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Abstract—Contactless 3D finger knuckle is a new biometric 

identifier with a lot of potentials, which can provide an accurate, 

efficient and convenient alternative for the personal identification. 

The current 3D finger knuckle recognition methods are limited by 

computationally complex or inefficient matching algorithms, 

which attempt to compute the matching scores from all possible 

translational and rotational parameters for matching a pair of 

templates. The strength of such approach lies in its simplicity and 

reliability for accurately matching intra-class samples, but 

expensive computational time is required. Furthermore, 

attempting on excessive numbers of translational and rotational 

parameters can also degrade the overall recognition accuracy 

because the imposter matches can be increased. In fact, this 

conventional matching approach is commonly adopted in many 

biometric studies, but its drawbacks have not received adequate 

attention. This paper addresses such 3D finger knuckle 

recognition problem by developing a more efficient matching 

approach using surface key points extracted from 3D finger 

knuckle surfaces. Our comparative experimental results with the 

state-of-the art method on a publicly available 3D finger knuckle 

database indicates that our approach can offer over 23 times faster 

with performance improvement on the accuracy. Although the 

focus of our work is on 3D finger knuckle recognition, we also 

present the performance of our method on other publicly available 

databases with similar 3D biometric patterns including 3D 

palmprint and 3D fingerprint, to validate the effectiveness of the 

proposed approach.   

 
Index Terms—hand biometrics, 3D finger knuckle recognition, 

key points extraction, templates matching  

 

I. INTRODUCTION 

IOMETRIC recognition using finger knuckle images [1-4] 

has gained increasing attention in recent years probably 

due to its recognition accuracy, reasonable efficiency, and the 

high convenience of acquiring finger dorsal images. This 

technology provides a wide range of potential civilian 

applications such as immigration inspection, unlocking 

smartphones and online shopping. The recent research trend 

investigates the 3D information of biometrics in addition to the 

convention studies on 2D intensity images, because rich 

information can be extracted from 3D images while such 

images are usually more robust and illumination invariant. The 

success of such research direction can be observed in many 

popular biometrics such as 3D fingerprint [5], 3D palmprint [6-

8], 3D face [9-10] and 3D ear [11-12]. Similarly, the use of 3D 
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finger knuckle images for biometric recognition has been 

investigated in a recent research [13]. 

The research on 3D finger knuckle recognition [13] 

introduced the reliable surface gradient derivative features 

extracted from 3D finger knuckle images as the templates for 

further matching. During the matching process, a pair of 

templates are matched by a trial and error approach, which 

computes the scores from matching a gallery template with all 

possible combination of translational and rotational shifting of 

the probe templates. The shifting parameters producing the 

minimum score is considered to be the best shifting parameters 

and that matching score is considered as the final matching 

score. In fact, this matching approach has been widely 

employed in many biometric researches including finger 

knuckle recognition [1, 13], palmprint recognition [7-8, 14-16] 

and iris recognition [17-18] due to its effectiveness and 

simplicity. However, there are two drawbacks associated with 

such approach: (1) it is computationally expensive because all 

possible combinations of translational and rotational shifting 

are being evaluated; (2) the overall recognition accuracy is 

reduced because when attempting on many trails, the final 

scores of matching the imposter pairs will be closer to the final 

scores of matching the genuine pairs, which results in a 

situation that the distribution of the imposter matching scores is 

shifted towards the distribution of the genuine matching scores. 

These two drawbacks are especially obvious for finger knuckle 

recognition because of the following reason: since the area of 

interest of finger knuckle is loosely defined, a sharp boundary 

does not exist along the finger knuckle regions; therefore, even 

with a robust detector for segmenting finger knuckle images, a 

large degree of translational and rotational shifting is required 

to align a pair of segmented finger knuckle images; a large 

number of attempts is required for matching the finger knuckle 

images, therefore the effects of these drawbacks are more 

severe. These limitations of the matching approach are usually 
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TABLE I 
COMPARATIVE SUMMARY BETWEEN OUR METHOD AND THE RECENT 

ADVANCES ON 3D HAND BIOMETRICS 

Biometric Trait Accuracy Efficiency  

3D Finger Knuckle More Accurate ~23X Faster 

3D Palmprint More Accurate ~2X Faster 

3D Fingerprint Similar ~2X Faster 
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overlooked by the research community. Therefore, it is 

motivated to investigate a more efficient matching approach, 

especially for the 3D finger knuckle recognition problem. 

This paper attempts to mitigate the two aforementioned 

drawbacks by introducing a new matching approach using 

reliable surface key points. Those surface key points can be 

extracted from 3D finger knuckle images using the reliable 

surface gradient derivative features. By simply using the spatial 

location of key points from a pair of templates, the number of 

attempts for the matching a pair of templates can be largely 

reduced. As a consequence, the computational efficiency can be 

largely enhanced while the overall recognition accuracy can 

also be slightly improved because the shifting of the distribution 

of imposter matching scores towards the distribution of genuine 

matching scores is mitigated. The key contributions of this 

paper can be summarized as follows:  

(i) This paper develops a new matching approach using 

surface key points extracted from 3D finger knuckle images for 

more efficient and accurate matching of 3D finger knuckle 

templates. It can be observed that the conventional matching 

approach, attempting to compute the matching scores for all 

possible combinations of translational and rotational shifting, is 

computationally complex. Such approach also limits the overall 

recognition accuracy because computing the minimum scores 

from many attempts results in the shifting of the distribution of 

imposter matching scores towards the distribution of genuine 

matching scores. These issues on the finger knuckle recognition 

problem worth special attentions because of the nature of this 

biometrics. Since the finger knuckle area of interest is loosely 

defined, i.e. a sharp boundary for finger knuckle does not exist, 

almost all segmented finger knuckle images are largely 

misaligned with other images from the same subject. In order 

to match those genuine samples, a large degree of translational 

and rotational shifting is required. Therefore, a large number of 

matching attempts are required if the conventional matching 

approach is adopted, which results in severe effects on the 

degradations of efficiency and accuracy. Our matching 

approach utilize the discriminative feature points extracted 

from 3D finger knuckle images using parts of the surface 

gradient derivative computation introduced in [13]. Those key 

points provide promising clues for estimating the final shifting 

parameters, hence largely reducing the shifting parameter space 

for the trails. The effectiveness of our method is evaluated from 

the comparative experimental results with the state-of-the-art 

method on a publicly available 3D finger knuckle database, 

with a matching time of 23 times faster and more accurate than 

the conventional approach.   

(ii) Since the conventional matching approach is widely 

employed in other similar biometric problems such as palmprint 

recognition, we further evaluate the effectiveness of our method 

on other 3D biometrics including 3D palmprint and 3D 

fingerprint. The comparative experimental results on two other 

publicly available databases of 3D palmprint and 3D 

fingerprints indicates that our method is generalizable and 

effective on other 3D biometrics. However, such performance 

improvement is not as significant as the 3D finger knuckle 

recognition problem, because our surface key points are 

extracted based on the 3D finger knuckle literature.  

This important area investigated in this paper has not yet 

attracted adequate attention but is crucial to the deployment of 

biometric systems. Further enhancing the surface key points 

extraction from respective discriminative features including 

finger knuckle, palmprint and fingerprint, is also a promising 

future research direction. Table I shows the comparative 

summary between our proposed matching approach over the 

conventional matching approach, with the same state-of-the-art 

feature descriptor, on various 3D hand biometrics. This 

summary is supported by the comprehensive experimental 

results presented in Section IV. 

Rest of this paper is organized as follows: Section II 

discusses the related work of the 3D finger knuckle recognition 

technology. Section III presents the theoretical detail of our 

proposed surface key points extraction and matching approach. 

Section IV presents the comparative experimental results on 

three publicly available databases of 3D finger knuckle, 3D 

palmprint and 3D fingerprint. Finally, Section V summarizes 

this paper and discuss the potential future research directions. 

The implementation codes for the proposed approach are also 

provided along with this paper [40]. 

II. RELATED WORK 

Contactless 3D finger knuckle recognition is a new research 

frontier. It was first briefly studied together with using finger 

dorsal surfaces for biometric recognition [19]. This research 

does not arouse much attention for the area of 3D finger knuckle 

recognition probably because the effectiveness of using 3D 

finger knuckle information was limited by the low resolution of 

3D finger knuckle images being studied and the ineffective 

feature descriptor employed for extracting 3D finger knuckle 

features, which is a generic surface descriptor, the Shape Index 

[20-21]. The attention on 3D finger knuckle recognition has 

been raised by a recent research [13] which investigates the use 

of 3D finger knuckle patterns for biometric recognition. This 

study investigated various important aspects of 3D finger 

knuckle recognition, such as the discriminative feature 

description, the possibility of spoofing attacks towards a finger 

knuckle recognition system, the individuality of finger knuckle, 

the comparisons between 2D and 3D finger knuckle 

recognition, and provides a benchmark database for further 

research and investigation. The effectiveness and potentials of 

using 3D finger knuckle images for biometric recognition has 

been validated. However, there are other open questions on 

using this new biometric trait such as the matching approach 

addressed in this paper.  

Since the studies on 3D finger knuckle recognition is new, it 

is mainly supported by the literatures of finger knuckle 

recognition [1-4] and palmprint recognition [6-8, 14-16, 33-34]. 

A survey paper [3] summarized many previous researches on 

finger knuckle recognition. However, it is shown in [13] that a 

state-of-the-art method on 2D palmprint recognition, 

Difference of Normal (DoN) [14], outperforms other methods 

such as Fast-RLOC and Fast-Comcode [8] for the 2D finger 

knuckle recognition evaluation. On the other hand, Surface 

Code [7] and Binary Shape [8] are the two baseline methods for 
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the performance comparison of 3D finger knuckle recognition 

in [13]. Both methods are originally developed for 3D 

palmprint recognition, which also compute binary matching 

templates from 3D depth images. Unlike these two methods, the 

surface gradient derivative (SGD) feature descriptor [13] 

computes binary matching templates from 3D surface normal 

images. It is currently the state-of-the-art method for 3D finger 

knuckle recognition. 

Besides the conventional hand crafted feature approaches, 

deep learning based methods have been actively developed for 

many applications in computer vision related tasks such as 

object recognition [22-24], instance segmentation [25-26], 

action recognition [37-38] as well as biometric recognition [18, 

39]. Although deep learning based approaches can offer 

promising performance, its application on specific biometric 

problem requires customized development. For example, the 

success of a recent iris recognition research [18] requires the 

considerations of biometric aspects including the use of binary 

templates and the bit-shifting strategy for matching the 

templates. The incorporation of deep learning based approaches 

for the biometric problem addressed in this paper will be a 

promising future extension. 

Lastly but not least, it is also worth mentioning that, the 

conventional matching approach, which takes the minimum 

score for matching the gallery template with the translationally 

and rotationally shifted versions of the probe templates, is 

widely adopted in many biometric studies including finger 

knuckle recognition [1, 13], palmprint recognition [7-8, 14-16] 

and iris recognition [17-18]. The drawbacks of this approach 

are usually overlooked, probably because they are not quite 

severe. Furthermore, although this matching problem seems to 

be like the classical point correspondence problem, the 

objectives of these two problems are quite different. The 

matching problem addressed in this paper is less complex than 

the point correspondence problem which requires the 

consideration of pixel-to-pixel alignment due to the 

deformation of images. Therefore, we attempt to introduce a 

simple and efficient solution for this less complicated problem. 

In the best of our knowledge, there is no further advancement 

on this ‘bit-shifting’ approach for matching binary templates. 

This paper focuses on mitigating these drawbacks by 

introducing a new matching approach using surface key points.  

III. 3D FINGER KNUCKLE MATCHING USING KEY POINTS 

This section presents theoretical details of our proposed 

matching approach. We begin the discussion from theoretically 

formulating the matching problem in Section III.A. The 

technical details of the detection of finger knuckle surface key 

points will be presented in Section III.B.  The estimation of 

shifting parameters consisting of translation and rotation will be 

discussed in Section III.C and Section III.D. 

A. Problem Formulation 

This paper attempts to address a sub-problem, matching a 

pair of finger knuckle templates, from the 3D finger knuckle 

recognition problem. To begin our discussion, we first 

formulate the matching problem as follows. The objective of 

this problem is to compute both the shifting parameters and the 

matching score resulted from the best shifting parameters. The 

matching score 𝑠  results from matching a pair of feature 

templates 𝑨 and 𝑩 with a dimension of 𝑚𝑖 × 𝑛𝑖 × 𝑐, where 𝑚𝑖 

and 𝑛𝑖 are the spatial dimension of the image templates, 𝑐 is the 

channel dimension. In order to match these two templates, one 

effective way is to extract a smaller window with dimension 

𝑚𝑤 × 𝑛𝑤   from both original image templates, such that the 

matching window 𝑨′  is the center rectangular region of 𝑨 , 

while the matching window 𝑩′  is obtained from the center 

rectangular region of 𝑩 with translational and rotational shifts. 

The matching score 𝑠  between the pair of templates can be 

simply represented by a general matching function 𝑓: 

𝑠 = min
𝑡𝑥,𝑡𝑦,𝑟𝑑

𝑓(𝑨′, 𝑩′(𝑡𝑥, 𝑡𝑦 , 𝑟𝑑)), 

𝑡𝑥 ∈ [−𝑇𝑥, 𝑇𝑥], 𝑡𝑦 ∈ [−𝑇𝑦 , 𝑇𝑦], 𝑟𝑑 ∈ [−𝑅𝑑 , 𝑅𝑑]          (1) 

where 𝑡𝑥  is the translational shift parameter in horizontal 

direction; 𝑡𝑦 is the translational shift parameter in vertical 

direction; 𝑟𝑑  is the rotational shift parameter; 𝑇𝑥  is the 

maximum number of pixels for the translational shift in 

horizontal direction; 𝑇𝑦 is the maximum number of pixels for 

the translational shift in vertical direction; 𝑅𝑑 is the maximum 

degrees for the rotational shift. The dimension of the matching 

window is constrained by the maximum number of pixels for 

the translational shift: 

𝑚𝑤 = 𝑚𝑖 − 2𝑇𝑦  , 𝑛𝑤 = 𝑛𝑖 − 2𝑇𝑥                   (2) 

There are two implications from this equation. Firstly, if larger 

translational shifts 𝑇𝑥  and 𝑇𝑦  are required to tolerate the 

misalignment from the segmented finger knuckle images, the 

dimension of the matching window must be smaller. Secondly, 

if a larger matching window is required to accommodate more 

finger knuckle features and information, the maximum number 

of pixels for the translational shifting must be smaller. This 

constraint equation can be visualized in Figure 1 showing a 

schematic diagram with the dimension of the image templates 

and matching windows.  

The conventional approach simply computes the matching 

scores using all the possible combination from the parameter 

space with a dimension of (2𝑇𝑥 + 1) × (2𝑇𝑦 + 1) × (2𝑅𝑑 +

1). The parameter set {𝑡𝑥, 𝑡𝑦, 𝑟𝑑} which produces the minimum 

dissimilarity score is considered as the final shifting parameter 

set and that score is considered as the final matching score. 

 
Fig. 1. A schematic diagram with the dimension of the image templates, 

matching windows and the mask for finger knuckle key points detection. 
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While increasing the number of matching attempts, this trial-

and-error approach may produce smaller genuine matching 

scores on one side, but it may also produce smaller imposter 

matching scores on the other side. When the number of attempts 

is adequate for matching the genuine pairs, further increasing 

the number of attempts do not decrease the genuine matching 

scores but only decrease the imposter matching scores. As a 

result, the separation between the distribution of genuine 

matching scores and that of imposter matching scores decreases 

and the overall recognition accuracy drops. Therefore, 

excessive number of trial-and-error attempts decreases the 

recognition performance. More importantly, excessive number 

of trial-and-error attempts reduces the computational 

efficiency, i.e. the matching time is proportional to the number 

of trial-and-error attempts. 

In this paper, we attempt to reduce the number of attempts, 

i.e. the parameter space, by wisely guessing the more likely 

shifting parameters from the clues of reliable finger knuckle 

surface key points. The reduction of the number of attempts is 

expected to reduce the computational time as well as the overall 

recognition errors. 

B. Detection of Finger Knuckle Surface Key Points 

In order to effectively reduce the number of trial-and-error 

attempts, it is crucial to have a reliable finger knuckle key point 

detector. It is well known that key points detected from 

fingerprint, also known as fingerprint minutiae, are the key 

component for the success of fingerprint recognition methods 

[28]. Research on the investigation of using palmprint minutiae 

for improved recognition [29-30] are also emerging. It is 

motivated to investigate the use of finger knuckle minutiae for 

improved recognition. A study [31] attempted to derive finger 

knuckle minutiae for finger knuckle recognition. However, the 

effectiveness of this method has not been demonstrated from 

the recognition performance. Unlike fingerprint and palmprint, 

finger knuckle pattern is located right above the joint 

connecting the middle and proximal phalanges of fingers, 

which is in motion frequently. The finger knuckle pattern 

consists of irregular ridges and valley regions with varying 

thickness. Those effective minutiae features defined for 

fingerprint such as ridge ending and bifurcation may not be 

suitable for finger knuckle pattern. It is challenging to define 

robust finger knuckle minutiae for improved finger knuckle 

recognition.  

Since an effective finger knuckle minutiae definition has not 

yet been developed, we attempt to investigate the detection of 

reliable finger knuckle key points from the perspective of 

reliable feature representation. A recent 3D finger knuckle 

research [13] introduced a reliable feature descriptor, SGD, for 

3D finger knuckle recognition. This feature descriptor employs 

the surface gradient derivative features and offers 

outperforming recognition performance. Therefore, it is 

reasonable to believe that the surface gradient derivative 

features are robust and discriminative for the context of 3D 

finger knuckle. We attempted to define reliable finger knuckle 

key points from employing the surface gradient derivative 

features.  

Theoretically, surface gradient derivative features encode the 

concavity of a finger knuckle surface. For a pair of finger 

knuckle feature templates belonging to the same person, the 

feature templates are expected to be similar due to its similar 

surface pattern. However, it is difficult to locate a single pair of 

corresponding points from the feature templates because the 

imaging of finger knuckle pattern is usually distorted by various 

types of noises. Therefore, we attempt to locate a set of points 

from the region containing the most discriminative finger 

knuckle patterns, which is expected to be associated with the 

sharpest finger knuckle lines. Those lines may correspond to the 

most concave region, which can be obtained from the 

minimums from the surface gradient derivative computation.  

The surface gradients 𝑝 and 𝑞 can be computed from either 

the 3D surface normal images or the 3D depth images. If the 

unit surface normal vector for a pixel in the form of 𝒏̂ =
[𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 ]

𝑇 is known, the surface gradients in horizonal and 

vertical directions 𝑝, 𝑞 can be computed as: 

𝑝 =  
𝑛𝑥

𝑛𝑧
   ,   𝑞 =  

𝑛𝑦

𝑛𝑧
                            (3) 

On the other hand, if the finger knuckle depth surface 𝑧 , 

described in terms of a function along 2D coordinates 𝑥 and 𝑦, 

is known:  

  𝑧 = 𝑔(𝑥, 𝑦)                                   (4) 

The surface gradients 𝑝, 𝑞 can also be computed as the gradient 

along horizontal and vertical directions respectively:  

 𝑝 =
𝜕𝑔(𝑥,𝑦)

𝜕𝑥
   ,   𝑞 =

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
                        (5) 

After obtaining the surface gradients, the derivatives of surface 

gradient variables 𝑝, 𝑞 are then computed as in the following:  

𝜕𝑝

𝜕𝑥
=

𝜕2𝑔(𝑥,𝑦)

𝜕𝑥2    ,   
𝜕𝑞

𝜕𝑦
=

𝜕2𝑔(𝑥,𝑦)

𝜕𝑦2                     (6) 

We present a general response function ℎ for the detection of 

finger knuckle key point with coordinate 𝑥, 𝑦 . The finger 

knuckle key points detection problem can be formulated as 

follows: 

arg min
𝑥,𝑦

ℎ(𝑥, 𝑦)                              (7) 

Since we wish to locate a set of points from the region 

containing the most discriminative finger knuckle patterns, 

which correspond to the minimums from the surface gradient 

derivative features, we can assign the response function ℎ to be  
𝜕𝑝

𝜕𝑥
  and  

𝜕𝑞

𝜕𝑦
 separately. Ideally, when assigning ℎ to be 

𝜕𝑝

𝜕𝑥
, the 

optimal solution is a point with coordinate (𝑢𝑥 , 𝑣𝑥), so that this 

point can effectively correspond to the other point detected 

from another templates belonging to the same person. However, 

due to the presence of various noise in the reality, it is judicious 

to consider more key points for the proceeding to the matching 

attempts. When also assigning the response function ℎ to be 
𝜕𝑞

𝜕𝑦
 

separately, the optimal solution produces another point with 

coordinate (𝑢𝑦 , 𝑣𝑦). Similarly, we can also extract more key 

points from the second, third and fourth minimums and so on, 

to produce 𝑘𝑝 number of key points using 
𝜕𝑝

𝜕𝑥
 and 

𝜕𝑞

𝜕𝑦
 separately. 

The set of finger knuckle key points can be represented as: 

{(𝑢𝑥
𝑗
, 𝑣𝑥

𝑗
) , (𝑢𝑦

𝑗
, 𝑣𝑦

𝑗
) | 𝑗 ∈ [1, 𝑘𝑝]}                  (8) 
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From equation (2), since there is a limit for the maximum 

number of pixels for translational shifting, we can also 

constraint the region of detecting finger knuckle key points. For 

example, if a key point is detected at the left most pixel in 

template 𝑨 while another key point is detected at the right most 

pixel in template 𝑩, the estimated translational shift to the right 

is approximately the width of the template, which must exceed 

the maximum number of pixels for translational shifting and is 

unnecessary to include in the parameter space. Therefore, we 

attempt to constraint the key points falling in the center regions 

defined by a rectangular mask. Furthermore, the center region 

of the segmented finger knuckle images usually contains rich 

discriminative information. It is reasonable to detect key points 

from that region. The dimension of the rectangular mask is 

constrained by:  

|𝑚𝑚 − 1| ≤ 𝑇𝑦   ,   |𝑛𝑚 − 1| ≤ 𝑇𝑥                   (9) 

The relationship between the mask for finger knuckle key 

points detection and the maximum number of pixels for the 

translational shift can also be observed from Figure 1. This 

constraint will be further explained in the following subsection 

after the presentation of how to match a pair of templates using 

these key points. In order to illustrate the key points detection 

step, we present a pair of genuine image templates showing 

detected finger knuckle surface key points on SGD templates 

and 3D depth images in Figure 2. The red crosses represent the 

first minimum resulted from the response function ℎ =
𝜕𝑝

𝜕𝑥
, 

while the green crosses represent the second to the tenth 

minimums. Similarly, the blue crosses represent the first 

minimum resulted from the response function ℎ =
𝜕𝑞

𝜕𝑦
, while the 

yellow crosses represent the second to the tenth minimums. It 

can be observed that the red/blue points between these pair of 

templates corresponds to each other quite accurately, while the 

green/yellow points provide more tolerance for the inaccurate 

detection situations.  

C. Estimation of Translational Shifting Parameters 

The finger knuckle surface key points are detected from the 

method described in the last sub-section. This sub-section 

presents the process of estimating translational shifting 

parameters for matching a pair of finger knuckle templates from 

the key points. Suppose there are 𝑘𝑝  points extracted from 

using the two response functions 
𝜕𝑝

𝜕𝑥
 and 

𝜕𝑞

𝜕𝑦
 separately, we 

attempt to match all 𝑘𝑝 points with each other for each response 

function separately, resulting in 2𝑘𝑝
2
 combinations. The set of 

possible combination for the translational shifting parameters 

are represented as follows: 

(𝑡𝑥
𝑗
, 𝑡𝑦

𝑗
) = {(𝑢𝑥

𝑗𝐴 − 𝑢𝑥
𝑗𝐵 , 𝑣𝑥

𝑗𝐴 − 𝑣𝑥
𝑗𝐵) , (𝑢𝑦

𝑗𝐴 − 𝑢𝑦
𝑗𝐵 , 𝑣𝑦

𝑗𝐴 − 𝑣𝑦
𝑗𝐵)}  

 (10) 

where𝑗 ∈ [1, 𝑘𝑝
2] , 𝑗𝐴, 𝑗𝐵 ∈ [1, 𝑘𝑝] . Since some combinations 

from the key points may refer to the same translational shifting 

parameters, those duplicate parameters are automatically 

removed. The final number of matching attempts for 

translational shifting is generally much less than 2𝑘𝑝
2
. 

In order to further explain the constraint of the mask for the 

detection of finger knuckle surface key point in equation (9), 

we can consider the extreme cases. For example, if a key point 

is detected at the right most pixel within the mask in template 

𝑨, while another key point is detected at the left most pixel 

within the mask in template 𝑩 , the translational shifting 

parameter in horizontal direction will be 𝑛𝑚 − 1. Inversely, if a 

key point is detected at the left most pixel within the mask in 

template 𝑨, while another key point is detected at the right most 

pixel within the mask in template 𝑩, the shifting parameter will 

                     
                            (a)                                                           (b)                                                                                  (c)           

                           

                   
                            (d)                                                           (e)                                                                                   (f) 
Fig. 2. Pairs of genuine images showing detected finger knuckle surface key points on: (a)/(d) SGD feature templates of the horizontal direction; (b)/(e) SGD 

feature templates of the vertical direction; (c)/(f) 3D depth images. 
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be 1 − 𝑛𝑚. From the constraint described in equation (9), any 

combination of translational shifting parameters in horizontal 

direction resulting from the key points within the mask must be 

within the respective parameter space, i.e. [−𝑇𝑥, 𝑇𝑥]. Similarly, 

any combination of translational shifting parameters in vertical 

direction resulting from the key points within the mask must be 

within the respective parameter space, i.e. [−𝑇𝑦 , 𝑇𝑦]. 

D. Two-stage Translational and Rotational Matching 

The finger knuckle key points are helpful for estimating the 

possible translational shifting parameters. However, it is 

difficult to estimate an accurate rotational shifting parameter. In 

order to address the two drawbacks described in the 

introduction section, we attempt to develop a two-stage 

translational and rotational matching approach. Since rotational 

misalignment is usually less severe than translational 

misalignment in segmented finger knuckle images, we can 

address the matching problem with translational attempts first, 

followed by rotational attempts.  

In the first stage, we assume there is no rotational 

misalignment between a pair of feature templates. These feature 

templates are matched by the parameter sets introduced in 

Section III.C, which is generally much less than 2𝑘𝑝
2
. In the 

second stage, we select 𝑘𝑠 number of the translational shifting 

parameter sets (those obtaining minimum scores from 1st stage) 

from less than 2𝑘𝑝
2
 as candidates for the trials of rotational 

matching. Theses 𝑘𝑠 parameters are combined with all possible 

combinations of rotational shifting parameter, i.e. [−𝑅𝑑, 𝑅𝑑]. 

The estimation of translational shifting parameter reduce the 

number of trial-and-error attempts from (2𝑇𝑥 + 1) × (2𝑇𝑦 +

1) × (2𝑅𝑑 + 1) to less than 2𝑘𝑝
2 × (2𝑅𝑑 + 1) while the two-

stage translational and rotational matching approach further 

reduce the number of trial-and-error attempts to  less than 

2𝑘𝑝
2 + 𝑘𝑠 × (2𝑅𝑑 + 1)  where 𝑘𝑠  is much less than 2𝑘𝑝

2
. 

Figure 3 shows a schematic diagram of the parameter space of 

the number of trial-and-error attempts in the dimension of 

translational and rotational domain. The red crosses refer to the 

trials of translational matching in stage 1, e.g. 10 attempts, 

while the green crosses/cuboid refer to the trials of rotational 

matching in stage 2, e.g. 3×8 attempts. Algorithm 1 summarizes 

the procedure to match a pair of feature templates. Line 2-5 

computes 𝑘𝑝  key points for both feature templates A and B. 

Line 6-13 computes the translational shifting parameter set. 

Line 14-15 refers to the first stage (translational) matching. 

Line 16-18 refers to the second stage (rotational) matching. 

TABLE II 

EFFECT OF 𝑘𝑝 ON THE RECOGNITION ACCURACY AND EFFICIENCY  

𝑘𝑝 1 5 10 15 20  SGD (TPAMI20) 

EER (%) 16.01 3.53 2.71 3.04 3.10  3.29 

Number of Attempts ≤42 ≤1050 ≤4200 ≤9450 ≤16800  39627 

Computational Time (s) 0.07 0.14 0.32 0.42 0.59  2.85 

 

TABLE III 

EFFECT OF 𝑘𝑠 ON THE RECOGNITION ACCURACY AND EFFICIENCY  

𝑘𝑠 1 5 10 15 20 25 30 

EER (%) 3.34 2.91 2.76 2.70 2.67 2.69 2.70 

Number of Attempts ≤221 ≤305 ≤410 ≤515 ≤620 ≤725 ≤830 

Computational Time (s) 0.08 0.09 0.10 0.11 0.12 0.13 0.13 

 

 
Fig. 3. A schematic diagram showing the parameter space in the domain 

of translational and rotational shifting. 

2𝑇𝑥 + 1

2𝑇𝑦 + 1

2𝑅𝑑 + 1

Algorithm 1. Matching a Pair of Feature Templates 

Input: A, B: a pair of feature templates; 

   𝑘𝑝: number of key points; 

   𝑘𝑠: number of the selected translational shifting 

_____parameters. 

Output:      s: final matching score. 

  1: procedure MATCH (A, B, 𝑘𝑝, 𝑘𝑠) 

  2:     for j = 1 → 𝑘𝑝 do 

  3:         (𝑢𝑥
𝑗
, 𝑣𝑥

𝑗
) ← arg min

𝑥,𝑦
ℎ𝑥(𝑥, 𝑦); 

  4:         (𝑢𝑦
𝑗

, 𝑣𝑦
𝑗
) ← arg min

𝑥,𝑦
ℎ𝑦(𝑥, 𝑦); 

  5:     end for 

  6:     for 𝑗𝐴 = 1 → 𝑘𝑝 do 

  7:         for 𝑗𝐵 = 1 → 𝑘𝑝 do 

  8:            (𝑡𝑥
𝑗
, 𝑡𝑦

𝑗
) ← {(𝑢𝑥

𝑗𝐴 − 𝑢𝑥
𝑗𝐵 , 𝑣𝑥

𝑗𝐴 − 𝑣𝑥
𝑗𝐵), (𝑢𝑦

𝑗𝐴 − 𝑢𝑦
𝑗𝐵 , 𝑣𝑦

𝑗𝐴 − 𝑣𝑦
𝑗𝐵)}; 

  9:         end for 

10:     end for 

11:     if any parameters (𝑡𝑥
𝑗
, 𝑡𝑦

𝑗
) are duplicated then 

12:         remove those parameters from the set; 

13:     end if 

14:     𝑟𝑑 ← 0;   (𝑟𝑑: rotational shift parameter) 

15:     match A and B using the translational shifting parameter set; 

16:     for all 𝑘𝑠 do 

17:       match A and B using the selected translational shifting 

_______ parameters with all possible 𝑟𝑑; 

18:     end for 

19:     s ← the minimum score among all matching attempts; 

20: end procedure 
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IV. EXPERIMENTS AND RESULTS  

This section presents comparative experimental results from 

ablation studies and with state-of-the-art methods using 

publicly available databases. Although the focus of this paper 

is on 3D finger knuckle recognition, we also present additional 

experimental results using publicly available databases of 

similar 3D hand biometric patterns including 3D palmprint and 

3D fingerprint, for demonstrating the potentials of our 

approach. We performed comprehensive experiments to 

  

Fig. 4. Comparative Experimental Results on the 3D Finger Knuckle 

Dataset for the Improved Segmentation Method. 

 

(a) 

(b) 

Fig. 5. Effects of 𝑘𝑝 and 𝑘𝑠 on the Recognition Accuracy and Efficiency. 

  

      (a) 

 

                                                                (b) 

 

                                                              (c) 

Fig. 6. Comparative Experimental Results on the 3D Finger Knuckle Dataset: 

(a) ROC; (b) CMC; (c) FNIR versus FPIR. 
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ascertain the effectiveness for the verification and identification 

problems. These experimental results are presented using the 

receiver operating characteristics (ROC) curve with equal error 

rates (EER), and cumulative match characteristics (CMC) 

curve. Furthermore, since unregistered user may be identified 

as the enrolled users in deployed biometric systems, such open-

set identification is widely considered as the more challenging 

problem and therefore we also performed such evaluation in 

this work. These results are presented using False Negative 

Identification Rate (FNIR) versus False Positive Identification 

Rate (FPIR) curves. The experimental results presented in this 

paper are reproducible and indicate diversities of applications 

with the proposed approach. 

Since the proposed approach is developed for matching 

feature templates, we incorporate this approach with the state-

of-the-art 3D finger knuckle feature descriptor [13]. This 

descriptor extracts the discriminative information from 3D 

finger knuckle surface normal images with the considerations 

of potential convex and concave regions corresponding to the 

irregular ridges and valley regions respectively.  

A. Evaluation with 3D Finger Knuckle Images 

The HKPolyU 3D finger knuckle images database [13] is 

currently the only publicly available dataset providing 3D 

finger knuckle images. This recently released database can be 

considered as a benchmark dataset for the evaluation of the 

performance of 3D finger knuckle recognition. This dataset 

provides 1410 forefinger images and 1410 middle finger 

images from 130 subjects, while 105 subjects contain two-

session images. Since this dataset is quite small, we acquire 

more images from another 98 subjects. The combined dataset 

contains 2508 forefinger images and 2508 middle finger images 

from 228 subjects, while 190 subjects contain two-session 

images. Six forefinger images and six middle finger images are 

available for each subject per session. For the evaluation in this 

paper, we employ the forefinger knuckle images from the 190 

subjects containing two-sessions images. A standard two-

session evaluation protocol, which uses the first session images 

for the training and the second session images for the testing is 

adopted. This protocol generates 215460 (190×189×6) 

imposter matching scores and 1140 (190×6) genuine matching 

scores. As for the open-set identification experiments, 152 

subjects (80%) are considered as enrolled users while the 

remaining 38 subjects (20%) are considered as unenrolled users. 

This work also attempts to improve the segmentation of 

finger knuckle from the earlier work. One of the reliable finger 

knuckle segmentation method described in [13] employed a 

simple edge pixel counting mechanism. Despite this method 

produce acceptable segmentation performance, it fails for some 

challenging samples which limits the finger knuckle 

recognition performance. Therefore, we attempted to 

incorporate a popular deep learning method, Mask R-CNN [25] 

for improving the finger knuckle segmentation. We first prepare 

a training set using the remaining 38 subjects containing only 

one-session images to ensure no overlapping for the training 

and testing sets for the Mask R-CNN. The ground truth masks 

are prepared by applying the original finger knuckle 

segmentation method. This method firstly computes the edge 

image from the original finger knuckle image, followed by 

counting the number of edge pixels within a fixed size sliding 

window. The sliding window is shifted vertically and 

horizontally along the image. The location where the maximum 

number of edge pixels within the sliding window is considered 

as the area of interest. Since this method may fail for some 

challenging samples, we inspect and remove those unsuccessful 

samples and utilize the remaining samples for training the Mask 

R-CNN with fine tuning from the COCO dataset [32]. This 

human inspection is only needed for producing the ground truth 

mask for finger knuckle segmentation while other steps are 

completely automatic. The segmented 3D finger knuckle 

images are employed for all the experiments in this sub section. 

Such experimental results of this ablation study are presented 

in figure 4.  

We begin our ablation studies by evaluating the effects of the 

two parameters, the number of key points 𝑘𝑝 and the number of 

the translational shifting parameter candidate 𝑘𝑠 , on both the 

recognition accuracy and efficiency. The recognition accuracy 

is represented by the EER from the ROC curves, while the 

efficiency is represented by the number of trial-and-error 

attempts as well as the average computational time required for 

matching a pair of templates. For the evaluation of the 

computational time, we perform our experiments on a machine 

with CPU Intel Core i7-6700HQ (2.60GHz) using MATLAB 

2017b with Image Processing Toolbox, Windows 10. For our 

experiments, we adopt the following configurations: the 

maximum number of pixels for the translational shift in 

horizontal direction 𝑇𝑥  is 25; the maximum number of pixels 

for the translational shift in vertical direction 𝑇𝑦  is 18; the 

maximum degrees for the rotational shift 𝑅𝑑  is 10. When 

evaluating the effect of 𝑘𝑝 , we attempt to try all possible 

combination of rotations, results in ≤ 42𝑘𝑝
2

 trail-and-error 

attempts. When evaluating the effect of 𝑘𝑠, we select the best 

𝑘𝑝 , i.e. 10, results in ≤ 200 + 21𝑘𝑠  trail-and-error attempts. 

    

                           (a)                                                  (b)                                                          (c)                                                                     (d) 

Fig. 7. Pairs of genuine 3D depth images from: (a)/(b) the HKPolyU Contact-free 3D/2D Hand Images Database; (c)/(d) the HKPolyU 3D Fingerprint 

Images Database. 
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Table II and Table III shows the comparative experimental 

results. The columns with the final selected parameters (𝑘𝑝: 10; 

𝑘𝑠: 20) are in bold, i.e. 10 surface key points are selected for the 

3D finger knuckle recognition experiments. These results can 

also be visualized in figure 5. 

In the best of our knowledge, there are no further 

advancement on the conventional ‘bit-shifting’ approach for 

matching binary templates, which was widely employed in [1, 

7-8, 13-18]. Therefore, we fairly compare our approach with the 

currently best performing state-of-the-art 3D finger knuckle 

recognition approach, SGD [13], with employing the 

conventional matching algorithm. It is worth noting that the 

SGD feature descriptor has been reported to be outperforming 

other two 3D hand biometric feature descriptors Surface Code 

[7] and Binary Shape [8]. Therefore, these two less competing 

methods are not selected as baselines for the systematic 

comparision in this paper. We present the experimental results 

using the new dataset using two-session images from 190 

subject, while the finger knuckle images are segmented by 

Mask R-CNN method. 𝑘𝑝 is set to be 10 and 𝑘𝑠 is set to be 20 

for obtaining the best possible performance.   

Figure 6 shows the comparative experimental results using 

ROC curves, CMC curves and FNIR versus FPIR curves. It can 

be observed that our improvement on the matching approach 

enables slight improvement on the recognition accuracy, which 

validates the theoretical arguments presented in Section I. More 

importantly, our method enables a huge improvement on the 

efficiency, with the number of trail-and-error attempts is ≤620 

while the original method requires 39627 attempts, and the 

computational time is 0.12 seconds while the original method 

requires 2.85 seconds. 

B. Evaluation with 3D Palmprint Images 

Although the focus of this paper is on 3D finger knuckle 

recognition, we also evaluate the performance of our proposed 

approach on another similar 3D biometrics, i.e. 3D palmprint, 

for demonstrating the potential of our approach.  We employ 

the same 3D palmprint dataset as in [13], the HKPolyU 

Contact-free 3D/2D Hand Images Database Version 1.0 [7], 

containing two-sessions images from 177 subjects (each with 

five images per session), for the performance evaluation. Figure 

7 (a)/(b) shows a pair of sample 3D depth images from the same 

subject. We also adopt the same evaluation protocol using the 

first session images for the training and the second session 

images for the testing, which generates 885 (177 × 5) genuine 

and 155760 (177 × 176 ×5) imposter matching scores. For the 

open-set identification experiments, 142 subjects (80%) are 

 

  

       (a) 

 

          (b)   

 

      (c) 

Fig. 8. Comparative Experimental Results on the HKPolyU Contact-free 

3D/2D Hand Images Database: (a) ROC; (b) CMC; (c) FNIR versus 

FPIR. 

TABLE IV 
COMPARATIVE EXPERIMENTAL RESULTS ON THE HKPOLYU CONTACT-

FREE 3D/2D HAND IMAGES DATABASE 

 SGD (TPAMI20) 

with rotate 

Ours 

EER (%) 0.88 0.82 

Number of Attempts 1701 ≤1115 

Computational Time (s) 0.27 0.12 
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considered as enrolled users while the remaining 35 subjects 

(20%) are considered as unenrolled users.  

For these 3D palmprint experiments, we compare our method 

with SGD [13], which is also reported to be outperforming 

another 3D hand biometric feature descriptors Binary Shape [8]. 

We further improve the reported experimental results in [13] by 

also considering the rotational shifting. For our approach and 

the SGD method, we adopt the following configurations: the 

maximum number of pixels for the translational shift in 

horizontal direction 𝑇𝑥 is 4; the maximum number of pixels for 

the translational shift in vertical direction 𝑇𝑦 is 4; the maximum 

degrees for the rotational shift 𝑅𝑑 is 10. 𝑘𝑝 is set to be 20 and 

𝑘𝑠 is set to be 15 for obtaining the best possible performance.  

Besides, we also compare our approach with another state-

of-the-art 3D palmprint recognition method, using 

collaborative representation based framework with L2-norm 

regularizations (CR_L2) [6], which has reported superior 

performance. In order to fairly compare with this method, we 

first investigate the variations between the reported database 

[27] and the selected database. Since both databases provide 3D 

depth images with the same resolution, it is reasonable to 

employ the same parameters provided along with CR_L2 [6], 

which is already optimized for the reported database [27]. 

Figure 8 shows the comparative experimental results using 

ROC curves, CMC curves and FNIR versus FPIR curves. It can 

be observed that our improvement on the matching approach 

also enables slight improvement on the recognition accuracy for 

3D palmprint recognition, reflected by the EER of ROC curve 

for verification experiments and CMC for close-set 

identification experiments, which again validates the theoretical 

arguments presented in Section III. 

Furthermore, we compare the efficiency of our approach 

with the best performing approach, i.e. SGD with rotate. Table 

IV shows such comparative experimental results using EER 

from the ROC curves, the number of trial-and-error attempts 

and the average computational time required for matching a pair 

of templates. Our method outperforms the baseline method with 

the number of trail-and-error attempts is ≤ 1115 while the 

baseline method requires 1701 attempts, and the computational 

time is 0.12 seconds while the baseline method requires 0.27 

seconds. Since the 3D palmprint images from this dataset do not 

contain large translational variations as in the 3D finger knuckle 

images, the effectiveness of our method over the baseline 

method is less significant.  

C. Evaluation with 3D Fingerprint Images 

Similar to Section IV.B, we also attempt to evaluate the 

performance of our proposed approach on another similar 3D 

biometric datasets, i.e. 3D fingerprint.  We also employ the 

 

 

         (a)  

 

           (b)  

 

       (c) 

Fig. 9. Comparative Experimental Results on the HKPolyU 3D 

Fingerprint Images Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

 

TABLE V 

COMPARATIVE EXPERIMENTAL RESULTS ON THE HKPOLYU 3D 

FINGERPRINT IMAGES DATABASE 

 SGD (TPAMI20)  

with down sampling 

Ours 

EER (%) 4.25 4.25 

Number of Attempts 2925 ≤4096 

Computational Time (s) 0.27 0.11 
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same 3D fingerprint dataset as in [13], the HKPolyU 3D 

Fingerprint Images Database [5], with one-session images from 

240 subjects (each with six images), for the performance 

evaluation. Figure 7 (c)/(d) shows a pair of sample 3D depth 

images from the same subject. We adopt the same standard 

evaluation protocol for one-session datasets, which is an all-to-

all protocol. This protocol matches all images with all other 

images, which generates 3600 (240 × 𝐶2
6) genuine and 1032480 

( 𝐶2
240  × 6 ×6) imposter matching scores. For the open-set 

identification experiments, 192 subjects (80%) are considered 

as enrolled users while the remaining 48 subjects (20%) are 

considered as unenrolled users.  

For these 3D fingerprint experiments, we compare our 

method with SGD [13], which is also reported to be 

outperforming another pixelwise 3D fingerprint feature 

descriptors Finger Surface Code [5]. We further improve the 

reported experimental results in [13] by also considering down 

sampling by half. The original configurations are as follows: the 

maximum number of pixels for the translational shift in 

horizontal direction 𝑇𝑥  is 63; the maximum number of pixels 

for the translational shift in vertical direction 𝑇𝑦 is 44. For the 

down sampled version, we adopt the following configurations: 

the maximum number of pixels for the translational shift in 

horizontal direction 𝑇𝑥  is 32; the maximum number of pixels 

for the translational shift in vertical direction 𝑇𝑦 is 22. 𝑘𝑝 is set 

to be 64 for obtaining the best possible performance. 

Figure 9 shows the comparative experimental results using 

ROC curves, CMC curves and FNIR versus FPIR curves. It can 

be observed that the down sampling is helpful for the 

recognition accuracy. Besides, it can be observed that our 

proposed approach produces comparable recognition accuracy 

for this 3D fingerprint recognition experiment.  

Furthermore, we compare the efficiency of our approach 

with the best performing approach, i.e. SGD with down 

sampling.  Table V shows such comparative experimental 

results using EER from the ROC curves, the number of trial-

and-error attempts and the average computational time required 

for matching a pair of templates. It seems that a greater number 

of attempts are required for our method. In fact, the actual 

number of attempts is much less than 4096, and even much less 

than 2925 when comparing to the baseline condition with all 

possible trial-and-error attempts, because most translational 

shifting parameter sets are duplicated. Therefore, less 

computational time can be observed from the experimental 

results (0.11 versus 0.27 seconds). Since the surface gradient 

derivative features employed is most effective for 3D finger 

knuckle patterns, while minutiae features are expected to be the 

most effective for 3D fingerprint, it is not surprising that the 

effectiveness of our method over the state-of-the-art baseline is 

less significant.   

V. CONCLUSIONS AND FURTHER WORK 

This paper introduces a new matching approach for 

improving 3D finger knuckle recognition. Experimental results 

presented in Section IV of this paper, on publicly available 3D 

hand biometric databases, indicate that the proposed approach 

can significantly improve the matching time, also the matching 

accuracy to a varying degree. This method is simple, 

theoretically justified, generalizable and can be easily 

integrated with other existing methods. Our approach firstly 

detects several key points using the reliable surface gradient 

derivative features extracted from 3D finger knuckle surfaces. 

Since those features have been shown to be discriminative for 

3D finger knuckle recognition, it is judicious to employ those 

features for the detection of reliable key points. We further 

utilize the finger knuckle key points and develop a two-stage 

matching approach to match the templates accurately and 

efficiently. The effectiveness of our method is validated from 

our experimental results using three publicly available 3D 

biometric datasets including 3D finger knuckle pattern, 3D 

palmprint and 3D fingerprint. While comparing with the current 

state-of-the-art method, our approach outperforms the original 

methods by largely enhancing the computational efficiency and 

slightly improving the recognition accuracy. These diversified 

experimental results also suggest the generalizability of our 

proposed method. Our improvement on the matching problem 

can also be easily integrated with many existing methods using 

the trivial trial-and error matching approach such as many 

studies mentioned in this paper [1, 7-8, 13-18]. In the best of 

our knowledge, it is the first time to study on the improvement 

of matching binary templates by using key points, we employ 

the objective function using surface gradient derivative 

features. Those 3D images without sharp valley positions may 

result in less accurate detection of surface key points (shown in 

figure 10). Reference [35] introduces an interesting approach 

on finger knuckle recognition and incorporated a deep matching 

approach [36] which detect points correspondence between a 

pair of images. While the focus of this paper is to develop an 

interpretable, training free and more efficient approach, the 

development of more advanced methods for detecting more 

reliable key points, possibly with interpretable deep learning 

models, is also a part of further work in this area.  
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