
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Detecting Locally, Patching Globally: An
End-to-end Framework for High Speed and
Accurate Detection of Fingerprint Minutiae

Yulin Feng and Ajay Kumar

Abstract—Billions of fingerprint images are acquired and
matched to protect the national borders and in a range of egov-
ernance applications. Fast and accurate minutiae detection from
fingerprint images is the key to advance fingerprint matching
algorithms for large-scale applications. However, currently avail-
able fingerprint minutiae extraction methods are not accurate
and fast enough to support such large-scale applications. This
paper proposes a new method that uses a lightweight pixelwise
local dilated neural network to extract local features and a patch-
wise global neural network to recover the global features. It
consolidates the local and global fingerprint features to generate
a full-size minutiae location map, and then accurately localizes
the minutiae positions by using a recursive connected components
algorithm. We design a new loss function to accurately detect
minutia orientation and incorporate a dynamic end-to-end loss
to provide effective supervision in learning discriminant features.
It is due to the proposed design and loss function that can enable
higher accuracy with significantly less computations. We present
reproducible experimental results from five publicly available
contact-based and contactless databases that indicate significant
improvement in the minutiae detection accuracy, which also leads
to enhanced fingerprint matching accuracy. Since the minutiae
represent key points in the fingerprint images, the proposed
end-to-end minutiae detection method also has a potential to
be employed in many other key points detection tasks.

I. INTRODUCTION

Fingerprint recognition offers significant accuracy and user
convenience, making it highly attractive for a range of civil-
ian applications. Over the past forty years, the automatic
fingerprint identification has achieved success for a wide
range of civilian, business and law-enforcement applications
[2]. Accurate and fast extraction of fingerprint minutiae is a
critical part of many fingerprint recognition algorithms [3]-[8].
However, automatic fingerprint minutiae extraction can be an
extremely difficult problem for some low-quality fingerprint
images. For example, Paulino et al. [9] propose a method
which relies only on manually marked minutiae due to the
poor performance of existing minutiae extraction algorithms.
There are mainly two kinds of minutiae extraction algorithms:
conventional algorithms and deep learning-based algorithms.

Conventional fingerprint minutiae extraction methods, e.g.,
[10]-[13], usually detect the minutiae by using handcrafted
features that are designed based on the domain knowledge.
These minutiae extraction methods usually consist of several
procedures, including fingerprint segmentation, enhancement,

The authors are with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong (e-mail: csylfeng@comp.polyu.edu.hk;
csajaykr@comp.polyu.edu.hk)

thinning, and binarization. These conventional methods can
achieve impressive performance on high-quality fingerprint
images. However, they are not accurate enough for a range of
large-scale or real-world applications that frequently present
low-quality fingerprint images.

A. Related Work
During the past few years, deep neural networks have shown

its potential in many fields, which have encouraged researchers
to propose deep learning-based fingerprint minutiae extrac-
tion models to address the limitation of traditional methods.
Authors in [14] uses an AutoEncoder network to distinguish
a minutia and non-minutia patches from a large number of
fingerprint patches. Reference [15] use deep scattering network
[16] to extract minutiae feature. Researchers in [17] propose a
new patch-based approach which uses a convolutional neural
network to automatically learn to focus on minutiae points.
Literature [18], [19], [20], and [21] use deep networks to
extract fingerprint features with a sliding window/patch and
then predict the probability for every window/patch. As this
sliding window procedure needs to process a lot of windows,
these methods are quite time-consuming. References [19],
[22], incorporate domain knowledge into the deep neural
network, achieving some success and improving accuracies on
several public fingerprint datasets. However, these methods are
even more time-consuming as they require complex processing
and use neural networks with high computational complexity.
The authors in [23] improve the network architecture and loss
function, and propose a two-stage deep learning-based method.
Besides, this method uses ROIAlign operation [24] to extract
features for each patch. This method shows good performance
in several contact-based fingerprint databases. However, there
are still some problems with this algorithm. This method is not
fast enough due to the two-stage network design and improper
loss function for the orientation estimation. Reference [25]
propose an UNet-architecture model to locate the minutiae
and predict the orientation in contactless fingerprint images.
Similar to [23], this method also extracts a coarse minutiae
feature map and then determines the accurate minutiae by
using another network. This method achieves good results in
several contactless fingerprint databases. However, in addition
to inadequate loss function design in the two-stage networks,
it is slow due to the UNet-architecture and deep layers. The
average minutiae extraction time by using a Titan Xp GPU
card is 0.86 s, making it hard to be used in many real-world
applications.

mailto:csylfeng@comp.polyu.edu.hk
mailto:csajaykr@comp.polyu.edu.hk

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

Fig. 1: Network architecture of proposed framework. “DilationConv” refers to dilated convolutional network.“DownCon” is a
convolutional layer with a stride of 2. “ResBlock” refers to the residual block. “PixelwiseConv” is a convolutional layer with a
kernel size of 1× 1.“PixelShuffle” refers to the pixel shuffle layer. The numbers in the brackets represent the output channels
of corresponding blocks.

B. Our Work and Contributions
This work introduces a novel neural network-based method

for the fast and accurate fingerprint minutiae detection. We use
a shallow dilated convolutional neural network to extract the
pixel-wise local features and a deep neural network to extract
patch-wise global features. We combine the global and local
features to generate a pixel-wise minutiae location map, and
then accurately locate minutiae positions by using a recursive
connected components algorithm. It is well-known that the
size of the training database used can greatly influence the
deep learning model’s effectiveness, and the model trained
on a much bigger database generally performs better than
the model trained using a smaller database. Several new
synthetic fingerprint generation algorithm has been published
during recent years, which makes it easy to generate a huge
amount of fingerprint images. As a result, we introduce a new
pipeline to train the deep learning model: we first generate a
great amount of synthetic fingerprint images using [26], then
pretrain deep learning model on such Generative Adversarial
Network (GAN) generated fingerprint database, after that, we
fine-tune the model on the training database. By adopting such
generated fingerprint database for training, we greatly increase
the detection accuracy. Besides, we improve the loss function
and introduce a new end-to-end loss. Our approach can also
automatically discard some targeted pixels during the training
process, which speed up the training process and improve
the performance. Due to such novel aspects in our design,
the proposed method can achieve higher accuracy with much

faster speed.
The contributions from this paper can be briefly summarized

as follows:
1) A more accurate, robust, and faster neural network-based

minutiae extraction algorithm is proposed. We present
comparisons with state-of-the-art methods to show out-
performing results for both the detection accuracy and
the detection speed.

2) We propose a new deep neural network which consists of
a lightweight pixel-wise local neural network and a deep
patch-wise neural network. Compared with the UNet
architecture (e.g., [25]), it has far less computational
complexity, therefore it is much faster extracting the
fingerprint features.

3) The loss functions for the fingerprint minutiae orien-
tation estimation used in state-of-the-art algorithms are
either not continuous or very slow to converge, we ad-
dressed these problems and achieved improved results by
proposing a new loss function. We theoretically compare
different kinds of loss functions used in state-of-the-art
algorithms, to establish the merit of the proposed loss
function. The final experiment results also support such
conclusion or theoretical arguments.

4) We use a dynamic end-to-end loss in our experiments
to jointly train the minutiae location and orientation
networks. By dynamically changing the loss function,
we firstly concentrate on training the minutiae location
map and then focus on optimizing the loss function for

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

Fig. 2: The dilated convolutional network used in the proposed
local MinNet and its corresponding ordinary convolutional
network.

the orientation estimation. This kind of end-to-end loss
function design may also be used in many other deep
learning tasks.

5) Different from previous methods, the proposed approach
can automatically discard some pixels during the training
process rather than using the entire position heatmap,
which helps to boost the training process and improve
the accuracy. We also demonstrate the effectiveness of
our pre-trained network with the GAN generated syn-
thetic fingerprint images to achieve enhanced minutiae
detection performance.

The rest of this paper is organized as follows: Sec. II
details the methodology of the proposed approach, including
the novel neural network design, proposed orientation esti-
mation method, the ground truth minutiae map generation
approach, the dynamic end-to-end loss function design, and
the minutiae location estimation method; Sec. III introduces
the experimental configurations, including the details of the
databases used in this paper, and provides both the detailed
experimental results and the analysis on these results; Sec. IV
provides ablation study, sample visualizations and computa-
tional complexity analysis. Finally, the key conclusion from
this work are summarized in Sec. V.

II. METHODOLOGY

A. Network Design

In order to extract a fingerprint minutia, we need to com-
pute both its location and orientation. To compute minutiae
locations, most previous deep learning-based methods output
a minutiae map and then postprocessing the minutiae map
to locate minutiae. In order to conserve the computation,
the minutiae maps generated by these methods usually have
smaller size than original fingerprint images. For example, [19]
generates a minutiae map of size H

8 ×
W
8 (H and W are the

height and width of the input fingerprint images respectively),
[27] learns a minutiae map of size 128 × 128 × 6 to encode

an input fingerprint image of size 428× 428× 1, while [23],
[25] extract a minutiae map of size H

4 ×
W
4 .

Approaches used in the literature [19], [23], [25], [27]
can greatly reduce computations by reducing the size of the
minutiae map. However, it has two main disadvantages. First,
it cannot predict accurate minutiae positions when only using
the minutiae map. Second, it may miss some minutiae that
are closer to each other. In fingerprint images with a lot of
minutiae, the distances between some minutiae are within 10
pixels. When reducing the minutiae map size to 1

4 ×
1
4 of

the original fingerprint image size, the distance between the
new minutiae will be about 2 pixels, and it is quite possible
that these minutiae will be regarded as one minutia. Therefore,
these algorithms need some postprocessing to locate the minu-
tiae. For instance, [23] uses a new network to predict the final
location and orientation with some 7×7×256 patch features.
This postprocessing or second stage of operations can address
such problem, while it still introduces a lot of additional
computational complexity. Besides, it has two separate neural
networks which are harder to optimize.

In order to address such intrinsic limitations, we propose
a new end-to-end network architecture that can extract pixel
wise minutiae maps within extremely low computational com-
plexity. The main idea is to use a deep network (global
MinNet) to extract global features and predict patch-wise
minutiae maps and a shallow network (local MinNet) to
extract local features and predict pixel-wise minutiae maps.
The patch-wise minutiae map predicts accurate probabilities
but is coarse-grained. In contrast, the pixel-wise minutiae map
is fine-grained but is not sufficiently accurate due to shallow
network and limited local features. Therefore, we upsample
the patch-wise minutiae map by using pixel shuffle [28] and
then multiply the pixel-wise location map to get a fine-grained
and more accurate map. The complexity of a neural network
mainly depends on two parts: network depth and channels
number of every layer, and the input feature size of every layer.
Since we only compute the patch-wise feature with the deep
global MinNet and the pixel-wise feature with the lightweight
local MinNet, it requires much less computations than those
for computing pixel-wise feature with deep network.

Fig. 1 presents the entire network architecture. To extract
the local minutiae map, we use a dilated convolutional neural
network [29] as presented in Fig. 2. We firstly use a four-layer
dilated convolutional network with the atrous rate of 1,2,4 and
8 respectively to extract the feature from every pixel, then use
a point-wise convolutional layer to predict the probability from
every pixel location. We use such a kind of atrous rate because
these three layers equal to a conventional four-layers network
with a stride of 2 (Fig. 2). The field is respectively 3, 7, 15
and 31 after each dilated layer. Therefore, the local MinNet
equals to a neural network that inputs a 31 × 31 patch and
then predicts the probability of the center pixel. To extract the
global minutiae feature, we first downsample the feature size
by using two convolutional layers with the stride of 2. Suppose
the original image size is H×W , after these two downsample
convolutional layers, it generates a reduced feature map with
the size of H

4 ×
W
4 . Next, we split the global MinNet into two

branches. For the first branch, we use three residual blocks [30]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

Fig. 3: The illustration of different loss
function for the orientation estimation.

Fig. 4: Comparison of different loss function for the orientation esti-
mation (left) and corresponding gradients (right).

to generate a relatively large feature map (feature map A) with
the size of H4 ×

W
4 . For the second branch, we downsample the

feature further and generate a global feature with the size of
H
32 ×

W
32 , and we add another four residual blocks to increase

the network depth further and generate a more effective feature
map (feature map B). After that, we upsample feature map B
using a pixel shuffle layer [28] and it with feature map A. We
use pixel shuffle layer, instead of direct upsampling, due to the
following two reasons: first, it can yield a better performance;
second, it decreases the feature channels and greatly reduces
the computation complexity. We then upsample the feature to
the original size and perform pixel-wise multiplication with
the local minutiae map to generate the final location map.

After predicting the minutiae location map and detect all
candidate minutiae, we predict the orientation map based
on global features. We upsample it and then normalize the
two orientation layers to cosine and sine value. We do not
employ pixel-wise local features because it is relatively easy
to predict the orientation and the global patch-wise features
is already enough to predict accurate orientation. If we apply
the pixelwise local features, we need to upsample the patch-
wise global features first and then predict the orientation map,
which will introduce a lot of additional computation.

By using such a network, we can predict pretty accurate
pixel-wise minutiae map with a relatively low complexity.

B. Orientation Estimation

After locating the spatial location of the minutiae, it is
also essential to accurately to compute their orientations. The
orientations are not continuous, they are from 0 to 2π, while
orientation 2π is the same as orientation 0. Therefore, it
is not a good choice to directly predict the orientation by
using the neural network. Reference [23] directly estimates the
orientation. The authors normalize the orientation to [−1, 1)
and design a complex loss function to address this problem.
Although it can solve the discontinuous problem, it is not
straightforward and the loss function is complex. Therefore,
instead of directly predicting the orientation, we predict the
cosine and sine values of the orientation angles, and then
convert them to the orientations.

Reference [25] also predicts cosine and sine value firstly.
Suppose the ground truth orientation is α and the predicted
orientation is β, and ∆θ(∆θ = |α − β|) is the orientation
difference between the ground truth and predicted orientation.
As shown in Eq. (1) and Fig. 3, the loss L in reference
[25] is computed using the Euclidean distance between points
(cosα, sinα) and (cosβ, sinβ), which is equal to the chord
length between orientation α and β in a unit circle.

L =
√

(cosα− cosβ)2 + (sinα− sinβ)2

= 2 · sin |α− β|
2

= 2 · sin ∆θ

2

(1)

∂L

∂∆θ
= 2 ·

∂ sin ∆θ
2

∂∆θ
= 2 · cos

∆θ

2
· 1

2
= cos

∆θ

2
(2)

We compute the gradient of this loss function, which is
shown in Eq. (2). We also plot the loss function and gradient
in Fig. 4, from where we can observe that with the increase
of ∆θ, the loss increases from 0 to 1, but the gradient
decreases from 1 to 0 . As a result, when ∆θ is large, the
gradient is small, the network is trained slowly; and when
∆θ is small, the gradient is large, the network continues
the training and is not easy to converge. Specially, when
∆θ = π, the gradient reduces to 0 which means that the
network stops backpropagation. Therefore, this loss function
cannot be considered as a proper loss definition.

In order to address such limitations, we explore other
distance functions and propose a new loss function. It is
easy to observe that the root cause of this loss function’s
problems is that the backpropagation gradient decreases with
the increase of orientation difference. This inspires us to find
some loss functions which do not have such problems. First,
we consider cosine similarity function, which is widely used
in many deep learning models. However, it is not suitable for
this task. As shown in Fig. 4, the gradient of cosine similarity
function decreases from 1 to 0 in the region [π/2, π]. Next,
we consider directly using the orientation difference ∆θ as the
loss function. Compared with chord length or cosine similarity,
it is a better loss function. As shown in Fig. 4, the distance

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

increases along with the increase of ∆θ, while the gradient
remains 1 , which can ensure faster training of the network.
However, in this task, an invariable gradient is not desirable.
Therefore, we address such limitations and propose a new
distance function: ∆θ1+δ , where δ is a parameter, and is set
as 0.2 during all our experiments. The gradient of this loss
function is (1 + δ) · ∆θδ . As presented in Fig. 4, both the
distance and gradient increases along with the increase of ∆θ.
Besides, when the orientation difference decreases to 0, the
gradient also decreases to 0, enabling the network to converge
easily.

Lproposed = (arccos(cosα · cosβ + sinα · sinβ))1+δ. (3)

After predicting the cosine and sine value of the minutia
orientation, we computes the loss function as Eq. (3). It should
also be noted that while computing the gradient during the
backpropagation process, the arccosine function may fail when
the cosine value is 0 or 1 . Therefore, we clip the cosine value
(cosα · cosβ + sinα · sinβ) into

[
10−6, 1− 10−6

]
to avoid

such possibility.

C. Ground Truth Minutiae Map Generation

The proposed algorithm is trained to generate the ground
truth minutiae location heatmap. Therefore it can be challeng-
ing to accurately compute the ground truth minutiae map. In
this context, we should note the following facts:

• There are only a few minutiae points or pixels as com-
pared with the entire fingerprint image pixels. Therefore,
if we only assign the minutiae pixels as positive and all
other pixels as negative, the negative and positive ratio
will be highly unbalanced.

• Minutiae are some key points in the fingerprint images,
but they should not be considered as the accurate points
as these can be slight differences (several pixels differ-
ence) between the ground truth minutiae labeled by two
experts (or even minutiae marked by the same expert at
different times) [31], [32]. Therefore, in the context of
our application, the minutiae localization should better
be regarded as a rough region rather than an accurate
point.

• Some minutiae in a fingerprint image are quite close to
each other. When there are only a few pixels distance
between such minutiae, it is quite possible to detect only
one minutia if the ground truth minutiae region circles
are too large.

Reference [23] partitions a image into several 4 × 4 cells,
then assigns a positive label to a cell if it contains a minutia
and a negative label to a cell if its neighborhood does not
include any minutia. The work detailed in [25] also generates
a size reduced location map of size H

4 ×
W
4 . It produces the

ground truth location map using a Gaussian kernel and then
computes element-wise maximum for the different minutiae.
There are several limitations with both of these methods. The
method in [23] attempts to balance the data by using the same
number of positive and negative cells. However, since there are
only a few minutiae in a fingerprint image, it discards most

Fig. 5: Minutiae location map generated in [25], each pixel in
this figure represents a patch with size of 4× 4.

cells during the training and thereby significantly decreasing
the training speed.

The biggest problem in [25] is that cells around the minutia
localized cell will also be labeled with a probability between
0 and 1. Fig. 5 presents the location heatmap of [25], from
where we can observe that the eight neighboring cells around
the cell that contains the minutia (or the center cell) have a
high probability, and the 5×5 cells around the center cell have
probabilities that are greater than 0 . Every cell has a size of
4 × 4; therefore, 20 × 20 pixels around the minutiae are not
labeled as negative, while 12× 12 pixels around the minutiae
are labeled with high probability. This is unresonable because
one minutia should only be within a small region, and only
pixels in this region should be labeled as positive. Especially
for two minutiae that are close to each other, it is easy to mis-
detect only one minutia when training with such a location
heatmap. Moreover, the location heatmap is not binary, and it
cannot directly use the binary cross-entropy loss or the focal
loss [33].

Fig. 6: Illustration for the generation of minutiae localization.
The red region represents positive, blue region represents
negative while the other green shadow region is not used. The
r1 and r2 here represents the radius of the two circular regions.

Therefore, we propose a new method to address such
limitations. Firstly, since a minutia is a region instead of an

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

accurate point, we use the labeled minutia location as the
center and consider circular region with a small radius (r1).
Every pixel in this circle is regarded as positive. Next, as the
minutia is located in a small region, we can consider another
concentric circle with a greater radius (r2). Pixels outside the
second circle are at least r2 pixels away from the manually
labeled location and are regarded as negative. We can then
discard pixels located in the cirque region and exclude them for
the training because they are difficult to be classified positive
or negative. In addition, as there are many minutiae, one pixel
may have different labels for different minutiae. Therefore, we
iterate every minutia, pixels marked as positive for at least one
time is labeled as positive, pixels marked as ”not used” for at
least one time is labeled as ”not used”, and all other pixels
are labeled as negative. Fig. 6 provides a visualization of this
ground truth minutia location map generation method, where
the pixels in the annulus region between the red positive region
and blue negative region are discarded during the process of
training.

D. Dynamic End-to-end Loss Design

In order to balance the positive and negative pixels, focal
loss [33] is used to force the network to focus on positive
pixels during the training process. Suppose p̂ is the predicted
probability for one pixel and y is the ground truth label (either
1 or 0), then the loss can be written as follows:

FL = −y×α(1−p)γ log(p)−(1−y)×(1−α)pγ×log(1−p).
(4)

The parameters α and γ are used to control the training,
where α is used to balance the positive and negative ratio, and
γ is used to control the training for easy-to-classify and hardto-
classify examples. The higher is the value of γ, the lower
is the loss for well-classified examples, making the network
turns its attention to hard-to-classify examples. The total or
final minutiae location map loss (Ll) is the mean value of
all pixels’ focal loss. The pixels labeled as ”not used” are
excluded in the computation.

In addition, after computing the minutiae orientation map,
we recover the predicted orientation for every minutia, then
compute the mean loss for the orientation (Lo) by using Eq.
(3).

Finally, we combine these two losses to one loss and jointly
train the network, such loss function can be defined as follows:

L = Ll + fi × Lo, (5)

where parameter fi is a function of current epoch number
i and is used to dynamically train the network. We do not
use a constant value here because then it is hard to optimize
both two networks. At the beginning of the training process,
the network should focus on training the minutiae location
map; therefore, the parameter fi should be small. After several
epochs’ of training, the network backbone can be well trained,
and the parameter fi should be increased to enable the network
concentrate on optimizing the the loss for the orientation.
Therefore, we formulate the function fi as follow:

fi = min
(
βinit × 10b

i
M c, βmax

)
. (6)

where M,βinit , and βmax are three predefined parameters, Lo
learning rate, fi will be initialized as βinit and then increase 10
times every M epoch until it reaches to βmax. By using such
kind of loss combination, we dynamically and jointly, train
the minutiae location and orientation network. The learning
process is faster and can also ensure better results.

E. Minutiae Location Estimation

The proposed network predicts a minutiae location map, and
we then need to locate the minutiae based on the location map.
The easiest way of locating minutiae is to set a threshold, find
all connected components which values are equal to or greater
than this threshold, and compute the center of every connected
component. This method is quite easy but does not work well.
The main problem is that is is hard to set a proper threshold.
When setting a small threshold, it may detect many imposter
minutiae. Besides, it is also quite possible that some minutiae
closely located are detected as one minutiae. In contrast, when
setting a big threshold, it may fail to detect many genuine
minutiae. Therefore, we propose a new method to address such
problems, which is introduced as follows.

p =
√

area ·
(
eτ−τinit +0.1 − 1

)
. (7)

First, we use a small probability threshold (τinit) and
find all connected components (C1, C2, . . . , Cm). Next, we
increase the threshold and find the connected components in
every component Ci recovered earlier. We continue this pro-
cess until these components has less than a fixed component
area threshold (τarea) of pixels. If more than one connected
components are found in the previous component, it means
two or more minutiae conglutinate together, and we continue
such process for every new connected component. Finally,
we get many non-coincident connected components, and we
compute the center location of every component to locate all
possible minutiae. Besides, we also compute the possibility for
every minutia based on the component area and corresponding
threshold using Eq. (7). Here area is the number of pixels in
every connected component, and τ is the current threshold. It
may compute several different probabilities for one minutia,
and we only use the maximum one. We use Eq. (7) to
balance component area and its value. Every possible minutia’s
connected component in the minutiae location map is like a
circle. The probability of this minutiae is proportional to the
radius, or

√
area . Besides, the probability is also related to

the value of corresponding connected components. As a result,
Eq. (7) can well balance these two factors and compute a
reliable probability score. Finally, we retrieve every possible
minutia and corresponding score, and the closely located
minutiae that are also expected to be accurately located.

F. Synthetic Fingerprint Generation

During the last few years, deep learning-based algorithms
has been playing a more and more important role in fingerprint
recognition area, which require large-scale fingerprint datasets

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

for training and evaluation. However, it has inherent risks and
privacy concerns to collect and share large-scale fingerprint
databases. For example, the National Insitute of Standards and
Technology (NIST) has withdrawn several publicly available
fingerprint databases due to privacy related issues [34], e.g.,
NIST Special Database 4, NIST Special Database 9, NIST
Special Database 14 , et al. Generating synthetic fingerprint
images can address both the data collection cost problem and
privacy problem, as synthetic fingerprints can be generated
easily within low cost and alleviate the need for the individuals
identity of the subjects used during training.

Traditional fingerprint synthesis algorithms usually involves
sampling from independent statistical models for orientation
field and minutiae with Gabor-filtering or other models to
generate the final ridge structure [35]-[37]. There are several
shortcomings for these traditional approaches. Firstly, the
minutiae distribution of generated fingerprint are very different
from real fingerprints. Second, the independent modeling used
in these traditional methods is not necessarily able to capture
the correlation between the minutiae patterns, ridge valley
structure and orientation field [26].

Therefore, many new GAN-based algorithms has been pro-
posed recently. GANs can learn deep representations without
using extensively annotated training data. They derive back-
propagation signals through a competitive process involving a
pair of networks [38]. It usually contains two networks, one
network is used as an art forger and the other network is used
as an art expert. The forger, known as the generator (D) in
the GAN literature, creates forgeries to make realistic images.
The expert, known as the discriminator (G) in the literature,
receives both forgeries and real/authentic images, and aims to
distinguish them. GANs don’t rely on independent statistical
models, thus it is suitable for synthetic fingerprint generation.
Recently, GAN models have been employed for synthetic
fingerprint generation [26], [39]-[41]. During the experiments,
we adopt the synthetic fingerprint images generated using
[26] as this method can generate high quality fake fingerprint
images which are very similar to the real fingerprints.

III. EXPERIMENTS AND RESULTS

A. Databases and Protocols

In order to present comparative performance evaluation
with state-of-the-art methods, we first perform experiments
on four publicly available contact-based fingerprint databases:
ZJU Database [42], FVC2002 [43] Database, FVC2004 [44]
Database, and IIITD MOLF Database [45]. During the ex-
periments, we use the synthetic fingerprint database generated
by [26] for pre-training. In the following, we provide more
detailed information on these databases and the corresponding
protocols used in our experiments for the performance evalu-
ation. We also performed additional experiments in another
two contactless fingerprint databases: PolyU Cross Sensor
Database [46] and Benchmark 2D/3D database [47]. The fol-
lowing provides more detailed information about all databases
and responding protocols used on our experiments.

1) FVC2002 and FVC2004 Database: FVC2002 Database
and FVC2004 Database have four sub-databases with 800

fingerprint images from 100 subjects in each sub-database (8
fingerprint images for each subject). For fair comparisons, we
follow the same protocol in [23], and perform experiments
on four sub-databases: FVC2002-DB1A, FVC2002-DB3A,
FVC2004-DB1A, and FVC2004-DB3A. We randomly select
half of the subjects in each sub-database for training and then
used the other half for test. Similar to [23], we do not scale the
size of any fingerprint images as all fingerprint images have
the fixed dpi (500 dpi). In order to measure the performance,
we also use the same protocol and compared our extracted
minutiae with the ground truth minutiae manually labeled
by experts [48]. Suppose one minutia is within 12 pixels
of one ground truth minutia, and the orientation difference
between these two minutiae is within 20 degrees. In that case,
the predicted minutia is correct, or else it will be a wrong
minutia. Finally, we compute the precision, recall and use
the F1 score to measure the detection performance. Since
the training and test database is randomly split, the databases
split will significantly influence the final results. Therefore,
we perform experiments thrice with different random seeds
and then compute the mean F1 score. In order to ensure full
reproducibility, we also provide the exact training and test
subjects number that we use in our experiments, along with the
source code via [49]. In addition, we also attempted to firstly
pre-train our model using synthetic fingerprint database, then
fine-tuning on the train images, and evaluate the performance
on the test images with the same protocol.

2) The IIIT-D Multi-sensor Database: The IIIT-D Mul-
tisensor Optical and Latent Fingerprint (MOLF) database
[45] is a large database that has 19,200 fingerprints images
acquired from 100 subjects using five different sensors. We
used the second (DB2) and third (DB3) databases during
our experiments because DB1 has high-quality images and
are easy to detect, while DB4 and DB5 are low-quality
latent fingerprint databases, and are hard to manually label
the ground truth minutiae for training. Both DB2 and DB3
contain 4,000 fingerprint images acquired from 1,000 fingers
of 100 persons, with four images for each finger. During our
experiments, we use the first 200 fingerprint images from the
first 5 subjects for training and the other 3800 images for the
test. Similarly, we firstly detect the minutiae of training images
by using VeriFinger [50] first and then manually inspect such
detections and correct such labels when required. To evaluate
the performance, we match the extracted minutiae by using
MCC [4]. We also use challenging all-to-all protocol for more
reliable performance estimation, therefore generating 5,700
genuine match scores and 7,992,300 imposter match scores.

3) The ZJU Fingerprint Database: The ZJU Finger Photo
and Touch-based Fingerprint Database contains both 9,898
contactless and contact-based fingerprint images from 206
subjects. Each subject contains several images from two left
hand fingers and two right hand fingers. All contact-based
fingerprint images were acquired using a URU 4500 optical-
based scanner at 512 ppi. All subjects are in this database
have been partitioned into six groups, A, B, C, D, E and
F, we select the first four subjects in every group as the
training database and the other as the part of the test database.
Therefore, it contains 1,153 training fingerprint images and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Sample fingerprint images from different fingerprint databases used in this work. From left to right, the fingerprint
images are from (a). ZJU database [42], (b). FVC2002-DB1A [43], (c). FVC2002-DB3A [43], (d). FVC2004-DB1A [44],
(e). FVC2004-DB3A [44], (f). MOLF-DB2 [45], (g). MOLF-DB3 [45], (h). GAN-based Synthetic Fingerprint database, (i).
PolyU-contactless Fingerprint Database [46], (j). Benchmark 2D/3D Fingerprint Database [47].

8,745 test images. We first pre-train the proposed model on
the synthetic fingerprint database, then we fine-tune the model
on the training fingerprint images, and finally test on the test
part of this database. Since the numbers of images in the test
part of this database are large, the number of match scores
generated from our experiments are very large, i.e., includes
48,163 genuine scores and 43,139,019 imposter match scores.
To evaluate the performance of the proposed algorithm, we
present comparisons with VeriFinger [50] using exactly the
same test database and the images.

4) Synthetic Fingerprint Database: The Clarkson Finger-
print Generator [26] can generate high-quality contact-based
fingerprint images within little expanse. [26] provides the
source code [51], along with a synthetically generated fin-
gerprints database, which contains 50,048 synthesis fingerprint
images. To benefit the reproduction of the proposed algorithm,
we directly used the provided database and did not randomly
generate fingerprint images. In order to generate ground truth
minutiae for the network training, we firstly detect all the
possible minutiae from the synthesized database [26] using
the VeriFinger [50] and exclude those minutiae which have
very low quality score. During our experiments, we pre-trained
the deep learning model under this database and then test on
several other contact-based fingerprint databases.

5) PolyU Cross Sensor Fingerprint Database and Bench-
mark 2D/3D Database:: PolyU Cross Sensor Database [46]

is a two-session cross sensor fingerprint database. The first ses-
sion contains 336 subjects with 6 contactless and contact-based
fingerprint images for each subject, and the second session
contains 160 subjects with 6 images for each subject. Bench-
mark 2D/3D [47] consists of 9000 contactless fingerprint
images which are acquired from 1500 subjects. We train our
network using the same protocol as in [25]. First, we select the
contactless fingerprint images from fingers numbered between
1 and 136 in both PolyU Cross Sensor Database sessions as the
training set (1440 contactless fingerprint images in total). Rest
of the 1200 images from the other 200 subjects are used for
performance evaluation. For the Benchmark 2D/3D database,
we use the 400 contactless fingerprint images from the first
200 subjects for fine-tuning and then use the remaining 2600
images from 1300 subjects for the test. In order to efficiently
obtain the ground truth minutiae of training images, we first
use VeriFinger [50] to extract all the minutiae from training
images in the datavase. Then we manually correct the location
and orientation of several incorrectly detected minutiae using
the popular LabelMe [52] software. Following the same proto-
col in [25], we use the existing Minutia CylinderCode (MCC)
[4], [53] for matching the minutiae templates. We also perform
both fingerprint verification using the same protocol as in
[25]. For PolyU Cross database, we generate 3000 genuine
and 19900 imposter match scores. For Benchmark 2D/3D

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

database, we generate 1300 genuine and 844,350 imposter
match scores.

B. Additional Experimental Details

It is worth mentioning that we use the following data
augmentation methods in our experiments: FlipBlur (including
Gaussian Blur, Average Blur, Median Blur), Gamma Contrast,
Gaussian Noise, Sharpen, Rotation. After data augmentation,
we use adaptive histogram equalization to enhance the fin-
gerprint images. During the test phase, we also use the same
enhancement method.

There are several parameters that were empirically fixed
as the same for all experiments in this paper. We use Adam
optimizer during the training, the learning rate is set as 0.001
and the batch size is 16 . We empirically set the parameters
α and γ in Sec. II-D as 0.9 and 2.5 respectively for all the
experiments in this paper. Besides, during the experiment, we
set r1 as three and r2 as six. The parameters τinit and τarea in
Eq. (7) are set as 0.4 and 15 in our experiments respectively.
All parameters can also be found in the source code [49].

C. Experimental Results on FVC Databases

We first perform experiments on FVC2002 and FVC2004
databases and then perform comparisons with [23]. Tab. I
presents mean F1 scores from the proposed algorithm and [23]
using the same or four databases. It is easy to observe that the
proposed algorithm can achieve much higher accuracy over
this baseline method.

TABLE I. Comparative results using FVC databases.

Database Mean F1 [23] Mean F11 Mean F12 Mean F13

FVC02-DB1A 0.879 0.910 0.880 0.898
FVC02-DB3A 0.854 0.868 0.853 0.874
FVC04-DB1A 0.845 0.878 0.829 0.866
FVC04-DB3A 0.821 0.833 0.818 0.836
All 0.849 0.875 0.839 0.867

1) Results using the proposed algorithm.
2) Results using the proposed method (under stricter criterion).
3) Results pre-trained on the synthesis database and fine-tuned on the

training database (under stricter criterion).

In order to ascertain the effectiveness of the proposed
algorithm, except for using the same minutiae matching metric
(location and orientation tolerance is 12 pixels and 20 degrees),
we also use a stricter criterion and compute the F1 score,
which is described as follow: One predicted minutia is correct
if and only if there is a ground truth minutia located within 6
pixels distance from the expected minutia, and the orientation
tolerance is within 10 degrees. As shown in Tab. I, the results
under the stricter protocol are similar to the results from
[23] under the easier protocol, which can further validate
the effectiveness of the proposed algorithm in extracting the
minutiae with high accuracy. In addition, we also pre-trained
the proposed model and fine-tuned on the training database,
which yields a better performance. Compared with results
without pre-training, It achieves 0.867 mean F1 score under
stricter criterion, compared with the result without pretraining
(0.839), which evaluates the effectiveness of pretraining under
synthesis databases.

TABLE II. Comparative results on IIITD MOLF database.

Method AUC (%) EER (%)

DB2 NIST mindtct [54] 77.21 30.46
VeriFinger [50] 98.68 2.51
Proposed 99.69 1.65

DB3
NIST mindtct [54] 60.01 42.12
VeriFinger [50] 97.73 3.47
Proposed 99.18 2.33

(a) DB2 database (b) DB3 database

Fig. 8: Comparative experimental results on IIITD MOLF
database.

D. Experimental Results on IIITD MOLF Database

In this section, we present experimental results on IIITD
MOLF Database. We consider three baseline methods to
extract the minutiae and resulting minutiae templates were
matched by using MCC [4]. Tab. II provides the comparative
summary from AUC and EER. These results consistently
validate the effectiveness of the proposed method and also
achieve superior accuracy than VeriFinger [50] which is widely
considered [23], [25], [27], [46] as a very strong baseline,
especially for the contact-based fingerprint images.

We also provide the ROC curves in Fig. 8. Due to relatively
low performance from [54], we do not plot the ROC in Fig. 8.
As discussed in Sec. III-A, we generate around six thousand
genuine match scores and 8 million imposter match scores
using both IIITD MOLF DB2 and DB3 database.

E. Experimental Results on ZJU Database

In this section, we present experimental results on ZJU
Fingerprint Database. Similar to IIITD MOLF database, we
consider two baseline methods to extract the minutiae and then
match the minutiae templates using [4]. This dataset is of very
large size, and most of the contact-based fingerprint images
have relatively high quality; therefore both VeriFinger [50]
and the proposed method can achieve extremely high accuracy
under this database.

Fig. 9 compares the ROC curves VeriFinger achieves 0.69%
EER, compared with 0.37% EER acquired using the proposed
method. It should be noted that VeriFinger cannot detect the
minutiae from 19 fingerprint images. In order to ensure a fair
comparison, we consider the corresponding matching scores
(both genuine and imposter) as zero.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Fig. 9: Comparative ROC curves on ZJU database.

TABLE III. Comparative results on PolyU Cross Sensor
Database.

Method AUC (%) EER (%)
NIST mindtct [54] 58.91 36.85
MinutiaeNet [22] 93.03 13.35
VeriFinger [50] 98.16 2.99
ContactlessMinuNet [25] 99.33 1.94
Proposed 99.25 1.90

F. Experimental Results on PolyU Database

We perform experiments on PolyU Cross Sensor Fingerprint
Database, the comparative results are shown in Tab. III. From
the table, it is easy to observe that the proposed algorithm
outperforms state-of-the-art contactless fingerprint minutiae
extraction methods.

G. Experimental Results on Benchmark Database

In this section, we present experimental results from the
proposed method on Benchmark 2D/3D Database. We follow
the same protocol as [25] to ensure fairness and summarize
comparative results in Tab. IV.

It can be observed from above table III and IV that the
proposed algorithm can offer much higher accuracy than state-
of-theart methods.

IV. DISCUSSION

A. Minutiae Map Feature Visualization

We performed Grad-CAM [55] based qualitative analysis of
the minutiae map features extracted by the proposed model.
Grad-CAM is a popular deep network based tool for visual-
izing where a convolutional neural network concentrating on,
which can help us to gain better understanding of a model.
Therefore, we present the the Grad-CAM visualization results
from several test image samples using [56] in Fig. 10.

TABLE IV. Comparative results on Benchmark 2D/3D
Database.

Method AUC (%) EER (%)
NIST mindtct [54] 81.84 4.28
MinutiaeNet [22] 79.74 26.34
VeriFinger [50] 95.44 9.02
ContactlessMinuNet [25] 98.24 4.28
Proposed 98.91 3.89

TABLE V. Comparative results with and without local Min-
Net.

Database Mean F1
(original network)

Mean F1
(without loal MinNet)

FVC02-DB1A 0.898 0.803
FVC02-DB3A 0.874 0.780
FVC04-DB1A 0.866 0.782
FVC04-DB3A 0.836 0.761
All 0.867 0.785

TABLE VI. Comparative results for new loss function.

Database Mean F1
(proposed loss)

Mean F1
(∆θ)

Mean F1
(cosine loss)

FVC02-DB1A 0.898 0.888 0.865
FVC02-DB3A 0.874 0.864 0.847
FVC04-DB1A 0.866 0.855 0.839
FVC04-DB3A 0.836 0.829 0.810
All 0.867 0.856 0.841

From these images in Fig. 10, we can observe that the pro-
posed model concentrates on the minutiae, and most minutiae
in the sample test fingerprint images are correctly concentrated
on, which underlines the effectiveness of the proposed model.

B. Ablation Study on the Effectiveness of Local MinNet

We examine the contributions from the local MinNet by
eliminating it from the whole network. The local MinNet
is used to generate a local minutiae map, and it can be
directly removed from the network without influencing the
whole network architecture. In order to provide more effective
comparison, we trained the models with sufficient data. We
trained the model on the synthetic database and then fine tuned
on the FVC2002 and FVC2004 fingerprint database.

Tab. V presents the comparative results with and without
local MinNet. From the table, we can easily find that without
local MinNet, the accuracy decrease significantly after remov-
ing the local MinNet. This is mainly because that many detail
features are lost after removing the local MinNet. The global
MinNet can only generate a size reduced minutiae map, and
many minutiae cannot be detected correctly.

We also compute the complexity of local MinNet. The
total network has 2.49G FLOPs, while the local MinNet has
0.83G FLOPs, which occupies around 1

3 of the whole network
complexity. Therefore, using the local MinNet to improve the
accuracy is not without any cost. It significantly increase the
computational complexity because it takes the full size feature
as the input of every convolutional layer.

C. Ablation Study on the Effectiveness of the New Loss
Function for the Orientation Estimation

We examine the contributions from the proposed loss func-
tion. Tab. VI presents the comparative results using different
loss function. From the table, we can easily note that compared
with directly using cosine distance, it slightly improves the
minutiae detection accuracy by using the proposed loss func-
tion. As the orientation is relatively easy to be detected and the
matching metric is relatively loose (the orientation tolerance is

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

Fig. 10: Sample fingerprint images and their corresponding Grad-CAM [55] visualizations.

10 degrees), the improvement is not significant. Nevertheless,
the comparative results still validate the effectiveness of the
proposed loss function.

D. Ablation Study on the Effectiveness of the Ground Truth
Minutiae Map Generation

We also examine the contributions from the ground truth
minutiae map generator. We perform experiments using five
different sets of r1 and r2, where r2 is always 6 and r1 is from
2 to 6 . It should be noted that when r1 = r2 = 6, all pixels are
used for training and this minutiae map is a normal map. Tab.
VII presents the comparative results using these five different
r1 and r2. From the table, we can find that compared with
using all pixels, it can yield better performance by discarding
some pixels as the proposed way. The total mean F1 score

increased from 0.834 to 0.867, which validate the effectiveness
of the proposed ground truth minutiae map generation method.

E. Computational Complexity Analysis

We compare the computational complexity of several
stateof-the-art deep learning-based minutiae detection algo-
rithms and summarize these results in Tab. VIII. It can be
observed from the table that the proposed algorithm is much
faster than state-of-the-art deep learning-based minutiae detec-
tion algorithms in the literature. We can note that algorithm
in [23] requires quite high FLOPs. In fact, after feature
extraction, [23] generates many (100 in their experiments)
7 × 7 × 256 candidates and uses a fully connected network
to predict the position, orientation and the probability. It’s
computational requirement is 12.84M FLOPS for only one
minutiae prediction, and therefore it requires 1.28G FLOPs

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

Fig. 11: Minutiae extraction results samples, green arrows are minutiae marked by experts, yellow arrows are correct minutiae
predicted by proposed method, red arrows are wrong predicted minutiae, and blue arrows are manually labeled minutiae. From
left to right, the fingerprint images are from FVC2002 DB1A, DB3A, FVC2004 DB1A and DB3A respectively.

TABLE VII. Comparative results using different r1 and r2, the
two integer numbers in the bracket are r1 and r2 respectively.

Database Mean F1
(2, 6)

Mean F1
(3, 6)

Mean F1
(4, 6)

Mean F1
(5, 6)

Mean F1
(6, 6)

FVC02-DB1A 0.845 0.898 0.883 0.876 0.864
FVC02-DB3A 0.826 0.874 0.865 0.859 0.850
FVC04-DB1A 0.803 0.866 0.848 0.834 0.826
FVC04-DB3A 0.783 0.836 0.821 0.812 0.803

All 0.812 0.867 0.850 0.842 0.834

TABLE VIII. Comparative computational complexity for dif-
ferent deep learning-based algorithms.

Method Parameters FLOPs
FastMinutiaeExtract [23] 70.4M 26.6G
ContactlessMinuNet [25] 36.5M 5.45G
Proposed 2.2M 2.5G

for the entire 100 candidates. It also requires much more
additional computations for the feature extraction.

Due to the novel designs introduced in Sec. II, the proposed
algorithm has a lightweight but powerful network architecture,
and it directly computes the minutiae location and orientation,
instead of selecting many candidates and then performing
the second stage prediction. Therefore, it is much faster as
compared with state-of-the-art deep-learning based methods.

F. Minutiae Extraction Results Samples

We randomly select some fingerprint images from FVC2002
and FVC2004 databases, and visualize the extracted minutiae.
Fig. 11 illustrates some sample fingerprint images with the
minutiae extracted using the proposed algorithm. We can
observe that most of the minutiae are accurate. The location
and orientation of these correctly detected minutiae are quite
close to the ground truth minutiae that are manually labeled by
the experts. It is worth noting that there is only one misdetected
minutiae in the second image sample in Fig. 11. The reason
for such misdetection is that this minutiae as a kind of like a
ridge ending, therefore the proposed algorithm detects a wrong
orientation.

G. Additional Discussion on Computational Complexity

In Tab. IX, we present the average running time comparisons
from several state-of-the-art deep learning-based minutiae
detection algorithms in the literature. It will be unfair to
directly compare the running time as the experiments are under
different environments. Therefore, we perform the experiments
using the same dataset as used in [22] and [23] under a more
simplified computational hardware. We perform the experi-
ments on a laptop computer with a GTX1050-Ti(Mobile) GPU
card, which has much lower effective speed than the GPU
(GTX1060 and TITAN XP) used in [22] and [23]. It can be
easy to note from the results in Tab. IX that even we use a
more simplified GPU card, our algorithm is still much faster
than the state-of-theart deep learning-based algorithms, which
can further validate the achievable speed from the proposed
algorithm. Besides, we can note from Tab. IX that the proposed
algorithm has a very different running time on FVC2004 [44]
and Benchmark 2D/3D [47], which is mainly because that the
image sizes of these two databases are different.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we proposed an end-to-end fingerprint minu-
tiae extraction method. Unlike currently available state-of-
theart algorithms, the proposed method uses a shallow pixel-
wise local dilated neural network to extract the local features
and a deep patch-wise network to extract the global features,
then adaptively consolidates these two features to generate a
pixelwise minutiae location and orientation map. In addition,
we also introduce a new loss function for the orientation
estimation and use a new dynamic end-to-end loss to jointly
train the minutiae location and orientation networks. Another
novel advancement is that we introduce a new method to
automatically discard some pixels during the training pro-
cess to improve the accuracy and learning speed. We ex-
tensively evaluated our algorithm using several contact-based
and contactless fingerprint databases. The experimental results
demonstrate that the proposed method outperforms state-of-
the-art algorithms, with a much faster speed, and validate its
effectiveness for the realworld applications. Despite attractive

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

TABLE IX. Comparative average running time of several state-of-the-art deep learning-based minutiae extraction methods. The
results of proposed algorithm are computed by ourselves, while the other results are from reference [22] and [23].

Method Environment (GPU) Test database Time(s)
MinutiaeNet([22]) GTX1060 FVC2004 1.2([23])

FingerNet([19]) GTX1060 FVC2004 0.32([23])
FME([23]) GTX1060 FVC2004 0.03([23])

Proposed GTX1050-Ti(Mobile) FVC2004 0.025
Multi-task FCN([25]) TITAN Xp Benchmark 2D/3D 0.86([25])

MinutiaeNet([22]) TITAN Xp Benchmark 2D/3D 1.2([25])
Proposed GTX1050-Ti(Mobile) Benchmark 2D/3D 0.083

minutiae detection performance and speed, more work needs to
be done to realize a high-speed universal minutiae detector. It
will be useful to evaluate the performance on more challenging
fingerprint images, e.g. latent fingerprint images, and to extend
this detector for detecting 3D fingerprint minutiae [1] and is
part of further work in this area.

REFERENCES

[1] A. Kumar, Contactless 3D Fingerprint Identification. Springer Interna-
tional Publishing, 2018.

[2] D. Maltoni, D. Maio, A. K. Jain, and J. Feng, Handbook of fingerprint
recognition. Springer Science & Business Media, 2022.

[3] Dingrui Wan and Jie Zhou, ”Fingerprint Recognition Using ModelBased
Density Map,” IEEE Transactions on Image Processing, vol. 15, no. 6, pp.
1690-1696, Jun. 2006.

[4] R. Cappelli, M. Ferrara, and D. Maltoni, ”MCC Software Development
Kit (SDK) - Version 2.0,” http://biolab.csr.unibo.it/research.asp, 2015.

[5] M. Ferrara, D. Maltoni, and R. Cappelli, ”Noninvertible Minutia Cylinder-
Code Representation,” IEEE Transactions on Information Forensics and
Security, vol. 7, no. 6, pp. 1727-1737, Dec. 2012.

[6] R. Cappelli, M. Ferrara, and D. Maltoni, ”Fingerprint Indexing Based
on Minutia Cylinder-Code,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 5, pp. 1051-1057, May 2011.

[7] K. Cao and A. K. Jain, ”Automated Latent Fingerprint Recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 4, pp. 788-800, Apr. 2019.

[8] X. Yin, Y. Zhu, and J. Hu, ”Contactless Fingerprint Recognition Based
on Global Minutia Topology and Loose Genetic Algorithm,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 2841, 2020.

[9] A. A. Paulino, J. Feng, and A. K. Jain, ”Latent Fingerprint Matching
Using Descriptor-based Hough Transform,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 1, pp. 31-45, 2012.

[10] A. Farina, Z. M. Kovács-Vajna, and A. Leone, ”Fingerprint Minutiae
Extraction from Skeletonized Binary Images,” Pattern Recognition, vol.
32 , no. 5 , pp. 877 − 889, 1999.

[11] Xiao Yang, Jianjiang Feng, and Jie Zhou, ”Localized Dictionaries Based
Orientation Field Estimation for Latent Fingerprints,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 955969,
May 2014.

[12] X. Jiang, W.-Y. Yau, and W. Ser, ”Detecting the Fingerprint Minutiae
by Adaptive Tracing the Gray-level Ridge,” Pattern recognition, vol. 34,
no. 5, pp. 999-1013, 2001.

[13] J. Liu, Z. Huang, and K. L. Chan, ”Direct Minutiae Extraction from
Gray-level Fingerprint Image by Relationship Examination,” in Proceed-
ings of International Conference on Image Processing, vol. 2, 2000, pp.
427-430.

[14] A. Sankaran, P. Pandey, M. Vatsa, and R. Singh, ”On Latent Fingerprint
Minutiae Extraction Using Stacked Denoising Sparse AutoEncoders,” in
IEEE International Joint Conference on Biometrics, 2014, pp. 1-7.

[15] A. Malhotra, A. Sankaran, M. Vatsa, and R. Singh, ”On Matching
Finger-selfies using Deep Scattering Networks,” IEEE Transactions on
Biometrics, Behavior, and Identity Science, vol. 2, no. 4, pp. 350-362,
2020.

[16] L. Sifre and S. Mallat, ”Rotation, Scaling and Deformation Invariant
Scattering for Texture Discrimination,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2013, pp. 12331240.

[17] A. Chowdhury, S. Kirchgasser, A. Uhl, and A. Ross, ”Can a CNN
Automatically Learn the Significance of Minutiae Points for Fingerprint
Matching?” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2020, pp. 351-359.

[18] L. N. Darlow and B. Rosman, ”Fingerprint Minutiae Extraction Using
Deep Learning,” in International Joint Conference on Biometrics, 2017,
pp. 22-30.

[19] Y. Tang, F. Gao, J. Feng, and Y. Liu, ”FingerNet: An Unified Deep
Network for Fingerprint Minutiae Extraction,” in International Joint Con-
ference on Biometrics, 2017, pp. 108-116.

[20] H. Tan and A. Kumar, ”Towards More Accurate Contactless Fingerprint
Minutiae Extraction and Pose-Invariant Matching,” IEEE Transactions on
Information Forensics and Security, pp. 1-1, 2020.

[21] L. Jiang, T. Zhao, C. Bai, A. Yong, and M. Wu, ”A Direct Fingerprint
Minutiae Extraction Approach Based on Convolutional Neural Networks,”
in International Joint Conference on Neural Networks, 2016, pp. 571-578.

[22] D.-L. Nguyen, K. Cao, and A. K. Jain, ”Robust Minutiae Extractor:
Integrating Deep Networks and Fingerprint Domain Knowledge,” in IEEE
International Joint Conference on Biometrics, 2018, pp. 9-16.

[23] B. Zhou, C. Han, Y. Liu, T. Guo, and J. Qin, ”Fast Minutiae Extractor
Using Neural Network,” Pattern Recognition, vol. 103, p. 107273, Jul.
2020.

[24] K. He, G. Gkioxari, P. Dollar, and R. Girshick, ”Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961-2969.

[25] Z. Zhang, S. Liu, and M. Liu, ”A Multi-Task Fully Deep Convolutional
Neural Network for Contactless Fingerprint Minutiae Extraction,” Pattern
Recognition, vol. 120, p. 108189, 2021.

[26] K. Bahmani, R. Plesh, P. Johnson, S. Schuckers, and T. Swyka, ”High
fidelity fingerprint generation: Quality, uniqueness, and privacy,” in 2021
IEEE International Conference on Image Processing (ICIP). IEEE, 2021,
pp. 3018-3022.

[27] J. J. Engelsma, K. Cao, and A. K. Jain, ”Learning a Fixed-length
Fingerprint Representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019.

[28] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D.
Rueckert, and Z. Wang, ”Real-Time Single Image and Video SuperRes-
olution Using an Efficient Sub-Pixel Convolutional Neural Network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1874-1883.

[29] F. Yu and V. Koltun, ”Multi-Scale Context Aggregation by Dilated
Convolutions,” arXiv:1511.07122 [cs], Nov. 2015.

[30] K. He, X. Zhang, S. Ren, and J. Sun, ”Deep Residual Learning for
Image Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Jun. 2016.

[31] A. Malhotra, A. Sankaran, M. Vatsa, R. Singh, K. B. Morris, and A.
Noore, ”Understanding ACE-V Latent Fingerprint Examination Process
via Eye-Gaze Analysis,” IEEE Transactions on Biometrics, Behavior, and
Identity Science, vol. 3, no. 1, pp. 44-58, 2020.

[32] P. Grother, M. McCabe, C. Watson, M. Indovina, W. Salamon, P.
Flanagan, E. Tabassi, E. Newton, and C. Wilson, ”Performance and
interoperability of the incits 378 fingerprint template,” National Institute
of Standards and Technology, Alghero, 2006.

[33] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ”Focal Loss
for Dense Object Detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980-2988.

[34] ”Nist special database catalog,” https://www.nist.gov/srd/shop/ special-
database-catalog, 2022-06-01.

[35] R. Cappelli, D. Maio, and D. Maltoni, ”Sfinge: an approach to synthetic
fingerprint generation,” in International Workshop on Biometric Technolo-
gies (BT2004), 2004, pp. 147-154.

http://biolab.csr.unibo.it/research.asp
https://www.nist.gov/srd/shop/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

[36] Q. Zhao, A. K. Jain, N. G. Paulter, and M. Taylor, ”Fingerprint
image synthesis based on statistical feature models,” in 2012 IEEE Fifth
International Conference on Biometrics: Theory, Applications and Systems
(BTAS). IEEE, 2012, pp. 23-30.

[37] P. Johnson, F. Hua, and S. Schuckers, ”Texture modeling for synthetic
fingerprint generation,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2013, pp. 154159.

[38] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, ”Generative adversarial networks: An overview,” IEEE
signal processing magazine, vol. 35, no. 1, pp. 53-65, 2018.

[39] P. Bontrager, A. Roy, J. Togelius, N. Memon, and A. Ross, ”Deepmas-
terprints: Generating masterprints for dictionary attacks via latent variable
evolution,” in 2018 IEEE 9th International Conference on Biometrics
Theory, Applications and Systems (BTAS). IEEE, 2018, pp. 1-9.

[40] K. Cao and A. Jain, ”Fingerprint synthesis: Evaluating fingerprint search
at scale,” in 2018 International Conference on Biometrics (ICB). IEEE,
2018, pp. 31-38.

[41] S. Minaee and A. Abdolrashidi, ”Finger-gan: Generating realistic
fingerprint images using connectivity imposed gan,” arXiv preprint
arXiv:1812.10482, 2018.

[42] S. A. Grosz, J. J. Engelsma, E. Liu, and A. K. Jain, ”C2cl: Contact
to contactless fingerprint matching,” IEEE Transactions on Information
Forensics and Security, vol. 17, pp. 196-210, 2021.

[43] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain,
”FVC2002: Second Fingerprint Verification Competition,” in Object recog-
nition supported by user interaction for service robots, vol. 3 . IEEE, 2002,
pp. 811-814.

[44] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, ”Perfor-
mance Evaluation of Fingerprint Verification Systems,” IEEE transactions
on pattern analysis and machine intelligence, vol. 28, no. 1, pp. 3-18, 2005.

[45] A. Sankaran, M. Vatsa, and R. Singh, ”Multisensor Optical and Latent
Fingerprint Database,” IEEE access, vol. 3, pp. 653-665, 2015.

[46] C. Lin and A. Kumar, ”Matching Contactless and Contact-Based Con-
ventional Fingerprint Images for Biometrics Identification,” IEEE Trans-
actions on Image Processing, vol. 27, no. 4, pp. 2008-2021, 2018.

[47] W. Zhou, J. Hu, I. Petersen, S. Wang, and M. Bennamoun, ”A Bench-
mark 3D Fingerprint Database,” in International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), 2014, pp. 935-940.

[48] A. Mikaelyan and J. Bigun, ”Ground Truth and Evaluation for Latent
Fingerprint Matching,” in Proceeds of IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2012, pp. 83-88.

[49] ”Source code of the proposed algorithm,” https://www.comp.polyu.edu.
hk/ csajaykr/DLPG.html, 2022.

[50] ”Neurotechnology Verifinger SDK - Version 12.1,” https://www. neu-
rotechnology.com/verifinger.html, Nov 2021.

[51] ”Clarkson fingerprint generator,” https://github.com/keivanB/Clarkson
Finger Gen, 2021.

[52] K. Wada, ”labelme: Image Polygonal Annotation with Python,” https:
//github.com/wkentaro/labelme, 2016.

[53] R. Cappelli, M. Ferrara, and D. Maltoni, ”Minutia Cylinder-code: A
New Representation and Matching Technique for Fingerprint Recognition,”
IEEE transactions on pattern analysis and machine intelligence, vol. 32,
no. 12, pp. 2128-2141, 2010.

[54] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. McCabe,
S. Janet, and K. Ko, ”User’s Guide to NIST Biometric Image Software,”
Tech. Rep., 2007.

[55] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra, ”Grad-cam: Visual explanations from deep networks via gradient-
based localization,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 618-626.

[56] J. Gildenblat and contributors, ”Pytorch library for cam methods,” https:
//github.com/jacobgil/pytorch-grad-cam, 2021.

https://www.comp.polyu.edu
https://www
http://neurotechnology.com/verifinger.html
http://neurotechnology.com/verifinger.html
https://github.com/keivanB/Clarkson_

	INTRODUCTION
	Related Work
	Our Work and Contributions

	MEthodOlogy
	Network Design
	Orientation Estimation
	Ground Truth Minutiae Map Generation
	Dynamic End-to-end Loss Design
	Minutiae Location Estimation
	Synthetic Fingerprint Generation

	EXPERIMENTS AND RESULTS
	Databases and Protocols
	FVC2002 and FVC2004 Database
	The IIIT-D Multi-sensor Database
	The ZJU Fingerprint Database
	Synthetic Fingerprint Database
	PolyU Cross Sensor Fingerprint Database and Benchmark 2D/3D Database:

	Additional Experimental Details
	Experimental Results on FVC Databases
	Experimental Results on IIITD MOLF Database
	Experimental Results on ZJU Database
	Experimental Results on PolyU Database
	Experimental Results on Benchmark Database

	Discussion
	Minutiae Map Feature Visualization
	Ablation Study on the Effectiveness of Local MinNet
	Ablation Study on the Effectiveness of the New Loss Function for the Orientation Estimation
	Ablation Study on the Effectiveness of the Ground Truth Minutiae Map Generation
	Computational Complexity Analysis
	Minutiae Extraction Results Samples
	Additional Discussion on Computational Complexity

	Conclusions and Further Work
	References

