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Abstract—Contactless 3D finger knuckle pattern is a new 

biometric identifier which offers highly discriminative features for 

the finger knuckle based personal identification. State-of-the-art 

methods for object recognition, a more generic problem, employ 

deep neural network based approaches and demonstrate superior 

effectiveness. However, any direct applications from those 

methods do not outperform specialized hand-crafted feature 

description approaches for the problem addressed in this paper. 

In addition, such deep neural network based methods have to 

address challenges associated with emerging biometrics, e.g. 

availability of very limited training data, large intra-class or train-

test sample variations as observed for the real applications, etc. 

This paper attempts to address the above challenges and 

introduces a new deep neural network based approach for the 

contactless 3D finger knuckle identification. Our approach 

simultaneously encodes and incorporates deep features from 

multiple scales to form a more robust deep feature representation. 

Such collaborative feature representations are robustly matched 

using an efficient alignment scheme with a fully convolutional 

architecture to accommodate involuntary finger variations during 

the contactless imaging. Comparative experimental results in the 

two-session 3D finger knuckle images database, acquired from 

over 200 subjects and is publicly introduced from this paper, 

illustrate superior performance over the state-of-the-art methods, 

e.g. offering ~22% GAR improvement at extremely low FAR 

under challenging comparison scenarios. Additional experiments 

in other publicly available databases including 3D palmprint, 3D 

fingerprint, and 2D finger knuckle further validate the 

effectiveness and demonstrate the generalizability of the proposed 

approach.  

 
Index Terms—3D hand biometrics, finger knuckle recognition, 

convolutional neural network 

I. INTRODUCTION 

IOMETRIC recognition offers convenient and reliable 

solutions for many emerging applications such as 

unlocking smartphones, authentication for crossing borderlines, 

and E-business. Among various biometric identifiers, face [1, 

2], fingerprint [3, 4], and iris [5, 6] are the most popular choices 

of biometrics. However, every biometrics has its own 

applications and limitations. For examples, a NIST report [7] 

submitted for the US Congress stated that about 2% of the 

population does not have usable fingerprints; iris recognition 

requires high-quality images; face recognition is vulnerable to 

presentation attacks with sophisticated make-up. In such 

scenarios, finger knuckle recognition provides an alternative 
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with several advantages: finger knuckle biometrics itself 

provides invariant and discriminative information for reliable 

recognition; combining the complementary information in 

addition to other biometric identifiers enables higher 

recognition performance; the acquisition of finger knuckle 

images is convenient and can be simultaneously with 

fingerprint. Therefore, finger knuckle recognition [8-11, 21] 

has recently become an active research frontier. 

The recent advancement of finger knuckle recognition 

utilized 3D information for more accurate recognition [21]. The 

current bottleneck of such 3D finger knuckle recognition lies in 

the limited capability from the hand-crafted approach. 

Meanwhile, the effectiveness of neural network technologies 

has been well demonstrated in various computer vision tasks 

such as object segmentation [12-15] and object recognition [16, 

17]. The applications of such approach have also been 

investigated for several specific biometric problems such as 

fingerprint recognition [18], iris recognition [19], and face 

recognition [20]. Therefore, it is highly motivated to investigate 

a customized neural network to advance the recent 3D finger 

knuckle recognition framework.  

A. Limitations and Challenges 

There are several challenges associated with neural network 

based approach for addressing the 3D finger knuckle 

recognition problem. Firstly, state-of-the-art methods 

introduced for various applications often adopt deep 

architectures with many layers, which require a large number 

of training samples. However, in real biometric or forensic 

scenarios, only one or a few samples are available. As for 

research investigation, there is only one publicly available 3D 
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finger knuckle database [21] to-date where the images are 

acquired from 130 subjects, each with six forefinger and middle 

finger images, while two-session images are available from 105 

subjects. Therefore, effectively training a neural network with 

a few samples is very difficult. Secondly, it is further 

challenging for neural networks to perform well given the 

different statistical distributions of the training data and test 

data. In real biometric application scenarios, finger knuckle 

images during operation phase can be acquired from different 

cameras or lenses, which can result in large intensity, 

deformation, and geometric changes, as compared to respective 

samples acquired during the user registration. When the 

acquisition of gallery and probe images is from different 

cameras, resulting image variations can contribute to noticeable 

differences between the training and test sets. The 3D finger 

knuckle database provides such scenarios and has been 

acquired under two-session imaging using different camera 

lenses. Therefore, the performance degradation, using state of 

art methods, is noticeable under such cross comparison 

scenarios. Thirdly, the development of neural network based 

approach in this new 3D finger knuckle recognition problem 

requires empirical cycles for customizing network architecture 

and tuning hyperparameters. Lack of any such research efforts 

to this new biometric identifier makes it difficult to develop 

such deep neural networks from scratch. 

B. Our Work and Key Contributions  

Our work includes the development of a specialized neural 

network which collaborates multi-scales feature information 

and enables the efficient alignment of biometric images which 

are usually associated with translational variations, for 

contactless 3D finger knuckle recognition. The key 

contributions of this paper can be summarized as follows. 

(i) This paper introduces a new neural network approach 

based on collaborating features for more accurate contactless 

3D finger knuckle identification. Our approach incorporates 

deep features from multiple scales to form a more reliable deep 

feature representation. Such collaborative feature 

representations are robustly matched using an efficient 

alignment scheme with a fully convolutional architecture to 

accommodate involuntary finger variations during the 

contactless imaging. Challenges posed due to the availability of 

very limited training samples are mitigated by incorporating 

transfer learning of generic image features from bottom layers 

of ResNet [16], which has been well trained on very large 

datasets for object recognition. Besides, the complexity of our 

biometric problems is less when comparing to generic object 

recognition problems, therefore a neutral network with less 

layers is expected to produce adequate performance, while 

excessive layers may induce more serious overfitting issues. 

Our framework therefore incorporates a compact network 

architecture to address the 3D finger knuckle identification 

problem considered in this paper. 

Contactless 3D finger knuckle patterns illustrate irregular 

ridges and valleys with varying sizes. Since convolution neural 

network based approach usually pools information from bottom 

layers to top layers and therefore the higher or top layers can 

illustrate the feature maps at lower scales which can also be 

more informative in discriminating 3D knuckle patterns at 

coarse level. Therefore, jointly utilizing the features from such 

multiple scales or layers can offer more discriminant feature 

representation, for more accurate finger knuckle recognition, 

and is the key motivation of incorporating collaborative feature 

representation in our framework. Another difficulty for 

comparing finger knuckle images is to accommodate the 

frequently observed translational variations, which is more 

significant than those in other similar hand biometric identifiers 

such as palmprint and fingerprint because the region of interest 

in finger knuckle patterns lacks a well-defined boundary. 

Therefore, an efficient alignment scheme for the frequently 

observed translational changes is incorporated in our 

framework to generate more accurate matches between the 

registered images and the test images with significant/higher 

intra-class variations. Such arguments for the development of 

our framework are systematically and empirically validated 

during the ablation studies and can be observed along with the 

comparative experimental results in Section IV.B. 

 (ii) Although the focus of our work is on contactless 3D 

finger knuckle identification, we also demonstrate the 

generalizability of the proposed approach in other similar 

contactless hand-biometric identification problems and present 

comparative experimental results using publicly available 

contactless 3D palmprint, 3D fingerprint and 2D finger knuckle 

databases. These outperforming experimental results, presented 

in Section IV, are highly promising and validate the 

effectiveness of the proposed approach.  

(iii) This paper also develops and introduces a significantly 

larger contactless 3D finger knuckle database in public domain 

to advance further research in this area. This database is 

acquired from 228 different subjects (with two-session from 

190 different subjects) and is extended from the earlier version 

acquired from 130 different subjects (with two-session images 

from 105 subjects). Six 3D forefinger images and six 3D middle 

finger images are acquired and available for each subject per 

session. This new 3D finger knuckle database contains 

challenging images that can represent real-world scenarios 

where the second session images were acquired under different 

imaging environment or with different imaging lens and 

illumination. 

Table I summarizes the difference between our proposed 

method, conventional learning approaches and hand-crafted 

approaches while Table II summarizes the comparative 

performance using Genuine Acceptance Rate (GAR) for a high 

security condition where False Acceptance Rate (FAR) is at 

10−4 . These results are selected from the best performing 

TABLE II: COMPARATIVE RECOGNITION PERFORMANCE FOR HIGH SECURITY  

 GAR at 
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Hand-crafted 
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This Paper 
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39.4% 77.5% 94.7% 

2D Finger 
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75.9% 75.8% 86.6% 

3D Palmprint 96.7% 95.6% 98.0% 

3D Fingerprint 95.8% 92.5% 94.2% 
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methods of individual approaches, while the comprehensive 

experimental results will be presented in Section IV. In order to 

ensure the reproducibility, the newly collected 3D finger 

knuckle images dataset, the network model and implementation 

codes for the experiments described in this paper can be 

downloaded via the weblink [34].  

Rest of this paper is as follows: Section II discuss the related 

work; Section III presents the technical details of the proposed 

approach; Section IV presents the comparative experimental 

results; Section V concludes this paper and present the further 

research direction. 

II. RELATED WORK 

Contactless 3D finger knuckle recognition is a new area for 

automatic personal recognition. The use of 3D finger knuckle 

patterns for biometric recognition was first studied together 

with the use of finger dorsal surfaces [23]. Unfortunately, the 

attention on 3D finger knuckle recognition has not been aroused 

probably because the effectiveness of using 3D finger knuckle 

information was constrained by the low resolution of 3D finger 

dorsal images being studied and the ineffective feature 

descriptor employed for extracting discriminative features, 

which is a generic surface shape descriptor, the Shape Index 

[22, 26]. The attentions on 3D finger knuckle recognition has 

been raised by a recent research [21] which specifically 

investigates the use of 3D finger knuckle patterns for biometric 

recognition. This study investigated various aspects of 3D 

finger knuckle recognition, such as the feature description, the 

possibility of presentation attacks towards a finger knuckle 

recognition system, the individuality of finger knuckle, the 

comparisons between 2D and 3D finger knuckle recognition, 

and provides a benchmark database for further research and 

investigation. The effectiveness and potentials of using 3D 

finger knuckle images for biometric recognition has been 

validated. However, there are other open questions on using this 

new biometric trait such as whether using neural network can 

do a better job.  

As the studies on 3D finger knuckle recognition is new, they 

are supported by the literatures from finger knuckle recognition 

[8-11, 25], palmprint recognition [24, 27, 32-33, 43] and palm 

vein recognition [40, 42]. A survey paper on finger knuckle 

recognition [10] summarized existing work in 2D finger 

knuckle recognition. However, it has been shown in [21] that a 

state-of-the-art method for 2D palmprint recognition, 

Difference of Normal (DoN) [27], outperforms other competing 

methods including Fast-RLOC and Fast-ComCode [33] for the 

2D finger knuckle recognition evaluation. Therefore, this 

method is considered as a baseline for the evaluation of 2D 

finger knuckle recognition. On the other hand, Surface Code 

[32] and Binary Shape [33] are the two competing methods for 

the performance comparison of 3D finger knuckle recognition 

in [21]. Both methods are originally developed for 3D 

palmprint recognition, which also compute binary biometric 

templates from 3D depth images. Unlike these two methods, the 

surface gradient derivative (SGD) feature descriptor [21] 

computes binary biometric templates from 3D surface normal 

images. It is currently the state-of-the-art method for 3D finger 

knuckle recognition. 

Beside the hand crafted feature approaches, neural network 

based methods have been actively investigated for many 

applications while convolutional neural network (CNN) based 

approach is one of the leading state-of-the-art in computer 

vision related tasks such as object recognition [16-17, 28], 

instance segmentation [12-13] and biometric recognition [19, 

41]. AlexNet [28] is one of the representatives from CNN 

approach. VGGNet [17] investigated the use of a small kernel 

size (i.e. 3×3) for extracting robust features. ResNet [16] is 

another more recent CNN based method, which has shown to 

offer state-of-the-art performance for object recognition. In 

addition, collaborating multiple deep features can offer 

promising performance for object recognition (e.g. DenseNet 

[46], SE-ResNet [47]) and semantic segmentation [44, 45]. 

Besides, learning from one or a few images is also an important 

problem for real world applications. The one-shot learning 

problem was first addressed using a Bayesian approach [37]. 

Recent attentions attempt to address this problem with specially 

designed networks such as Memory-Augmented Neural 

Networks [30] and Matching Networks [31]. Although neural 

network models are expected to be quite generalizable, its 

application on specific biometric problems requires customized 

development.  

Currently, there are several challenges when employing 

neural network approach for 3D finger knuckle recognition. For 

examples, many existing neural network models requires a lot 

of training data, but it is not practical to acquire many training 

data for each human subject, especially for research 

investigation with limited resources. Besides, neural network 

approach can perform well on simple recognition tasks if the 

distribution of the training and testing samples are similar. 

However, it is more difficult to perform well if the distribution 

of the training and testing samples are different. Last but not 

least, the development of neural network approach for 3D 

finger knuckle recognition requires empirical efforts from 

researchers, which is a promising area yet to be developed. 

 
Fig. 1. Illustration of key steps for finger knuckle image pre-processing. 
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III. 3D FINGER KNUCKLE RECOGNITION 

This section presents the technical details of the proposed 3D 

finger knuckle recognition framework. 

A. Preprocessing of 3D Finger Knuckle Images 

Figure 1 illustrates the key steps for preprocessing finger 

knuckle images. We first segment the finger knuckle area of 

interest (also known as finger knuckle detection), followed by 

3D reconstruction and image rendering.  

One of the reliable finger knuckle segmentation method 

described in [21] employed a simple edge pixel counting 

mechanism. Despite this method produce acceptable 

segmentation performance, it fails for some challenging 

samples which limits the finger knuckle recognition 

performance. Therefore, we attempted to incorporate a popular 

neural network method, Mask R-CNN [12] for finger knuckle 

segmentation. We first prepare a training set while the ground 

truth masks are prepared by applying the finger knuckle 

segmentation method detailed in [21]. This method first 

computes the edge image from the original finger knuckle 

image, followed by counting the number of edge pixels within 

a fixed size sliding window. The sliding window is shifted 

vertically and horizontally along the image. The location where 

the maximum number of edge pixels within the sliding window 

is considered as the area of interest. Since the original 

segmentation method may produce incorrectly segmented 

images, we manually remove those unsuccessful samples and 

utilize the remaining samples for generating the ground truth 

for the training of Mask R-CNN with fine tuning from the 

COCO dataset [29]. The effectiveness of improved 

segmentation for more accurate finger knuckle recognition will 

be verified by the ablation study presented in Section IV.B. 

Emerging research on the use of 3D information for finger 

knuckle recognition suggested that 3D information provides 

more and stable information due to its property of illumination 

invariant. Therefore, rather than using the 2D intensity images, 

we attempt to utilize the 3D information from finger knuckle 

patterns for biometric recognition. It is not the same as to 

normalize 2D intensity images, which does not incorporate 3D 

information. We found that using the normalized depth images 

as the network input degrades the recognition performance 

when compared to using the conventional 2D intensity images, 

probably because of the low contrast in the depth images. 

Therefore, we attempt to render artificial images from 3D finger 

knuckle images which is expected to be illumination invariant. 

We design a single directional light source at infinity and 

disable the specular reflections from the finger knuckle surface. 

Such rendered images can inherit the embedded 3D information 

as well as providing good contrast for the networks. Using the 

rendered images which embeds 3D information helps finger 

knuckle recognition despite the existence of the reconstruction 

errors, which will be verified by the ablation study presented in 

Section IV.B. Figure 2 shows the sample images for 

visualization. Those rendered images are used as inputs for 

training and testing the finger knuckle networks presented in 

Section III.B.  

B. Finger Knuckle Networks (FKNet)  

In order to address the challenges of employing neural 

network approach for 3D finger knuckle recognition, we 

develop a new neural network from a popular network 

architecture, ResNet [16], which has been shown to offer 

excellent performance on a wide range of applications 

including object recognition and instance segmentation. The 

problem of lacking training samples can be mitigated from the 

transfer learning of generic image features from bottom layers 

of ResNet, which has been well trained on large object 

recognition datasets. Using such weights also enable a 

promising initialization of the training process. However, if 

ResNet is directly applied to the 3D finger knuckle recognition 

problem, its performance is poor due to the challenges 

described in Section I, while comparative experimental results 

will also be shown in Section IV. Therefore, we attempted to 

investigate the useful component of ResNet and customize the 

networks for our application.  

Similar to the original paper [16], a building block of the 

residual structure is defined as 

𝒚 = 𝑓(𝒙, 𝒘, 𝑏) + 𝒙                                 (1) 

where 𝑥 and 𝑦 is the input and output of the layer respectively, 

          
                          (a)                                                   (b)                                                       (c)                                                      (d) 

          
                          (e)                                                   (f)                                                       (g)                                                      (h) 

Fig. 2. Sample Images for: (a)/(e) Intensity Image (2D); (b)/(f) Depth Image (3D); (c)/(g) Rendered Image (3D View); (d)/(h) Rendered Image 

(Top View).  
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𝑤 is the weights, 𝑏 is the bias and 𝑓 is a generic function. With 

our investigation, it is observed that an average pooling layer is 

located before the last classification layer. This layer is 

expected to serve the purpose of integrating high level spatial 

information to be an abstract feature vector. However, the 

spatial relationship of finger knuckle structural patterns can be 

helpful for the identification and therefore the operation of 

average pooling may cause the loss of such spatial relationship 

information and may not be necessary. 

Besides, a branch of deep learning methods incorporates 

convolution layers in a series manner and make use of the last 

layer to proceed for recognition tasks because the information 

in the last layer is expected to contain high level and abstract 

information from previous layers. However, it is also possible 

that fine feature information from bottom layers has not been 

incorporated to the upper coarse feature maps. Moreover, a 

series of convolution layers usually contains down sampling 

operations implemented by pooling layers. Discriminative 

finger knuckle features, e.g. irregular ridges and valleys 

patterns with different size and scales, may not be fully utilized. 

Therefore, we also attempted to utilize that information from 

different layers corresponding to multi-scales feature maps. 

Collaborating that feature level information provides a more 

complete utilization of spatial information with different scales 

and such collaboration can offer significant performance 

improvement. The respective experiments were performed to 

show such improvement and those results are presented in 

Section IV.B.  

Besides, the number of convolution layers required depends 

on the complexity of the problem being addressed, while 

excessive layers may induce more serious overfitting issues. 

Unlike object recognition problems requires the learning of 

high-level abstract features, finger knuckle recognition requires 

the learning of the invariant structural patterns. Existing 

successful finger knuckle recognition methods utilizing hand-

crafted features of low complexity, which may indicate that the 

discriminative information embedded in finger knuckles do not 

have a high degree of complexity. Therefore, we attempted to 

simplify the network by reducing the number of top convolution 

layers. We found that using the convolution layers of ResNet-

50 up to Conv3_x is adequate for the contactless 3D finger 

knuckle recognition and such experimental results of this 

ablation study are presented in Section IV.B.  

With the above theoretical arguments, we defined the FKNet 

as follows:  

𝒑 = 𝑓4 [ 𝑓3 (𝑓2(𝑓1(𝑰))) + 𝑔2 (𝑓2(𝑓1(𝑰))) + 𝑔2(𝑓1(𝑰))]  (2) 

where 𝐼  is the input image, 𝑓1 , 𝑓2 , 𝑓3 , 𝑓4  are the functions 

corresponding to the convolution layers, 𝑔1 , 𝑔2  are the 

functions corresponding to the down sampling layers and 𝒑 is 

the output of the network with a dimension of 1 × 𝑁 and 𝑁 is 

the number of classes. When comparing with ResNet-50, our 

network enables less parameters and thus higher efficiency. 

Lastly, the output 𝒑 further processed with a softmax function: 

𝑝′𝑖 =
𝑒𝑝𝒊

∑ 𝑒𝑝𝒊𝑁
𝑖=1

   ,   𝑖 ∈ [1, 𝑁]                       (3) 

The output vector 𝒑′ represents the probabilities of belonging 

 
Fig. 3. Simplified network architectures for FKNet: (a) Network Training; (b) Identification using Trained Network 
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TABLE III: LAYER CONFIGURATIONS FOR THE CONTACTLESS 3D FINGER 

KNUCKLE DATASETS DURING TRAINING 

Layer Output Size Kernel Size 

Conv1 24 × 40 × 64 7 × 7, 64, stride 2 

Conv2_x 12 × 20 × 256 3 × 3 max pool, stride 2 

[
1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3 

Conv3_x 6 × 10 × 512 
[
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

Conv4 1 × 1 × 190 6 × 10, 190, softmax 
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to a class. During training, the cross-entropy loss is adopted: 

𝐿 = − ∑ 𝑡𝑖log (𝑝′𝑖)𝑁
𝑖=1    ,   𝑖 ∈ [1, 𝑁]               (4) 

where 𝒕 is the ground truth label of the training samples. During 

testing, the probability vector 𝒑′ is considered as the similarity 

scores for a test image. When comparing to the hand crated 

approach, this network style enables quite efficient 

identification tasks because a probability vector for all classes 

can be generated at once.  

In summary, we develop a customized FKNet for more 

accurate comparison of 3D finger knuckle images. Figure 3 

shows the simplified network architecture of the proposed 

FKNet while Table III shows the layer configurations with an 

input image of size 48 × 80 and a total number of 190 classes. 

Down sampling is performed by Conv3_1 with a stride of 2. 

The configurations and building blocks of Conv1, Conv2_x and 

Conv3_x also adopt a residual structure as in ResNet. 

C. Finger Knuckle Alignment and Comparison 

From the knowledge of comparing finger knuckle images 

using hand-crafted features, the alignment of feature templates 

by translations is a crucial step to ascertain the recognition 

performance. Although CNN based approach has some 

capability of tolerating translational shifting because the upper 

layers can aggregate information from lower layers with 

pooling layers, such approach only accommodates a limited 

degree of translational shifting. Since the area of interest of 

finger knuckle is loosely defined, a sharp boundary does not 

exist along the finger knuckle regions. Despite the accurate 

finger knuckle segmentation by Mask R-CNN, those segmented 

images from the same subject can still contain quite a large 

degree of translational variation of the finger knuckle patterns, 

which is challenging to CNN based approach. 

Therefore, we attempted to introduce a new training and 

testing strategy incorporating an alignment scheme with neural 

network approach. During the training stage, we provide the 

rotational shifted versions of the sample images as the only data 

augmentation. Those images are also cropped with a fixed 

smaller window located at the center of each image, which 

enables translational shifting operations in the testing stage. 

During the testing stage, we can present multiple translationally 

shifted versions of testing samples to the trained networks. This 

simple technique is denoted as the simple alignment scheme. 

For each presented test image, a vector representing the 

probability of the test image belonging to each class will be the 

output. While presenting the images of shifted versions to the 

classifier, a matrix containing the probability vectors will be the 

output of the network. We obtain the entire probability vector 

containing the maximum probability value among the matrix as 

the final output. Those values of the final probability vector are 

considered as the comparison scores between the test image and 

the enrolled classes.  

The major limitation of the simple alignment scheme lies in 

its bulky and inefficient computation of inputting many shifted 

versions of images. However, this issue can be addressed using 

a convolutional implementation of the sliding window 

approach, which was first suggested in the object detection 

literature [39]. The inputting of shifted versions of images can 

be considered as a typical sliding window approach, which can 

also be implemented using a fully convolutional approach. 

Figure 3 shows a schematic diagram of this alignment scheme. 

During the training stage, the dimension of training images is 

48 × 80 and those images are cropped from the images with 

original sizes of 64 × 96. The dimension of the input feature 

map before Conv4 is 6 × 10, which is reduced by 8 times. The 

Conv4 layer, together with softmax function, generates a 

probability vector of size 1 × 1 × 190. During the testing stage, 

instead of presenting multiple translationally shifted versions of 

the test samples to the trained network, we can present the 

testing images with the original size (64 × 96) directly to the 

networks because our networks are fully convolutional. Such 

configuration results in a size of 8 × 12 for the input feature 

map before Conv4. In this case, the Conv4 layer, together with 

softmax function, generates 9 probability vectors of size 3 × 3 

× 190. Similar to the simple alignment scheme, we obtain the 

entire probability vector of 190 classes containing the 

maximum probability value among the matrix as the final 

output. Furthermore, in order to precisely implement the sliding 

window approach containing all possible translationally shifted 

versions, we also present a combination of eight horizontally 

shifted and eight vertically shifted versions of the test samples 

to the trained network because the network will reduce the size 

of the input images by eight times. Again, we obtain the entire 

probability vector of 190 classes containing the maximum 

probability value among the matrix as the final output. Those 

values of the final probability vector are considered as the final 

comparison scores between the test image and the enrolled 

classes. Algorithm 1 summarizes the procedures to match the 

test images using FKNet.  

IV. EXPERIMENTS AND RESULTS 

In order to examine the performance of the proposed 3D 

finger knuckle recognition framework, we present comparative 

experimental results using a publicly available 3D finger 

knuckle database. In addition, the effectiveness of our approach 

is also validated using two others larger 2D finger knuckle 

Algorithm 1: Comparing Contactless 3D Finger Knuckle Test Images 

using FKNet 
 

Input: I: unknown image with dimension 𝑚 × 𝑛 (i.e. 64 × 96); 

s: down sampling factor of the network (i.e. 8); 

d: depth of the feature stack (i.e. 832); 

u, v: kernel size of Conv4 (i.e. 6 × 10) 

N: number of classes; 
 

Output: p’: final comparison scores 

  
1: Convolve I with the trained network to generate a feature 

stack of dimension 
𝑚

𝑠
×

𝑛

𝑠
× 𝑑; 

 

2: Compute the probability vectors of dimension (
𝑚

𝑠
− 𝑢 +

1) × (
𝑛

𝑠
− 𝑣 + 1) × 𝑁; 

 

3: Compute the maximum probability among all vectors; 
 

4: Compute the final comparison scores p’ using the 

probability vector containing the maximum probability. 
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database, a 3D palmprint database and a 3D fingerprint 

database. Figure 4 shows some sample images of these datasets. 

We present the experimental results using receiver operating 

characteristics (ROC) curves for verification scenarios and 

cumulative match characteristics (CMC) curve for 

identification scenarios. State-of-the-art methods are selected as 

baselines for the performance comparisons.  

A. Contactless 3D Finger Knuckle Database 

Our database has been acquired using a photometric stereo 

approach for the 3D imaging. The biometric imaging device 

consists of a camera, seven evenly distributed illuminations, a 

control circuit, and a computer as in [4]. The acquired finger 

knuckle images are preprocessed using the methods described 

in Section III.A.  

The HKPolyU 3D Finger Knuckle Images Database [21] is a 

recently available benchmark two-session database with 2D and 

3D finger knuckle images. It contains 1410 forefinger images 

and 1410 middle finger images from 130 subjects, among them 

105 subjects contain two-session images. Since the database is 

quite small, we attempted to expand the database by acquiring 

more images with 1098 forefinger images and 1098 middle 

finger images from 98 subjects. The new dataset contains 2508 

forefinger images and 2508 middle finger images from 228 

subjects, among them 190 subjects contain two-session images. 

Six forefinger images and six middle finger images are 

available for each subject per session.  

The use of different lenses can enable the imaging under a 

less constrained environment and provides larger image 

variations similar to those acquired in real deployment 

scenarios. For examples during the border-crossing inspections, 

it is not uncommon to observe imaging systems at different 

checkpoints from the different vendors or a part of imaging 

devices can be different from the remaining due to system 

maintenances and upgrades. In more challenging scenarios like 

forensics, images of suspects are to be compared with those 

already stored in the government databases, where the imaging 

devices are likely to be different. The images acquired in our 

case using two lenses, therefore attempts to present similar 

challenges: one lens enables a smaller field of view while 

another lens enables a broader field of view.  

Among the 190 subjects, the first session images of 96 

subjects and 94 subjects are acquired from lens-A and lens-B 

respectively, while the second session images of 7 subjects and 

183 subjects are acquired from lens-A and lens-B respectively. 

This imaging scenario enables that images from 89 subjects are 

acquired from different lens, which contain large illumination 

and deformation variations. Such variations create huge 

challenges for accurately extracting the irregular ridge and 

valley features for finger knuckle recognition. Moreover, when 

adopting a standard two-session biometric protocol, i.e. 

comparing second session images to the first session images, 

many imposter images are acquired from the same lens while 

genuine images are acquired from different lens. This 

configuration creates special challenges to deep learning 

methods because the statistical distribution of training and 

testing data are very different. Therefore, the new database 

includes scenarios that considers possible situations in the real 

world and is challenging for validating the performance of the 

proposed 3D finger knuckle recognition framework. 

B. Evaluation with 3D Finger Knuckle Recognition 

Ablation Studies 

To begin with, we present the experimental results of 

ablation studies to justify our design of FKNet using a subset of 

the 3D finger knuckle database. We utilized 94 subjects of 

which both sessions’ images are acquired using lens-B. By 

excluding the cross-lens challenges, we can fairly compare the 

performance of our network with ResNet-50. Mask R-CNN are 

used for segmenting the finger knuckle images for our 

experimentation in this sub-dataset. We adopt a standard two-

session evaluation protocol, which consider the first session 

images as the training set and the second session images as the 

testing set. This evaluation protocol generates 52452 (94×93×6) 

imposter comparison scores and 564 (94×6) genuine 

comparison scores. 

The first experiment aims at comparing the recognition 

performance between with and without aggregating the spatial 

relationship information using an average pooling layer before 

the last classification layer and the results are shown in Figure 

5(a). It can be observed that retaining the feature of size 6×10 

(denoted as ResNet without avg. pool) produces a much better 

performance than averaging the spatial relationship information 

to be size 1×1 (denoted as ResNet (Original)). These finding 

verify our theoretical arguments presented in Section III.B. 

The second ablation experiment aims at verifying the 

   
                                               (a)                              (b)                             (c)                           (d)                             (e) 

Fig. 4. Sample images from five employed databases: (a) HKPolyU 3D Finger Knuckle Images Database; (b) HKPolyU Contactless Finger 

Knuckle Images Database; (c) HKPolyU Contactless Hand Dorsal Images Database; (d) HKPolyU Contact-free 3D/2D Hand Images Database; 

(e) HKPolyU 3D Fingerprint Images Database. 
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usefulness of collaborating the multi-scales feature information 

from the previous layers and the results are shown in Figure 

5(b). We first compare the recognition performance between 

using only the information from the last convolution layer 

without the collaboration (denoted as Conv5_x) and also using 

the multi-scales information from previous layers (denoted as 

Conv1-Conv5_x). Our experimental results indicate that using 

such collaboration enables outperforming recognition accuracy 

than the original approach without the collaboration, which 

verify our theoretical arguments described in Section III.B. 

After that, we further compare the recognition performance 

with simplifying the network by reducing the number of 

convolution layers, i.e. using the information from the first 

convolution layer up to the fourth (denoted as Conv1-

Conv4_x), the third (denoted as Conv1-Conv3_x) and the 

second (denoted as Conv1-Conv2_x) convolution layer blocks 

respectively. The experimental results indicate that both 

Conv1-Conv4_x and Conv1-Conv3_x can produce superior 

performance while Conv1-Conv2_x significantly degrades the 

performance. Since Conv1-Conv3_x can produce comparable 

results with Conv1-Conv4_x, we suggest using Conv1-

Conv3_x due to its simplicity. 

Our next ablation studies attempt to justify our final 

configurations which will be adopted in the comparative 

experiments with the state-of-art-methods. For these studies, we 

performed verification experiments using all 190 subjects with 

two-sessions images, where first session images are used for the 

training and second session images are used for the testing. This 

evaluation protocol generates 215460 (190×189×6) imposter 

comparison scores and 1140 (190×6) genuine comparison 

scores. When training our network, we rotate the images from 

minus ten to ten degrees with a step of one degree for the data 

augmentation. This data augmentation technique allows more 

adaptive ability for the trained network. We initialize our 

network with the weights provided along with ResNet-50 [16].  

Figure 5(c) compare the effect of using various sources of 

information for inputting to our network. We use the same 

configurations for other steps including segmentation and 

alignment and compare the performance between using the 

rendering approached described in Section III.A, using 3D 

depth images and using 2D intensity images. Although using 

3D images are expected to outperform using 2D images due to 

its illumination invariant property, however when the 

normalized depth images are used, the performance is quite 

poor probably because the contrast of such images are low and 

therefore those finger knuckle patterns are blurred. Instead, 

when we render the illumination invariant images from 3D 

images using a fixed illumination, the performance is better 

than only using 2D images. The experimental results presented 

in Figure 5(c) justify the need for rendering the illumination 

invariant images.  

Figure 5(d) compare the performance improvement by 

incorporating Mask R-CNN for more accurately segmenting 

finger knuckle images. We use the same configurations for 

other steps including alignment and rendered images are used. 

For training the Mask R-CNN, we employed the one-session 

images from the remaining 38 subjects to ensure no overlapping 

for the training and testing sets for the Mask R-CNN. The 

    
                                       (a)                                                                        (b)                                                                        (c) 

   
                                      (d)                                                                       (e)                                                                         (f) 

Fig. 5. Experimental Results of Ablation Studies in the Contactless 3D Finger Knuckle Datasets for Comparing the effects of: (a) the last pooling 

layer; (b) collaborating multi-scales information; (c) using different images; (d) improved segmentation using Mask R-CNN; (e) using one/six 

samples for the training (f) alignment. 
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experimental results presented in Figure 5(d) show that 

improving the segmentation using Mask R-CNN enable 

significant performance improvement.  

Figure 5(e) compare the performance between using only one 

raw image versus six raw images for training the network. We 

use the same configurations for other steps including 

segmentation and rendered images are used. It is a common 

believe that more training images is always preferable. In fact, 

this argument is valid for a general approach when the 

alignment technique is not incorporated and can be observed 

from comparing the last two curves (black and green). This 

finding concurs with other CNN based approach where more 

training images enable the network with better capabilities. 

However, when we attempt to address the translational 

variation problem with the proposed alignment technique, such 

more training images may not be necessary. In fact, when we 

use more training images for each subject, those images contain 

translational variation may help the network to enhance 

tolerance to genuine samples but may also induces higher 

tolerance for imposter samples. The experimental results 

presented in Figure 5(e), first two curves (blue and red), show 

that our proposed network architecture along with the 

alignment technique can perform well in the challenging 

scenario that only one raw image per subject is used for the 

training.  

Figure 5(f) compare the performance improvement by the 

proposed alignment technique for enhancing the finger knuckle 

verification. We use the same configurations for other steps 

including segmentation and rendered images are used. We 

argue that the pooling layers are expected to be the key elements 

from the CNN based approach for accommodating the 

translational variations. It can only accommodate a small 

translational shifting within the pooling kernel. However, 

unlike other recognition tasks such as iris recognition, the area 

of finger knuckle pattern does not have a clear edge or 

boundaries, so that the segmented images would still contains 

large translational variations. When the variation exceeds the 

limitations of the network (e.g. kernel of pooling layers), the 

recognition performance is expected to be degraded. With our 

suggested alignment technique, this issue can be well 

addressed. The experimental results presented in Figure 5(f) 

show that our alignment technique is very effective for 

improving the recognition performance. While Alignment 

using the fully convolutional approach described in Section 

III.C. enables further improved results. Same trends can also be 

observed from the experimental results shown in Figure 5(e). 

In summary, the experimental results of ablation studies have 

justified the theoretical arguments presented in Section III. 

Therefore, in the following comparisons with state-of-the-art 

methods, we employed the Mask R-CNN for segmenting finger 

knuckle images, and only one raw image per subject is used for 

the training, for all the evaluated methods. 
 

Comparison with State-of-the-Art Methods  

We further compare the performance of our proposed method 

with the state-of-the-art methods in the challenging scenario 

where only one raw image per subject is used for the training, 

while the images are segmented using Mask R-CNN. This 

evaluation protocol generates 215460 (190×189×6) imposter 

comparison scores and 1140 (190×6) genuine comparison 

scores. The Surface Gradient Derivatives (SGD) [21] is 

currently the state-of-the-art method for 3D finger knuckle 

recognition. This method is also reported to outperform other 

state-of-the-art 3D finger knuckle and palmprint recognition 

methods including Surface Code [32] and Binary Shape [33]. 

Since this method essentially extract the discriminative features 

from 3D surface normal images, those images are used for the 

TABLE IV: COMPARATIVE PERFORMANCE IN HKPOLYU 3D FINGER 

KNUCKLE IMAGES DATABASE FOR HIGH SECURITY CONDITIONS 

 GAR at FAR = 10−3 = 10−4 = 10−5 

Ours 96.5% 94.7% 91.4% 

SGD (TPAMI20) 85.4% 77.5% 68.7% 

CR_L1_DALM (TPAMI15) 46.3% 37.9% 32.8% 

CR_L2 (TPAMI15) 44.8% 36.1% 29.2% 

ResNet (CVPR16) 28.7% 13.6% 5.5% 

VGG (ICLR15) 22.5% 9.4% 2.7% 

AlexNet (NIPS12) 36.2% 21.9% 13.3% 

DenseNet (CVPR17) 50.0% 39.4% 30.3% 

SE-ResNet (TPAMI20) 47.9% 32.9% 21.6% 

 

TABLE V: COMPARATIVE COMPUTATIONAL TIME (IN MILLISECONDS) 

Method Computational Time (in ms) 

CR_L2 (TPAMI 15) 6.1 

SGD (TPAMI20) 24.0 

Ours 36.6 

AlexNet (NIPS12) 36.6 

CR_L1_DALM (TPAMI15) 89.4 

DenseNet (CVPR17) 89.9 

ResNet (CVPR16) 91.5 

SE-ResNet (TPAMI20) 92.6 

VGG (ICLR15) 126.0 

 

    
                                                                  (a)                                                                                                 (b) 

Fig. 6. Comparative Experimental Results in Contactless 3D Finger Knuckle Datasets: (a) ROC; (b) CMC. 
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evaluation.  

Beside the most competent method for 3D finger knuckle 

recognition, we also attempted to compare the performance 

with another state-of-the-art 3D palmprint recognition method, 

using collaborative representation based framework with L1-

norm (CR_L1_DALM) [38] and L2-norm regularizations 

(CR_L2) [38], which has reported superior performance. In 

order to fairly compare with this method, we first investigate 

the variations between their reported database and our database. 

The reported database contain square size images with 128 

pixels, it is reasonable to resize and crop our images, without 

changing the aspect ratio, to be the same size as the images in 

the reported database, and employ the same parameters 

provided along with CR_L1_DALM and CR_L2, which is 

already optimized for their reported database. Since this method 

essentially extract the discriminative features from 3D depth 

images, those images are used for the evaluation.  

Furthermore, we also compare the performance with various 

popular deep learning methods, including ResNet-50 [16], 

VGG-16 [17], AlexNet [28], DenseNet-121 [46] and SE-ResNet-

50 [47] to verify our arguments on the challenges of employing 

neural network approach for 3D finger knuckle recognition. 

While training these networks, we modify the last classification 

layer to an output of 190 classes to fit the experimental 

condition. Except this layer, we initialized the weights from the 

respective trained model available along with the respective 

methods for ResNet-50, VGG-16, AlexNet, DenseNet-121 and 

SE-ResNet-50. The inputs to all the networks are the same, i.e. 

rendered images, to ensure the fairness in comparisons. 

Figure 6 presents such comparative experimental results 

using the baseline methods selected in this paper and Table IV 

highlights the comparative performance for high security 

conditions. It can be observed that our proposed method 

significantly outperforms all the methods. However, unlike 3D 

palmprint recognition, CR_L1_DALM and CR_L2, does not 

produce comparable performance, probably due to the 

challenging nature of our database that, some images are 

acquired using different camera lens so that the statistical 

distribution between the gallery and probe samples are 

significantly different. It is also worth mentioning that CNN 

based methods suffer heavily from this experimental condition, 

probably due to the following reasons.  

The major reason can be attributed to the cross-lens situations 

which is quite challenging for the CNN based approach because 

the images acquired from lens-A and lens-B are indeed very 

different, which results is large variations between the statistical 

distribution of training and testing samples. The translational 

variations in finger knuckle images are also challenging 

because of the limited capability of CNN based approach for 

accommodating large translational variations, which is 

expected to rely on the pooling layers. Another reason can be 

attributed to the challenging scenario while only one raw image 

sample are presented. Despite these challenging conditions, our 

proposed approach addresses these issues by learning 

discriminative information from one raw image and match the 

test images using the alignment technique. These reproducible 

experimental results [34] validate the effectiveness of our 

proposed method for 3D finger knuckle recognition.  

Evaluation of Computational Time  

We also comparatively evaluated the computational time for 

our proposed approach with the best performing hand-crafted 

approach, SGD [21] and other learning based methods 

including CR_L1_DALM, CR_L2, ResNet-50, VGG-16, 

AlexNet, DenseNet-121 and SE-ResNet-50. We evaluate the 

computational time required for generating a score vector of 

190 classes when a preprocessed image of dimension (64 × 96) 

is presented to respective approaches, while image alignment is 

not considered for all the methods in this comparison. The 

experiments were performed on a machine with Intel Core i7-

6700 (3.40GHz) using MATLAB 2015b, CentOS 7. All 

methods were executed using CPU only to ensure fairness in 

the comparisons. Table V presents the computational time per 

sample for each of the considered approach. 

Among the compared methods, CR_L2 is the fastest method 

with its low computational complexity, however, this method 

does not deliver promising accurate performance in the 

challenging dataset evaluated in this paper. Besides, SGD is the 

second fastest method due to it simple feature extraction and 

comparison approach while also achieving accurate recognition 

performance, which shows that it is a promising baseline using 

hand-crafted approach with both accuracy and efficiency. Our 

approach ranked the third together with AlexNet, due to the 

simpler network architectures when comparing to ResNet-50, 

VGG-16, AlexNet, DenseNet-121 and SE-ResNet-50. The 

comparative computational time presented in this section 

indicates that although our method does not outperform all 

methods with efficiency, but the computational time required is 

quite comparable with the best methods. Meanwhile, it is 

expected that a slight increase of computational time is required 

if the alignment scheme using the fully convolutional approach 

TABLE VI: COMPARATIVE PERFORMANCE HKPOLYU CONTACTLESS FINGER 

KNUCKLE IMAGES DATABASE FOR HIGH SECURITY CONDITIONS 

 GAR at FAR = 10−3 = 10−4 = 10−5 

Ours 87.9% 86.6% 81.3% 

DoN (TPAMI16) 83.2% 75.8% 47.3% 

ResNet (CVPR16) 85.4% 75.9% 55.9% 

VGG (ICLR15) 81.3% 67.9% 47.5% 

AlexNet (NIPS12) 85.5% 71.6% 60.0% 

DenseNet (CVPR17) 78.4% 64.4% 46.9% 

SE-ResNet (TPAMI20) 70.9% 55.2% 36.3% 

 

TABLE VII: COMPARATIVE PERFORMANCE IN HKPOLYU CONTACTLESS 

HAND DORSAL IMAGES DATABASE FOR HIGH SECURITY CONDITIONS 

 GAR at FAR = 10−3 = 10−4 = 10−5 

Ours 78.2% 74.5% 66.8% 

DoN (TPAMI16) 62.8% 46.7% 18.4% 

ResNet (CVPR16) 63.6% 42.9% 21.4% 

VGG (ICLR15) 56.7% 34.8% 12.6% 

AlexNet (NIPS12) 66.0% 47.1% 28.8% 

DenseNet (CVPR17) 39.0% 20.7% 8.2% 

SE-ResNet (TPAMI20) 37.3% 21.0% 8.9% 
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is enabled. However, the effectiveness of using such alignment 

scheme can be justified by its remarkable recognition 

performances.  

C. Evaluation with 2D Finger Knuckle Recognition  

Despite our framework is developed for 3D finger knuckle 

recognition, it is expected to be applicable for 2D finger 

knuckle recognition. Therefore, we also provide supportive 

experimental results using a large 2D finger knuckle images 

database for further validating the effectiveness of our proposed 

method. The HKPolyU Contactless Finger Knuckle Images 

Database (Version 1.0) [35] contains 2515 images from 503 

subjects, each with five images. This database provides loosely 

segmented finger knuckle images with low imaging qualities. 

We also adopt a challenging scenario using the major finger 

knuckle images where only the first image of each subject is 

used for the training and the remaining four images of each 

subject are used for the performance evaluation. This evaluation 

protocol generates 1,010,024 (503×502×4) imposter 

comparison scores and 2012 (503×4) genuine comparison 

scores. We compare our method with a state-of-the-art 2D 

palmprint recognition method, DoN [27], which is reported in 

also offer state-of-the-art finger knuckle recognition method in 

[21], and other popular CNN based methods including ResNet-

50 [16], VGG-16 [17], AlexNet [28], DenseNet-121 [46] and 

SE-ResNet-50 [47]. While training these networks, we modify 

the last classification layer to an output of 503 classes to fit the 

experimental condition. Except this layer, we initialized the 

weights from the respective trained model available along with 

respective methods for ResNet-50, VGG-16, AlexNet, 

DenseNet-121 and SE-ResNet-50. Since the SGD [21], 

CR_L1_DALM [38] and CR_L2 [38] require 3D images, we are 

unable to compare with this method in this database.  

Figure 7 presents the comparative experimental results with 

the baseline methods paper and Table VI highlights the 

comparative performance for high security conditions. It can be 

observed that our method outperforms other methods especially 

in straight security conditions where the false acceptance rates 

must be very low. It is worth mentioning that unlike the 

experimental results presented in Section IV.B, CNN based 

methods achieved comparable performance with the state-of-

the-art method using hand-crafted features, probably because 

the challenges of cross-lens situations do not exist. Since there 

some segmented finger knuckle images which are completely 

    
                                                                   (a)                                                                                                 (b) 

Fig. 7. Comparative Experimental Results in HKPolyU Contactless Finger Knuckle Images Database: (a) ROC; (b) CMC. 

 

     
                                                                    (a)                                                                                                 (b) 

Fig. 8. Comparative Experimental Results in Contactless Hand Dorsal Images Database: (a) ROC; (b) CMC. 
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out of the finger knuckle region, the performance improvement 

of our method is less obvious when comparing with the datasets 

described in Section IV.A. 

Besides, we also provide supportive experimental results 

using a very large 2D finger knuckle images database. The 

HKPolyU Contactless Hand Dorsal Images Database [36] 

contains 3560 images from 712 subjects, each with five images. 

This database also provides loosely segmented finger knuckle 

images with low imaging qualities. Again, we also adopt a 

challenging scenario using the major index finger knuckle 

images where only the first image of each subject is used for the 

training and the remaining four images of each subject are used 

for the performance evaluation. This evaluation protocol 

generates 2,024,928 (712×711×4) imposter comparison scores 

and 2848 (712×4) genuine comparison scores. While training 

the networks, we modify the last classification layer to an 

output of 712 classes to fit the experimental condition. 

Figure 8 presents the comparative experimental results with 

the baseline methods paper and Table VII highlights the 

comparative performance for high security conditions. It can be 

observed that our method significantly outperforms all other 

methods in both verification and identification scenarios, which 

    
                                                                   (a)                                                                                               (b) 

Fig. 9. Comparative Experimental Results in the HKPolyU Contact-free 3D/2D Hand Images Database: (a) ROC; (b) CMC. 

 

    
                                                                   (a)                                                                                                (b) 

Fig. 10. Comparative Experimental Results in the HKPolyU 3D Fingerprint Images Database: (a) ROC; (b) CMC. 

TABLE VIII: COMPARATIVE PERFORMANCE IN HKPOLYU CONTACT-FREE 

3D/2D HAND IMAGES DATABASE FOR HIGH SECURITY CONDITIONS 

 GAR at FAR = 10−3 = 10−4 = 10−5 

Ours 98.4% 98.0% 96.5% 

SGD (TPAMI20) 96.8% 95.6% 94.8% 

CR_L1_DALM (TPAMI15) 97.6% 96.7% 95.9% 

CR_L2 (TPAMI15) 96.7% 95.9% 94.1% 

ResNet (CVPR16) 82.3% 68.0% 53.2% 

VGG (ICLR15) 74.0% 59.0% 42.8% 

AlexNet (NIPS12) 86.2% 75.3% 59.2% 

DenseNet (CVPR17) 78.2% 67.9% 52.1% 

SE-ResNet (TPAMI20) 53.6% 39.4% 30.3% 

 

TABLE IX: COMPARATIVE PERFORMANCE IN HKPOLYU 3D FINGERPRINT 

IMAGES DATABASE FOR HIGH SECURITY CONDITIONS 

 GAR at FAR = 10−2 = 10−3 = 10−4 

Ours 97.9% 95.8% 94.2% 

SGD (TPAMI20) 97.5% 94.1% 92.5% 

CR_L1_DALM (TPAMI15) 92.5% 86.3% 83.3% 

CR_L2 (TPAMI15) 87.5% 83.8% 75.8% 

ResNet (CVPR16) 99.6% 98.3% 94.2% 

VGG (ICLR15) 99.2% 96.3% 92.9% 

AlexNet (NIPS12) 99.2% 98.8% 95.8% 

DenseNet (CVPR17) 99.2% 92.1% 77.1% 

SE-ResNet (TPAMI20) 93.8% 82.5% 68.8% 
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has validated the effectiveness of our proposed method.  

D. Evaluation with 3D Palmprint Recognition  

Although the scope of this paper is on 3D finger knuckle 

recognition, we also attempt to evaluate the performance of our 

approach using other 3D biometrics datasets for investigating 

the generalizability of the proposed approach. Similar to [21], 

we employed the same 3D palmprint dataset, the HKPolyU 

Contact-free 3D/2D Hand Images Database Version 1.0 [32], 

containing two-sessions images from 177 subjects (each with 

five images per session), for the performance evaluation. In 

order to obtain consistent experimental results as reported in 

earlier references, we adopt the same evaluation protocol using 

all first session images for the training and the second session 

images for the testing, which generates 885 (177 × 5) genuine 

and 155760 (177 × 176 ×5) imposter comparison scores.  

 Similar to Section IV.B, 3D surface normal images are used 

for SGD [21], 3D depth images are used for CR_L1_DALM and 

CR_L2 [38], while the artificially rendered images are used for 

our method and other neural network based methods including 

ResNet-50 [16], VGG-16 [17] , AlexNet [28], DenseNet-121 

[46] and SE-ResNet-50 [47]. We also modify the last 

classification layer to an output of 177 classes and initialized 

the weights from the respective trained model. Except this 

layer, we initialized the weights from the respective trained 

model available along with respective methods for ResNet-50, 

VGG-16, AlexNet, DenseNet-121 and SE-ResNet-50. Since 

rotational alignment was not considered in this dataset by 

neither the recent baseline method SGD nor another former 

baseline method Binary Shape [33], we disabled our data 

augmentation with rotations to ensure fairness in the 

comparisons.  

Figure 9 presents such comparative experimental results 

using the baseline methods and Table VIII highlights the 

comparative performance for high security conditions. Our 

approach significantly outperforms other methods for the 

verification scenario. For the identification scenario, SGD is 

still the best performing method which slightly outperforms 

ours. However, it can be observed that our approach 

outperforms other popular neural network based methods. 

E. Evaluation with 3D Fingerprint Recognition  

Besides 3D palmprint recognition, we also evaluate the 

performance of our proposed approach for 3D fingerprint 

recognition. Similar to [21], we also employed the 3D 

fingerprint dataset, the HKPolyU 3D Fingerprint Images 

Database [4], containing one-session images from 240 subjects 

(each with six images), for the performance evaluation. The 

original experimental protocol employed an all-to-all 

evaluation protocol, which is not applicable for CNN based 

methods requiring the splitting of data into training and testing 

sets. Therefore, we select a relatively less challenging protocol 

to avoid performance degradations of the baseline methods. 

This protocol uses the first five images for the training and the 

remaining last image for the testing. This protocol generates 

240 (240 × 1) genuine and 57360 (240 × 239 ×1) imposter 

comparison scores. Similar to Section IV.B and IV.D, 3D 

surface normal images are used for SGD [21], 3D depth images 

are used for CR_L1_DALM and CR_L2 [38], while the 

artificially rendered images are used for our method and other 

evaluated methods including ResNet-50 [16], VGG-16 [17], 

AlexNet [28], DenseNet-121 [46] and SE-ResNet-50 [47]. We 

also modify the last classification layer to an output of 240 

classes and initialized the weights from the respective trained 

model. Except this layer, we initialized the weights from the 

respective trained model available along with respective 

methods for ResNet-50, VGG-16, AlexNet, DenseNet-121 and 

SE-ResNet-50. Similar to Section IV.D, rotational alignment 

was not considered in this dataset by neither the recent baseline 

method SGD nor another former baseline method Finger 

 

    
                                                                    (a)                                                                                            (b) 

Fig. 11. Comparative Experimental Results in the 3D Fingerprint Database [49]: (a) ROC; (b) CMC. 

TABLE X: COMPARATIVE PERFORMANCE IN 3D FINGERPRINT DATABASE 

[49] FOR HIGH SECURITY CONDITIONS 

 GAR at FAR = 10−2 = 10−3 = 10−4 

Ours 89.4% 87.7% 86.2% 

ResNet (CVPR16) 91.2% 79.7% 69.6% 

VGG (ICLR15) 68.1% 52.1% 30.9% 

AlexNet (NIPS12) 82.2% 69.0% 53.4% 

DenseNet (CVPR17) 43.9% 13.3% 3.7% 

SE-ResNet (TPAMI20) 83.1% 69.2% 54.8% 
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Surface Code [4], we disabled our data augmentation with 

rotations to ensure fairness in the comparisons.  

Figure 10 presents such comparative experimental results 

using the baseline methods and Table IX highlights the 

comparative performance for high security conditions. Despite 

most evaluated method achieves comparable performance due 

to the less challenging protocol used for this dataset, we show 

that our approach can also produce comparable performance on 

3D fingerprint recognition without further customizing our 

network.  

Besides, we also provide supportive experimental results 

using another 3D fingerprint database. This 3D fingerprint 

database [49] contains 3000 images from 150 subjects, each 

with ten fingers, two images per finger. We follow the original 

reference that those images from six fingers (right thumb, right 

index, right middle finger, left thumb, left index and left middle 

finger) are used for the experimentation. While the images 

provided in this database are not truly 3D, other large-scale 3D 

databases can help to advance further research.  More details on 

this database can be referred to [49]. The original experimental 

protocol is not suitable for CNN based methods which generally 

requires the splitting of data into training and testing sets. 

Therefore, similar to our other experiments, we adopt a two-

session like evaluation protocol that the first image from each 

finger is used for the training and the second image from each 

finger is used for the performance evaluation. This evaluation 

protocol generates 809,100 (900×899×1) imposter comparison 

scores and 900 (900×1) genuine comparison scores. Since this 

database only provides rendered images from 3D fingerprint, 

we are unable to compare with SGD [21], CR_L1_DALM [38] 

and CR_L2 [38]. Instead, we compare our methods with other 

state-of-the-art CNN based methods including ResNet-50 [16], 

VGG-16 [17], AlexNet [28], DenseNet-121 [46] and SE-

ResNet-50 [47]. We also modify the last classification layer to 

an output of 900 classes and initialized the weights from the 

respective trained model. Except this layer, we initialized the 

weights from the respective trained model available along with 

respective methods for ResNet-50, VGG-16, AlexNet, 

DenseNet-121 and SE-ResNet-50. Since there is only one raw 

image per class, we enabled our data augmentation with 

rotations for all methods to enhance the recognition 

performance and to ensure fairness in the comparisons. 

Figure 11 presents such comparative experimental results 

using the baseline methods and Table X highlights the 

comparative performance for high security conditions. It can be 

observed that our method generally outperforms all other 

methods in both verification and identification scenarios, which 

has again validated the effectiveness of our proposed method. 

In summary, we demonstrate the effectiveness of our 

proposed recognition framework on 3D finger knuckle, 3D 

palmprint and 3D fingerprint, which indicates the good 

generalizability on various 3D biometrics problem.  

V. CONCLUSIONS AND FUTURE WORK 

Despite deep learning approaches have been widely 

developed in object recognition, the direct applications from 

such approaches do not outperform specialized hand-crafted 

feature description approaches for the problem addressed in this 

paper. Moreover, such approaches have to address challenges 

associated with biometrics, e.g. availability of very limited 

training data, large intra-class or train-test sample variations as 

observed for the real applications. This paper develops a new 

neural network based approach for the contactless 3D finger 

knuckle identification. Our network is compact to avoid 

unnecessary overfitting, simultaneously collaborates multi-

scales feature which are informative for personal identification 

and incorporates an efficient alignment scheme with a fully 

convolutional architecture to accommodate involuntary finger 

variations during the contactless imaging. Our reproducible 

[34] experimental results using publicly available databases 

including contactless 3D finger knuckle, 3D palmprint, 3D 

fingerprint and 2D finger knuckle, not only demonstrate the 

effectiveness but also the generalizability of our proposed 

approach.  

Since it is the first work to develop a neural network 

approach for 3D finger knuckle recognition, several limitations 

with this paper has to be addressed in the future extension of 

this work. The key limitation of the proposed approach lies in 

its relatively more computational time when compared to other 

state-of-the-arts methods because of the additional alignment 

scheme introduced. However, the need of such alignment can 

be justified by its effectiveness to significantly improve the 

recognition performance. Secondly, our network is fine-tuned 

from ResNet, mainly because of the lack of large amount of 

training data. The need for pre-trained models can be mitigated 

by acquiring more diversified 3D finger knuckle images in the 

future. Meanwhile, our trained model is also provided along 

with this paper [34] for further research development. Thirdly, 

similar to object recognition frameworks, e.g. ResNet and VGG, 

and a periocular recognition research [48], the last classification 

layer limits the application on open-set identification problems. 

The current closed-set solutions enable the embedding of 

registered subjects’ information into model parameters and 

therefore provide efficient closed-set identification. Our 

proposed approach can be deployed in a small-scale 

environment like offices, houses, or personal devices, where the 

training is very easy. Open-set solutions will be considered in 

the future work with the investigation of one-shot learning 

using Siamese or triplet architectures. Fourthly, the current 

approach considered segmentation and recognition as two 

separate problems. It is also interesting to simplify the 

networks, e.g. reusing some deep features from segmentation, 

or to develop an end-to-end network architecture for real world 

applications in the future work. Despite the above challenges, 

this paper provides an important foundation for further research 

and investigation to advance such technologies. 
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