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Abstract—In RFID-enabled applications, we may pay more
attention to key tags instead of all tags. This paper studies the
problem of key tag counting, which aims at estimating how many
key tags in a given set exist in the current RFID system. Previous
work is slow to solve this new problem because of the serious
interference replies from the large number of ordinary (i.e., non-
key) tags. However, time-efficiency is an important metric for the
fast tag cardinality estimation in a large-scale RFID system. In
this paper, we propose a singleton slot-based estimator, which is
time-efficient because the RFID reader only needs to observe the
status change of expected singleton slots of key tags instead of the
whole time frame. In practice, the ratio of key tags to all current
tags is small for “key” members should be rare. As a result,
even when the whole time frame is long, the expected singleton
slot number is limited and the running of our protocol is fast to
achieve estimation accuracy. Rigorous theoretical analysis shows
that the proposed protocol can provide guaranteed estimation
accuracy to end users. We conduct simulations and implement a
prototype of our protocol to verify its efficiency and deployability.

I. INTRODUCTION

Radio Frequency Identification (RFID) is a wireless tech-
nology that uses a RFID reader to monitor or identify the
objects or even humans by reading the attached tags. It has
promising prospects in various applications such as supply
chain management [1], access control [2], localization [3],
object tracking [4]. In a large-scale RFID system containing
thousands of tags, the manager may only care about the
key tags (e.g., the tags attached to expensive jewelries or
encapsulated in cards of key visitors) instead of all tags.
A primary question is how many key tags there are in the
current system that also contains a large number of ordinary
(non-key) tags. The counting result, which can provide the
information about the popularity of key items or the attendance
of key visitors, is of practical importance. Hence, this paper
studies the new problem of key tag counting—estimating the
cardinality of key tags that are present in the system.

The key tag counting problem is formulated as follows. We
use 𝑆𝐾 = {𝑥1, 𝑥2, ..., 𝑥𝑘} to represent the set (list) of 𝑘 key
tags that we are interested in. 𝑆𝐾 is known in advance. We use
𝑆𝐶 = {𝑦1, 𝑦2, ..., 𝑦𝑐} to denote the current (actual) set of tags
in the system. In reality, 𝑆𝐶 is not known in prior either for
the privacy reason, or because it is not easy to get, particularly
in dynamic RFID systems (the tagged objects or humans
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Fig. 1: Exemplifying the problem of key tag counting.

frequently move in or out). In such an anonymous RFID
system, there are three types of tags as illustrated in Fig. 1:

∙ Missing key tag set 𝑆𝑀 : the tags that we are interested in
but are not present in the current system. 𝑆𝑀 = 𝑆𝐾−𝑆𝐶

and ∣𝑆𝑀 ∣ is denoted as 𝑚.
∙ Remaining key tag set 𝑆𝑅: the present tags that we are

interested in. 𝑆𝑅 = 𝑆𝐾

∩
𝑆𝐶 and ∣𝑆𝑅∣ is denoted as 𝑟.

∙ Ordinary tag set 𝑆𝑂: the present tags that we are not
interested in. 𝑆𝑂 = 𝑆𝐶 − 𝑆𝐾 and ∣𝑆𝑂∣ is denoted as 𝑜.

The key tag counting problem is how to produce an estimate
𝑟 for 𝑟, so that 𝑃{∣𝑟−𝑟∣ ≤ 𝛼 ⋅𝑟} ≥ 𝛽, where 𝛼 ∈ (0, 1) is the
allowed relative error and 𝛽 ∈ (0, 1) is the required confidence
level. Here, 𝛼 and 𝛽 indicate the estimation accuracy, and
should be specified by the end users in prior. For simplicity,
we refer to 𝑟 as an (𝛼, 𝛽) estimate of 𝑟.

Prior Art and Limitation. In the following, we briefly
review the related work and point out their limitations when
facing the problem of key tag counting.

1) Pure Identification Protocols: An immediate method is
to identify all tags in 𝑆𝐶 , and then we can get the exact 𝑟 by
comparing 𝑆𝐾 and 𝑆𝐶 . There have been already a number of
schemes proposed for solving the problem of tag identifica-
tion [5] [6] [7] [8] [9] [10]. These schemes, however, suffer
two fatal drawbacks: (i) The processing time rapidly grows as
the number of RFID tags increases. According to the RFID
standard ISO-18000, the average identification throughput is
just about 100 tags per second [11]; (ii) Privacy leaking due
to the transmission of tag IDs (as plaintext) in the air.

2) Tag Search Protocols: The literature [11] [12] exploited
the Bloom filter technique to search the exact tags in 𝑆𝑅.
Although the methods in [11] [12] have improved a lot than



the pure identification protocols, they are still of low time
efficiency to solve the key tag counting problem. The intuitive
reason is that searching the exact tags consumes more time
than just counting (or estimating) the cardinality of tags.

3) Cardinality Estimation Protocols: Most of the existing
estimation protocols [13] [14] [15] [16] [17] [18] [19] [20]
[21] can only estimate the cardinality of 𝑆𝐶 , and thus are
not able to count the key tags. Schemes in [22] [23] are not
efficient to solve the problem of key tag counting because they
require the reader to observe the whole time frame.

This paper thoroughly studies the problem of key tag count-
ing and the main contributions are summarized as follows.

(1) Proposing Novel Singleton-based Estimators. We first
propose a Basic Key tag Counting (B-KC) protocol, whose
unique feature different from prior work is that the reader only
needs to observe the expected singleton slots corresponding
to key tags instead of the whole time frame. The expected
empty/collision slots are not used, and are directly skipped for
saving time. To be more scalable, we exploit the sampling idea
on B-KC to propose the Sampling-based Key tag Counting
(S-KC) protocol, in which only sample tags participate in the
estimation process. In fact, B-KC is a special case of S-KC
when the sampling probability is set to 1.

(2) Mathematically Investigating the Accuracy of the
Proposed Estimators. We leverage mathematical tools such as
Taylor Series Expansion [24] and Central Limit Theorem [25]
to theoretically give the answer to an important question—
how many frames are adequate to produce an (𝛼, 𝛽) estima-
tion result.

(3) Proposing the Early Termination Tactic. We observe
that the minimum frame number ℵ is actually over calculated.
The underlying reason is that the expression of ℵ contains two
variables 𝑢 and 𝑑 which are unknown in prior. To guarantee the
predefined accuracy for any actual values of 𝑢 and 𝑑, we have
to use their extreme values (i.e., 𝑢𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥) to configure
the frame number, which leads to the over calculation of ℵ.
As a result, the performance of S-KC is far from its ideal
case (i.e., assuming 𝑢 and 𝑑 are known in prior). To fill this
performance gap, we leverage the three-sigma rule [26] to
give the tighter bounds of 𝑢 and 𝑑 after each frame. Then,
backend server is able to dynamically determine whether to
terminate the estimation process. We refer to this technique as
early termination, which can make the performance of S-KC
closer to its ideal case.

(4) Simulation and Prototype. We conduct simulations
to evaluate the performance of S-KC in a large-scale RFID
system that contains thousands of tags. Simulation results
show that S-KC runs several times faster than the recent work
[11] [12] [22] [23]. Moreover, we use nRF24LE1, the highly
integrated ultra low power 2.4GHz RF System-on-Chip (SoC),
to implement a prototype of our S-KC, which reveals the
deployability of our protocol.

The rest of this paper is organized as follows. Section II
presents the system model. We propose the B-KC and S-KC
and present the theoretical analyzes in Sections III and IV,
respectively. In Section V, extensive simulation experiments

are conducted to evaluate the performance of the proposed
protocol. The related work is reviewed in Section VI. Finally,
this paper is concluded in Section VII.

II. SYSTEM MODEL

In this paper, we consider a RFID system that consists of
three components: a backend server, a single (or multiple)
reader(s), and a large number of tags. The backend server
is able to store a large amount of data and perform complex
computations. The reader has a dedicated power source, and
is connected to the backend server via high data rate com-
munication link. For the purpose of clarity, we first study the
single-reader scenario, and assume the reader has adequate
interrogating ranges to probe all tags [15] [17] [27]. Then,
we generalize the proposed protocol to the multi-reader case.
In the rest of this article, the reader and the backend server
are regarded as an integrated unit, which is still referred to
as reader for simplicity. Each tag has a unique 96-bit ID
according to EPC C1G2 standard [28], and is used to identify
an individual object. The communication between the reader
and tags are in the Reader Talks First (RTF) mode [17], i.e.,
the reader queries the tags first, and the tags respond over a
shared wireless medium.

The reader continuously sends synchronization signals to
create a slotted time frame. And the tags contend for slots
to transmit responses. We classify the time slots into three
categories: empty slot indicates there is no tag response in this
slot; singleton slot denotes that only one tag responds in this
slot; and collision slot means two or more tags simultaneously
transmit in this slot and collision happens. To distinguish an
empty slot from a non-empty slot, 1-bit response is adequate.
On the other hand, at least 10-bit response is required to verify
a collision slot [29]. Hence, based on their length and use, slots
can also be classified into: short-response slot that is used
to transmit 1-bit information; long-response slot supporting
transmission of 10-bit information; and tag slot that can be
used to transmit 96-bit tag ID [29].

According to the specification of the Philips I-Code system
[30], the wireless transmission rate from a tag to a reader
is 53 𝐾𝑏/𝑠, that is, it takes a tag 18𝑢𝑠 to transmit 1-bit
data. And the rate from a reader to a tag is 26.5 𝐾𝑏/𝑠, that
is, transmission of 1-bit data to tags requires 37.7𝑢𝑠. For
simplicity, we assume the transmission rate from the reader
to tags and that from tags to the reader are the same. We
choose the relatively low rate 26.5 𝐾𝑏/𝑠 as the common
transmission rate, and then the following slot settings can
support transmission from both reader to tags and vice versa.
Any two consecutive transmissions (from a tag to a reader or
vice versa) are separated by a waiting time 𝜏0 = 302𝑢𝑠 [19]
[29]. And thus, the time of a short-response slot, 𝑡𝑠ℎ𝑜𝑟𝑡, is set
to 37.7𝑢𝑠+302𝑢𝑠 ≈ 0.4𝑚𝑠; the time of a long-response slot,
𝑡𝑙𝑜𝑛𝑔 , is set to 37.7𝑢𝑠×10+302𝑢𝑠 ≈ 0.7𝑚𝑠; and the time of
a tag slot, 𝑡𝑡𝑎𝑔, is set to 37.7𝑢𝑠× 96+ 302𝑢𝑠 ≈ 4𝑚𝑠. Table I
lists the symbols used in this paper.



TABLE I: Symbols used in the paper
Symbols Descriptions
𝑆𝑀 missing tag set.
𝑚 cardinality of 𝑆𝑀 , 𝑚 = ∣𝑆𝑀 ∣.
𝑆𝑅 remaining tag set.
𝑟 cardinality of 𝑆𝑅, 𝑟 = ∣𝑆𝑅∣.
𝑆𝑂 ordinary tag set.
𝑜 cardinality of 𝑆𝑂 , 𝑜 = ∣𝑆𝑂∣.

𝑆𝐾 key tag set, 𝑆𝐾 = 𝑆𝑀

∪
𝑆𝑅.

𝑘 cardinality of 𝑆𝐾 , 𝑘 = ∣𝑆𝐾 ∣, 𝑘 = 𝑚 + 𝑟.
𝑆𝐶 present tag set, 𝑆𝐶 = 𝑆𝑅

∪
𝑆𝑂 .

𝑐 cardinality of 𝑆𝐶 , 𝑐 = ∣𝑆𝐶 ∣, 𝑐 = 𝑟 + 𝑜.
𝑆𝑈 universal set, 𝑆𝑈 = 𝑆𝐾

∪
𝑆𝐶 .

𝑢 cardinality of 𝑆𝑈 , 𝑢 = ∣𝑆𝑈 ∣, 𝑢 = 𝑚 + 𝑟 + 𝑜.
𝑢𝑚𝑎𝑥 upper bound of 𝑢.

𝑑 dynamic degree, given by 𝑚
𝑟 .

𝑑𝑚𝑎𝑥 upper bound of 𝑑.
𝑟 estimated # of 𝑟.
𝛼 required relative error, 𝛼 ∈ (0, 1).
𝛽 required confidence level, 𝛽 ∈ (0, 1).
𝑓 size of sub-frame.
ℵ # of sub-frames.
𝑓𝑐 frame counter.
𝑠𝑐 slot counter.

𝐻(⋅) uniform hashing function.
𝑅 random number.

𝐸(⋅) expectation.
𝐷(⋅) variance.
𝐹1[⋅] expected slot status vector.
𝐹2[⋅] observed slot status vector.
�̂�𝑖 estimated # of 𝑢 after the 𝑖𝑡ℎ frame.

𝑢𝑚𝑎𝑥 𝑖 a tighter upper bound of 𝑢 after the 𝑖𝑡ℎ frame.
𝑑𝑖 estimated # of 𝑑 after the 𝑖𝑡ℎ frame.

𝑑𝑚𝑎𝑥 𝑖 a tighter upper bound of 𝑑 after the 𝑖𝑡ℎ frame.
𝑍𝛽 the percentile of 𝛽 that satisfies 𝑃 [−𝑍𝛽 ≤ 𝑊 ≤

𝑍𝛽 ] ≥ 𝛽, where 𝑊 is a variable following standard normal
distribution.

III. B-KC: BASIC KEY TAG COUNTING PROTOCOL

A. Communication Overview

This section presents the MAC layer communication mech-
anism of the Basic Key tag Counting (B-KC) protocol, which
is based on the classical slotted Aloha algorithm. During the
entire execution process of slotted Aloha-based protocols, all
tags including those that have been identified are required to
stay powered up to maintain the value of the inventory flag
[31] [32]. Any intermittent loss of power at a tag will set its
inventory flag back to 0, leading the tag to contend in the
subsequent frame. Since long slotted frame will increase the
risk of losing power at a tag, the frame size is typically no
more than 512 [19] [23] [32]. In this paper, 𝑓 is fixed to 512
for simplicity.

As exemplified in Fig. 2, the reader sequentially initializes
ℵ time frames to “load” the large number of tags, where
each frame contains 𝑓 slots. Specifically, the reader initializes
an arbitrary frame with frame counter 𝑓𝑐 ∈ [0,ℵ − 1] by
broadcasting a request ⟨𝑓𝑐,ℵ, 𝑓, 𝑅⟩, in which 𝑅 is a random
number. Each tag calculates 𝐻(𝐼𝐷,𝑅) mod ℵ to determine
if it will participate in the current frame. If 𝐻(𝐼𝐷,𝑅) mod ℵ
is equal to the current frame counter 𝑓𝑐, it will participate in
the current frame (this can be implemented by the SELECT
command of EPC C1G2 standard [31]). Note that, 𝑅 does
not change among all the sub-frames, and thus each tag will
pseudo-randomly determine only one sub-frame to participate.

0 2 1 1 1 1 1 1

t1 t10 t4 t11 t9 t5 t12 t7

sub-frame 1 sub-frame 2

2 0 1 1

t2 t3 t8 t6

sub-frame 3

A logical large frame 

Fig. 2: The tags are “loaded” into multiple sub-frames, each
sub-frame contains 𝑓 ≤ 512 slots.

The tags participating in the current frame will pick the 𝑠𝑐𝑡ℎ

slot, where 𝑠𝑐 = 𝐻(𝐼𝐷,𝑅) mod 𝑓 . Each tag responds the
10-bit checksum [29] of its ID in the picked slot, which can
be implemented by asserting Truncate bit in the SELECT
command [31]. The reader needs to observes the status of
slots by listening to the communication channel.

B. Estimation Protocol

This section investigates how to use the observed slot status
to perform the key tag counting.

1) Overview of the Protocol Design: As illustrated in
Fig. 2, the tags logically content for a large logical time
frame that consists of ℵ actual sub-frames, and each sub-
frame contains 𝑓 slots. Assuming the key tag set is exactly
the same as the current tag set, the reader is able to predict
the slot status vector 𝐹1[⋅] because it knows the key tag set
𝑆𝐾 = {𝑥1, 𝑥2, ..., 𝑥𝑘} and all the used parameters. However,
the existence of missing key tags and the ordinary tags makes
the observed slot status vector 𝐹2[⋅] different from 𝐹1[⋅]. The
proposed B-KC leverages the status change of the expected
singleton slots (i.e., the singleton slot in 𝐹1[⋅]) to estimate the
cardinality 𝑟 of the remaining key tags.
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1 1 12 20 000 0 0 0

1 1 1 1120 0 0 0 00

Expected slot status vector

Observed slot status vector

F []1

F []2

The reader only needs to monitor

 the status of these slots

Fig. 3: The basic principle of the counting protocol.

2) Constructing the Vectors 𝐹1[⋅] and 𝐹2[⋅]: The reader
pseudo-randomly maps the key tags within 𝑆𝐾 to a virtual
frame 𝐹1 with ℵ𝑓 slots. Specifically, an arbitrary key tag, says
𝑥𝑗 ∈ 𝑆𝐾 (𝑗 ∈ [1, 𝑘]), is mapped to the location of 𝐻(𝐼𝐷𝑥𝑗 , 𝑅)
mod ℵ𝑓 whose result follows a uniform distribution within
[0,ℵ𝑓 − 1], where 𝐼𝐷𝑥𝑗 is its ID information and 𝑅 is a
random number. In 𝐹1[⋅], ‘0’ in means no key tag is mapped
to this location; ‘1’ indicates only one key tag is mapped



to this location; ‘2’ represents two or more key tags are
mapped to this location. These three types of slots are called
expected empty slots, expected singleton slots, and expected
collision slots, respectively. The reader sequentially observes
the ℵ separate sub-frames (each contains 𝑓 slots), and then
constructs another vector 𝐹2[⋅] with ℵ𝑓 elements. If the 𝑠𝑐𝑡ℎ

slot in the 𝑓𝑐𝑡ℎ sub-frame is an empty (singleton or collision)
slot, 𝐹2[𝑓𝑐 × 𝑓 + 𝑠𝑐] is set to ‘0’ (‘1’ or ‘2’). The two slots
with the same location in 𝐹1[⋅] and 𝐹2[⋅] are called a slot
pair. In our scheme, the reader needs to observe the expected
singleton slots and record the numbers of the following two
types of special slot pairs.

∙ 𝑁1,0 is the number of slot pairs that satisfy: 𝐹1[𝑧] = 1
∧ 𝐹2[𝑧] = 0.

∙ 𝑁1,1 is the number of slot pairs that satisfy: 𝐹1[𝑧] = 1 ∧
𝐹2[𝑧] = 1 ∧ the received checksum is the same as that
of the expected tag.

3) Proposing the Estimator of 𝑟: In the following, we
theoretically present how to use the observed 𝑁1,0 and 𝑁1,1
to propose an accurate key tag counting estimator. First, we
analyze the probabilistic properties behind the variables 𝑁1,0
and 𝑁1,1. Essentially, 𝑁1,0 is equal to the number of missing
tags in 𝑆𝑀 that exclusively occupy slots. For an arbitrary
missing tag, the probability that its picked slot is not selected
by any other tags is denoted as 𝑝1,0, which can be given as
follows:

𝑝1,0 = (1− 1

ℵ𝑓 )
𝑢−1 ≈ 𝑒

− 𝑢
ℵ𝑓 (1)

Since ℵ𝑓 is normally large enough, 𝑁1,0 follows
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑚, 𝑝1,0) distribution. And thus, the expectation
𝐸(𝑁1,0) and variance 𝐷(𝑁1,0) of 𝑁1,0 are given as follows:

𝐸(𝑁1,0) = 𝑚× 𝑝1,0 = 𝑚𝑒
− 𝑢

ℵ𝑓 (2)

𝐷(𝑁1,0) = 𝑚× 𝑝1,0 × (1− 𝑝1,0)

= 𝑚𝑒
− 𝑢

ℵ𝑓 (1− 𝑒
− 𝑢

ℵ𝑓 )
(3)

Then, let us consider the variable 𝑁1,1. Two and only two
possible cases could contribute to 𝑁1,1.

Case a: If a remaining key tag exclusively occupies a slot
within the frame, 𝑁1,1 will be increased by 1. We denote the
number of this type of slot pairs as 𝑁𝑎

1,1. For an arbitrary
remaining key tag, the probability that it exclusively occupies
a slot is denoted as 𝑝𝑎1,1, which can be given as follows:

𝑝𝑎1,1 = (1− 1

ℵ𝑓 )
𝑢−1 ≈ 𝑒

− 𝑢
ℵ𝑓 (4)

Since 𝑁𝑎
1,1 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑟, 𝑝𝑎1,1) distribution, the ex-

pectation 𝐸(𝑁𝑎
1,1) and variance 𝐷(𝑁𝑎

1,1) of 𝑁𝑎
1,1 are given as

follows:
𝐸(𝑁𝑎

1,1) = 𝑟 × 𝑝𝑎1,1 = 𝑟𝑒
− 𝑢

ℵ𝑓 (5)

𝐷(𝑁𝑎
1,1) = 𝑟 × 𝑝𝑎1,1 × (1− 𝑝𝑎1,1)

= 𝑟𝑒
− 𝑢

ℵ𝑓 (1− 𝑒
− 𝑢

ℵ𝑓 )
(6)

Case b: If exactly a missing key tag as well as an ordinary
tag pick a common slot, and their checksums are coinciden-
tally the same, 𝑁1,1 will be also increased by 1. And the
number of this type of slot pairs is denoted as 𝑁 𝑏

1,1. For
an arbitrary missing key tag, the probability that it shares

a common slot with only one ordinary tag and their 10-bit
checksums are the same is denoted as 𝑝𝑏1,1. We reasonably
assume two arbitrary tags have the same 10-bit checksum with
the probability 1

210 . Thus, 𝑝𝑏1,1 can be given as follows:

𝑝𝑏1,1 =

(
𝑜

1

)
× 1

ℵ𝑓 × (1− 1

ℵ𝑓 )
𝑢−2 × 1

210

≈ 𝑜𝑒
− 𝑢

ℵ𝑓

210ℵ𝑓

(7)

Since 𝑁 𝑏
1,1 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑚, 𝑝𝑏1,1) distribution, the ex-

pectation 𝐸(𝑁 𝑏
1,1) and variance 𝐷(𝑁 𝑏

1,1) of 𝑁 𝑏
1,1 are given as

follows:
𝐸(𝑁𝑏

1,1) = 𝑚× 𝑝𝑏1,1 =
𝑚𝑜𝑒

− 𝑢
ℵ𝑓

210ℵ𝑓 (8)

𝐷(𝑁𝑏
1,1) =𝑚× 𝑝𝑏1,1 × (1− 𝑝𝑏1,1)

=
𝑚𝑜𝑒

− 𝑢
ℵ𝑓

210ℵ𝑓 (1− 𝑜𝑒
− 𝑢

ℵ𝑓

210ℵ𝑓 )
(9)

Since 𝑁1,1 consists of two parts: 𝑁𝑎
1,1 and 𝑁 𝑏

1,1, 𝑁1,1 =
𝑁𝑎

1,1 + 𝑁 𝑏
1,1. The variables 𝑁𝑎

1,1 and 𝑁 𝑏
1,1 are considered to

be independent to each other, because ℵ𝑓 is very large. Thus,
we have 𝐸(𝑁1,1) = 𝐸(𝑁𝑎

1,1) + 𝐸(𝑁 𝑏
1,1); and 𝐷(𝑁1,1) =

𝐷(𝑁𝑎
1,1) + 𝐷(𝑁 𝑏

1,1). Comparing 𝐸(𝑁𝑎
1,1) in Eq. (5) and

𝐸(𝑁 𝑏
1,1) in Eq. (8), we find that 𝐸(𝑁 𝑏

1,1) is so minor that it
can be ignored. Similarly, compared with 𝐷(𝑁𝑎

1,1), 𝐷(𝑁 𝑏
1,1)

can also be ignored. We then have:

𝐸(𝑁1,1) ≈ 𝐸(𝑁𝑎
1,1) = 𝑟𝑒

− 𝑢
ℵ𝑓 (10)

𝐷(𝑁1,1) ≈ 𝐷(𝑁𝑎
1,1) = 𝑟𝑒

− 𝑢
ℵ𝑓 (1− 𝑒

− 𝑢
ℵ𝑓 ) (11)

According to Eqs. (2) and (10), we have:

𝑟 =
𝑘

𝐸(𝑁1,0)

𝐸(𝑁1,1)
+ 1

(12)

By substituting 𝑁1,0 for 𝐸(𝑁1,0) and 𝑁1,1 for 𝐸(𝑁1,1) in
Eq. (12), we get the estimator of 𝑟 as follows:

𝑟 =
𝑘

𝑁1,0

𝑁1,1
+ 1

, (13)

where 𝑁1,0 and 𝑁1,1 are variables known from the observa-
tions, and 𝑟 is the estimation result.

C. Investigating the Accuracy of B-KC

The following Theorem presents the expectation and vari-
ance of the estimator 𝑟.

Theorem 1: When the frame size ℵ𝑓 is large enough, 𝑟 in
Eq. (13) is an unbiased estimator of 𝑟. That is,

𝐸(𝑟) = 𝑟 (14)

And the variance of the estimator 𝑟 is as follows:

𝐷(𝑟) =
𝑚𝑟

𝑘
(𝑒

𝑢
ℵ𝑓 − 1), (15)

where 𝑘 = 𝑚+ 𝑟 and 𝑢 = 𝑚+ 𝑟 + 𝑜.
Proof: Since 𝑟 = 𝑘

𝑁1,0
𝑁1,1

+1
Eq. (13) is a function of 𝑁1,0

and 𝑁1,1, it is denoted as 𝑔(𝑁1,0, 𝑁1,1). We leverage Taylor
series expansion [24] to get the expectation and variance of



𝑟. In what follows, we present the Taylor series expansion of
function 𝑔(𝑁1,0, 𝑁1,1) around (𝜃1, 𝜃2), where 𝜃1 = 𝐸(𝑁1,0),
𝜃2 = 𝐸(𝑁1,1).

𝑔(𝑁1,0, 𝑁1,1)

≈𝑔(𝜃1, 𝜃2) + [(𝑁1,0 − 𝜃1)
∂𝑔

∂𝑁1,0
+ (𝑁1,1 − 𝜃2)

∂𝑔

∂𝑁1,1
]

+
1

2
[(𝑁1,0 − 𝜃1)

2 ∂2𝑔

∂𝑁2
1,0

+ 2(𝑁1,0 − 𝜃1)(𝑁1,1 − 𝜃2)
∂2𝑔

∂𝑁1,0∂𝑁1,1

+ (𝑁1,1 − 𝜃2)
2 ∂2𝑔

∂𝑁2
1,1

]

(16)
Taking the expectation of both sides, we have:

𝐸[𝑔(𝑁1,0, 𝑁1,1)]

=𝑔(𝜃1, 𝜃2) +
1

2
[𝐷(𝑁1,0)

∂2𝑔

∂𝑁2
1,0

+ 2𝐶𝑜𝑣(𝑁1,0, 𝑁1,1)
∂2𝑔

∂𝑁1,0∂𝑁1,1

+𝐷(𝑁1,1)
∂2𝑔

∂𝑁2
1,1

]

=𝑔(𝜃1, 𝜃2) +
1

2
[𝐷(𝑁1,0)

∂2𝑔

∂𝑁2
1,0

+𝐷(𝑁1,1)
∂2𝑔

∂𝑁2
1,1

]

(17)
In Eq. (17), 𝑁1,0 and 𝑁1,1 are independent to each other

when considering ℵ𝑓 is large enough. Thus, 𝐶𝑜𝑣(𝑁1,0, 𝑁1,1)
is simplified to 0. As required in Eq. (17), the second-order
partial derivatives of function 𝑔(𝑁1,0, 𝑁1,1) are calculated as
follows. ⎧⎨⎩

∂2𝑔(𝑁1,0, 𝑁1,1)

∂𝑁2
1,0

∣𝑁1,0=𝜃1
𝑁1,1=𝜃2

=
2𝑘𝜃2

(𝜃1 + 𝜃2)3

∂2𝑔(𝑁1,0, 𝑁1,1)

∂𝑁2
1,1

∣𝑁1,0=𝜃1
𝑁1,1=𝜃2

=
−2𝑘𝜃1

(𝜃1 + 𝜃2)3

Putting the above values into Eq. (17), and replacing 𝜃1 by
𝐸(𝑁1,0), 𝜃2 by 𝐸(𝑁1,1), we then have:

𝐸[𝑔(𝑁1,0, 𝑁1,1)]

=𝑔[𝐸(𝑁1,0), 𝐸(𝑁1,1)] +𝑁 [
𝐸(𝑁1,1)𝐷(𝑁1,0)− 𝐸(𝑁1,0)𝐷(𝑁1,1)

[𝐸(𝑁1,0) + 𝐸(𝑁1, 1)]3
]

(18)
Combining the expectations and variances of 𝑁1,0 and 𝑁1,1

in Eqs. (2), (3), (10), and (11) into Eq. (18), we have:

𝐸(𝑟) = 𝐸[𝑔(𝑁1,0, 𝑁1,1)]

=𝑔[𝐸(𝑁1,0), 𝐸(𝑁1,1)]

=
𝑘

𝐸(𝑁1,0)

𝐸(𝑁1,1)
+ 1

=𝑟

(19)

Eq. (19) indicates that 𝑟 is an unbiased estimator of 𝑟. The
variance 𝐷(𝑟) of 𝑟 is calculated as follows:

𝐷(𝑟) =𝐸[𝑟 − 𝐸(𝑟)]2

=𝐸[𝑔(𝑁1,0, 𝑁1,1)− 𝑟]2
(20)

We use the first-order Taylor series expansion of 𝑔(𝑁1,0, 𝑁1,1)
to substitute it in Eq. (20). Thus, we have:

𝐷(𝑟) =𝐸[𝑔(𝑁1,0, 𝑁1,1)− 𝑟]2

=𝐸[(𝑁1,0 − 𝜃1)
∂𝑔

∂𝑁1,0
+ (𝑁1,1 − 𝜃2)

∂𝑔

∂𝑁1,1
]2

=𝐸[(𝑁1,0 − 𝜃1)
2(

∂𝑔

∂𝑁1,0
)2 + (𝑁1,1 − 𝜃2)

2(
∂𝑔

∂𝑁1,1
)2

+ 2(𝑁1,0 − 𝜃1)(𝑁1,1 − 𝜃2)(
∂𝑔

∂𝑁1,0
)(

∂𝑔

∂𝑁1,1
)]

=𝐷(𝑁1,0)(
∂𝑔

∂𝑁1,0
)2 +𝐷(𝑁1,1)(

∂𝑔

∂𝑁1,1
)2

(21)

As required in Eq. (21), the first-order partial derivatives of
function 𝑔(𝑁1,0, 𝑁1,1) are calculated as follows.⎧⎨⎩

∂𝑔(𝑁1,0, 𝑁1,1)

∂𝑁1,0
∣𝑁1,0=𝜃1
𝑁1,1=𝜃2

=
−𝑘𝜃2

(𝜃1 + 𝜃2)2

∂𝑔(𝑁1,0, 𝑁1,1)

∂𝑁1,1
∣𝑁1,0=𝜃1
𝑁1,1=𝜃2

=
𝑘𝜃1

(𝜃1 + 𝜃2)2

Putting the above values into Eq. (21) and replacing 𝜃1 by
𝐸(𝑁1,0), 𝜃2 by 𝐸(𝑁1,1), we then have:

𝐷(𝑟) =
𝑘2[𝐸2(𝑁1,1)𝐷(𝑁1,0) + 𝐸2(𝑁1,0)𝐷(𝑁1,1)]

[𝐸(𝑁1,0) + 𝐸(𝑁1,1)]4
(22)

Combining the expectations and variances of 𝑁1,0 and 𝑁1,1
in Eqs. (2), (3), (10), and (11) into Eq. (23), we have:

𝐷(𝑟) =
𝑚𝑟

𝑘
(𝑒

𝑢
ℵ𝑓 − 1), (23)

that is, Eq. (15) is approved.

Considering the required accuracy of the proposed estima-
tor, one may ask the following question.

Question 1. How many sub-frames are adequate to make
B-KC meet the required (𝛼, 𝛽) accuracy, i.e., 𝑃{∣𝑟 − 𝑟∣ ≤
𝛼 ⋅ 𝑟} ≥ 𝛽.

We propose the following Theorem to give the answer to
Question 1.

Theorem 2: If the number ℵ of sub-frames is not less
than 𝑢/[𝑓 ln( 𝑘𝛼

2

𝑑𝑍2
𝛽
+ 1)], the estimation result 𝑟 will meet the

predefined accuracy (𝛼, 𝛽), that is, 𝑃{∣𝑟 − 𝑟∣ ≤ 𝛼 ⋅ 𝑟} ≥ 𝛽.
Proof: According to the central limit theorem [25],

we have that 𝑊 = 𝑟−𝐸(𝑟)√
𝐷(𝑟)

satisfies the standard normal

distribution. We can find a percentile 𝑍𝛽 of 𝛽 such that
𝑃{−𝑍𝛽 ≤ 𝑊 ≤ 𝑍𝛽} ≥ 𝛽. For example, if 𝛽 = 95% then
𝑍𝛽 = 1.96. The required estimation accuracy can be rewritten
as follows:

𝑃{∣𝑟 − 𝑟∣ ≤ 𝛼 ⋅ 𝑟}
=𝑃{(1− 𝛼)𝑟 ≤ 𝑟 ≤ (1 + 𝛼)𝑟}
=𝑃{ (1− 𝛼)𝑟 − 𝐸(𝑟)√

𝐷(𝑟)
≤ 𝑟 − 𝐸(𝑟)√

𝐷(𝑟)
≤ (1 + 𝛼)𝑟 − 𝐸(𝑟)√

𝐷(𝑟)
}

(24)

According to Eq. (24), if we have the following inequalities:⎧⎨⎩
(1− 𝛼)𝑟 − 𝐸(𝑟)√

𝐷(𝑟)
≤ −𝑍𝛽

(1 + 𝛼)𝑟 − 𝐸(𝑟)√
𝐷(𝑟)

≥ 𝑍𝛽 ,



we can guarantee 𝑃{∣𝑟−𝑟∣ ≤ 𝛼 ⋅𝑟} ≥ 𝛽. Substituting 𝐸(𝑟) =
𝑟 and 𝐷(𝑟) = 𝑚𝑟

𝑘 (𝑒
𝑢
ℵ𝑓 − 1) into the above inequalities and

solving them, we have:

ℵ ≥ 𝑢/[𝑓 ln(
𝑘𝛼2

𝑑𝑍2
𝛽

+ 1)], (25)

where 𝑑 = 𝑚
𝑟 is used to describe the dynamic degree of the

key tag set.
Theorem 2 presents how to configure ℵ to produce an

(𝛼, 𝛽) estimate of 𝑟. However, 𝑢 and 𝑑 is not known in
priori. Because the minimum ℵ is a monotonically increasing
function with respect to 𝑢 and 𝑑, we first use 𝑢 = 𝑢𝑚𝑎𝑥 and
𝑑 = 𝑑𝑚𝑎𝑥 to calculate ℵ such that the (𝛼, 𝛽) accuracy can be
always satisfied for any actual 𝑢 and 𝑑.

D. Skipping the Expected Empty/Collision Slots

According to the estimator in Eq. (13), the reader only
needs to monitor the status of the expected singleton slots. In
other words, the expected empty slots as well as the expected
collision slots are not used at all, and their execution wastes a
large amount of time. Exploiting the methods used in [33]
[34], the expected empty slots and collision slots can be
directly skipped without execution. The slot skipping method
is described in the following. Before each sub-frame with 𝑓
slots, the reader constructs a bitmap with 𝑓 bits, in which ‘1s’
mean the expected singleton slots that need to be executed
and ‘0s’ represent the expected empty/collision slots. For a
certain tag, the bit corresponding to its picked slot is referred
to as the representative bit. When receiving the bitmap, a tag
counts the number 𝜆 of ‘1s’ proceeding its representative bit.
If the representative bit of a tag is ‘1’, it will respond in the
(𝜆+ 1)𝑡ℎ slots . In contrary, if a tag finds its presentative bit
is ‘0’, which means it picks an expected collision slot, it will
not respond at all. As a result of the above procedures, only
expected singleton slots are executed, and a large number of
expected empty/collision slots that are not used are skipped.

E. Time Cost of B-KC
In the following, let us consider the execution time of the

proposed B-KC which consists of three parts. Transmission
of Initial Parameters. For an arbitrary sub-frame, a tag
slot 𝑡𝑡𝑎𝑔 is adequate to broadcast the initialization parameters
⟨𝑓𝑐,ℵ, 𝑓, 𝑅⟩. Transmission of 𝑓 -bit Bitmap. The bitmap is
divided into 96-bit segments to to be transmitted in ⌈ 𝑓

96⌉
tag slots. Execution of the Expected Singleton Slots. An
arbitrary slot in this sub-frame has the following probability
to be an expected singleton slot.

𝑝1,∗ =

(
𝑘

1

)
× 1

ℵ × 1

𝑓
× (1− 1

ℵ × 1

𝑓
)𝑘−1

≈ 𝑘𝑒
− 𝑘

ℵ𝑓

ℵ𝑓

(26)

And then, the number of expected singleton slots that need to
be executed in this sub-frame is 𝑓×𝑝1,∗ = 𝑘

ℵ𝑒
− 𝑘

ℵ𝑓 . Combining
the above three parts of time, the time cost of this sub-frame
is 𝑡𝑡𝑎𝑔 + ⌈ 𝑓

96⌉𝑡𝑡𝑎𝑔 + 𝑘
ℵ𝑒

− 𝑘
ℵ𝑓 𝑡𝑙𝑜𝑛𝑔 . For ℵ sub-frames in total,

the whole execution time of B-KC denoted as 𝑇𝐵 is given as
follows:

𝑇𝐵 = ℵ × (𝑡𝑡𝑎𝑔 + ⌈ 𝑓

96
⌉𝑡𝑡𝑎𝑔 +

𝑘

ℵ𝑒
− 𝑘

ℵ𝑓 𝑡𝑙𝑜𝑛𝑔)

= ℵ𝑡𝑡𝑎𝑔 + ℵ⌈ 𝑓

96
⌉𝑡𝑡𝑎𝑔 + 𝑘𝑒

− 𝑘
ℵ𝑓 𝑡𝑙𝑜𝑛𝑔

(27)

IV. S-KC: SAMPLING-BASED KEY TAG COUNTING
PROTOCOL

of the most important requirements of a tag estimation
scheme is scalability, i.e., the estimation time needs to be
scalable to large population sizes [19]. However, the numerical
results in Fig. 4 reveal that the execution time of B-KC
increases sharply with the increase of 𝑢𝑚𝑎𝑥. Therefore, the
scalability of B-KC needs to be further improved. Based
on B-KC, this section first exploits the sampling idea [35]
[36] to propose the Sampling-based Key tag Counting (S-
KC) protocol. Actually, B-KC is a special case (𝑝 = 1) of
S-KC. With the involved parameter 𝑝, we also propose the
theoretical analysis to investigate the parameter settings of S-
KC. Via numerical results, we observe that even though S-
KC outperforms B-KC, its time-efficiency is still far from the
ideal case. Then, we propose a tactic named early termination
to bridge the gap between the performance of S-KC and the
ideal case.
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Fig. 4: Evaluating the execution time of B-KC against 𝑢𝑚𝑎𝑥.
𝛼 = 5%, 𝛽 = 95%, and 𝑘 is fixed to 50, 000; 𝑑𝑚𝑎𝑥 = 8; 𝑢𝑚𝑎𝑥

varies from 200, 000 to 1, 000, 000.

A. Overview of S-KC

1) Scheme Overview: In the new estimation scheme, each
tag participates in the estimation process with a probability of
𝑝, namely the sampling probability. A tiny sampling method
suitable for the RFID devices was proposed in [35]. The reader
broadcasts a request ⟨𝑅′, 𝑙⟩, where 𝑅′ is a new random number
and the integer 𝑙 is calculated by ⌈𝑝 × 𝐿⌉, in which 𝐿 is a
sufficiently large constant pre-configured in the tags during the
manufacturing process. Using the received random seed and
its ID, each tag calculates 𝐻(𝐼𝐷,𝑅′) mod 𝐿 whose result
follows a uniform distribution within [0, 𝐿). If the hashing
result is less than the received parameter 𝑙, the tag will
participate in the estimation process; otherwise, it will not.
As a result, each tag participates in the estimation process
with a probability of 𝑝. The rest of procedures is the same as
that of B-KC.



2) Proposing the New Estimator of 𝑟: We still use the
observations of 𝑁1,0 and 𝑁1,1 to estimate 𝑟. To differentiate
the new analytical procedures from those in the last section,
we introduce two new notations but with the same physical
meaning as the original ones, 𝑁 ′

1,0 and 𝑁 ′
1,1. Similar to

the theoretical analysis in Section III, the expectations and
variances of 𝑁 ′

1,0 and 𝑁 ′
1,1 are given as follows:

𝐸(𝑁 ′
1,0) = 𝑚𝑝𝑒

− 𝑢𝑝
ℵ𝑓

𝐷(𝑁 ′
1,0) = 𝑚(𝑝𝑒

− 𝑢𝑝
ℵ𝑓 )(1− 𝑝𝑒

− 𝑢𝑝
ℵ𝑓 )

𝐸(𝑁 ′
1,1) = 𝑟𝑝𝑒

− 𝑢𝑝
ℵ𝑓

𝐷(𝑁 ′
1,1) = 𝑟(𝑝𝑒

− 𝑢𝑝
ℵ𝑓 )(1− 𝑝𝑒

− 𝑢𝑝
ℵ𝑓 )

(28)

According to Eq. (28), the new estimator can be given as
follows:

𝑟′ =
𝑘

𝑁′
1,0

𝑁′
1,1

+ 1
(29)

B. Investigating the Accuracy of S-KC

In the following, Theorem 3 gives expectation and variance
of the new estimator 𝑟′.

Theorem 3: When the frame size ℵ𝑓 is large enough, 𝑟′ is
an approximately unbiased estimator of 𝑟. That is,

𝐸(𝑟′) = 𝑟 (30)

And the variance of the estimator 𝑟′ is as follows:

𝐷(𝑟′) =
𝑚𝑟

𝑘
(
1

𝑝
𝑒

𝑢𝑝
ℵ𝑓 − 1) (31)

where 𝑘 = 𝑚+ 𝑟 and 𝑢 = 𝑚+ 𝑟 + 𝑜.
Proof: Using equations in Eqs. (28) and (29), this theorem

can be similarly deduced from proof of Theorem 1.
Then, we propose the following Theorem to investigate

how many sub-frames are adequate to make S-KC meet the
required (𝛼, 𝛽) accuracy.

Theorem 4: With a fixed sampling probability 𝑝 ∈
(

𝑍2
𝛽𝑑

𝑘𝛼2+𝑍2
𝛽𝑑

, 1], if the number ℵ of sub-frames is not less than

𝑢𝑝/{𝑓 ln[( 𝑘𝛼
2

𝑍2
𝛽𝑑

+ 1)𝑝]}, the estimation result 𝑟′ will meet the
predefined accuracy (𝛼, 𝛽), that is, 𝑃{∣𝑟′ − 𝑟∣ ≤ 𝛼 ⋅ 𝑟} ≥ 𝛽.

Proof: According to equations in Eqs. (30) and (31), we
need to guarantee ℵ ≥ 𝑢𝑝/{𝑓 ln[( 𝑘𝛼

2

𝑍2
𝛽𝑑

+ 1)𝑝]} in order to
meet the predefined accuracy (𝛼, 𝛽). This can be deduced from
proof of Theorem 2. Please note that, not all 𝑝 ∈ (0, 1] can be
used. If 𝑝 is too small, the denominator 𝑓 ln[( 𝑘𝛼

2

𝑍2
𝛽𝑑

+1)𝑝] will

become negative. By solving ln[( 𝑘𝛼
2

𝑍2
𝛽𝑑

+ 1)𝑝] > 0, we get the

ranges of the sampling probability 𝑝 as (
𝑍2

𝛽𝑑

𝑘𝛼2+𝑍2
𝛽𝑑

, 1].

Clearly, the expression of ℵ proposed in Theorem 4 is still
an increasing function against 𝑢 and 𝑑. Thus, ℵ should be
calculated by 𝑢 = 𝑢𝑚𝑎𝑥 and 𝑑 = 𝑑𝑚𝑎𝑥 so as to accommodate
any actual 𝑢 and 𝑑.

C. Time Cost of S-KC
Similar with the analysis in Section III-E, the whole execu-

tion time of S-KC, denoted as 𝑇𝑆 , is given as follows:

𝑇𝑆 = ℵ𝑡𝑡𝑎𝑔 + ℵ⌈ 𝑓

96
⌉𝑡𝑡𝑎𝑔 + 𝑘𝑝𝑒

− 𝑘𝑝
ℵ𝑓 𝑡𝑙𝑜𝑛𝑔 (32)

As illustrated in Fig. 5, the configuration of sampling prob-
ability significantly affects the performance of S-KC. We
can use an offline Algorithm 1 to find the optimal sampling
probability 𝑝𝑜𝑝 before performing the estimation.
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Fig. 5: Evaluating the execution time of S-KC against 𝑝. 𝛼 =
5%, 𝛽 = 95%, and 𝑘 is fixed to 50, 000; 𝑑𝑚𝑎𝑥 = 8; 𝑝 varies
from 0.2 to 1.

Algorithm 1: Find the optimal sampling probability 𝑝𝑜𝑝
and the corresponding number ℵ𝑜𝑝 of sub-frames as the
inputs of S-KC.

Input: 𝑘, 𝑢𝑚𝑎𝑥, 𝑑𝑚𝑎𝑥, 𝛼, 𝑍𝛽 , 𝑓 .
Output: the optimal sampling probability 𝑝𝑜𝑝 and

sub-frame number ℵ𝑜𝑝.
1 𝑇𝑖𝑚𝑒 = +∞;

2 𝑝𝑚𝑖𝑛 =
𝑍2

𝛽𝑑𝑚𝑎𝑥

𝑘𝛼2+𝑍2
𝛽𝑑𝑚𝑎𝑥

;

3 𝛿 = 0.01;
4 for 𝑒𝑎𝑐ℎ 𝑝 ∈ (𝑝𝑚𝑖𝑛, 1] with step 𝛿 do
5 ℵ = 𝑢𝑚𝑎𝑥𝑝/{𝑓 ln[( 𝑘𝛼2

𝑍2
𝛽𝑑𝑚𝑎𝑥

+ 1)𝑝]};

6 𝑇 = ℵ𝑡𝑡𝑎𝑔 + ℵ⌈ 𝑓
96⌉ × 𝑡𝑡𝑎𝑔 + 𝑘𝑝𝑒−

𝑘𝑝
ℵ𝑓 × 𝑡𝑙𝑜𝑛𝑔;

7 if 𝑇 < 𝑇𝑖𝑚𝑒 then
8 𝑝𝑜𝑝 = 𝑝;
9 ℵ𝑜𝑝 = ℵ;

10 𝑇𝑖𝑚𝑒 = 𝑇 ;
11 end if
12 end for
13 return 𝑝𝑜𝑝 and ℵ𝑜𝑝;

D. Early Termination

1) Motivation: Because the actual 𝑢 and 𝑑 are not known
in prior, we have to use the extreme values (i.e., 𝑢𝑚𝑎𝑥,
𝑑𝑚𝑎𝑥) of them to calculate the minimum sub-frame number
ℵ. However, the numerical results illustrated in Fig. 6 reveal
the big performance gap between the time by using 𝑢𝑚𝑎𝑥 and



1/8 1/4 1/2 1 2 4 8
0

10

20

30

40

50

60

 

 

time by umax and dmax

time by actual u and d (ideal case)

1 2 3 4 5 6
0

10

20

30

40

50

60

 

 

time by umax and dmax

time by actual u and d (ideal case) 

T
im

e 
co

st
 i

n
 s

ec
o

n
d
s

T
im

e 
co

st
 i

n
 s

ec
o

n
d
s

the actual    in logscale the actual    (by 10  )

(a) (b)

5

gap gap

ud

Fig. 6: Performance gap: time by 𝑢𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥 vs. time by
actual 𝑢 and 𝑑. 𝑘 = 50, 000, 𝛼 = 5%, 𝛽 = 95%, 𝑢𝑚𝑎𝑥 =
600, 000, 𝑑𝑚𝑎𝑥 = 8. (a) the actual 𝑢 is fixed to 300, 000, the
actual 𝑑 varies from 1

8 to 8 in logscale; (b) the actual 𝑑 is
fixed to 1, the actual 𝑢 varies from 100, 000 to 600, 000.

𝑑𝑚𝑎𝑥 to calculate ℵ and the time by using the actual 𝑢 and 𝑑
to calculate ℵ. An immediate question is as follows.

Question 2. How to make the performance of S-KC ap-
proach its ideal case (i.e., assuming 𝑢 and 𝑑 are known in
prior).

To answer Question 2, this section proposes a tactic named
early termination to bridge this gap. Specifically, at the very
beginning, we configure the parameters 𝑝 and ℵ based on 𝑢𝑚𝑎𝑥

and 𝑑𝑚𝑎𝑥. After an arbitrary sub-frame 𝑖 ∈ [0,ℵ − 1], we
leverage the observation of the first 𝑖+1 sub-frames that have
already been executed to give tighter upper bounds 𝑢𝑚𝑎𝑥 𝑖 on
𝑢 and 𝑑𝑚𝑎𝑥 𝑖 on 𝑑. Based on the new 𝑢𝑚𝑎𝑥 𝑖 and 𝑑𝑚𝑎𝑥 𝑖,
the backend server determines if the current estimation result
of 𝑟 has already met the required accuracy (𝛼, 𝛽). If so, the
reader will terminate the execution right now, otherwise, the
next sub-frame will be executed.

2) Giving the Tighter Bounds of 𝑢 and 𝑑: According to
Eq. (28), we first leverage the observed 𝑁 ′𝑖

1,0 and 𝑁 ′𝑖
1,1 after

the 𝑖𝑡ℎ sub-frame to approximate 𝑢 and 𝑑 as follows.

�̂�𝑖 = −ℵ𝑓
𝑝

ln(
𝑁 ′𝑖

1,0 +𝑁 ′𝑖
1,1

𝑘𝑝𝑖
)

𝑑𝑖 =
𝑁 ′𝑖

1,0

𝑁 ′𝑖
1,1

,

(33)

where the actual sampling probability 𝑝𝑖 is equal to (𝑖+1)𝑝
ℵ .

Similar with Section III-C, we get the expectation and devia-
tion of �̂�𝑖 and 𝑑𝑖 as follows, respectively.

𝐸(�̂�𝑖) = 𝑢

𝐷(�̂�𝑖) =
ℵ2𝑓2

𝑘𝑝2
(
𝑒

𝑢𝑝
ℵ𝑓

𝑝𝑖
− 1)

𝐸(𝑑𝑖) = 𝑑

𝐷(𝑑𝑖) =
𝑑(𝑑+ 1)2

𝑘
× (

𝑒
𝑢𝑝
ℵ𝑓

𝑝𝑖
− 1)

(34)

The well-known three-sigma rule [26] indicates that: if a
variable 𝑉 follows the normal distribution, then it can differ
from its expectation 𝐸(𝑉 ) by a quantity exceeding 3

√
𝐷(𝑉 )

with a probability no more than 0.3%. The simulation results
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Fig. 7: Investigating the distribution of �̂�𝑖 and 𝑑𝑖. 𝑡 = 50, 000,
𝑢 = 200, 000, 𝑑 = 1. (a) recording the estimate �̂� after 50𝑡ℎ

sub-frame with 5, 000 independent trials; (b) recording the
estimate 𝑑 after 50𝑡ℎ sub-frame with 5, 000 independent trials.

in Fig. 7 reveal that both �̂�𝑖 and 𝑑𝑖 approximately follow the
normal distribution. Hence, we have the following inequalities.

𝑃 [𝐸(�̂�𝑖)− 3
√

𝐷(�̂�𝑖) < �̂�𝑖 < 𝐸(�̂�𝑖) + 3
√

𝐷(�̂�𝑖)] > 99.7%

𝑃 [𝐸(𝑑𝑖)− 3

√
𝐷(𝑑𝑖) < 𝑑𝑖 < 𝐸(𝑑𝑖) + 3

√
𝐷(𝑑𝑖)] > 99.7%

(35)

According to Eqs. (34) (35), we can get the new upper bounds
of 𝑢 and 𝑑 as follows.

𝑢𝑚𝑎𝑥 𝑖 = �̂�𝑖 +
3ℵ𝑓
𝑝

√
1

𝑘
(
𝑒

�̂�𝑖𝑝
ℵ𝑓

𝑝𝑖
− 1)

𝑑𝑚𝑎𝑥 𝑖 = 𝑑𝑖 + 3(𝑑𝑖 + 1)

√
𝑑𝑖
𝑘
(
𝑒

�̂�𝑖𝑝
ℵ𝑓

𝑝𝑖
− 1),

(36)

where �̂�𝑖 and 𝑑𝑖 are the temporary estimation results got from
Eq. (33).

3) The Conditions of Early Termination: According to
Theorem 4, if the following two conditions are satisfied
simultaneously, the required (𝛼, 𝛽) estimation accuracy can
be guaranteed. Then, the estimation process terminates.

𝑝𝑖 >
𝑍2

𝛽𝑑𝑚𝑎𝑥 𝑖

𝑘𝛼2 + 𝑍2
𝛽𝑑𝑚𝑎𝑥 𝑖

(𝑖+ 1) ≥ 𝑢𝑚𝑎𝑥 𝑖𝑝𝑖/{𝑓 ln[(
𝑘𝛼2

𝑍2
𝛽𝑑𝑚𝑎𝑥 𝑖

+ 1)𝑝𝑖]}
(37)

As illustrated in Fig. 8, the proposed early termination tactic
can well bridge the performance gap discussed above, and thus
makes the performance of S-KC very close to the ideal case.

E. Discussion on the Multi-reader Case

In a large scale application scenario, a single reader is
usually not able to cover all the tags due to the limited
communication ranges of RFID tags. In the following, we
discuss how to extend the proposed S-KC to the multi-reader
scenarios. Because of the overlapping region, new types of
signal collisions such as reader-reader collisions and reader-tag
collisions may arise [37], which has attracted much attention
from research community [37] [38] [39]. Discussing these new
types of collisions is beyond the scope this paper. Here, we
only consider the tag-tag collisions, then assume the backend
server could well synchronize the readers [19] [16]. Logically,
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Fig. 8: Performance improvement benefiting from the tactic of
early termination: 𝑘 = 50, 000, 𝛼 = 5%, 𝛽 = 95%, 𝑢𝑚𝑎𝑥 =
600, 000, 𝑑𝑚𝑎𝑥 = 8. (a) the actual 𝑢 is fixed to 300, 000, the
actual 𝑑 varies from 1

8 to 8 in logscale; (b) the actual 𝑑 is
fixed to 1, the actual 𝑢 varies from 100, 000 to 600, 000.

the readers just paly the role of repeaters between the backend
server and tags. Specifically, all the used parameters such
as 𝑓𝑐, 𝑓 , ℵ, 𝑅 are generated by the backend server and
delivered to all the readers. The readers then query the tags
by these global parameters. After each slot, the reader sends
the received information (a single checksum or a collsion) to
the backend server. The backend server constructs the global
slot status vector based on the following rules: (1) this slot is
empty if and only if (iff) all the readers detect an empty slot;
(2) this slot is singleton iff a single reader returns a checksum
or multiple readers return the same checksum; (3) otherwise,
this slot is a collision slot. By comparing the expected slot
status vector and the constructed actual slot vector, the backend
server can perform the key tag counting process as what we
have described before.

V. PERFORMANCE EVALUATION

In this section, we first conducted simulations to evaluate the
performance of S-KC in large scale RFID system that consists
of thousands of tags. Then, we implement a prototype of S-KC
to evaluate its practical deployability.

A. Simulation

The simulators were implemented via MATLAB on a
ThinkPad X230 desktop with an Intel i5 3230M CPU and
8G RAM. In the following, we first conduct a comparison on
execution time between S-KC and prior schemes: CATS [11],
ITSP [12], ZDE [22] and INC [23]. Note that, because the
identification-based protocols are far from efficiency, we do
not compare the proposed S-KC with them. Compared with
the delay of wireless data transmission, the time consumed by
computing on both the reader side and the tag side is so minor,
and thus is neglected. Therefore, we only consider the time
consumed by the wireless communications between the reader
and the tags. Moreover, the same as the literature [11] [12]
[22] [23], we consider a error-free communication channel.
Then, we conduct experiments to show that S-KC indeed
achieves the required estimation accuracy. Each simulation is
conducted for 1000 times and we record the average results.

1) Execution time: In this section, we conduct simulations
to evaluate the time-efficiency of the proposed S-KC. CATS
and ITSP need the value of 𝑐 (i.e., ∣𝑆𝐶 ∣) to optimize the
parameter settings. Then, Zheng et al. proposed a light-
weight scheme to roughly estimate 𝑐 thereby providing input
for CATS [11]. Chen et al. directly borrowed the efficient
cardinality estimation protocol ART to estimate 𝑐 [12]. To
their favor, we do not take these time cost into account and
configure their parameters using the actual 𝑐.

Investigating the Impact of 𝑢. In the simulations corre-
sponding to Fig. 9, we aim at investigating the impact of 𝑢
on the execution time needed by each scheme. Specifically,
𝑢𝑚𝑎𝑥 is fixed to 600, 000, which is large enough for common
applications. The cardinality 𝑘 of key tags is set to 50, 000.
The 𝑑𝑚𝑎𝑥 is set to 8, and the actual 𝑑 is configured to 1. The
actual 𝑢 varies from 100, 000 to 500, 000. We make two main
observations from the results shown in Fig. 9 (a) and (b). First,
the performance of CATS, ITSP and the proposed S-KC is not
sensitive to 𝑢, whereas, the execution time of ZDE and INC
increase linearly with respect to 𝑢. And the proposed S-KC is
faster than than all prior schemes in all these configurations.
For example, as illustrated in Fig. 9 (b), when 𝑢 = 500, 000,
the execution time of CATS, ITSP, ZDE is 151.1s, 108.7s,
68.8s, respectively. Note that, the execution time of INC
exceeds the bounds of the Fig. 9 (b) when 𝑢 = 500, 000. And
the execution time of S-KC is just 5.3s, which represents 28.5
times faster than CATS, 20.5 times faster than ITSP, 13 times
faster than ZDE. Second, by comparing Fig. 9 (a) and (b), we
observe that the higher the required estimation accuracy is, the
longer the execution time is, which holds on for each scheme.
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Fig. 9: Time vs. 𝑢: 𝑘 = 50, 000, 𝑑𝑚𝑎𝑥 = 8, 𝑑 = 1, 𝑢𝑚𝑎𝑥 =
600, 000, 𝑢 varies from 100, 000 to 500, 000. (a) 𝛼 = 10%,
𝛽 = 90%; (b) 𝛼 = 5%, 𝛽 = 95%.

Investigating the Impact of 𝑘. In the simulations corre-
sponding to Fig. 10, we aim at investigating the impact of 𝑘
on the execution time needed by each scheme. Specifically,
𝑢𝑚𝑎𝑥 is still fixed to 600, 000, and the actual 𝑢 is set to
300, 000. The 𝑑𝑚𝑎𝑥 is fixed to 8, and the actual 𝑑 is set
to 1. The cardinality 𝑘 of the key tags varies from 30, 000
to 70, 000. We make two main observations from the results
shown in Fig. 10 (a) and (b). First, the execution time of CATS
and ITSP increases linearly with respect to 𝑘. In contrary,
the execution time of ZDE, INC and our S-KC decreases



with respect to 𝑘. The underlying reason is that a larger
𝑘 increases the ratio of 𝑟

𝑢 , which facilitates the estimation
of 𝑟. Second, the proposed S-KC persistently outperforms
the prior schemes with different 𝑘, which reveals its good
scalability. As illustrated in Fig. 10 (b), when 𝑡 = 70, 000, the
execution time of CATS, ITSP, ZDE is 206.4s, 143.9s, and
35.1s, respectively. Note that, because the execution time of
INC exceeds the bounds of the Fig. 10 (b), the corresponding
line does not appear. The execution time of S-KC is just 3.6s,
which represents 57.3 times faster than CATS, 40 times faster
than ITSP, 9.8 times faster than ZDE.
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Fig. 10: Time vs. 𝑘: 𝑑𝑚𝑎𝑥 = 8, 𝑑 = 1, 𝑢𝑚𝑎𝑥 = 600, 000,
𝑢 = 300, 000, 𝑘 varies from 30, 000 to 70, 000. (a) 𝛼 = 10%,
𝛽 = 90%; (b) 𝛼 = 5%, 𝛽 = 95%.

Investigating the Impact of 𝑑. In the simulations corre-
sponding to Fig. 11, we aim at investigating the impact of 𝑑 on
the execution time needed by each scheme. Specifically, 𝑢𝑚𝑎𝑥

is still fixed to 600, 000, and the actual 𝑢 is set to 300, 000.
The cardinality 𝑘 of key tags is set to 50, 000. The upper
bound 𝑑𝑚𝑎𝑥 of 𝑑 is configured to 8, and the actual 𝑑 varies
from 1

4 to 4 in log-scale. According to Fig. 11 (a) and (b), we
observe that the proposed S-KC is significantly faster than all
prior schemes. As illustrated in Fig. 11 (b), when 𝑑 = 4, the
execution time of CATS, ITSP, ZDE is 207.9s, 72.7s, 109.9s,
respectively. Again, the line corresponding to INC does not
appear in Fig. 11 (b) because it exceeds the bounds of figure.
And the execution time of S-KC is just 14.5s, which represents
13.3 times faster than CATS, 5 times faster than ITSP, and 7.6
times faster than ZDE.
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Fig. 11: Time vs. 𝑑: 𝑘 = 50, 000, 𝑢𝑚𝑎𝑥 = 600, 000, 𝑢 =
300, 000, 𝑑𝑚𝑎𝑥 = 8, 𝑑 varies from 1

4 to 4 in logscale. (a)
𝛼 = 10%, 𝛽 = 90%; (b) 𝛼 = 5%, 𝛽 = 95%.

2) Actual Accuracy: The parameters (𝛼, 𝛽) given as input
of S-KC indicate the required accuracy. The estimation ac-
curacy that an estimation scheme achieves is referred to as
its actual accuracy (or actual reliability). The actual accuracy
should always be greater than or equal to the required accuracy
[19]. Hence, this section conducts simulations to evaluate the
actual accuracy of the proposed S-KC. Specifically, for each
parameter setting, we conducted 1000 independent simula-
tions. In an arbitrary simulation, if the estimation result 𝑟
is within [𝑟(1 − 𝛼), 𝑟(1 + 𝛼)], we refer to it as a success
estimation. We record the success times among 1000 times.
We use 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒𝑠

1000 to measure the actual accuracy. The
simulation results shown in Figures 12, 13 and 14 demonstrate
that the proposed S-KC always achieves the required accuracy.
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Fig. 12: Actual accuracy vs. 𝑢: 𝑘 = 50, 000, 𝑑𝑚𝑎𝑥 = 8, 𝑑 = 1,
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Fig. 13: Actual accuracy vs. 𝑘: 𝑑𝑚𝑎𝑥 = 8, 𝑑 = 1, 𝑢𝑚𝑎𝑥 =
600, 000, 𝑢 = 300, 000, 𝑘 varies from 30, 000 to 70, 000. (a)
𝛼 = 10%, 𝛽 = 90%; (b) 𝛼 = 5%, 𝛽 = 95%.
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𝑢 = 300, 000, 𝑑𝑚𝑎𝑥 = 8, 𝑑 varies from 1

4 to 4 in logscale. (a)
𝛼 = 10%, 𝛽 = 90%; (b) 𝛼 = 5%, 𝛽 = 95%.



B. Prototype Implementation

We use the highly integrated ultra low power 2.4GHz
RF System-on-Chip (SoC) nRF24LE1 [40] to implement a
prototype of our S-KC, which is shown in Fig. 15. nRF24LE1
includes a 2.4GHz RF transceiver core, an 8-bit CPU, and
embedded Flash memory. The computer and the reader com-
municate via RS232 serial port. The tags are active and
powered by button cells (3V). The prototype also includes
a simple user interface on the computer side, by which the
end users can configure the required estimation accuracy
and get the estimation result. The implemented RFID system
includes one RFID reader and 20 RFID tags. The specified
key tag list contains 20 potential IDs. The present key tags
(i.e., the tags in 𝑆𝑅) are fixed to 10. We conducted 100
independent experiments. As shown in Fig. 16, 95 estimation
results among 100 simulations meet the predefined estimation
accuracy (𝛼 = 0.1), which demonstrates the correctness of the
implemented prototype.
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Fig. 15: The implemented prototype of our S-KC.
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Fig. 16: Outputs of the implemented prototype. 𝛼 = 10%,
𝛽 = 90%. The actual 𝑟 is fixed to 10.

VI. RELATED WORK

In RFID-enabled applications, one of the most fundamental
tasks is tag identification that aims at identifying all the IDs
of tags within the interrogation ranges of a reader. The identi-
fication protocols are generally classified into two categories:
Aloha-based protocols [5] [6] [7] and Tree-based protocols
[8] [9] [10] [32]. In ALOHA-based identification protocols,
the reader queries the tags and periodically broadcasts syn-
chronization signals to create a slotted time frame. Upon
receiving such a request, each tag randomly picks a slot in
the frame to relay its ID information. If a tag exclusively
occupies a slot, its ID can be received by the reader. In
contrary, if it shares a common slot with other tags, then

its ID cannot be received by the reader due to the signal
collision, and therefore retransmission is required [19]. The
tree-based identification protocol is a recursive depth-first
searching algorithm performed by the reader. Specifically, the
reader organizes all IDs in a binary tree whose height is equal
to the length of a tag ID. The left (right) branches of the tree
is marked by ‘0s’ (‘1s’). Clearly, each leaf corresponds to a
potential tag ID. The reader queries the tags by broadcasting a
prefix starting from the root of the binary tree. The tags whose
IDs match the queried prefix will respond their ID information.
If two or more tags respond simultaneously, signal collision
will occur, the reader then generates two new query prefixes
by appending a ‘0’ and a ‘1’ to the previous query prefix. The
tags will be queried by these two new prefixes successively.
On the other hand, if exactly one (or none) tag responds
its ID information, the reader will successfully receive the
corresponding ID (or receive nothing). Then, the new nearby
prefix will be queried in the next time. This process continues
until all the tags have been identified [41].

Besides the exact identification, the problem of estimat-
ing the cardinality of tags has also attracted great atten-
tion from the research community. The first literature about
tag estimation was proposed by Kodialam et al. in [14].
The proposed Unified Simple Estimator (USE) and Unified
Probabilistic Estimator (UPE) perform estimation based on
the number of empty slots or that of collision slots in a
frame, respectively. Qian et al. [16] exploited the hashing
with geometric distribution to estimate the cardinality of tags
and thus proposed the Lottery Frame (LoF) scheme. Zheng et
al. proposed Probabilistic Estimation Tree (PET) to provide a
estimation method for the RFID systems which work based on
tree-walking algorithms [18]. M. Shahzad et al. proposed the
Average Run based Tag estimation (ART) by observing the
average length of sequences of consecutive non-empty slots
[19]. Li et al. proposed an estimation scheme called Maximum
Likelihood Estimator (MLE) which takes the energy-efficiency
into consideration [15]. These estimation schemes concentrate
on approximating the cardinality of tags in a static RFID
system. However, in practice, the RFID systems are usually
dynamic—the tagged items or humans may frequently move
in and out. The above estimation schemes can only tell you,
for example, there are 10, 000 tags in the system at time
𝑇1 and 15, 000 tags at time 𝑇2. However, they cannot tell
you how many tags are moved out and how many new ones
are moved in during this period. Q. Xiao et al. studied the
problem of tag estimation focusing on dynamic RFID systems
[22]. ZDE scheme needs the reader to observe all slots in
a time frame, which triggers its low time-efficiency. Gong
et al. proposed INformative Counting (INC) to estimate the
number of counterfeit tags whose IDs do not appear in the
database [23].

VII. CONCLUSION

This paper has studied a practically important problem of
key tag counting, which is very desirable in many application
scenarios such as counting the key items in a store to facilitate



the restocking process, counting the rare birds to investigate
their migration. To address this problem, we first proposed a
Basic Key tag Counting (B-KC) protocol, whose good feature
is that the reader only needs to observe the expected singleton
slots instead of the whole time frame. To save time, B-KC
skips the execution of expected empty/collision slots. Based
on B-KC, we have exploited the sampling idea and early
termination tactic to further proposed the Sampling-based
Key tag Counting (S-KC) protocol, which possesses better
efficiency. This paper has also theoretically investigated the
parameter settings to guarantee the required estimation accu-
racy. Extensive simulation experiments have been conducted
to evaluate the efficiency of the proposed S-KC. The results
manifest that this scheme significantly outperforms the closely
related protocols in terms of execution time. Moreover, the im-
plemented prototype of S-KC demonstrates the deployability
of our protocol.
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