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 Towards More Accurate Matching of Contactless Palmprint                         

Images under Less Constrained Environments 

 

Abstract: Contactless personal identification using biometrics characteristics brings multifaceted 

advantages with improved hygiene, user security and the convenience. Such imaging also 

generates deformation-free palmprint images which can lead to higher matching accuracy as the 

ground truth information is better preserved as compared to those from contact-based imaging. 

Advancement of palmprint identification technologies for new domains requires research using 

larger palmprint databases that are acquired from more realistic population, under contactless, 

ambient, indoor and outdoor environments. This paper presents such a new contactless palmprint 

database acquired from 600 different subjects, which is the largest to-date and is also made 

available in public domain. Unlike contactless fingerprints, contactless palmprint images often 

illustrate pose deformations along the optical axis of camera, which also degrades the matching 

accuracy. This paper also introduces a new approach for matching contactless palmprint images 

using more accurate deformation alignment and matching. The experimental results are validated 

on three publicly available contactless palmprint databases. Comparative experimental results 

presented in this paper indicate consistently outperforming results over competing methods in the 

literature and validate the effectiveness of the investigated approach. These results also serve as 

baseline performance to advance much needed further research using most challenging and 

largest database introduced from this work.  

 

1. Introduction 

Automated personal identification using physiological patterns and characteristics has been widely 

used in the civilian and law enforcement applications. Among a variety of popular biometrics 

identifiers, contactless hand-based biometrics identification offers higher user convenience due to 

ease in the presentation. Such hand-based user identification can be achieved with a range of hand-

based biometric modalities, e.g., fingerprint, finger knuckle, palmprint or palm vein. The choice 

of a specific biometric modality is largely influenced by the nature of business application and the 

level of security expected for the application. Identification of suspects by matching their leftover 
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or the latent palmprint impressions with the contact-based impressions have been widely employed 

in the law enforcement departments around the world. Success of such applications has motivated 

the researchers to investigate palmprint identification using digital images and under contactless 

imaging setups.  

Palmprint matching system is a typical pattern recognition system and relies on unique 

palm surface features that are to be robustly matched for achieving higher accuracy. The palmprint 

features historically employed for matching the latent and/or inked palmprint impressions can be 

divided into two categories, i.e., the palmar flexion creases and palmar fiction ridges.  The palmer 

fiction ridges from the raised portion of epidermis are same or similar to as those observed in 

typical fingerprint images and reveal variety of minutiae features. It is however difficult to observe 

palmar fiction ridges in palmprint images which have smaller resolution, e.g. less than 100 dpi 

images used in [3]-[15], [18]-[21]. In such images, palmar flexion creases and lines are the major 

source of information. Among three groups of flexion creases, the major flexion creases are widely 

considered to be the largest. The spatial arrangement of major flexion creases, i.e., distal transverse 

crease, proximal transverse crease, and radial transverse crease is identified in palmistry as the 

heart-line, head-line and life-line respectively. However, the uniqueness of such flexion creases is 

not sufficient to establish the identity and therefore these have been used for the alignment of 

palmprint images [1]. The digital palmprint images often reveal finger joint locations which are 

used as the reference points for the alignment of two palmprint images.  

1.1 Related Work 

Completely automated matching of palmprint images, acquired using the digital imaging setups, 

has received lot of attention from the researchers and a range of palmprint matchers have been 

introduced the literature. Such images typically reveal curved palmprint lines, creases and scars of 

varying thickness, instead of flexion ridges, and therefore a range of textured matching methods 

[3], [8], [10]-[13], [18]-[21] have been investigated to improve accuracy in matching these images. 

Such methods firstly generate well-aligned region of interest images by using finger joint locations 
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as the reference points. This region of interest image is used to extract local palmprint features and 

matching is achieved using the best Hamming distance score generated from various translations 

or shifting of binarized templates. Such binalized representations are referred to as PalmCode and 

was generated from phase information using the Gabor filters. The dominant orientation of palm 

lines or creases at every pixel locations can ensure offer robustness in matching and such approach 

appears in [8]. The use of Gabor filters to recover palmprint features can be computationally 

complex as multiple real number multiplications are required at every pixels and therefore local 

Radon transform based approach to recover dominant palm line/crease orientation was introduced 

in [20] with outperforming results over the earlier methods. The success of this method in 

achieving superior matching accuracy is predominantly due to the local matching strategy, which 

was at the top of huge computational simplicity gained from the summation of local region pixels 

in computing features or the dominant orientations. Another successful approach for palmprint 

matching using binarized templates appears in [10] which incorporates derivative of Gaussian 

filters [21] to extract local features and the experimental results confirm superiority of this method 

in accurately matching palmprint images. Reference [35] for the first time provided theoretical 

analysis of such earlier works and develops fast-CompCode, fast-RLOC which have shown to offer 

significantly improved speed and the matching accuracy on multiple palmprint databases. A more 

simplified and more recent approach for the palmprint matching using the ordinal based spatial 

measurements appears in [9]. This approach models 3D palm surface as Lambertian surface and 

uses specialized masks for projective ordinal measurement that can reveal nature of the 3D palm 

surface from a single 2D palm image. A range of experimental results on most publicly available 

databases indicates that its best performing spatial domain methods for the palmprint matching.   

A range of promising methods for matching the palmprint images using their frequency 

domain representations have also been developed in the literature. Reference [18] details such an 

approach that generates match score between two normalized palmprint images by computing 

normalized cross-correlation between the 2D FFT coefficients of the matched palmprint images. 



4 

 

In order to minimize the adverse influence of noise in matching such palmprints, authors only 

consider the FFT coefficients between predetermined threshold (band limiting) limits and such 

approach has shown its success in further improving the matching accuracy. Usage of discrete 

cosine transform coefficients extracted from selected local palmprint regions to accurately and 

more efficiently match contactless palmprint images is detailed in [3]. One of the most popular 

methods for matching two images with deformations and scale changes is to incorporate scale 

invariant feature transform [27]. Some of the promising efforts in the literature [13]-[14] therefore 

generate palmprint matching scores based on the number of such key points in two images. Earlier 

studies in the literature on contactless palmprint identification [32] have argued that the matching 

accuracy for less-constrained palmprint images can be enhanced by improving the registration 

accuracy among such images. The phase-based correspondence matching can offer better 

localization of corresponding points in two palmprint images under deformations and such 

approaches has shown [7] to offer outperforming results for the contactless palmprint matching. 

The use of contactless palmprint images for personal identification has attracted attention 

of many researchers and now there are few contactless palmprint databases available in the public 

domain. The IITD touchless palmprint dataset [29] from 230 different subjects, GPDS contactless 

hands database [17] from 100 different subjects and KTU contactless palmprint database [4] from 

145 different subjects. Reference [30] introduces contactless palmprint databases acquired from 

301 different subjects and is believed to be the largest database in the public domain. More recently 

reference [37] introduces a contactless palmprint images database from 300 different subjects and 

provide encouraging results on the potential from this biometric. However, this dataset was 

acquired under indoor imaging environment, using a specially designed imaging setup, and 

therefore the imaging variations are small. Despite wide popularity of this database over last ten 

years, this database lacks images acquired under outdoor environment, with more realistic palms 

from the general public or by using a typical mobile camera. The development of contactless 

palmprint applications for real deployments requires database from larger subjects, acquired under 
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outdoor and indoor imaging environment but without any special devices or illuminations and 

should include images from palms under presented under real deployment scenarios that can have 

dirt, write-ups or cosmetics.     

1.2 This Work 

A review of earlier work for the contactless palmprint recognition indicates great potential from 

this biometric for a range of e-security applications. Contactless palmprint recognition based on 

2D images generally requires least expensive and more convenient image acquisition process 

which can be incorporated in a wide range of consumer devices and applications. Despite 

consistent improvement in the accuracy of palmprint matching algorithms during the last decade, 

further efforts are required to develop more accurate matching algorithms that can realize full 

potential from this biometric, particularly for matching palmprint images acquired from large 

number of subjects under real imaging environments. The contributions from this paper can now 

be summarized as in the following. 

       There are several publicly available palmprint databases in the literature for the researchers 

and much of the research advancements in this area can be attributed to the availability of these 

databases. However, the applications of palmprint identification technologies in new domains 

requires more realistic, contactless and larger databases that are acquired in outdoor environment. 

This paper presents a new contactless palmprint database towards such goal. This publicly 

available database has been acquired from 600 different subjects, which is the largest to-date, 

under contactless and more realistic environments. Unlike other public palmprint image database 

available for the researchers, this database provides images from non-office subjects (e.g. hands 

from manual laborers, injury, cosmetics, etc.). Most importantly, this database also provides palm 

images acquired from very long interval (15+ years) that will enable further study on the temporal 

stability of palmprint biometrics for civilian and forensic applications. Additionally, this paper 

also details the development of more promising and accurate approach for the contactless 

palmprint matching. This new approach is developed by addressing limitations of earlier palmprint 
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matching methods in computing local pixel-level transformations for frequent deformations 

observed in palmprint images and by incorporating spatial-domain but noise tolerant local 

matching scheme for corresponding regions in the two palmprint images. This entire approach is 

systematically detailed in section 2 and has been evaluated on three different publicly available 

contactless palmprint images databases. Experimental results presented in section 3 indicate 

consistently outperforming results over other competing methods in the literature for matching 

contactless palmprint images and therefore validate the usefulness of the contactless palmprint 

matching approach introduced in section 2. The key objective of presenting experimental results 

from most competing methods, including best performing one from this paper, is to provide a 

baseline for largest contactless palmprint database to enable much needed further work in this area.  

        The rest of this paper is organized as follows. Section 2 systematically presents a more 

effective approach for the contactless palmprint image alignment and matching. The details on the 

new contactless palmprint database, along with other databases employed in the experiments, 

appears in section 3. Comparative experimental results from the most competing methods, using 

respective databases, are also are presented in section 3. Section 4 provides a critical discussion 

on the database and the method introduced in section 2. This section also provides palmprint image 

samples from the same subjects/hands acquired after an interval of 15+ years. Finally, the key 

conclusions from this work are summarized in section 4. 

2. Contactless Palmprint Image Alignment and Matching 

Contactless palmprint images are expected to present higher intra-class variations, as compared 

with the contact-based palmprint images, largely due to the nature of contactless imaging. 

Therefore, one of the key challenge for improving the matching accuracy from contactless 

palmprint images lies in the accurate alignment of region of interest images. Undesirable small 

rotations of palm (yaw, pitch, roll) with respect to the optical axis of the camera, during the 

contactless imaging, is the key reason for the observed deformations in the region of interest 

images which are generated after the segmentation process. Such segmentation [25] of region of 
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interest (ROI) images should ensure that same palm region is recovered in such a manner that the 

pose of such regions is always aligned in the same direction as much possible. Therefore, key focus 

of this work was to ensure best possible alignment of the local regions, i.e., image blocks, as this 

can also address frequently observed deformations in the contactless palmprint images. Given two 

contactless palmprint ROI images, we wish to know if they belong to the same hand or not. The 

algorithm to match such ROI images can be broadly divided into three steps, (i) identifying the 

grid map between two image (explained in section 2.1), (ii) extracting local blocks around each of 

the selected grid points (explained in section 2.2), and (iii) comparing the corresponding blocks 

from the two images to generate the matching score (explained in section 2.3).   

2.1 Localizing and Mapping Grid Points 

Let the image 𝑓 be the reference palmprint ROI image and the image 𝑔 be the presented or query 

palmprint ROI image to be matched.   These  images   are  expected to be of the same size as they  
 

 

 
                                                         (a)                                      (b) 

 
                         (c)     (d)  

Figure 1:  Sample palmprint images with respective grid-maps: the pair (a)-(b) illustrates the grid-map for same    

                 subject (genuine match) while paid (c)-(d) illustrates the grid-map for different subject (imposter match). 
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represent region of interest extracted after the image normalization process. The reference image 

is firstly marked with 𝑛 × 𝑛 grid using equally spaced points. For example when the normalized 

ROI images are of 128 × 128 pixels (as for many experiments in this paper), if we use 𝑛 = 13 

with a spacing of 6 pixels between the neighboring points, we can obtain the grid points as shown 

in figure 1 (a). In such reference image, the first point is positioned at (28, 28) and the last point 

is at (100,100).  

         Assuming finite number of grid points in the reference image f, each of these grid points 𝒑0 

on the reference image 𝑓 are mapped to point 𝒒0 on the query image 𝑔. This strategy for locating 

corresponding grid points between any two images is detailed in [26] and is incorporated for our 

problem by using a three-layer image pyramid for the mapping. The following is the algorithm for 

obtaining 𝒒0 given grid point 𝒑0. 

 

 
 

Figure 2: Block diagram representing the mapping process for point po in image f to the point qo in image g. 



9 

 

           

(a) Given the images in layer 𝑙 − 1 , the 𝑙𝑡ℎ  layer images are obtained as follows: 

           𝑓𝑙(𝑖, 𝑗) =
1

4
∑ ∑ 𝑓𝑙−1(2𝑖 + 𝑘1, 2𝑗 + 𝑘2)1

𝑘2=0
1
𝑘1=0                                                                    (1) 

                𝑔𝑙(𝑖, 𝑗) =
1

4
∑ ∑ 𝑔𝑙−1(2𝑖 + 𝑘1, 2𝑗 + 𝑘2)1

𝑘2=0
1
𝑘1=0   (2) 

     where from 𝑓0 (= 𝑓) and 𝑔0 (= 𝑔), we can recover 𝑓1, 𝑓2 and 𝑔1, 𝑔2. 

(b) The   grid   points 𝒑1 in 𝑓1 and 𝒑2 in 𝑓2 corresponding  to  the  given  point 𝒑0 in 𝑓0  

are obtained as follows: 

                           𝒑1 = ⌊
1

2
𝒑0⌋                                                                                              (3) 

                           𝒑2 = ⌊
1

2
𝒑1⌋          (4) 

where ⌊𝑥⌋ represents the floor operation i.e. rounding the number 𝑥 to the nearest integer 

towards negative infinity. 

(c) Next step is to estimate the extent of displacement between the images 𝑓2 and 𝑔2. This 

is achieved by computing the displacement vector be 𝒅2. Here we make assumption 

that the layer 𝑙 = 2 is coarse enough such that the estimated  𝒅2 is accurate, i.e., 𝒒2 =

 𝒑2 + 𝒅2. 

(d) For  𝑙 = 1 , let the approximate value of  𝒒𝑙  be represented by �̃�𝑙  and this can be 

computed using  �̃�𝑙 = 2𝒒𝑙+1 as shown in figure 2. The next step is to extract local 

blocks of size 𝑊 × 𝑊  pixels around the points 𝒑𝑙  and �̃�𝑙  in the images 𝑓𝑙 

and 𝑔𝑙.These blocks can be represented as 𝑓𝑏
𝑙 and 𝑔𝑏

𝑙 . The extent of the block size is 

empirically determined and fixed as 𝑊 = 39 for all the experiments in this paper. 

(e) Again estimate the displacement between the blocks 𝑓𝑏
𝑙 and 𝑔𝑏

𝑙 . Let this displacement 

be represented as 𝒅𝑙. The exact location of 𝒒𝑙 can be estimated as follows:  

                                                 𝒒𝑙 = �̃�𝑙 + 𝒅𝑙                                                                                   (5) 

(f) Repeat above steps in (d) and (e) for 𝑙 = 0, to compute  𝒒0 (figure 2). 
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Above steps are repeated for the every grid point and thus the grid-map for the images 𝑓 and 𝑔 is 

obtained. The images in figure 1 illustrates examples of grid-maps corresponding to a genuine 

match and an imposter match. 

2.2 Estimating Local Palmprint Translations 

The translation between two palmprint sub-images can be computed from the Fourier shift 

property [36] which states that the translational changes between two images are transformed in 

the spectral domain as their linear phase differences. In order to accurately estimate such 

translations for the steps shown in figure 2, the method incorporated in [7] was further modified. 

Given two palmprint ROI images 𝑓(𝑛1, 𝑛2) and 𝑔(𝑛1, 𝑛2), the translation error between them is 

estimated as follows: 

(a) Let the dimensions of these images be  𝑁1 × 𝑁2  while 𝑀1 =
𝑁1−1

2
and  𝑀2 =

𝑁2−1

2
.  The 

index ranges of pixels are assumed to be 𝑛1 = −𝑀1, … , 𝑀1 and 𝑛2 = −𝑀2, … , 𝑀2 for the 

mathematical simplicity. 

 

 

 

 

 

 

 

(b) A popular method for computing translation between two images is to use phase correlation 

that relies on the translation property of 2D FFT, i.e. shift theorem [22]. This 2D FFT 

operation required to estimate such translation between two images assumes that 2D image 

data is periodic. However for our problem the 2D Discrete Fourier Transforms (DFT) 

operation is only applied to a small region of interest image which often results in edge 

artifacts at the border. The adverse effect of such discontinuities is reduced by employing 

Figure 3: Hanning window function employed to reduce edge artifacts from local palmprint regions. 
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a 2D window function. This function h(n1, n2) is applied (Figure 3-4) to both of the 

palmprint images 𝑓 and 𝑔 and can be defined as in the following: 

                                  ℎ(𝑛1, 𝑛2) =
1+cos(

𝜋𝑛1
𝑀1

)

2
×

1+cos(
𝜋𝑛2
𝑀2

)

2
                                                (6) 

where 𝑛1 = −𝑀1, … , 𝑀1  and  𝑛2 = −𝑀2, … , 𝑀2 . The resulting images following this 

operation is represented as 𝑓ℎ and 𝑔ℎ. 

(c) The images 𝑓ℎ and 𝑔ℎ from above operations are used to compute 2D FFT. These can be 

represented as 𝐹(𝑘1, 𝑘2) and 𝐺(𝑘1, 𝑘2), and respectively obtained as follows: 

𝐹(𝑘1, 𝑘2) = ∑ ∑ 𝑓ℎ(𝑛1, 𝑛2)𝑊𝑁1

𝑘1𝑛1𝑊𝑁2

𝑘2𝑛2𝑀2
𝑛2=−𝑀2

𝑀1
𝑛1=−𝑀1

                                (7) 

𝐺(𝑘1, 𝑘2) = ∑ ∑ 𝑔ℎ(𝑛1, 𝑛2)𝑊𝑁1

𝑘1𝑛1𝑊𝑁2

𝑘2𝑛2𝑀2
𝑛2=−𝑀2

𝑀1
𝑛1=−𝑀1

                                      (8) 

where 𝑘1 = −𝑀1, … , 𝑀1, 𝑘2 = −𝑀2, … , 𝑀2, 𝑊𝑁1
= 𝑒

−𝑗
2𝜋

𝑁1, 𝑊𝑁2
= 𝑒

−𝑗
2𝜋

𝑁2.  

(d) Translation between two palmprint images (from the same subject) can be related to their 

phase differences in their frequency domain representations.  Therefore the normalized 

cross-phase spectrum �̂�(𝑘1, 𝑘2)  between two ROI images is computed next and is 

generated as in the following:  

  �̂�(𝑘1, 𝑘2) =
𝐹(𝑘1,𝑘2) 𝐺(𝑘1,𝑘2) 

|𝐹(𝑘1,𝑘2) 𝐺(𝑘1,𝑘2)| 
         (9) 

where 𝐺(𝑘1, 𝑘2) is the complex conjugate of 𝐺(𝑘1, 𝑘2).  

(e) Low-spatial frequency components in palmprint images, e.g. major palm lines, are 

expected to be more stable as compared with the high spatial frequency components 

representing minor creases and noise. Therefore the accuracy in the estimation of 

translation can be improved by excluding high spatial frequency components in �̂�(𝑘1, 𝑘2) 

by using a low-pass filter 𝐿(𝑘1, 𝑘2) which can be defined as follows: 

𝐿(𝑘1, 𝑘2)  = {
1, |𝑘1| ≤ 𝐶1, |𝑘2| ≤ 𝐶2

0, otherwise
                                                             (10) 
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where 𝐶1, 𝐶2  are integers that represent cut-off frequency with respective constraints 

0 ≤ 𝐶1 ≤ 𝑀1 and 0 ≤ 𝐶2 ≤ 𝑀2. The experiments detailed in this paper used 𝐶1 = ⌈
𝑀1

2
⌉ and 

𝐶 = ⌈
𝑀2

2
⌉. 

(f) Let 𝑅�̂�(𝑘1, 𝑘2) =  �̂�(𝑘1, 𝑘2) × 𝐿(𝑘1, 𝑘2) represent output obtained from low-pass filtering 

operation using (10). The band-limited normalized cross-phase spectrum 𝑅�̂�(𝑘1, 𝑘2) is now 

zero-padded to obtain �̂�𝐿
𝑢(𝑘1, 𝑘2).  The size of 𝑅�̂�(𝑘1, 𝑘2)  is  𝐶1 × 𝐶2  and after zero-

padding, the size of �̂�𝐿
𝑢(𝑘1, 𝑘2) is enhanced to 𝑢𝑁1 × 𝑢𝑁2 , where 𝑢 is the up-sampling 

factor and is empirically fixed to 𝑢 = 4 for all the experiments in this paper. 

(g) The inverse discrete Fourier transform of �̂�𝐿
𝑢(𝑘1, 𝑘2) represents phase differences in the 

frequency domain representations. This phase only correlation measure �̂�(𝑛1, 𝑛2)  is 

computed as follows: 

                    �̂�(𝑛1, 𝑛2) =
1

𝑁1𝑁2
∑ ∑ �̂�𝐿

𝑢(𝑘1, 𝑘2)𝑊𝑁1

−𝑘1𝑛1𝑊𝑁2

−𝑘2𝑛2𝑀2
𝑘2=−𝑀2

𝑀1
𝑘1=−𝑀1

                  (11) 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Block diagram for estimaing translation t between the two palmprint images f and g. 
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(h) The position of peak (maximum value) in (11) is located to estimate the extent of 

translational error between two normalized (ROI) images. Let this location be represented 

as (𝑟1, 𝑟2), where 𝑟1 is the row number for the maximum value in the matrix �̂� and 𝑟2 is the 

corresponding column number. Then the translation error (𝜏𝑥 , 𝜏𝑦 ) between the images 

𝑓(𝑛1, 𝑛2) and 𝑔(𝑛1, 𝑛2) can be computed as follows: 

𝜏𝑥 =
𝑁1

2
−

(𝑟1−1)

𝑢
,    𝜏𝑦 =

𝑁2

2
−

(𝑟2−1)

𝑢
                                           (12) 

The zero-padding operation in step (e) to suppress high frequency components can be avoided if a 

function fitting approach is employed to locate the translation error. The cross-power spectrum 

between two such spatially translated images has a particular structure, which can be exploited for 

this purpose. Foroosh et al. [33] have shown that the phase correlation between two images leads 

to downsampled 2-D Dirichlet kernel which can be very closely approximated by a 2-D sinc 

function. They have also provided an analytical expression for sub-pixel shift estimation, under 

low-pass filtering of cross-phase spectrum, which can be used to simplify  �̂�(𝑛1, 𝑛2) between two 

palmprint images as follows: 

                    �̂�(𝑛1, 𝑛2) ≅
1

𝑆 𝑁1𝑁2

sin{
𝐷1
𝑁1

𝜋(𝑛1+𝜏𝑥)}

sin{
𝜋

𝑁1
(𝑛1+𝜏𝑥)}

sin{
𝐷2
𝑁2

𝜋(𝑛2+𝜏𝑦)}

sin{
𝜋

𝑁2
(𝑛2+𝜏𝑦)}

               (13) 

where S is some positive constant 𝑆 ≥ 1 , 𝐷1 = 2𝐶1 + 1  and 𝐷2 = 2𝐶2 + 1 . The data array 

�̂�(𝑛1, 𝑛2) obtained from the two images 𝑓(𝑛1, 𝑛2) and 𝑔(𝑛1, 𝑛2) is fitted to the above function and 

the required parameters 𝜏1 and 𝜏2 are estimated. For this purpose, a local region (say 5 × 5 data 

points) around the maximum peak in the phase only correlation array is adequate for the fitting 

and employed for the experiments in this paper.   

2.3 Generating Match Scores 

Once the corresponding grid maps for a pair of palmprint images are located, a block of size 

𝑊𝑏 × 𝑊𝑏 pixels is automatically extracted around each of the grid point in both the ROI images. 

Matching such image blocks using spectral domain features can degrade the performance as the 

effect of noise, aliasing and border effects are mostly present in the spectrum (2D DFT) of these 
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images.  The match score for each of the 𝑛 × 𝑛 corresponding image block pairs, say 𝑓𝑏 and 𝑔𝑏 , is 

therefore computed in spatial domain. This match score between such corresponding blocks is 

computed using their grey level similarity. A spatial filter is employed to perform convolution with 

every block 𝑓𝑏 and 𝑔𝑏. This spatial filter 𝑤(𝑥, 𝑦) [24] can be defined as follows:   

𝑤(𝑥, 𝑦) = {

1            𝑖𝑓 𝑎𝑏𝑠(𝑥) < 𝑎𝑏𝑠(𝑦)

−1          𝑖𝑓 𝑎𝑏𝑠(𝑥) > 𝑎𝑏𝑠(𝑦) 

0            𝑖𝑓 𝑎𝑏𝑠(𝑥) = 𝑎𝑏𝑠(𝑦)
             (14) 

where 𝑥, 𝑦  represents spatial locations in the filter with 𝑥, 𝑦 ∈ [−𝑊𝑓, 𝑊𝑓]  and 𝑎𝑏𝑠(∙)  is the 

absolute operation. The binarized features for the image block 𝑓𝑏  (or 𝑔𝑏) is computed as follows:  

                        𝐹𝑏(𝑥, 𝑦) = {
1      𝑖𝑓 𝑓𝑏(𝑥, 𝑦) ∗ 𝑤(𝑥, 𝑦) > 0 
0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              (15) 

where ∗ represents pixel-wise convolution operation. In order to minimize the influence from the 

undesirable noise in the binarized templates for each of the blocks, these templates are subjected 

to morphological operations similar to as in [9]. Therefore morphological opening and closing 

operations are performed on each of the binarized feature maps from (15) to generate two more 

feature maps, i.e. 𝐹𝑏
𝑜, 𝐹𝑏

𝑐 and 𝐺𝑏
𝑜 and 𝐺𝑏

𝑐 respectively for image block 𝑓𝑏 and 𝑔𝑏. The combination 

of Hamming distances between these templates is used to compute match scores between image 

blocks. The consolidated match score 𝑠𝑓,𝑔 is computed using the average of (n  n) match scores 

between the corresponding image blocks in two palmprint ROI image f and g as follows: 

 

𝑠𝑓,𝑔 =
1

𝑛 × 𝑛
{

𝑐1

(𝑊𝑏 − 𝑞1)(𝑊𝑏 − 𝑝1)
∑ ∑ 𝑋𝑂𝑅(𝐹𝑏 , 𝐺𝑏)

𝑊𝑏−𝑞1

𝑥=1

𝑊𝑏−𝑝1

𝑦=1

+
𝑐2

(𝑊𝑏 − 𝑞2)(𝑊𝑏 − 𝑝2)
∑ ∑ 𝑋𝑂𝑅(𝐹𝑏

𝑜 , 𝐺𝑏
𝑜)

𝑊𝑏−𝑞1

𝑥=1

𝑊𝑏−𝑝1

𝑦=1

+
𝑐3

(𝑊𝑏 − 𝑞3)(𝑊𝑏 − 𝑝3)
∑ ∑ 𝑋𝑂𝑅(𝐹𝑏

𝑐, 𝐺𝑏
𝑐)

𝑊𝑏−𝑞1

𝑥=1

+

𝑊𝑏−𝑝1

𝑦=1

} 

(16) 
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where 𝑋𝑂𝑅(𝐻, 𝐸)  represents the Boolean XOR operator that computes Hamming distance 

between two binarized template, e.g. between H and E, n  n is the number of grid points, 𝑊𝑏  

𝑊𝑏 is the spatial size of block, while 𝑐1, 𝑐2, 𝑐3 represents respective weightage for the denoised 

templates. In order to accommodate local deformations between the corresponding grid points, 

respective binarized templates are translated in the horizontal (𝑞1) and vertical direction (𝑝1) to 

perform multiple matches. These translations are performed for four directions (left, right, up, 

down) in the steps of two pixels. The best or the smallest of Hamming distance among such 

translations, e.g., achieved at (𝑝1, 𝑞1), and is used as the final similarity score from the respective 

template. All the experiments in this paper employed 𝑛 = 13, 𝑊𝑓=11, 𝑐1=3, 𝑐2= 𝑐3 = 1, 𝑊𝑏=39 

and these parameters were empirically fixed. The consolidated match score 𝑠𝑓,𝑔 between two 

palmprint ROI images is used assign the matched pairs to one of the two classes, i.e., genuine or 

impostor.  

3. Experiments and Results 

Several experiments were performed using the publicly available contactless palmprint databases 

to ascertain the effectiveness of method detailed in previous section. In this section, the publicly 

available contactless palmprint databases employed for the performance evaluation are firstly  

 

 

 

 

 

 

 

 

 Figure 5: Image samples from publicly available contactless palmprint databases used in experiments; (a) hand 

image and respective segmented palmprint image from IITD palmprint database, (b) hand image samples from 

CASIA palmprint database along with respective segmented palmprint images. 
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described. We then introduce a new contactless palmprint database which is now made publicly 

available [23]. The experimental results are provided along with the details for the respective 

database. 

3.1  IITD Touchless Palmprint Database 

The IITD touchless palmprint database [30] provides contactless palmprint images from 

right and left hands of 230 subjects. This database also provides 150  150 pixels 

segmented palmprint images from each of the hands. There are five samples for each of 

the right and left hand palmprint images in the database. Figure 5 illustrates samples of 

palmprint images, along with their automatically segmented palmprint images, from this 

database. Similar to as in [9], all the 1150 palmprint images from the right hand were used 

in the experiments for the performance evaluation.  Therefore a total of 2300 genuine and 

1,316,750 impostor match scores were generated for respective experiments using the 

segmented palmprint images provided from this database. The receiver operating 

characteristics (ROC) using IITD touchless palmprint database is shown in figure 6. This 

figure also illustrates comparative performance using other competing methods reported in 

earlier work.  

          

 

 

 

 

 

 

 

 

 

Figure 6: Experimental results from Contactless IITD palmprint database using ROC. 
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       The palmprint matching method detailed in reference [9] has shown to achieve best 

performing results over the other methods (like CompCode [8], Ordinal [10], RLOC [20]) 

on publicly available palmprint databases and therefore this method was appropriately used 

as the baseline for the performance evaluation. Similarly, the method introduced in [7], 

using correspondence point matching is the most promising frequency domain method for 

matching contactless palmprint images (e.g. for CASIA palmprint database) and has also 

shown outperforming results over many other methods in the literature. Therefore, this 

method was also judiciously selected as another baseline to ascertain the performance. It 

may be noted that matching two palmprint images using [7] with the method of 

correspondence points locations can generate different scores when image A is matched 

with image B as compared to the case when image B is matched with image A (for 

example). Therefore both of these combinations, along with the best of match scores, 

generated from matching A with B and B with A, were also investigated for any possible 

performance improvement. It can be observed from the experimental results in figure 6 that 

performance from such approach is poor than from BLPOC peak score. The performance 

from BLPOC location based approach is poor than those from BLPOC location peak score 

based approach. Therefore the BLPOC peak score approach was judiciously selected as a 

baseline for further comparative evaluation in this paper. Table 1 presents the equal error 

rate (EER)  using  different   methods  used   for  the initial performance evaluation. These  

 

 

 

 

 

 

Method EER 

This Paper 1.17 

BLPOC Peak score [7] 1.22 

BLPOC Location based [7] 1.69 

BLPOC Location based with 

min (A-B and B-A) 
1.55 

DoN-TPAMI [9] 3.02 

Table 1: Comparative EER for Contactless Palmprint Matching using IITD Database. 

Database 
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experimental results in Figure 6 and Table 1 indicates that the method detailed in section 2 

achieves superior performance.   

3,2 CASIA Palmprint Database 

The CASIA palmprint database [31] is another contactless palmprint database with 5239 

palmprint images from 301 individuals which is the largest public dataset used in earlier 

publications. It is the largest publicly available database in terms of the number of 

individuals. As also explained in [9], the individual “101” in this database is the same as 

the individual “19” and therefore these two classes were merged into one class. The 11th 

image from the left hand of individual “270” is also misplaced to the right hand. The 3rd 

image from left hand of individual “76” is a distorted sample with very poor image quality. 

Similar to as in [9], these two samples can also be automatically detected by the palmprint 

segmentation program. These two images were eliminated in our experiment. Therefore 

the experiments using this database employed 5237 images from 600 different palms. All 

the images were automatically normalized and segmented using simple image processing 

operations. These segmented or resulting ROI images were scaled to 128  128 pixels and  

 

 

 

 

 

 

 

 

 

 

             Figure 7: Experimental results from CASIA palmprint database using ROC. 
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used for generating the match scores. The total number of genuine match scores were 

20,567 and the total number of impostor match scores were 13,689,899. The EER for the 

method in [9], using the best performing method in [7] and the method detailed in section 

2 is 0.529%, 0.402% and 0.126% respectively. The respective ROC for different 

experiments on this dataset is shown in figure 7. These experimental results also indicate 

outperforming results using the method detailed in section 2. 

3.3   PolyU-IITD Contactless Palmprint Database Version 3.0 

This new palmprint database has been acquired over several years from 600 different 

subjects which is largest to-date and each subject in this database provided his/her left and 

right hand images. A handheld digital camera was used to acquire the images while 

volunteers presented their hands for the imaging with different hand poses. The images in 

this database therefore also have high scale variations and are acquired from subjects as 

small as 5 years old to 72 years old. Almost 200 subject’s images in this database are from 

the Chinese while the majority of subjects images in this database are from Indians. It may 

be noted that IITD database or CASIA database has all subject’s images from the same 

ethnicity (almost all images in CASIA database are from Chinese ethnicity while all 

subjects in IITD database are Indians). The images were acquired using more than one two 

digital cameras and the minimum size of the acquired image in this database is 1280  960 

pixels while the maximum size is 4352  3264 pixels. More details regarding the images 

(e,g, camera used) can be read from the header information available with respective 

images. All the images were acquired under indoor or the outdoor environment without 

any external or fixed illumination. The imaging under such ambient illumination are 

representative of images expected from a typical contactless palmprint identification 

application using mobile devices. One of the unique features of this database is that it 

includes large number of images acquired from non-office workers or images acquired 

from manual and countryside labourers, children in primary and secondary schools in rural  
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areas, and images from hands with special abilities (e.g. six fingers) or with the injuries. In 

summary, the new database introduced in this paper not only has largest subject population 

as compared to any other existing palmprint database, but it also includes palmprint images 

from subjects under different cultural background and occupations which are acquired 

under contactless and ambient illumination conditions. Therefore this database is expected 

Figure 8: Sample images from hands of different subjects in the new contactless palmprint database: first row depicts 

image samples from subjects with palm injury or with special capabilities, second row depicts image samples from 

manual or agricultural workers in country side, third row depicts samples from subjects with handwritten text (as an 

aid for memory) and the last row depicts samples from subjects with cosmetics (a popular cultural practice among the 

rural and some urban population). 
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to present a notable addition for the advancement of palmprint research for contactless 

applications. Figure 8 illustrates typical palmprint image samples from this database. 

     All the palmprint images in this database were automatically segmented and the 

segmentation is achieved using the method similar to as detailed in [25]. The contactless 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

palmprint images are expected to have significantly higher scale and pose variations. Therefore, 

respective palmprint segmentation approach should ensure that intra-class variations in the 

segmented ROI images are minimized. The palmprint region of interest is extracted relative to the 

scale of acquired image and the segmented image is then scaled to a fixed size image for the 

matching. This is achieved by firstly localizing the two key points, i.e., the joint between the index 

and middle finger, and the joint between the ring and little finger. The segmented palmprint region 

is therefore relative to the distance between these two key points and oriented along the normal 

Figure 9: Image samples from the new contactless palmprint database along with their respective segmented and  

                normalized region of interest images used in the experiments. 
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joining these points. Figure 9 presents some sample images from this database and its 

corresponding segmented images. This figure also illustrates intermediate step images with exact 

region of interest (the square in blue color on the images in middle row) which is segmented after 

the alignment of input image. This publicly available palmprint database also provides the 

segmented images, both in greyscale and color, which is expected advance much needed further 

research work in this area.  

 

 

 

 

 

 

 

 

 

(a)                                                                                        (b) 

Figure 10: Experimental results using (a) right hand images and (b) left hand images in the new    

                   palmprint database from 600 subjects.   

 The experiments using this new database were performed using all the ten images from each 

of the left and right hand palmprint images. Therefore, each of the experiments for the palmprint 

matching generated 6000 genuine scores and 3,594,000 impostor scores. The ROC’s 

corresponding to the respective experiments using right hand palmprint ROI images are illustrated 

in Figure 10(a). The EER from the method in [9], using the best performing method in [7] and the 

method detailed in section 2 is 0.331%, 0.46% and 0.45% respectively. Similarly, the ROC’s 

corresponding to the experiments using the left hand palmprint images from all the 600 subjects 

are illustrated in Figure 10(b). The EER from the method in [9], using the best performing method 

in [7] and the method detailed in section 2 is 0.33%, 0.50% and 0.52% respectively. The 
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experimental results illustrated in figure 10(a)-(b) consistently indicate superior performance from 

the proposed approach using new contactless palmprint database. 

4. Discussion 

One critics of the newly introduced database in previous section is that it is largely a single session 

database and two session database is expected to provide more reliable estimate on performance 

under deployment scenarios. However, it should be noted that in any two-session public palmprint  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

databases, e.g. [28], the separation of two sessions is quite small (6-8 weeks) which is not adequate 

to capture temporal variations as the palmprint patterns are known to be quite stable among adults. 

The temporal variations in the palmprints could be captured when the interval between sessions 

Figure 11: Sample left hand palmprint images in first row and corresponding palmprint image in the     

                   second row acquired after 15+ years. 
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are quite large (at least one year). The intra-class variations introduced during the contactless 

palmprint imaging are much higher than contact based imaging, or those due to the short-term 

temporal variations, and the objective of the new database is to evaluate inter-class identification 

capabilities from the palmprint modality from large number of subjects instead of presenting 

claims on the stability of palmprint patterns. However, probably for the first time in the palmprint 

literature, figure 11-12 presents set of palmprint images acquired after 15 years of interval from 

the subject. Although these images are presented in color, the color changes can also be due to the 

changes in camera and the ambient illumination during the imaging. A careful look at the 

corresponding lines and creases, between the images in the first row and the corresponding image 

in the second row, indicates that stability of these features even after such long interval. There are  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Sample right hand palmprint images in first row and corresponding palmprint image in the     

                   second row acquired after 15+ years. 
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many such long interval palmprint image sample pairs included in this new database to enable 

further study on the temporal variations in respective images acquired over the large interval. 

         The comparative experimental results from the two-session contactless palmprint images are 

illustrated in figure 13 using the ROC. These experiments were performed using twosession 

images from the database of 35 different subjects’ right hand palm images. All of these two-session 

palmprint images, along with respective segmented images used in the experiments, are publicly 

made available from this dataset. The first session for each subject had five images in these 

experiments and second session also utilized five images. Therefore 175 (5  35) genuine and 5950 

(5  35  34) impostor scores were generated for each of the experiments. Figure 14 presents match 

scores from two-session sample images acquired after 15+ year’s interval, along with the decision 

threshold corresponding to EER. The ROC from three comparative methods in figure 13 indicate 

that the method detailed in section 2 can achieve outperforming results. The equal error rate from 

the method in [9], using the best performing method in [7] and the method introduced in this paper 

is 0.2629, 0.2514 and 0.2051 respectively. Comparing the experimental results in figure 13 and 

those in figure 10, it can be observed that the method introduced in section 2 of this paper 

consistently offers outperforming results over the other baseline method. Despite such promising 

results, the performance achieved from two session experiments indicates high error rate and such  

 

 

 

 

 

 

 

 

 

Figure 13: Comparative experimental results from two-session challenging images dataset.  
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       (a) Match score: 1.1889                              (b) Match score: 0.872                          (c) Match score: 0.739 

 

 

 

degradation in matching accuracy can be attributed to the challenging images acquired during the 

second session imaging resulting from the long-interval imaging, cosmetics or the handwritten 

text. Availability of such challenging two-session dataset from this work in public domain can 

enable much needed further work to further improve the performance for real-world contactless 

palmprint identification applications.  

     Sub-pixel and pixel-level correspondence points should be locally matched, instead of globally, 

to maximally benefit from local matches that can be undermined in any global matching strategy. 

Therefore this paper utilized such matching strategy in section 2.3 and also incorporated better 

sub-pixel level displacement estimation between the images in section 2.2 by suppressing high-

frequency contents from the cross-phase spectrum and by incorporating closed-form analytical 

solution [37] to estimate positions of spectral peaks. This matching strategy can also account for 

noise and has resulted in a new approach, which is specifically suitable for contactless palmprint 

images that often have local deformations and aided by noise. The experimental results presented 

in section 3 on three different publicly available contactless palmprint databases consistently 

indicate outperforming results. Among these, the performance improvement for the largest 

database from 600 different subjects is significant, as can be observed from the ROCs in figure 10 

(with 36.7% and 34% improvement in EER), and can be considered as more reliable indicator for 

comparative performance. It should also be noted that all the parameters for matching palmprint 

images were same for different databases and are stated in section 2. Further improvement in the 

Figure 14: Match scores from long interval sample images. First images in above three sets were acquired 

in year 2001-2002 while the second session images on the right were acquired in 2017. All three sets of 

images generate match scores smaller than decision threshold (1.233) and therefore can be considered as 

matched using the best performing method from this paper. 
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performance is expected by selecting database specific parameters or the region of interest and can 

be attempted in further extension of this work.   

 

 

 

 

 

 

      

     Automated and accurate segmentation of palmprint images, i.e. region of interest, is 

significantly important for the accurate matching of the palmprints. Accurate segmentation is quite 

challenging when images are acquired under contactless manner and further challenging when 

images are acquired under dynamic backgrounds. The segmentation accuracy of palmprint images 

can also alter the matching accuracy of palmprint images and the performance stated in this paper 

incorporated segmented images if/when they are made available with the database (e.g. IITD 

database [30] used for experiments in section 3.1). It is also worth noting that recent studies [34] 

have demonstrated that how the left hand palmprint images can themselves be used to match with 

the right hand palmprint images and thereby suggesting that strong correlation can exist between 

left and right palmprint images. This has been the key reason for preference for individually 

evaluating the palmprint matching performance from the two hands in this paper. Figure 15 

illustrates few palmprint image samples from the two-session part of the database that failed to 

match. It can be observed from the image samples in figure 15 (a) and (c) that the second-session 

palm image samples are highly occluded due to the cosmetics. Accurate matching of such 

palmprint images requires the development of specialized algorithms to eliminate cosmetics and 

recover palmprint texture details for the matching and is suggested for the further work. New 

database introduced in this paper is acquired   under   varying   illumination, i.e. ambient  

Figure 15: Sample palmprint image pairs from new database that failed to match. The first session 

images are shown on the left while respective second session images are shown on the right from the 

same hand/palm. All the three sets of images generated match scores higher than decision threshold 

(1.233) and therefore are considered as non-matched using the best performing method from this paper. 
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illumination,   under   indoor   and  outdoor environment. Therefore, despite best efforts in ensuring 

accurate segmentation of palmprint regions, there are few samples that are not accurately 

segmented. Figure 16 presents some image samples that represents such failure cases and 

underlines the need for further work in the development of accurate palmprint segmentation 

algorithms. It can be observed from these samples that the segmented region of interest is not 

correctly (at fixed relative distance from the normal to the key reference points) localized. These 

poorly segmented image samples however do not necessarily reflect the limitation of the 

segmentation algorithm but in many cases the key reason is the failure to correctly present hand 

images by the subject during contactless imaging, e.g., the first image sample in Figure 16 is from 

subject no. 111 and in this particular sample the subject has raised his/her hand with pose that is 

not along the x-y plane of the camera. The database introduced in this paper has been acquired 

from working population in more realistic environment and introduces new challenges for the 

researchers. Automated detection of the palm injury regions, detection and removal of cosmetic 

patterns, dirt or handwritten texts, can help to further improve the performance for matching such 

images and should be pursued in further work to advance contactless palmprint based personal 

identification. 

 

 

 

 

 

 

         Reference [36] has recently introduced a new contactless palmprint database and was 

accessed during the review process to ascertain the performance using the method introduced in 

this paper. The experimental protocol was to match second session images with the first session 

images. This generated 3,000 (300  10) genuine scores and 897,000 (10  300  299) impostor 

Figure 16: Sample palmprint images from new contactless database that were not adequately segmented. 
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scores for each of the left and right palmprint images. The distribution of genuine and impostor 

match scores, for each of the left and right hand palmprint images, is shown in figure 17. It can be 

observed from this figure that the genuine and impostor match scores for the left and right 

palmprints are completely separated. The average genuine match score is 0.5369 while the range 

of genuine match scores is [0.2819 1.0124]. Similarly the average impostor match score is 1.3174 

while the range of impostor match scores is [1.0601 1.5410].  Therefore, any decision threshold 

chosen between1.0124 to 1.0601 can offer perfect separation between the genuine and impostor 

scores. Therefore, the EER is 0% and the ROC is simply the straight line, for both the left and right 

cases. The reason for such performance can be attributed to very good quality palmprint images 

acquired by authors [35] under controlled illumination with a large imaging system, in addition to 

the capability of method introduced in section 2 to accommodate contactless imaging variations.  

 

 

 

 

 

 

                

(a)                                                                                      (b) 

 

 

5. Conclusions and Further Work  

Contactless palmprint identification offers promising solution to the hygiene and skin deformation 

problems. However, the contactless palmprint imaging generates relatively higher intra-class 

variations in successive images from the same subjects. Accurate matching of such palmprint 

images requires additional capabilities to robustly incorporate deformations along the camera axes. 

Figure 17: Distribution of genuine and impostor match scores for two session (a) left hand and (b) 

right hand pamprint images from additional experiments using the database in [36]. 
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This paper has investigated a new approach to match contactless palmprint images. The 

experimental results detailed in section of this paper on three publicly available database indicate 

outperforming results and validates the matching approach considered in this paper. Merit of 

contactless palmprint matching methods can be better-ascertained using results from the datasets 

with large population and variations. Therefore it is worth noting that the performance 

improvement from the approach investigated in this paper is significant for matching contactless 

palmprint images from the challenging and larger databases (e.g. ROC in figure 7 or ROC in figure 

10). The results in section 2 also demonstrate 68.65% improvement in EER and 30.33% 

improvement in EER for these respective datasets. This paper has also presented a new contactless 

palmprint database in public domain. This database has been acquired from 600 different subjects, 

which is largest to-date, and includes images acquired under ambient illumination that can closely 

represent more user-friendly scenarios in future deployments. Earlier research on the palmprint 

identification and available databases have largely been focused on the palm images from subjects 

that represents office workers. The availability of database from diverse population that includes 

manual laborers, countryside school students, or hands from special capabilities, injury and 

cosmetics, will help to develop new solutions for the applicability of contactless palmprint 

technologies in new domains. Unlike any other known public palmprint databases, this database 

also provides images acquired from same subjects after long interval, i.e., over 15 years, which 

can enable new insights on the stability of palmprint patterns. Availability of such images in public 

domain can also help to develop convincing courtroom arguments for the prosecution of suspects 

using forensic images where only the palmprint is the available piece of evidence.  

Despite insightful details from the palmprint samples encountered from diverse 

populations and encouraging experimental results on this new database, the experiments reported 

in this paper should be considered preliminary. There are several limitations on the usage of the 

new database or for the contactless palmprint matching approach introduced in this paper. More 

experiments need to be done to utilize color information available in the palmprint images, to 
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dynamically exploit larger palmprint area or on the development of algorithms that can detect (also 

correct) palm cosmetics, injury, or text to enable higher accuracy. Further work also needs to be 

done to evaluate the matching accuracy under more challenging matching protocols, e.g. 

combining left and right palms and for the left hand part of two-session database, and to reduce 

the computational complexity as the complexity of method introduced in this work is significantly 

higher than the baseline method in [9]. A multi-session palmprint database from large number of 

subjects, instead of two-session from this paper, is highly desirable to evaluate gradual temporal 

variations and should be developed in further extension of this work. In this work the focus has 

been on the authentication experiments and evaluating recognition accuracy in such large 

population can reveal strengths and weakness of various algorithms and is suggested for further 

work.    
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