρEd
− φ

(
ρEd + ρId

)
(20)

Subject to

C8 : ρEmin ≤ ρEd ≤ ρEmax,

C9 : ρImin ≤ ρId ≤ ρImax,

where ϖd = Emin
d −QC,d.

By the KKT conditions [33], for a given q, ρI∗d and ρE∗
d

are given by

ρI∗d =

[
B(1 + ϑs)(αr+υ + ηd)

2 ln 2φ

]ρI
max

ρI
min

(21)

ρE∗
d =

√ws(Emin
d −QC,d)

φ

ρE
max

ρE
min

(22)

We can observe from (21) that the power splitting ratio for
information decoding, ρId, is also a water-filling scheme
and depends on the priority of the receiver via αr, which
implies that the receiver with high priority has to increase
ρId to improve its data rate. Besides, Lagrange multiplier
υ forces the receiver to split larger ratio of power used to
decode information in order to ensure that the aggregated
network throughput satisfies the minimum system data rate
requirement. On the other hand, Emin

d and ws, require the
receiver to increase the power splitting ratio for energy
harvesting, ρEd , so as to meet the constraint of Emin

d .



9

D. Relay Selection Subalgorithm

The goal of the relay selection subalgorithm is to
provide a relay selection criterion by which all overhearing
nodes calculate their priority. The node with the highest
priority will be selected as the relay node that coopera-
tively delivers data from the source. Thus, by using the
standard convex technique [33] to solve the dual problem
(18), relay node r is assigned to source s when the
following selection criterion is satisfied

t∗s,r =

{
1, if r = argmaxj Ms,j

0, otherwise (23)

where

Ms,r =
B

2
(αr+υ + ηd) log

(
ρI∗r λ̃srP

∗
sr

)
− ϕ (24)

Ms,r can be regarded as the marginal benefit provided to
the system when relay r is assigned to source s. In other
words, relay r is selected to cooperatively forward the
data of source s if it can provide the maximum marginal
benefit to the system, which implies that relay r has the
highest priority to be selected among all candidate relay
nodes of source s. Besides, if relay r has a high priority,
it will have a large value of αr and the resource allocator
at the transmitter will have a higher preference to select
relay r. On the other hand, we can observe from (23) that
although constraint relaxation is used in constraint C6 for
facilitating the design of the resource allocation algorithm,
the relay selection policy on each relay for the relaxed
problem remains Boolean.
E. Lagrange Multiplier Update

In this subsection, we will solve the minimization
problem at the high level in (18) by using the subgradient
method which leads to the following Lagrange multiplier
update

ws(t+ 1) =

[
ws(t)− δ(t)

(
HsdP̃sd +

QC,d − Emin
d

ρEd

)]+
(25)

ηb(t+ 1) =
[
ηb(t) + δ(t)

(
ts,rR̃sd −Rmin

d

)]+
(26)

µsd(t+ 1) =
[
µsd(t) + δ(t)

(
P̃sd − Pmax

sd

)]+
(27)

νsd(t+ 1) =
[
νsd(t) + δ(t)

(
PCH + εP̃sd − Emax

)]+
(28)

υ(t+ 1) =

υ(t)− δ(t)

 K∑
s,d=1

Nr∑
r=1

ts,rR̃sd −Rmin

+

(29)

φ(t+ 1) =
[
φ(t) + δ(t)

(
ρEd + ρId − 1

)]+
(30)

where Hsd = HTAsd,r, index t ≥ 0 is the iteration index,
and δ(t) is positive diminishing step size. Updating ϕ is
not necessary as it has the same value for all nodes and
does not affect the power splitting in (21) and (22) and the
relay selection in (23). Therefore, we can simply set ϕ = 0
in each iteration. Indeed, in each iteration for solving the
main loop problem, the master problem at the high level
adjusts the Lagrange multipliers by (25)-(30). On the other

High Level: Master Problem

Lower Level: 

1st Subproblem

 Solved by (19)

Lower Level: 

2nd Subproblem

 Solved by (21)-(22)

Lower Level: 

3
rd

 Subproblem

 Solved by  (23)-(24)

TTρρΡΡ

w,η,μ,υ,
 ν,
ψ 

w,η,μ,υ,
 ν,
ψ 

w
,η

,μ
,υ

, ν,ψ
 

w
,η

,μ
,υ

, ν,ψ
 

w,η,μ,υ, ν,ψ 

w,η,μ,υ, ν,ψ 

Updating w,η,μ,υ, ν,ψ

By (25)-(30) 

Updating w,η,μ,υ, ν,ψ

By (25)-(30) 

Information Passing from Lower Level to High LevelInformation Passing from Lower Level to High Level

Information Passing from High Level to Lower LevelInformation Passing from High Level to Lower Level

Fig. 3. Dual decomposition of OPT-2 problem into a two-level problem
in each main loop iteration.

TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
B 3MHz Pmax

sd 40dBm
K 100 T 10s
N 8 ηi 0.4
σ2
sd -130dBm Emin

d 0J
σ2
sr -120dBm Emax 100J

σ2
rd -110dBm ϵ 0.001

Rmin 2Mbps itermax 20

hand, each subproblem at the lower level adjusts the water
levels of (19), (21) and (22) and relay selection metric (23)
by using the updated Lagrange multipliers. The procedure
is repeated until convergence is achieved or the number
of iterations reaches a predefined maximum number of
iterations for the main loop, as shown in Fig. 3.

We now analyze the time complexity of the proposed
iterative algorithm in Algorithm 1. It consists of two nested
loops. The outer loop is to update the parameter q and can
be proved to have a linear time complexity. On the other
hand, the inner loop optimization problem is proved to
be convex in Theorem 3, in other words, solving the inner
loop optimization problem requires only a polynomial time
complexity, i.e., the complexity is O(K×N). As a result,
the proposed algorithm has a polynomial time complexity,
i.e., O(Itermax ×K ×N).

V. SIMULATION AND DISCUSSIONS

In this section, we first verify the convergence of the
proposed eCotrans algorithm. Furthermore, we compare
and evaluate the performance of our solution for different
parameters.

We assume that 50 cluster member nodes (CNs) are
randomly located within a circular area within a radius
of 120 meters. Here, we only use LEACH algorithm as
an example to organize the clusters. Note that many other
clustering protocols can also be used in our algorithm. We
let α = 2, ε = 5 and kij = 1. The channel gains are
generated according to a Rayleigh fading model. Without
loss of generality, we assume that all receivers have the
same priority αr = 1, and all nodes have the same circuit
power consumption, i.e., PCH = PCR = 10dBm. We let
ρEmin = ρImin = 0 and ρEmax = ρImax = 1. Moreover, to
ensure fast convergence, the iteration step size adopted in
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Fig. 4. Energy Efficiency (bits/mJ) versus the number of iterations for
Pmax = 30dBm and 40 dBm, and N = 4, 6, 8.

Lagrange multiplier updates is optimized via backtracking
line search [33]. Other system parameters are listed in
Table I.

A. Convergence and Performance Analysis

In this subsection, we study the convergence of the
proposed eCotrans algorithm. Fig. 4 illustrates the evolu-
tion of energy efficiency for different maximum transmit
power allowance Pmax, and the number of relays N in
a cluster. By analyzing the results in Fig. 4, we can see
that the energy efficiency increases with the number of
iterations and then converges within 12 iterations in every
considered scenario. Note that the number of iterations
in Fig. 4 indicates only the main loop iterations for the
Dinkelbach method, but not that for the gradient method.
Another important observation is that the energy efficiency
is directly proportional to Pmax. This is justifiable since
a higher transmit power allowance leads to the larger
transmit power and data rate.

B. Impact of Relay Nodes on Energy Efficiency

In this subsection, we evaluate the impact of the number
of candidate relay nodes in a cluster on energy efficiency
under the DT and RT modes, respectively. To reflect the
DT and RT modes, we let ρIr = ρId and asr ≥ ard, which
implies that if ard > asd, the CH works at the RT mode,
otherwise, it works at the DT mode. We define INR =
ard/asd and let INR be 0.5, 0.8, 1.2 and 1.5. Clearly, the
first two ratio values indicate the DT mode is valid while
the latter two values imply that the RT mode is available.
We observe from Fig. 5 that compared to the DT mode,
the energy efficiency of the proposed algorithm at the RT
mode increases remarkably with the number of candidate
relay nodes. However, the increase of energy efficiency
becomes slower and finally stable with further increase
of the number of relays. This is mainly due to that (i)
it induces more collisions and energy consumption of all
control messages such as RTS/CTS; (ii) the relay selection
subalgorithm has to traverse more candidate relays and
execute more iterations to find the optimal relay. Another
important observation is that for the same transmission
mode, the energy efficiency is directly proportional to the
normalized effective channel gain.
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Fig. 5. Energy Efficiency (bits/mJ) versus the number of relay nodes
for INR = 0.5, 0.8, 1.2, 1.5, and N = 2, 4, 6, 8, 10.

C. Impact of Power Allowance on Average Harvested
Energy

In this subsection, we explore the impact of the max-
imum allowed transmit power Pmax on the average har-
vested energy for different INR levels. Fig. 6 depicts the
average harvested energy at the CH versus the maximum
power allowance for different INR levels. We set INR
to be 1.2, 1.5 and 2.0, which means that the CH works
at the RT mode. It can be observed from Fig. 6 that in
lower Pmax, only a small portion of received energy is
harvested by the CH for energy efficiency maximization.
This is due to the fact that for small values of the trans-
mit power allowance, the received power of the desired
signal at the receivers may not be sufficiently large for
simultaneous information decoding and energy harvesting.
On the contrary, for the higher level of the transmit
power allowance, the receiver has a higher tendency to
split a larger proportion of the received power for energy
harvesting until the amount of average harvested energy is
saturated. This is because that once the constraints on the
minimum required energy transfer to receiver k, Emin

k ,
and the minimum system data rate requirement, Rmin,
are satisfied, the transmitter stops increasing the transmit
power for energy efficiency maximization. On the other
hand, we can observe that a higher amount of energy is
harvested by the receiver when the INR level increases.
As a result, splitting more received power for energy
harvesting can enhance the system energy efficiency.
D. Impact of Inter-Cluster Distance on Energy Efficiency

In this subsection, we discuss how the distance Lij

between the CH i and the CH j affects the energy
efficiency under the different maximum transmit power
allowance. In this case, we set the number of CN nodes
in a cluster as N = 8 and let Pmax be 30dBm and
40dBm. Fig. 7 reflects the evolution of energy efficiency
with inter-cluster distance. It can be seen in Fig. 7 that
when the inter-cluster distance Lij increases, the energy
efficiency decreases, correspondingly. This is justified s-
ince when Lij increases, the proposed algorithm needs
more sensor nodes to participate in cooperation to reach
long transmitting distance for a given Pmax, which leads
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Fig. 6. Average harvested energy (dBm) versus maximum transmit
power allowance, Pmax for different INR levels and N = 8.

to more energy consumption. Another observation is that
the energy efficiency at the RT mode is always larger than
that at the DT mode as Lij increases. This is because
that the long transmitting distance will hinder the direct
transmission between the two CHs and even make the
direct transmission invalid.
E. Comparison on Energy Efficiency and Remaining En-
ergy

In this subsection, we compare the performance of
the proposed eCotrans algorithm and several existing co-
operative schemes, such as the eCocom scheme in [3],
the coCoalition scheme in [4], the eCooperation algo-
rithm in [5] and the coNetspa scheme in [21] in terms
of energy efficiency and remaining energy for different
maximum allowed transmit powers. The eCocom is an
energy efficient selective single-relay cooperative scheme
with physical-layer power control. The coCoalition is a
cooperative communication scheme based on coalition
formation game in clustered WSNs. The eCooperation is
an energy-efficient cooperative transmission strategy using
cooperative multi-input-multi-output (CMIMO) technique.
The coNetspa scheme is an energy harvesting cooperative
scheme for wireless information and power transfer in co-
operative networks with spatially random relays. The first
three schemes are energy efficient cooperative schemes,
but without energy harvesting, while the coNetspa scheme
involves the application of SWIPT to wireless coopera-
tive networks, but it does not consider energy efficiency
maximization.

In the simulation, we let N = 8 and INR = 1.5.
We consider the scenario that all cluster member nodes
(CNs) have the same amount of data to be sent and
the same initial remaining energy. Fig. 8 illustrates the
comparison of energy efficiency between the proposed
eCotrans algorithm and the existing schemes. It can be
observed that all the cooperative schemes have an increas-
ing energy efficiency with the maximum transmit power
allowance until the achieved energy efficiency gain attains
its maximum in the high transmit power allowance region.
However, our proposed eCotrans algorithm achieves the
highest energy efficiency. This is justified since we employ
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Fig. 7. Energy Efficiency (bits/mJ) versus the inter-cluster distance for
N = 8 and Pmax = 30dBm, 40dBm.
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Fig. 8. Energy Efficiency (bits/mJ) versus maximum allowed transmit
power for different cooperative schemes.

the energy harvesting cooperative transmission, combining
the optimal cooperative relay selection with the optimal
power control and power splitting at the physical layer.

Fig. 9 depicts the remaining energy in the battery for
receivers CH1, CN1, CN2 and CH3 as shown in Fig. 1
after transmitting the same amount of data by different
cooperative schemes. It is observed that the proposed
eCotrans algorithm has more remaining energy in the
batteries of all receivers while also having the best remain-
ing energy balance among receiver nodes. In particular,
for the receivers CN1 and CN2, the superiority of the
eCotrans algorithm is more obvious. The reason is that by
using eCotrans algorithm, the receivers are able to harvest
the energy from the received signals and replenish the
harvested energy in the battery while forwarding the data
from their upstream nodes. More importantly, although the
CH3 node has more data to forward from its neighbor
nodes as shown in Fig. 1, it still has more remaining energy
in its battery. This is because the CH3 node is capable
of harvesting the energy of ambient RF signals from the
transmitters.

VI. CONCLUSIONS

In this paper, we consider applying SWIPT to coop-
erative clustered WSNs, where energy-constrained relay
nodes avail the ambient RF signal and simultaneously
harvest energy and process information to prolong their
lifetime. Our goal is to provide the optimal policies for



12

CH1 CN1 CN2 CH3
Receiver

 

 

Initial Remaining Energy
eCotrans
coNetspa
eCooperation
coCoalition
eCocom

Fig. 9. Remaining energy in the battery versus receivers for different
cooperative schemes.

power allocation and relay selection and determine the
optimal power splitting ratio so that the system energy ef-
ficiency is maximized. To achieve this goal, we formulate
the eCotrans problem as a non-convex constrained opti-
mization problem. Furthermore, we propose a distributed
iteration algorithm with closed-form transmission power,
power slitting ratio and relay selection by exploiting dual
decomposition. In particular, we find that power splitting
ratio plays an imperative role in relay selection, however,
it depends on the minimum harvested energy requiremen-
t. Our simulation results demonstrate that the proposed
iterative algorithm converges within a small number of
iterations. Compared to existing algorithms without energy
harvesting or energy efficiency maximizing, our proposed
iterative algorithm can achieve higher energy efficiency
and more remaining energy.

APPENDIX A
PROOF OF THEOREM 2

We employ a similar approach to that in [27] [28] to
prove the convergence of Algorithm 1. We first introduce
two propositions to demonstrate the properties of the
equivalent objective function in (13). For the sake of
notational simplicity, we define F as the set of feasi-
ble points of the optimization problem in (10) and let
F (q) = max

P,ρ,T
U(P, ρ, T )− qUTP (P, ρ, T ).

Proposition 1. [28] F (q) is a strictly monotonically
decreasing function with respect to (w.r.t) q, i.e., F (q

′
) >

F (q) if q > q′.

Proposition 2. [28] Let {P ′, ρ′, T ′} ∈ F be an arbitrary
feasible solution and q′ = U(P′,ρ′,T ′)

UTP (P′,ρ′,T ′ )
. Then F (q′) > 0.

Next, we prove the convergence of Algorithm 1. This
proof includes two parts: the first part is to prove that
energy efficiency q increases with the number of iterations;
the second part is to prove that if the number of iterations
is large enough, then energy efficiency q converges to the
optimal q∗ such that it satisfies the optimality condition in
Theorem 1, i.e., F (q∗) = 0.

Let {Pn, ρn, Tn} be the optimal resource allocation
policies in the n-th iteration. We assume qn ̸= q∗ and
qn+1 ̸= q∗ represent the energy efficiency of the system
in iterations n and n + 1, respectively. By Proposition 2,
we have F (qn) > 0 and F (qn+1) > 0. On the other

hand, in the proposed Algorithm 1, we calculate qn+1 as
qn+1 = U(Pn,ρn,Tn)

UTP (Pn,ρn,Tn)
. Thus we can compute F (qn) by

F (qn) = U(Pn, ρn, Tn)− qnUTP (Pn, ρn, Tn)
= qn+1UTP (Pn, ρn, Tn)− qnUTP (Pn, ρn, Tn)
= UTP (Pn, ρn, Tn)(qn+1 − qn)

Since F (qn) > 0 and UTP (Pn, ρn, Tn) > 0, it is not
difficult to obtain qn+1 > qn. That completes the proof of
the first part.

By qn+1 > qn and Proposition 1, we can obtain
that F (qn) will eventually approach zero and satisfy the
optimality condition in Theorem 1. That completes the
proof the second part.

APPENDIX B
PROOF THEOREM 3

We first prove that the transformed objective function
U(P, ρ, T ) − qUTP (P, ρ, T ) is jointly concave w.r.t. the
optimization variables P̃sd, ρId, ρEd and ts,r. Then we show
the convexity of constraints C1′ − C10.

The concavity of the transformed objective function
can be proved by the following steps. First, we consider
the concavity of function U(P, ρ, T ) based on a relay
selection w.r.t. the optimization variables P̃sd, ρId and ρEd .

For notational simplicity, we define a vector xsd =
[P̃sd, ρ

I
d, ρ

E
d ] and a function fsd(xsd) = B

2 (1 +

ϑs)αr log2(ρ
I
dλ̃sdP̃sd). Then we use H(fsd(xsd)) and

τ1, τ2 and τ3 to denote the Hessian matrix of function
fsd(xsd) and eigenvalues of H(fsd(xsd)), respectively.
The Hessian matrix of function fsd(xsd) is given by

H(fsd(xsd)) =

 τ1 0 0
0 τ2 0
0 0 τ3


where τ1 = −B(1+ϑs)αr

2 ln 2(P̃sd)2
, τ2 = −B(1+ϑs)αr

2 ln 2(ρI
d)

2 and τ3 = 0.
Since τi ≤ 0, i ∈ {1, 2, 3}, H(fsd(xsd)) is a negative
semi-definite matrix. In other words, function fsd(xsd) is
jointly concave w.r.t. P̃sd, ρId and ρEd .

Then we can take the perspective transformation on
fsd(xsd), which is given by

usd(xsd) =
B

2
(1+ϑs)ts,rαr log2

(
ρIdλ̃sdP̃sd/ts,r

)
= αrts,rR̃sd

It is shown in [33] that the perspective transformation
preserves the concavity of the function. Thus function
usd(xsd) is jointly concave w.r.t. P̃sd, ρId, ρEd and ts,r.
Function U(P, ρ, T ) is the sum of usd(xsd) over indices
s, d and r, which preserves the concavity of the function
[33].

In the following, we prove the convexity of func-
tion UTP (P, ρ, T ). Since the function UTP (P, ρ, T ) is
an affine function of the variable P̃sd, the function is
convex w.r.t the variable P̃sd. Therefore, it is not dif-
ficult to obtain that the transformed objective function
U(P, ρ, T ) − qUTP (P, ρ, T ) is jointly concave w.r.t. the
optimization variables P̃sd, ρId, ρEd and ts,r.
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Now, we verify the convexity of constraints C1′−C10.
The left term of constraint C1′ is linear, which implies
that it is both convex and concave, and its right term is
convex. Therefore, constraint C ′ is convex. Since all the
inequalities in constraints C2 and C3 are linear function of
variable P̃sd, clearly, the constraints C2−C3 are convex.
The relaxed constraint C6 and constraints C7−C10 span
a convex feasible set. As for constraints C4 and C5, it is
easy to show that the constraints are convex due to the
concavity of function U(P, ρ, T ).

As a result, the transformed OPT-2 problem is a convex
optimization problem w.r.t. P̃sd, ρId, ρEd and ts,r.
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