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Abstract: Interoperability between contactless and conventional contact-based fingerprint recognition 

systems is fundamental for the success of emerging contactless fingerprint technologies which are 

highly sought, especially due to current pandemic. However, image formation differences and 

acquisition distortions between these two modalities pose significant challenges for such 

interoperability. In order to address these challenges, this paper presents a minutiae attention network 

with Siamese architecture and the reciprocal distance loss function to enable more accurate contactless 

to contact-based fingerprint identification. The proposed network contains two branches, a global-net 

branch to recover global features and a minutiae attention branch that focuses on the local minutiae 

areas. Attention mechanism is introduced to guide the minutiae attention branch to concentrate on 

distorted areas and recover minutiae/features correspondence for contactless and contact-based 

fingerprint images from the same fingers. Meanwhile, reciprocal distance loss is specifically designed 

to impose strong penalty towards contactless and contact-based fingerprint images from different 

fingers and guide the network to learn robust features for distinguishing identities. Experimental results 

on two publicly available databases illustrate significant performance improvements, over state-of-art 

methods in the literature, and validate the effectiveness of the proposed framework for the contactless 

to contact-based fingerprint identification.  

 

1. Introduction 

Fingerprint recognition systems are one of the most widely accepted human identification 

systems and have a significant share in the biometric market. While conventional contact-based 

fingerprint systems are widely deployed, limitations like elastic distortion [1] and privacy 

leakage [2] caused by contact between finger and scanner surface arise the development of 

contactless fingerprint systems, which acquire the finger images without any physical contact 

with the scanner. Increasing academic and market interests have been drawn to contactless 

systems as they offer better hygiene and privacy protection [3] over traditional contact-based 

systems. However, most legacy databases have been acquired by contact-based sensors, 

therefore interoperability with contact-based fingerprint is a key challenge for the adoption and 

development of contactless fingerprint systems. 

Early studies on the interoperability [4-9] have reported the challenge of matching 

fingerprint impressions from different contact-based sensors. While for contactless to contact-
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based fingerprint comparison, the recognition rate drops significantly [2, 10-12]. Reference [12] 

reported 76.44% intra-sensor (contact-based) rank-one identification rate against 16.61% inter-

sensor (contact-based versus contactless) rank-one identification rate using open access 

software [13] in public database [12]. Two key factors, image formation differences and 

acquisition distortions, contribute to the degradation of recognition rates when comparing 

contactless with contact-based fingerprint images. 

The first factor, image formation differences, denote the fingerprint ridge and valley 

contrast differences between contactless and contact-based fingerprint images. In contactless 

systems, reflections of ridges and valleys towards light are recorded by the sensors and form 

fingerprint images where the boundaries between ridges and valleys are obscured. On the 

contrary, in contact-based fingerprint systems, contacts between ridges and sensors’ surfaces 

are dominant that high contrast between ridges and valleys is achieved in contact-based images. 

Such image clarity differences could lead to incoherent feature extraction results for a pair of 

fingerprint images from the same finger but captured by contactless and contact-based sensors. 

Consequently, cross-sensor recognition is significantly affected.  

The second factor, acquisition distortions regard to pose variations (perspective distortion) 

[14, 15] in contactless fingerprint systems and elastic distortions for contact-based fingerprint 

systems. In contactless fingerprint systems, presentations of fingers against sensors are free of 

control and introduce pose variation as demonstrated in Figure 1. While for contact-based 

systems, unpredictable finger pressing stress on solid contact-based sensors produces elastic 

distortions. Transformation/correction from pose variation to elastic distortion is highly non-

linear and ill-posed that consequentially contributes to the massive drop of recognition 

accuracy when matching contactless and contact-based fingerprints. As shown in Figure 2, only 

small part of region could be aligned between contactless and contact-based fingerprint ridge 

patterns from the same finger while most pattern correspondence and correlation are distorted.  

Other secondary challenges like luminance variance, scale difference and finger 

placement angle may also affect the interoperability. Data pre-processing techniques can help 

to address these challenges and this paper will not focus on them. 
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Although several attempts [16-18] have been made to improve interoperability between 

contactless and contact-based fingerprint systems, they did not give full consideration to both 

image formation differences and acquisition distortions. The recognition performance in these 

methods remained far from security requirement in real work applications. Remarkable success 

achieved by deep neural network in image classification, segmentation and feature 

representation [19] has motivated researchers to address biometric recognition problems using 

trained networks. Superior performance improvements from deep neural networks, over 

traditional methods that use handcrafted features, have been achieved in face [20, 21], iris [ 23] 

and fingerprint [24, 25] recognition. Motivated by the success of deep neural networks, we 

develop an efficient and accurate contactless to contact-based fingerprint recognition 

framework to address image formation differences and acquisition distortions. 

 
Figure 1: Two successively acquired fingerprint images from the completely contactless finger sensor. 

Significant pose variations can be frequently observed in such contactless fingerprint images and is one of the 

key challenges to accurately match with contact-based fingerprint images. 

 

 
Figure 2: Alignment between contactless and contact-based fingerprint images from the same finger. Only very 

few areas between two modalities can be aligned, largely due to the pose distortions and elastic deformations 

during the fingerprint sensing.  
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1.1 Related Work 

Fingerprint sensor interoperability has attracted increasing attention with the rapid 

development of sensor technology. There have been many promising investigations on 

conventional contact-based fingerprint sensor interoperability. Reference [4] presented a 

pioneer work on sensor interoperability and noticed significant equal error rate (EER) increase 

from inter-sensor recognition to intra-sensor recognition between an optical and a capacitive 

sensor. Similarly, reference [5] reported dramatic degradation in the matching performance 

when comparing fingerprint images from the sweeping thermal and two optical sensors. In 

order to improve cross-sensor recognition, thin-plate splines (TPS) model was proposed to 

estimate and compensate deformation between fingerprint images captured by different 

contact-based sensors [7, 8]. Recently, reference [9] introduced a minutiae descriptor obtained 

from Gabor filters, a minutiae descriptor from surrounding ridge pattern, and an orientation 

descriptor obtained from orientation field, to form a robust feature representation for sensor 

interoperability. Experimental results presented in these methods indicated satisfactory 

interoperability among contact-based fingerprint sensors, while it’s more challenging for 

contact-based to contactless comparison. 

References [6, 26] investigated contactless 3D fingerprint compatibility with legacy ink-

on-paper rolled data and reported promising results by using commercial matcher, Verifinger 

[27] on a private database with 38 samples. Technical report [10] presented a thorough 

evaluation on 498 unique subjects each sampled by four contact-based sensors and three 

contactless sensors. They demonstrated a significant recognition degradation when matching 

contactless fingerprints with contact-based fingerprints. Similar interoperability problem was 

noticed in reference [2, 11, 33], with 30, 150 and 200 subjects respectively. While these works 

mainly provided evaluation between contactless and contact-based fingerprint recognition, 

improvements were achieved in [16-18]. Reference [16] employed thin-plate splines to 

enhance minutiae alignment between contactless and contact-based fingerprint. Although 

interoperability between contactless and contact-based fingerprint sensor was improved in [16], 

expensive computation time, i.e. 1.7 seconds for feature extraction and 1.3 seconds for a pair 
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of matching, was not applicable in deployment. In reference [17], multi-Siamese networks were 

employed for faster and more accurate cross-sensor fingerprint recognition. Three Siamese 

networks each trained by fingerprint minutiae image, fingerprint image with blurred core area 

and core area image respectively were proposed to extract deep-embedded features for 

recognition based on Euclidian distance. However, core point detection in [17] was executed 

by commercial software, Verifinger, which significantly broke the integrity of a fingerprint 

recognition system. Recently, reference [18] employed Spatial Transformer Network [28] to 

compensate the deformation between contactless fingerprint and contact-based fingerprint. 

Nevertheless, with the use of commercial matcher, only similar cross matching performance 

compared with [17] was achieved in reference [18].  

References [16, 18] attempted to address the acquisition distortions between contactless 

and contact-based fingerprint images by introduction deformation models. While reference [17] 

sought to train a network that robust to the acquisition distortions. Nevertheless, references 

[16-18] failed to account for the image formation differences or could not consider the need 

for the different minutiae extraction methods for the pair of contactless and contact-based 

images. The reported recognition accuracy in these references [16-18] is promising but require 

further improvement for the deployment. Therefore, the objective of this work has been to 

develop a compact, time-efficient and more accurate contactless to contact-based fingerprint 

recognition framework, by carefully considering the image formation differences and the 

acquisition distortions in the corresponding images.  

 

1.2 Our Work and Contributions 

This paper develops a minutiae attention network and reciprocal distance loss for more accurate 

contactless to contact-based fingerprint recognition. The proposed network contains two 

branches, one global-net branch that learns global features from the fingerprint image, another 

minutiae attention branch, consists of a minutiae detection net (served as attention map) and 

recognition net, concentrates on local minutiae area. Features extracted from the global-net 

branch and minutiae attention branch are merged and processed by fully-connected layer to 
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form a final feature vector for an input fingerprint. In order to enhance network robustness, 

reciprocal distance loss is proposed to impose strong penalty on pair of contactless and contact-

based fingerprint images from different fingers. Moreover, contactless fingerprint pose 

simulation [14] is employed. 

The key contributions of this paper can be summarized as the following: 

1. A compact contactless to contact-based fingerprint recognition framework consists of a 

global-net branch and minutiae attention branch is proposed to more effectively utilize the 

global and local fingerprint features. The proposed framework jointly addresses the image 

formation differences and acquisition distortions in a deep convolutional neural network, 

which does not require any input (core point detection, minutiae extraction) from 

commercial software nor relies on commercial matcher as in the previous methods [17,18]. 

Our reproducible [43] experimental results presented in section 3 indicate a significant 

performance improvement with the proposed framework, over the previous methods in the 

literature that relied on commercial software. 

2. This is the first work that introduces minutiae attention mechanism into fingerprint 

recognition. Inspired by the success of attention mechanism in natural language processing 

[29, 30], researcher employed the mechanisim in fingerprint recognition [31, 32]. However, 

these methods fail to take minutiae, which are the most discrimintive fingerprint features 

widely used in conventional fingerprint recognition, into consideration. In this work, output 

of minutiae detection net in the minutiae attention branch is specifically designed as an 

attention map and lead the concentration of recognition net on the local minutiae area. The 

minutiae detection net is trained by location loss, to predict the likelihood of minutiae 

existence, as well as regularized by the recognition loss which helps to learn the amount of 

attention weight that should be assigned. The experiment results presented in section 3 on 

two public databases consistently demonstrate the effectiveness of minutiae attention 

mechanism for contactless to contact-based fingerprint identification. 

3. The proposed framework addresses the image formation differences and acquisition 

distortions in four different ways; a) separate minutiae detection net is designed for the 
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contactless and contact-based fingerprint images. Such separate minutiae extractors, as 

compared to a general minutiae extractor, can provide more reliable minutiae detection for 

each fingerprint modality and address ridge-valley contrast differences [44], b) cross-

matching recognition loss is imposed to train minutiae detection network, which can enable 

it to assign attention weights depending on the nature and type of distortion. This loss can 

enable the recognition network to focus on the minutiae locating in areas highly influenced 

by acquisition distortions and recover appropriate minutiae set correspondences under the 

distortion, c) reciprocal distance loss, assigns the loss for a pair of fingerprints with different 

identities according to the reciprocal of the distance between their feature vectors, 

encourages the network to learn robust features under the image formation differences and 

acquisition distortions, d) pose simulation [14] is specifically introduced for the contactless 

fingerprint images to augment the training samples. Hence a consistent feature extraction 

against pose variation is achieved for contactless fingerprint. 

The rest of this paper is organized as follows. Section 2 introduces the framework of the 

proposed method and reciprocal distance loss function. The details of experiments are 

presented in section 3. Key conclusions from this work and further work directions are 

summarized in section 4. 

 

2. Contactless to Contact-based Fingerprint Matching Framework 

This section presents our framework for the proposed contactless to contact-based fingerprint 

recognition. Image pre-processing steps incorporated for the fingerprint images are briefly 

introduced, which includes adaptive histogram equalization and spatial transforms. Training 

data augmentation is then presented, followed by the details of architecture for the proposed 

network. Finally, the reciprocal distance loss function is discussed.  

 

2.1 Data Pre-processing 

Data pre-processing techniques including adaptive histogram equalization and spatial 

transform are applied to preliminarily address image formation, scale and finger placement 
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differences between contactless and contact-based fingerprint images.  

Spatial transform includes scale normalization, translation and rotation. For contact-based 

fingerprint image, 500 pixels per inch (dpi) has widely emerged as the standardized image 

resolution [34, 35] for a range of national ID prohrams and law-enforcement applications. 

However, contactless fingerprint sensing, with varying image resolution has been detailed in 

the literature, e.g. with a low-resolution web camera (~50 dpi) [36] to the high-resolution 

contactless fingerprint sensing using a commercial camera (~1000 dpi) [39]. Scale 

normalization between sensed fingerprint images is crucial for interoperability. In this work, a 

fixed scale normalization factor is adopted for a pair of contactless and contact-based 

fingerprint sensors to address such scale changes. Translation of core point towards image 

centre is then performed. Core point detection is achieved by U-net [40], which is trained on 

labelled training samples in the respective databases. Finally, the rotational alignment among 

different fingerprints is achieved by normalizing the orientation, or major symmetric axis, of 

the presented fingers along the vertical direction. Major symmetric axis estimation is performed 

in two steps, 1) segment fingerprint region from background by detecting pixel intensity larger 

than a pre-computed threshold, 2) estimate the major axis of the ellipse that has the same 

second-moments as the fingerprint region, the acquired major axis is the desired fingerprint 

major symmetric axis. After pre-processing, a preliminary alignment between contactless and 

contact-based fingerprint images is achieved and the finger placement differences are roughly 

compensated. More specific details on each of such process are presented in the experimental 

section. 

 

2.2 Training Data Augmentation 

Training data augmentation is designed to improve network robustness towards unexpected 

variations like luminance, scale, finger placement and pose changes. Augmentation including 

image rotation, scaling, luminance adjustment is firstly performed. Moreover, pose simulation 

[14] is specifically employed for contactless fingerprint images to compensate finger pose 

variations between the different fingerprint captures, which are mainly caused by 
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uncontrollable finger presentation towards contactless fingerprint sensor. As shown in Figure 

3, an input 2D contactless fingerprint image can be modelled by a 3D ellipsoid. Rotation of 

ellipsoid in 3D space can simulates such frequently observed pose variations and generate 

(respective) synthetic contactless 2D fingerprint images. Experimental results presented in 

section 3.2 demonstrate that such pose simulation based data augmentation can significantly 

help to improve cross matching performance and validate its effectiveness for compensating 

the acquisition distortions. 

 

Figure 3: Flow diagram for the contactless fingerprint training images data augmentation. A 3D ellipsoid model 

is estimated from a given 2D contactless image. Then pose simulation is performed in the 3D space to generate 

different synthetic contactless 2D images corresponding to the different poses from the same finger. 

 

 

Figure 4: Rotation for each slice of finger. Each point (𝑦1, 𝑧1) in the origianl slice of finger is rotated into (𝑦2, 𝑧2). 

The pixle intensity value of each point (𝑦2, 𝑧2) can be obtained by tracking back to point (𝑦1, 𝑧1) in the original 

slice. 
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The radius of each slice in ellipsoid model is directly estimated from contactless fingerprint 

image as shown in Figure 3 (len). Figure 4 demonstrates the simulation of such pose changes. 

Each point in a slice of finger is rotated in 3D space with the following equation.  

[
𝑦1

𝑧1
] = [

cos(𝛼) sin(𝛼)

− sin(𝛼) cos(𝛼)
] × [

𝑦2

𝑧2
] (1) 

where 𝛼 represents the rotation angle for pose simulation. The pose simulation inherently 

introduces artefacts and pose simulation for large angle should be avoided. 

2.3 Cross Fingerprint Matching Network 

Reference [17] presented multi-Siamese framework for the contactless to contact-based 

fingerprint recognition. However, the multi-Siamese framework contains three Siamese 

networks and each network is trained separately. This framework [17] is quite complex. 

Therefore, in this work we consider a concise and compact cross fingerprint matching network 

which is detailed in the following section. 

 

2.3.1 Conventional Siamese Network 

A basic contactless to contact-based fingerprint matching Siamese network (global-net) is 

summarized in Figure 5. This global-net serves as a baseline for evaluation of the attention 

mechanism which will be discussed in the section 2.3.2. 

 

Figure 5: Contactless to contact-based fingerprint matching network architecture (global-net). Convolutional 

layers with blue colour have the stride of 2. 

 

The conv operator in above figure refers to the convolutional layer, FC denotes fully connected 

layer, each convolutional layer is followed by batch normalization layer, ReLU activation and 
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dropout layer. This network is trained in Siamese manner, i.e. a pair of deep representation 

feature vectors is generated from a pair of contactless and contact-based fingerprint images 

(two-channel input data) to generate loss for the network training. In such Siamese architecture, 

pair of images from the same finger will lead the network to extract more discriminative 

features against image formation differences and acquisition distortions. While pair of images 

from different finger will guide the network to learn distinguishable identities. 

 

2.3.2 Siamese Network with Minutiae Attention 

The proposed global-net could achieve promising matching accuracy between contactless and 

contact-based fingerprint images. Neurons in convolutional layers of global-net are exposed to 

the whole fingerprint image and extract global features that represent the fingerprint. However, 

as shown in Figure 5, high dissimilarities, or image formation differences significantly affect 

the success of extracting coherent features for fingerprint images from the same finger but 

captured by contactless and contact-based sensors.  

In conventional fingerprint identification systems, minutiae, i.e. fingerprint ridge 

bifurcation or termination points, are one of the most prominent and robust features and widely 

adopted for the recognition. Therefore, it’s judicious to include such spatial location 

information for cross matching and minutiae attention branch is proposed, i.e. a minutiae 

detection net is employed to generate minutiae likelihood map that served as attention map and 

encourages the neurons to obtain local robust features. Architecture for minutiae detection net 

is shown in Figure 6 and summarized in Table 1. In order to better address image formation 

differences, separate minutiae networks are trained for contactless and contact-based 

fingerprint images respectively.  

Features from global-net (without FC layer) and minutiae attention branch are added and 

processed by fully-connected layer to form a 512-dimension vector as the final representation 

for the input image. The overall framework that contains global-net and minutiae attention 

branch is shown in the Figure 7. 
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Figure 6: Illustration for the minutiae detection network. The value of predicted minutiae map in each position 

represents the attention that recognition neurons should assign to that area.  

Table 1: Minutiae network architecture. 

Layer Filter Size Output Number Stride 

Conv1 3 32 2 

Conv2 3 64 1 

Conv3 3 128 2 

Conv4 3 256 1 

Conv5 3 128 2 

Conv6 3 64 1 

Conv7 3 32 2 

Conv8 3 1 1 

 

Each convolutional layer is followed by batch normalization layer, ReLU activation and 

dropout layer. The last convolutional layer, Conv8, is followed by sigmoid layer. 
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Figure 7: Overall framework for the contactless to contact-based fingerprint recognition network. The global-net 

branch uses the original image as input while minutiae attention branch uses the image with the minutiae attention 

of the input. The recognition network, located in light-blue rectangle, is trained using the Siamese architecture. 

As shown in Figure 6, each point on the minutiae map indicates the probability of minutiae 

existence in a 16×16 pixels area on the original fingerprint image. The minutiae map is up-

sampled to the original input size and serves as attention map to force the recognition neurons 

in minutiae attention branch focusing on potential minutiae areas. 

    The image formation differences could be addressed by introducing minutiae attention 

branch, while acquisition distortions, or pose variances and elastic distortions are addressed by 

introducing recognition loss and location loss for the training of minutiae networks. In Figure-

2, it demonstrates that most pattern correspondence and correlation between contactless and 

contact-based fingerprint samples from the same finger are distorted due to acquisition 

distortions. Hence the attention weight for each area should be distributed not only according 
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to its probability of minutiae existence, but also related to the its distortion and potential 

contribution for the recognition. Areas with high distortions should be investigated and 

assigned higher weights. Failure of recovering correspondence for these distorted areas is the 

main contributor to the degradation of matching performance. On the contrary, reliable 

undistorted and clean areas should be depressed and given low attentions since 

information/correspondence in these areas could be easily detected by the global-net branch. A 

fixed minutiae prediction network could not learn any information about distortions. As a result, 

recognition loss is also imposed to the training of minutiae networks to encourage them to 

assign the attention weights intelligently according to the distortions and potential 

contributions for recognition. 

Intuitively, training of minutiae networks and recognition network could be performed 

jointly in the same time and the training process is summarized in Algorithm 1.  

 

 

 

Minutiae networks and recognition network are dependent to each other, i.e. minutiae 

prediction results will affect the feature extract direction of recognition network, while 

recognition loss will influence the training of minutiae network, jointly training for all the 

networks could not converge well. Hence in this work, starting from roughly trained minutiae 

networks and fingerprint recognition network, an iterative and progressive algorithm that 

optimizes minutiae detection and fingerprint recognition networks is proposed and summarized 

in the following Algorithm 2. 

Algorithm 1: Joint training algorithm for our network  

1. Pretrain minutiae network1 and minutiae network2 for contactless and contact-

based fingerprint. 

2. Update minutiae network1, minutiae network2 and recognition network together 

with Loss=loss1+loss2+loss3. 
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Meanwhile, a conventional attention model which has no constrain on the minutiae is evaluated 

for comparison with the minutiae attention model. In this conventional attention model, the 

attention network will only be updated by the recognition loss. For the name consistency, 

attention network will still be written as ‘minutiae network’. The training of conventional 

attention model is summarized in the following Algorithm 3. 

 

where recognition network represents the proposed network except minutiae network1 and 

minutiae network2, loss1 and loss2 are the cross-entropy loss between prediction and ground 

truth minutiae score map, loss3 is the proposed reciprocal distance loss which will be discussed 

in the following section.  

Manually marked minutiae are required to train the minutiae networks, however, no public 

labelled contactless to contact-based fingerprint database is available. In order to obtain 

labelled data with reasonable human labour, a week minutiae label scheme is introduced. Patch-

Algorithm 2: Iterative training algorithm for our network  

1. Pretrain minutiae network1 and minutiae network2 for contactless and contact-

based fingerprint. 

2. Fix minutiae network1 and minutiae network2, update recognition network with 

loss3. 

3. Fix recognition network, update minutiae network1 and minutiae network2 with 

Loss=loss1+loss2+loss3. 

4. Perform step 3 and step 4 iteratively. 

 

Algorithm 3: Conventional attention model 

1. Fix minutiae network1 and minutiae network2, update recognition network with 

loss3. 

2. Fix recognition network, update minutiae network1 and minutiae network2 with 

Loss= loss3. 

3. Perform step 3 and step 4 iteratively. 

 



16 

 

based minutiae detection [14] is employed to generate week minutiae ground truth label. 

Details will be presented in experimental section and this network is named as minutiae ground 

truth network to distinguish with minutiae network in the proposed contactless to contact-based 

fingerprint recognition framework. 

 

2.4 Reciprocal Distance Loss Function 

Loss function could implicitly force the network to learn robust feature against image formation 

differences and acquisition distortions. Contrastive loss function [37] is widely employed to 

train Siamese network. Let (𝐼1, 𝐼2)  as a pair of contactless fingerprint and contact-based 

fingerprint image for input of Siamese network. 𝑌 = 0 represents 𝐼1 and 𝐼2 belong to the 

same finger (genuine pair), while 𝑌 = 1 regards 𝐼1 and 𝐼2 are samples taken from different 

fingers (imposter pair). Contrastive loss can be written in the following. 

Contrastive loss = (1 − 𝑌)𝑑( 𝑁(𝐼1, 𝐼2))
2

+ 𝑌 max( 𝑀 − 𝑑( 𝑁(𝐼1, 𝐼2)), 0)
2

(2) 

where 𝑁 represents the Siamese network, 𝑑( 𝑁(𝐼1, 𝐼2)) is distance measurement for a pair 

of feature vectors, 𝑀  denotes the margin. For each input pair (𝐼1, 𝐼2) , network 𝑁  would 

encode the images into a pair of deep feature representations respectively. The loss for genuine 

pair will be 𝑑( 𝑁(𝐼1, 𝐼2))
2
 , while for imposter pair, the loss 𝑚𝑎𝑥( 𝑀 − 𝑑( 𝑁(𝐼1, 𝐼2) )  ,0)2 

focuses on pairs that have smaller distance than margin 𝑀. 

The contrastive loss only set margin for imposters, double margin contrastive loss [38] 

also set constrain on the genuine pairs and can be written as following. 

Double margin loss = (1 − 𝑌) max( 𝑑( 𝑁(𝐼1, 𝐼2)) − 𝑀1, 0 )
2

(3) 

+𝑌𝑚𝑎𝑥( 𝑀2 − 𝑑( 𝑁(𝐼1, 𝐼2) ), 0)2 

In reference [17], the double margin loss is named as distance-aware loss. Compared with 

contrastive loss, this loss also focuses on genuine pair with similarity larger than given margin 

𝑀1. Hence it aims to concentrate on the challenging genuine pairs with large distance (low 

similarity) and imposter pairs with small distance (high similarity). 

In order to improve the feature distinguishability learned by the network, the similarity of 
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imposter pair should be small, i.e. stronger penalty should be assigned to imposter pair with 

high similarity (small distance). The original contrastive loss or double margin loss does not 

distinguish much on the very high similarity (small distance) for imposter pairs, therefore, 

reciprocal distance loss is proposed. 

Reciprocal distance loss = (1 − 𝑌) max( 𝑑( 𝑁(𝐼1, 𝐼2)) − 𝑀1, 0)
2

(4) 

+𝑌min ( 𝑚𝑎𝑥 (
1

𝑑( 𝑁(𝐼1, 𝐼2))
−  𝑀2, 0) , 𝑀3)2 

In the proposed reciprocal distance loss function, loss for the imposter pair is related to the 

multiplicative inverse of distance measurement and significant penalty is assigned to imposter 

pair with high similarity (small distance). It aims to focus on the training of very challenging 

imposter samples to ensure feature distinguishability. In such way, the match score overlapping 

region between genuine and imposter pairs could be further increased and recognition 

improvement is expected. In order to prevent gradient overflow for imposter pair with extreme 

similarity (extreme small distance), a threshold 𝑀3  is set to the loss. The results in the 

Experiments section illustrate the effectiveness of proposed loss compared over other loss 

functions. 

 

2.5 Generate Match Score 

Denote feature vectors extracted from proposed network as 𝑓1 and 𝑓2 respectively for a pair 

of contactless and contact-based fingerprints. The match score s between the respective 

fingerprint feature vectors 𝑓1, 𝑓2 can be calculated as follows,  

𝑠 =
1

𝑑(𝑓1, 𝑓2)
(5) 

where the 𝑑(𝑓1, 𝑓2) represents the distance calculation between the feature vectors 𝑓1 and 𝑓2. 

As compared to conventional fingerprint matching algorithms, the match score generated from 

distance measurement between feature vectors is much faster and favourable for the large-scale 

search, identification or de-duplication applications. 
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3. Experiments and Results 

In this section, detailed experimental results are presented to evaluate the effectiveness of 

proposed framework and reciprocal distance loss function on two public databases [12, 39]. 

Our implementation is based on Pytorch, with Adam optimizer with learning rate at 10−4. 

Euclidian distance is selected for distance measurement. We empirically fix the margins,  

𝑀1 = 0.5, 𝑀2 = 1, 𝑀3 = 5, for all the experiments in this section. 

 

3.1 Contactless and Contact-based Fingerprint Databases 

The first database [12] contains 5760 contactless and corresponding contact-based fingerprint 

images acquired from 320 fingers. Similar to reference [17], 160 fingers each with 12 

contactless and contact-based fingerprint samples are selected as training samples. While the 

rest 160 fingers each with 6 contactless and contact-based fingerprint samples are used for 

testing. In the training samples, images from first 16 training fingers are selected for validation. 

In the second database [39], 500 fingers each with 2 contactless and 4 contact-based fingerprint 

samples are used for testing, and the rest fingers each with 2 contactless and 4 contact-based 

fingerprint samples are used for fine-tuning the network trained by database [12], images from 

first 100 training fingers are selected for validation. Original resolution of database [12] is 

2048× 1536 and 356× 328 for contactless and contact-based fingerprint image respectively. 

Original resolution of database [39] is 1280×1024 and 640×480 for contactless and contact-

based fingerprint image respectively.  
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Figure 8: Typical fingerprint samples. top row: contactless fingerprint images, bottom row: corresponding 

contact-based fingerprint images. 

Data pre-processing includes adaptive histogram equalization and spatial transform. Follow 

reference [12], scale of contactless data in database [12] is normalized by down sample factor 

of 0.25 and 0.5 for database [39]. Translation of core point towards image centre is then 

performed. Finally, image rotation is achieved by rotating the major symmetric axis of 

fingerprint perpendicular against the image row. Threshold for segmenting finger region is set 

as 45 in database [12] and 30 in database [39]. Contactless fingerprint training sample 

augmentation is achieved using ±10, ±20 pose simulation samples. In order to achieve image 

size consistency, all images are cropped into 320×256 as final input size to the network. For 

generating week minutiae label as discussed in section 2.3, 50 images in each four databases 

(contactless and contact-based fingerprint database in [12] and [39]) are manually labelled. 

Then a patch-based minutiae ground truth network [14] is trained and employed for the 

prediction of the rest fingerprint samples in each database. Such minutiae prediction results are 

used as ground truth for training minutiae networks in the proposed contactless to contact-

based fingerprint recognition framework. Note that only a week minutiae ground truth is 

extracted in this process and the minutiae networks are expected to produce spurious results as 

the training labels are not ideal. 
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3.2 Experimental Evaluations 

In order to evaluate the proposed contactless to contact-based fingerprint matching framework, 

experiments are performed for the verification and identification. Experimental protocols, 

training and testing set selection for both tasks are exactly the same as in reference [17]. 

Verification task in database [12] generates 5760 (160× 6× 6) genuine scores and 915840 

(160×6×159×6) imposter scores, while for database [39], a total of 4000 (500×2×4) genuine 

scores and 1996000 (500×2×499×4) imposter scores are generated from the test data. The first 

sample in contactless database is used as gallery for identification task. Receiver Operating 

Characteristic (ROC) Cumulative Match Characteristic (CMC) compared with results reported 

in reference [17] is presented in Figure 9 and Figure 10. In order to perform fair comparison 

against commercial software, Verifinger [27], the same down sample factors for contactless 

databases are adopted, also the same experimental protocols are applied.  

 

Figure 9: ROC comparison between proposed method, Verifinger, and method in reference [17] in Benchmark 

3D/2D fingerprint Database [39]and PolyU Contactless to Contact-based Fingerprint Database [12]. 
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Table 2: Summary of recognition rate and Equal Error Rate for experiments in Figure 9. 

Method/Database Benchmark 3D/2D fingerprint Database [39] PolyU Contactless to Contact-based 

Fingerprint Database [12] 

 GAR@ FAR=10−3 GAR@ FAR=10−3 GAR@ FAR=10−3 EER 

Proposed method 72.0% 68.5% 68.5% 4.13% 

Verifinger [27] 46.0% 64.8% 64.8% 19.31% 

Multi-Siamese CNN [17] 45.2% 20.3% 20.3% 7.11% 

 

 

Figure 10: CMC comparison between proposed method, Verifinger, and method in reference [17] in Benchmark 

3D/2D fingerprint Database [39]and PolyU Contactless to Contact-based Fingerprint Database [12]. 

 

Table 3: Rank-one accuracy for experiments in Figure 10. 

Method/Database Benchmark 3D/2D fingerprint 

Database [39] 

PolyU Contactless to Contact-

based Fingerprint Database [12] 

Proposed method 73.80% 83.54% 

Verifinger [27] 52.30% 80.73% 

Multi-Siamese CNN [17] 58.87% 64.59% 

 

From Figure 9 and Figure 10, it could be clearly observed that proposed method significantly 
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outperforms all previous methods. The rank-one accuracy increases 3.48% over Verifinger and 

29.34% over previous state-of-the-art [17] in database [12]. While in database [39], 41.11% 

and 25.36% increment over Verifinger and [17] are achieved. 

The contribution of each process in proposed method is systematically investigated and 

the corresponding ROCs are shown in Figure 11(a). All the experimental results in this figure 

use the same global-net as shown in Figure 5. Firstly, contrastive loss is employed for training 

the network and the respective results are shown in the ROC labelled as ‘Contrastive loss’. 

Then the distance-aware loss proposed in [17] is used and results are presented from the ROC 

labeled as ‘Distance-aware loss’. Then a simple reciprocal distance loss without limitation 

(𝑀3 = +∞ ) is employed, and the corresponding results are labeled as ‘Reciprocal loss’. 

Followed by the reciprocal distance loss with limitation (𝑀3 = 5) and the respective results are 

labeled as ‘Reciprocal loss+loss limitation’. Finally, contactless fingerprint pose augmentation 

is adopted, with the training loss as reciprocal loss with limitation (𝑀3 = 5), and respective 

results arelabeled as ‘Reciprocal loss+loss limitation+pose augmentation’. 

In addition, contactless pose augmentation is also investigated and respective results are 

presented in Figure 11(b). The ROC with label ‘Pose augmentation 2’ in this figure refers to 

the case when the training contactless fingerprint image is augmented to its nearest ±10° 

poses, label ‘Pose augmentation 4’ represents such augmentation with ±10° , ±20°  poses, 

label ‘Pose augmentation 6’ means augmented to ±10° , ±20° , ±30°  poses, and ‘Pose 

augmentation 8’ label indicates pose augmentation with ±10° , ±20° , ±30° , ±40°  poses. 

Furthermore, comparative performance evaluation of the proposed minutiae attention network 

against the two popular deep learning architectures, Resnet50 [41] and VGG19 [42], is 

provided in Figure 11(c). Similar analysis has been studied in [17] but those networks were 

trained with the cross-entropy loss. Hence in this work, the Resnet50 [41] and VGG19 [42] are 

trained in Siamese manner with the proposed reciprocal distance loss. 
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(a)                                          (b) 

 

   (c) 

Figure 11: (a) ROC curves for analysis of each process in proposed method. (b) ROC curves for investigation of 

pose augmentation. (c) ROC curves for comparison with other popular deep learning architectures. 

 

Clearly from Figure 11(a), (b), the proposed reciprocal loss and data augmentation for 

contactless fingerprint significantly enhance the contactless to contact-based fingerprint 

recognition performance. The experiments of pose augmentation rate illustrated in Figure 11(b) 

indicate that high rates of augmentation (‘Pose augmentation 6’ and ‘Pose augmentation 8’) do 
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not further improve the matching performance as pose augmentation artifacts are serious for 

large degree of simulation. From Figure 11 (c), similar conclusion with reference [17] could be 

drown, both Resnet50 [41] and VGG19 [42] could not converge well for the specific cross-

sensor task. The loss function comparison is provided in Figure 12. In loss for genuine pair, the 

proposed loss is relatively small among all losses. It specially focuses on genuine pair that has 

a large distance (low similarity). As for imposter pair, reciprocal distance loss has a relatively 

large loss especially for challenging pair with small distance (high similarity). While in 

traditional contrastive loss or distance-aware loss (double margin contrastive loss), as shown 

in Figure 12, penalty for small distance is relatively slight, which leads to poor performance on 

low FAR, i.e. large intersection for genuine and imposter scores. In Figure 12, it indicates that 

for imposter pair with extremely small distance (around 0.1), the loss would be overwhelming 

and potentially harmful for the convergency of network. Impose a limitation for such extreme 

distance significantly contributes to the cross-matching performance as shown in Figure 11(a), 

the ‘Reciprocal loss’ against ‘Reciprocal loss + loss limitation’.  

 

Figure 12: Illustration of different loss function. 

 

Furthermore, the comparative evaluation of global-net and minutiae attention branch is an be 

observed from the results in Figure 13, Figure 14 and Table 4. The global-net introduced in 

section 2.3 is firstly evaluated and labelled as ‘Global-net’. Then the proposed framework 
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trained by Algorithm-1 and Algorithm-2 is evaluated and labelled as ‘Proposed framework 

trained with Algorithm 1’ and ‘Proposed framework trained with Algorithm 2’ respectively. A 

fixed minutiae network which would not be updated is investigated and labelled as ‘Proposed 

framework with fixed minutiae network’. Conventional attention model trained with 

Algorithm-3 is also evaluated and labelled as ‘Proposed framework with conventional 

attention’. From Table 4, it demonstrates that minutiae branch could significantly enhance the 

contactless to contact-based fingerprint interoperability and 6.92% rank-one rate improvement 

is achieved over global-net in database [12] while 9.99% rank-one rate increment in database 

[39]. While for the proposed framework with fixed minutiae network, it could not converge. 

As discussed in section 3.1, the minutiae ground truth labels are far from ideal. Accordingly, 

the messy minutiae attention maps will significantly distort the focus of network and contribute 

to the failure of training. As for the conventional attention model, it does not contribute to the 

cross matching. For the training Algorithm-1, jointly training could not converge either as 

expected.  

 

Figure 13: ROC comparison between different training strategies and network architectures of proposed network 

in Benchmark 3D/2D fingerprint Database [39] and PolyU Contactless to Contact-based Fingerprint Database 

[12]. 
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Figure 14: CMC comparison between different training strategies and network architectures of proposed network 

in Benchmark 3D/2D fingerprint Database [39] and PolyU Contactless to Contact-based Fingerprint Database 

[12]. 

 

Table 4: Summary on the average rank-one recognition accuracy from experiments. 

Method/Database Benchmark 3D/2D fingerprint 

Database [39] 

PolyU Contactless to Contact-based 

Fingerprint Database [12] 

global-net (baseline) 67.10% 78.13% 

proposed framework 73.80% 83.54% 

 

A comparison of pretrained/fixed minutiae network prediction results and proposed trainable 

minutiae network prediction results is presented in Figure 15. Compare to the fixed minutiae 

network, the trainable minutiae network assigns higher weights to distorted areas. In such a 

way, global-net branch would extract features on global and clean areas while minutiae 

attention branch could focus on distorted local areas and recover correspondence. Hence 

features learned from two branches are relatively independent and significantly help to improve 

the recognition between contactless and contact-based fingerprint images. 
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Figure 15: Comparison between pretrained/fixed minutiae network and trainable minutiae network. (a), (e) are 

the contactless and contact-based fingerprint respectively. (b), (f) are the corresponding minutiae attention results 

from trainable minutiae network. (c), (g) are the corresponding minutiae attention results from fixed minutiae 

network. (d), (h) are the difference between minutiae predictions from trainable network and fixed network, where 

blue refers to lower attention value in trainable network result, yellow refers to higher attention value in trainable 

network. 

 

3.3 Discussion 

This sub-section presents more insights on the comparisons with the earlier methods that have 

appeared in the literature. This discussion also presents additional experimental results and is 

organized in four sub-sections, i.e. Multi-Siamese Network, image enhancement, deformation 

correction and time complexity. These insights can help to further validate the value of the 

proposed approach to address contactless to contact-based fingerprint interoperability problem.   

 

3.3.1 Multi-Siamese Network 

The proposed method is inspired by reference [17], which adopt a Multi-Siamese Network to 

improve interoperability. However, the only similarity between our method and method in 

reference [17] is the use of Siamese architecture, which is a universal mechanism that widely 

used for training the deep neural networks. We claim our novelty over reference [17] mainly 

from three perspectives. First, we propose a single feature extraction network, while reference 

[17] is an ensemble method, which sums up weighted identification scores obtained from three 
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networks to generate a final match score. Thus, our network offers significant improvement  

from the perspective of network integrity. Second, we introduce minutiae attention mechanism 

into fingerprint recognition. In reference [17], the minutiae information is converted into a 

minutiae image where each minutia is represented as a circle and short orientation line. Such 

representation cannot consider the contribution differences among minutiae towards the 

identification and is vulnerable to spurious minutiae. Finally, we propose a reciprocal distance 

loss which assigns strong penalty to the imposter pairs with higher similarity (smaller distance). 

While in reference [17], conventional double margin loss is adopted which may not help to 

adequately distinguish very similar imposter pairs. Experiments presented in Figure 11 indicate 

the superiority of reciprocal distance loss over double margin loss or the distance-aware loss. 

A more detailed differences between our method and reference [17] are also summarized in the 

Table 5. 
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Table 5: Comparison between proposed method and method in reference [17] 

 

 

3.3.2 Image Enhancement 

Image enhancement, specifically the homomorphic [26] and Gabor filtering, techniques are 

widely adopted for the contactless fingerprint identification [22] to reduce noise and improve 

the matching accuracy. In order to verify the contribution of image enhancement towards 

interoperability, homomorphic filter and Gabor filter-based approach were incorporated for the 

contactless fingerprint images before using Verifinger matcher and respective results are 

presented in Figure 16 and Figure 17. The ROC with label ‘Verifinger with Homomorphic 

Filter’ refers to the case when Homomorphic Filter is applied to the contactless fingerprint 

images before using Verifinger, similarly, ‘Verifinger with Gabor Filter’ refers to the case when 
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Gabor filter based image enhancement is incorporated. 

 

Figure 16: ROC comparison for image enhancement in Benchmark 3D/2D fingerprint Database [39] and PolyU 

Contactless to Contact-based Fingerprint Database [12]. 

 

Figure 17: CMC comparison for image enhancement in Benchmark 3D/2D fingerprint Database [39] and 

PolyU Contactless to Contact-based Fingerprint Database [12]. 
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Table 6: Comparative Equal Error Rate for experiments in Figure 16. 

Method/Database Benchmark 3D/2D fingerprint 

Database [39] 

PolyU Contactless to Contact-

based Fingerprint Database [12] 

Verifinger [27] 19.31% 8.62% 

Verifinger with Gabor Filter 17.46% 10.07% 

Verifinger with Homomorphic Filter 17.56 6.59% 

 

From the Figure 16-17, it can be observed that with the use of enhancement step, Verifinger 

can performs slightly better than without enhancement step. In general, our proposed method 

(Figure 9-10) has comparable performance against the commercial software with image 

enhancement techniques. 

 

3.3.3 Deformation Correction 

We also evaluated approaches in the literature [12], [18] which can enhance the interoperability 

by increasing similarity between contactless and contact-based fingerprint images. Reference 

[12], [18] both incorporate thin-plate splines (TPS) to perform deformation correction between 

these two modalities. In reference [12], a robust TPS is proposed and its parameters are 

estimated from minutiae correspondence between contactless and contact-based fingerprint. 

Reference [18] is inspired by spatial transformer network [28] and the parameters for TPS are 

learned during the network training. The performance of these two works on the database [39] 

is summarized in the Figure 18. 
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Figure 18: ROC and CMC results for method in reference [12], [18]. 

As compare to the results in Figure 9 and Figure 10, it can be observed that our proposed 

method can achieve state-of-the-art performance and significantly outperforms over the 

methods in reference [12], [18]. 

 

3.3.4 Time Complexity 

Comparative evaluation on the complexity using running time comparisons was also performed 

and these results are summarized in Table 7. All our experiments were run on an Intel i5 CPU 

with NVIDIA 2080Ti GPU. These results can help to further validate the merit of the proposed 

approach over earlier methods in the literature.  

Table 7: Summary on run time comparisons. 

Method Preprocessing per image Feature extraction per image Matching per pair 

Proposed method 0.198s 0.0032s 𝟎. 𝟗𝟐 × 𝟏𝟎−𝟓s 

Verifinger [27] 0.130s 0.6000s 2.50 × 10−5s 

Multi-Siamese CNN 

[17] 

1.710s 0.0092s 1.27 × 10−5s 

Robust TPS [12] Included in feature extraction 1.6820s 1.26s 

Unwarped-Model [18] 0.144s 0.6000s 2.50 × 10−5s 
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4. Conclusions and Future Work 

This work proposes a faster and accurate deep-neural-network-based framework for improving 

the interoperability between contactless fingerprint sensor and conventional contact-based 

fingerprint sensors. The minutiae attention network, along with the reciprocal distance loss, 

proposed in this work can explicitly addresses image formation differences and acquisition 

distortions. Our experimental results presented in previous section, on two publicly available 

databases, indicate significantly better performance than the previous methods and a popular 

commercial software, with 29.34% rank-one accuracy improvement over previous state-of-the-

art [17], 3.48% over Verifinger [27], on database [12] and 25.36% increment over [17], 41.11% 

over Verifinger [27], on database [39]. These promising results significantly improve the 

contactless to contact-based fingerprint interoperability which can contribute to the rapid 

adoption and development of contactless fingerprint techniques. Limited by the quantity of 

contactless fingerprint image samples in publicly available databases, generalization of the 

trained network towards new database needs further work and improvement. 

Despite promising results and advancements in the cross-fingerprint matching capabilities 

in this paper, achieved matching accuracy needs further improvement. Therefore, further work 

is required to 1) improve robustness of framework, i.e. cross-database evaluation without fine-

tuning, 2) accounting for the elastic distortions in contact-based fingerprint images and 

developing advanced algorithms to overcome the challenges from the involuntary pose 

variations and elastic distortions. 
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