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Abstract—Contactless and online palmprint identification offers improved user convenience, hygiene, user-security and is highly
desirable in a range of applications. This paper proposes an accurate and generalizable deep learning-based framework for the
contactless palmprint identification. Our network is based on fully convolutional network that generates deeply learned residual features.
We design a soft-shifted triplet loss function to more effectively learn discriminative palmprint features. Online palmprint identification
also requires a contactless palm detector, which is adapted and trained from faster-R-CNN architecture, to detect palmprint region
under varying backgrounds. Our reproducible experimental results on publicly available contactless palmprint databases suggest that
the proposed framework consistently outperforms several classical and state-of-the-art palmprint recognition methods. More importantly,
the model presented in this paper offers superior generalization capability, unlike other popular methods in the literature, as it does not
essentially require database-specific parameter tuning, which is another key advantage over other methods in the literature.

Index Terms—Biometrics, Contactless Palmprint Matching, Contactless Palmprint Detection, Personal Identification, Deep Learning

1 INTRODUCTION

UTOMATED personal identification using palmprint
Aimages has been widely studied and employed for
a range of law-enforcement and e-security applications.
However contactless palmprint identification is relatively
new area of research and offers more attractive solution for
the deployments as it can address serous concerns relating
to the hygiene while offering significantly higher user con-
venience and security. In addition, the contactless palmprint
imaging also enables deformation free acquisition of palm-
print features, or the ground truth information, which can
enable higher matching accuracy than those acquired using
contact-based imaging.

Several challenges need to be addressed by the con-
tactless palmprint researchers. Firstly, the contactless palm-
print matching accuracy is known to significantly degrade,
as compared to those from the contact-based palmprint
images, as such contactless images often present signifi-
cantly higher imaging variations. Therefore more advanced
matching techniques need to be developed to improve the
matching accuracy from the contactless palmprint images.
Secondly, the automated detection of contactless palmprint
images (region of interest) from the presented hands is
quite challenging as the background during such imaging
is expected to be dynamic or less stable. Available research
on contactless palmprint images addresses such challenges
by acquiring contactless palmprint images with fixed back-
ground that can enable key point detection using pixel-wise
operators to segment the palmprint images. Deep learning
capabilities offer enormous potential to address these two
challenges and are considered in this paper.

In recent years, deep learning has emerged as the dom-
inant approach for a range of computer vision related

o Authors are with the Department of Computing, The Hong Kong Poly-
technic University, Hung Hom, Kowloon, Hong Kong.
Corresponding author email: ajay.kumar@polyu.edu.hk

Manuscript received June 5, 2019; revised September 18, November 27, 2019,
January 10, 2020.

problems and has delivered state-of-the-art performance for
the face recognition [4], [7], iris recognition [8] and image
classification. However, compared to face recognition, there
has so far been relatively little effort to explore deep learning
for palmprint identification.

This paper proposes a new, deep learning based, con-
tactless palmprint identification framework which not only
offers accurate matching capabilities but also exhibits out-
standing generalization capabilities on different public
databases. With the design of effective residual feature
network, our model can enlarge the receptive field [9]
for matching contactless palmprint images and learn com-
prehensive palmprint features which generalize very well
on other databases. We develop a soft-shifted triplet loss
function to accommodate frequent contactless palmprint
imaging variations and offer meaningful supervision for
learning effective palmprint features from a limited num-
ber of training samples. We also introduce an automatic
contactless palm detector intended to handle complex real-
world backgrounds. Design of such detectors is critical for
the success of contactless palmprint identification during
deployments.

The main contributions from this paper can be sum-
marized as follows: (a) We develop a new deep learning
based contactless palmprint identification framework with
high generalization capability for operating on different
contactless palmprint databases that can represent diverse
deployment scenarios. A new Soft-Shifted Triplet Loss (SSTL)
function has been developed to successfully address the
nature of contactless palmprint patterns for learning com-
prehensive palm features (please see more details in section
2.3). Our work therefore presents significant advances to
bridge the gap between deep learning and contactless palm-
print matching techniques available today; (b) Under fair
comparison, our approach consistently outperforms several
state-of-the-art methods on publicly available contactless
palmprint databases. Even under the challenging scenario
of not incorporating any parameter tuning on the target



dataset, our model can achieve superior or competitive
performance over the state-of-art methods that have had
extensive parameter tuning. This paper also demonstrates
how the faster-R-CNN [5] architecture can be adapted to
build an online palm detector, which can robustly detect
palm images from the presented hands under complex
backgrounds. Such advancements are highly desirable, with
reference to the current literature, for the success of online
and contactless palmprint identification applications.

1.1 Related Work

Completely automated matching for contactless palmprint
images has received lot of attention and a range of palmprint
matchers have been introduced in the literature. Detected
or segmented palm images can be characterized by ma-
jor/minor curved lines and creases that can be observed
even from low resolution (~ 100 dpi) images and additional
flexion ridges [1] that are observed from high resolution
(~ 500 dpi, not the focus of this work like for [10]) images.
Therefore a range of texture matching methods have been
introduced in the literature [11], [12], [13], [14], [17], [18].
Encoding palmprint features using the dominant orientation
of lines/creases in [19], [21] is one of the most effective
method for matching palmprint images. More recent work
in matching contactless palmprint images appear in [14]
where an ordinal measurement based descriptor, i.e., dif-
ference of normal (DoN), has shown to outperform a range
of methods introduced for matching contactless palmprint
images using publicly available databases. This approach
benefits from the contactless palm image acquisition mod-
eling and introduces specialized masks to encode projective
ordinal measurements. Therefore, this method has also been
used to ascertain the effectiveness of approach developed
in this paper and serves as a reasonable choice as other
methods [2], [20] have not yet shown to offer superior
performance than from [14] in the best of our knowledge.

Automated detection of palm images, or the region of
interest from the hands presented by users, is inherently re-
quired for the success of contactless palmprint identification
systems during real deployments. Most popular methods
for palmprint detection are based on the extraction of key-
points representing finger joints and extract a fixed region
of interest relative to the orientation and/or the distance [?]
between the key points. This approach works very well for
the contact-based imaging setups but poses a range of prob-
lems for contactless palmprint images as it is very difficult to
robustly detect these key-points under background changes
which are inherent during the contactless imaging even
with the cooperative users attempting access. Therefore
developed contactless palmprint databases [22], [24], [25] (in
public domain) have been acquired using relatively fixed or
stable background to primarily address the open problem
of detecting palm images under user friendly contactless
imaging setup. Advancements to detect contactless palm-
prints under real-world backgrounds is highly desirable and
is also considered in our work.

1.2 Open Problems and Challenges

Despite promising performance indicated in the literature
for matching palmprint images, conventional palmprint de-
scriptors have several limitations. Summary of earlier work
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presented in [2] indicates that existing methods offer quite
accurate performance but this performance needs to be fur-
ther improved (especially on large contactless databases e.g.
[25]) to meet expectations for a wide range of deployments.
Conventional palmprint descriptors, such as CompCode
[19] or DoN [14], RLOC [21] or Ordinal [17], are based on
empirical models, which apply hand crafted filters for the
generation of features. Therefore these models heavily rely
on the parameter selection when incorporated for matching
performance for other/different databases or those acquired
under different imaging environments. This situation can
also be observed from [14], where eight different combina-
tion of parameters on 4 different databases are employed by
extensive tuning. Commonly employed techniques in the
the palmprint literature [21], [26] for the automated detec-
tion of palm images, or the region of interest from the hands
presented by users interested to access the system, often
fails when the hand images are acquired under complex
backgrounds. Such failure can be attributed to the nature
of algorithms that relies on the detection of key-point using
pixel-based operators that are dependent to differentiate
gray-levels from skin and the background.

The deep learning-based approaches have potential to
address above outlined limitations with the conventional
palmprint matching methods. As compared to the empirical
selection of hand-crafted filter parameters for palmprint
matching, the parameters in deep neural networks can be
self-learned from the data. Deeply learned architectures are
known [3]-[4] to offer higher generalization capabilities for
a range of computer vision problems. However, any direct
application of such architectures, e.g. [2], [27], is expected to
deliver limited performance or cannot match performance
offered from state-of-art techniques such as those from
[14]. This is due to the fact that new challenges emerge
while incorporating typical deep learning architectures (e.g.
CNN) for the palmprint recognition, which can primarily
be attributed to the nature of palmprint patterns. Unlike the
face, palmprint patterns are known to reveal little structured
information or meaningful hierarchies. Palmprint texture-
based methods are widely considered to be more accurate
methods in the literature [2], [14], [17], [18], [19], [21] which
mainly employed small sized filters or block based opera-
tors to extract palmprint features. Therefore, we can infer
that the most discriminative information from palmprint
patterns is extracted from the local intensity distributions
in region of interest (palm) images rather than from (if any)
global features. The CNNs are known to be effective in re-
covering features from low level to the high level, and from
local to global, due to the combination of convolutional and
fully connected layers [28]. However as outlined earlier, the
high level and global features extracted from such networks
may not be optimal for the accurate matching of palmprint
patterns.

This paper attempts to develop a more accurate and
robust deep learning based palmprint feature representation
framework [40]. Such advancements to uncover the poten-
tial from deep learning capabilities are highly desirable to
realize full potential from the palmprint biometric. Different
from [4], [8], [27], a new network architecture and a cus-
tomized loss function is developed to extract discriminative
palmprint features. The experimental results presented in
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Fig. 1. An overview of our Residual Feature Network (RFN) architecture for contactless palmprint matching. The RFN contains three consecutive
convolutional layers followed by four classical residual blocks. The first and the second convolutional layer down-sample the input which results in
the feature map that is of one quarter the size of input as illustrated at right. Instance normalization is employed in the residual block instead of
batch normalization. The RFN generates a single-channel feature map for each of the input images. The RFN is trained using Soft Shifted Triplet

Loss (SSTL) as detailed in Section 2.3.

section 3, on four different contactless palmprint databases,
validate the effectiveness of our framework.

2 MATCHING CONTACTLESS PALMPRINT IMAGES

2.1 Network Architecture

We develop a highly optimized deep learning architecture,
referred to as residual feature network (REN) in this pa-
per, to accurately match real-world contactless palmprint
images. Different from the residual network [4], REN does
not have fully connected layers which results in pure
feature map outputs (Figure 1) that can preserve spatial-
correspondences among the most discriminative palmprint
features. We replace all of the batch normalization layers
[29] with the instance normalization [30]. Our key moti-
vation is to enhance the robustness of RFN in learning
low/mid/high level features [31] as the contactless palm-
print images present high intra-class variations not just
due to deformations [32] but also due to the pose and
illumination changes [25].

2.2 Network Training

The convolutional kernels of RFN were trained using a
triplet network [7]. As shown in Figure 1, this triplet net-
work consists of three identical RFNs and their weights are
kept identical during the training. These RFNs are inter-
connected in parallel to enable the forward and backward
propagation of the data and gradients for anchor, positive
and negative samples respectively. The triplet loss function
in such architecture is expected to help the network learn
in generating the feature maps that can reduce the anchor-
positive distances while increase the anchor-negative dis-
tances.Formulation of network loss that can accommodate
high intra-class variations is highly desitable and can train
the network in generating more robust feature maps. We
therefore soften the matching loss and improve the orig-
inal loss function to accommodate frequent translational
changes in the contactless palmprint images from the same
class/subject. This new loss function is referred to as Soft
Shifted Triplet Loss (SSTL) and is detailed in section 2.3.

2.3 Soft-Shifted Triplet Loss Function

The triplet networks [7] have been conventionally trained
using the original loss function which can be written as
follows:

L= [IF) = FUDIP = IFUE) = FUIP* +mly (1)

where function F(I) represents the embedding of the input
image I into a high dimensional feature space, N is the
number of triplet samples in a mini-batch, F(I), F(IF)
and F(I7) are the feature representations of anchor, positive
and negative image samples in the i-th triplet respectively.
The symbol [o]; is equivalent to maz(c,0). m is preset
parameter to control the desired distance between anchor-
positive and anchor-negative. For simplicity, we denote
these three feature maps from the input I¢, IV, I"" as F¢,
FPF, FI* respectively.

Contactless palmprint images from the same class gener-
ally depict high translational changes along the two axes. In
order to accommodate such translations, we now introduce
a new loss function SSTL and is defined as follows:

SSTL Ly L(FL,FP) = L(FFP
_N;[(iv 1) = L(F F) +ml4
where L represents the Minimum Shifted Loss(MSL). Any loss
function to train the network should be differentiable along
the shift directions. We now systematically formulate such
requirements in the following.

Let us denote the width and height of the feature map
from REN by W and H respectively. We use W, and H,
to define extent of maximum expected spatial shifts along
the horizontal and vertical directions. The MSL is defined
to accommodate frequent translational shifts in the input or
among segmented contactless palmprint images, as follows:
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max(h,0) <y < min(H + h, H)} ©)

where C' represents the common region between two
matched feature maps with valid (non-zero) values for
each of the (w, h) combinations while z and y denotes the
spatial coordinates. The MSL in (3) attempts to compute the
minimum distance between the two feature map that can be
achieved after translation by w and h pixels along the hor-
izontal and vertical directions respectively. The superscript
(w, h) in (4) denotes such translational operation on feature
map F; and the resulting shifted feature map has following
spatial correspondence with the original one:

(w,h) _ .7:[.%’, y]’ (:L‘,y) € Cw,h
d (s yn] = { 0, otherwise
Ty =(x—w+ W) mod W ©)

yn = (y—h+ H) mod H

Z, is obtained by shifting the feature values to the left
(horizontal translation) in a step of w and yj, is obtained by
shifting the feature values upward (vertical translation) in a
step of h. As illustrated in (6), the void generated due to the
translation of feature map values are automatically assigned
as zeros. The training of REN requires us to compute the
gradients (or partial derivatives) of the soft shifted triplet
loss, between the anchor-positive and anchor-negative fea-
ture maps. The resulting loss is back propagated iteratively
during the network training. Let us firstly consider the loss
between the feature map from the anchor and its respective
positive feature map F} and compute its derivative for one
sample pair in the batch:

0SSTL 0, if SSTL =0
Since % = &, above equation can be further simpli-
fied as
O8SSTL 0, if SSTL =0
oFF - { %%&m, otherwise ®)

Let us firstly define the shifting offsets for the anchor-
positive and anchor-negative image pairs that can meet
requirements for MSL as follows:

(wap: hap) = arg min {Dw,h(fiaaff)}
—Ws<w<Ws,—~H;<h<H; ©)
(Wan, han) = arg min {Dwn(F,FM)}

—We<w<W,,—H;<h<H;
The gradient of the distance £ in (8) can be computed
from the following pixel-wise derivatives using (3) and (4):
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The partial derivative of SSTL with respect to the posi-
tive feature map F can be computed as follows:

9SSTL 0, if (z,y) ¢ Cuw,,,h,, or SSTL =0
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We can similarly compute the required partial derivative
with respect to the negative feature map:

0SSTL 0, if (z,y) ¢ Cu,,, han, 0r SSTL =0
—27 [z](,”lag’yh’“"]i}-"' [x’y]), otherwise
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Our final requirement is to compute the partial derivatives
for the feature map from anchor. It can be observed from (3)-
(6) that shifting or translation of the first map towards the
left by w pixels and towards the top by h pixels is equivalent
to shifting the second map towards the right by w pixels and
towards the bottom by h pixels. We can therefore rewrite (4)

as follows:
1 w
DonlF1,72) = i > (A" Vlay) Falo )
w,h (2,9)ECw.n
1 —w,—h
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(13)

It is now quite straightforward to compute the partial

derivative for the anchor positive feature map using (7)-(10)

and (13):
0SSTL
OF[z,y]

_ 98STL
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0SSTL

OF (% —wans Y=hay]
(14)
The rest of the back-propagation process is the same
as for common end-to-end convolutional network. Above
derivation shows that during the matching of feature maps,
from the translated palmprint images, the gradients that
only lie in the overlapped regions will be back-propagated.
This enables more accurate matching of feature maps
from the contactless palmprint images that are not strictly
aligned. The network is trained using SSTL while MSL is
used during the test or the evaluation phase.

3 EXPERIMENTS AND RESULTS

We performed thorough experiments using publicly avail-
able databases to ascertain various aspects of the perfor-
mance from our approach. In the following sections, we
detail on the experimental protocols, along with the repro-
ducible results [33], employed for the extensive evaluation
of the model proposed in this paper.

Our experiments are firstly organized to ascertain within
database performance (WithinDB) which uses some part
of the database for the training while using some other
independent part of this database for the performance
evaluation. Also, the cross-database performance evalua-
tion (CrossDB) is highly desirable to address limitations of
currently available palmprint recognition methods in the
literature. Therefore CrossDB performance evaluation results
are also presented in this paper which uses the network that
is trained on some part of publicly available database while
the test performance are reported using other independent
publicly available database with the respective protocols
which have been used in the literature (to ensure fairness
in the performance comparison). It should be noted that
for both WithinDB and CrossDB configurations, training set
and test set are totally separated, i.e., none of the palmprint
images are overlapping between training set and the test set.
Since our focus is mainly on extensive CrossDB performance
evaluation, we incorporated the largest subjects database
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Fig. 2. The ROC curves (Left) and CMC curves (Right) for different
methods on the IITD Right contactless palmprint database.

from 600 different subjects for this task as detailed in the
next section.

During our CrossDB performance evaluation, all of the
test configurations uses the IITD Left [22] (all left hand
palmprint images in this dataset) as the training set. The
trained model is used for the performance evaluation using
IITD Right (all the right hand palmprint images) which in-
dicates WithinDB performance. During the WithinDB config-
uration, we used the left palmprint images for the training
set and the right palmprint images for test or performance
evaluation as it allows us to perform fair comparison, with
the respective results from more recent approach DoN in
[14] which has shown outperforming results over several
state of art methods.A) Other baseline methods in our exper-
iments represent faster version of these methods instead of
their original ones, e.g. fast-CompCode, or fast-RLOC as these
methods have shown to offer superior performance over
[19], [21] and theoretically justified in [15]. The same trained
model which is trained using IITD left hand palmprint im-
ages is used for the CrossDB performance evaluation using
the largest subjects database made available from [25] and
also using the CASIA contactless palmprint image database
from [24]. Thus the CrossDB performance evaluation can il-
lustrate the generalization capability of the proposed model
when few or the training samples from other databases are
incorporated. The WithinDB performance evaluation using
[25], in addition to results from IITD [22], is also presented
for comparative performance evaluation.

3.1 Databases and Protocols

IITD Palmprint Database. The IITD touchless palmprint
database [22] provides contactless palmprint images from
the right and left hands of 230 subjects. There are 5 samples
for each right hand or left hand. This database also provides
150 x 150 pixels segmented palmprint images. In our ex-
periments, the left hand palmprint images are used to train
our model detailed in section 2 and all the 1300 right hand
palmprint images are used for the performance evaluation.
This protocol for test performance evaluation is exactly
the same as in [14] and results in 1150 genuine matches
and 263,350 imposter matches. The comparative evaluation
results using ROC, CMC (Figure 2) and EER (Table 1) is
presented to ascertain the performance. The ROC, EER and
the average rank-one recognition rate achieved from our
approach indicates outperforming results.

3.2 Cross-Database Performance Evaluation

Our CrossDB performance evaluation is firstly focused on
more recent contactless palmprint database in [25], which

TABLE 1

Summary of accuracy (average rank-one recognition rate) and equal

error rate (EER) on three different contactless palmprint databases.

IITD PolyU-IITD CASIA

) / Acc(%) | EER(%) | Acc(%) | EER(%) | EER(%)
: /_/ et DoN(TPAMI16) | 99.15 0.68 98.3 0.329 0.53
0090 747/_: L RLOC 99.00 0.88 98.45 0.557 1.0
— woc Comp Code 98.85 1.0 98.45 0.435 0.76
Ordinal Code 98.92 1.25 98.48 0.451 0.79
Rank Ours-CrossDB 7 7 986 0.267 0.51

Ours-WithinDB 99.20 0.60 98.7 0.153 /

has been acquired from over 600 subjects, and is the largest
in the best of our knowledge. In our experiments, 6,000
palmprint images from the first 600 subjects left hands were
used for the test performance evaluation and the protocol is
exactly the same as used for Figure 2 or the protocol used
in [14]. Therefore, the test set for this CrossDB performance
generated 6,000 genuine and 3,594,000 imposter matches.
Figure 3 illustrates comparative ROC, CMC and respective
EER is presented in Table 1. The results in figure 3 also illus-
trates WithinDB performance which is achieved by training
our model using other or all the right hand images for
the same database. The results in Figure 2 (a)-(b) indicates
that our model can achieve outperforming results and the
performance is further improved for the WithinDB case or
when the model trained from the right hand images for the
same database is used for the performance evaluation.

Another contactless palmprint database available in
public domain is from [24]. This CASIA palmprint database
contains 5239 palmprint images from 301 individuals. We
also employ this database for the CrossDB performance
evaluation and used the model trained on IITD database
(same as for results in Figure 2 or CrossDB in Figure 3) for
the performance evaluation. All experiments on this CASIA
database use the same matching protocol as used in [14] to
ensure fairness in the comparison. Therefore as in [14], we
also generate 13,692,466 match scores, which consisted of
20,567 genuine and 13,689,899 imposter match scores. Figure
3 (c) illustrates comparative ROC performance and Table 1
provides respective EER from the CrossDB performance. It
is worth to underline that comparison here is with the same
result as in [14], which uses heavy tuning of parameters
while our results are on unseen or CrossDB evaluation
protocol. Due to small number of images (only three) per
subject, WithinDB evaluation was not performed and is of
least interest. It can be observed from these results that in
terms of EER our model performs better than best of results
in [14] while the performance from Figure 3 is otherwise but
quite competing.

3.3 Discussion

We also perform comparative performance evaluation from
our method against other popular deep learning architec-
tures that are widely used for various recognition tasks.
The details on the such configurations considered for the
performance evaluation is provided in the following.
CNN+Triplet Loss. Pre-trained CNN based methods are
most widely employed in the deep learning configurations
for the recognition tasks [7], [34] and therefore also be
interesting and worth evaluating. We use VGG-16 model,



Iy
=

1.000

0.996 0.996

0.992
QOurs (WithinDB)

e Qurs (CrossDB)

= Ordinal

== DoN

=== CompCode

= RLOC

Ours (WithinDB)
Ours (CrossDB)
Ordinal

= DoN

CompCode
RLOC

0.988

Genuine Accept Rate
Recognition Rate

0.984

0.980
100 2 4 6 8

Rank

(b)

10-° 1072
False Accept Rate

(@

4
©

Ours
== CNN+Triplet loss
= DenseNet+SSTL
== DenseNet+Triplet loss
= FCN+ETL
RFN+Triplet loss

Ours
= CompCode
= DoN

= Ordinal Code
== RLOC

Genuine Accept Rate
o
co

0.7

10-° 1072 10°

False Accept Rate

(c)

‘
107* 1072
False Accept Rate

(@

Fig. 3. (a) Comparative ROC and (b) corresponding CMC for WithinDB and CrossDB tests (600 subjects). (c) The ROC for CrossDB evaluation for
CASIA palmprint database [24] and other methods using respective/best parameters. (d) The ROC curves for typical deep learning architecture in

the literature using contactless palmprint database in [22].

as our test architecture, which has been widely used in
many other recognition tasks. We replace the last fully
connected class layer with another fully connected feature
layer for matching the features. We freeze the basic feature
extraction layers in VGG-16 during the training phase and
fine-tune the newly added fully connected layer using the
given training dataset, i.e. IITD Left palmprint images in our
experiment.

Fully convolutional network+Extended triplet loss. The
fully convolutional network (FCN) was originally devel-
oped for semantic segmentation [35]. Recently [8] combines
FCN and extended triplet loss (ETL) to achieve the state-of-
art performance for the iris recognition task. Since this work
also employs bit-shifting in the original triplet loss function,
it is important to comparatively ascertain the performance
from our model over this method.

Residual feature network(RFN)+Triplet loss. Compara-
tive evaluation has also been performed using the RFN used
in our model and the original triplet loss function instead of
the soft shifted triplet loss introduced in section 2.3. Such
comparison is performed to ascertain the merit of SSTL for
the problem considered in this paper.

DenseNet+Soft shifted triplet loss/triplet loss. We also
compared our method against a very popular deep learn-
ing architecture, densely connected convolutional network
(DenseNet) which has shown to offer significant perfor-
mance improvement over the state-of-the-art on many/most
recognition tasks. In our experiments on palmprint image
datasets, we use a basic DenseNet-BC structure with three
dense blocks on 128 x 128 input images and replace the
last fully connected layer with one 1 x 1 convolutional layer
to perform SSTL. The initial convolution layer uses 5 x 5
convolution kernels with stride of two.

The comparison with the other deep learning based
methods was performed on IITD dataset, which we em-
ployed for WithinDB configuration with the same protocol
as for the results in Figure 2 or in [14]. All above discussed
models are trained on the IITD Left palmprint images and
evaluated using the IITD Right palmprint images. The test
set generate 1150 genuine match scores and 263,350 im-
poster match scores which is consistent for the comparisons.
The hyper-parameters for all training processes have been
carefully investigated to achieve best performance. Com-
parative performances using ROC are presented in Figure
3 (d) while comparative storage and matching complexity
for these methods is summarized in Table 2.

It can be observed from Figure 3 (d) that our newly

TABLE 2
The Comparison of time and space complexity of different contactless
palmprint matching methods (evaluated on Linux Ubuntu 14.04 x86_64
with Quadro M6000 GPU under 10K average runs. The default shift
size was set as 5 for SSTL).

Approaches | #Parm Feature Matching Template
extraction size
CNN ~449M | 0.00745s | 0.00140s | 4096-d
+Triplet loss
DenseNet
+SSTL ~3.1M 0.0235s 0.049s 32 x 32
DenseNet | 5 13 0.0235s 0.00040s 32 x 32
+Triplet loss
FCN
+ETL ~568K 0.00142s 0.0710s 128 x 128
RFN
+Triplet loss ~5.2M 0.0062s 0.00040s 32 x 32
Proposed ~5.2M 0.0062s 0.049s 32 x 32

developed architecture together with newly developed soft
shifted loss outperforms other deep learning configurations.
It should be noted that the architecture introduced in this
work, e.g. REN or FCN, provide new insights on the per-
formance and have not been investigated for the palmprint
matching in the literature. The CNN based configurations
suggest that directly using global and high level features ex-
tracted by CNN may not be suitable for the palmprint recog-
nition problem. Relatively poor performance from (REN +
Triplet) illustrates that a soft matching term introduced by
SSTL offers great benefit in addressing inherent variations in
the feature map for the contactless palmprint identification.
Comparative performance between (DenseNet + SSTL) and
(DenseNet + Triplet) also supports such observation.

In all of our experiments, we train our network using
Stochastic Gradient Descent (SGD) with standard backprop
[36], [37] and Adam [38]. We start with a learning rate of
0.001 and the models are randomly initialized. The pre-
defined margin m is set to 0.2. The maximum vertical shift
size H,; and horizontal shifting size W are both fixed as 5.

3.4 Additional CrossDB Experimental Results

It is important to note that database used from 600 differ-
ent subjects is more challenging, largely due to the image
variations resulting from the use of mobile camera under
outdoor and ambient illumination. Therefore, this database
was judiciously selected as the main dataset to evaluate
CrossDB performance using the proposed approach.



Another contactless palmprint database made available
recently in public domain has been acquired from 300 differ-
ent subjects and is accessible from [18]. This is two-session
database and also provides segmented palmprint images
which were used in our additional experiments. We used
the same-trained network as used for CrossDB performance
evaluation for results on 600 subjects and used exactly same
protocols as in [18] to ensure fair comparison. The ROC and
CMC for the CrossDB performance using this database is
presented in the following figures.
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Fig. 4. The ROC curves (Left) and CMC curves (Right) plots for addi-
tional CrossDB performance. The EER is 0.433% while average rank-
one recognition accuracy is 99.93%.

It may be useful to note that the reference [18] does not
provide verification performance but presents identification
performance. The best of the methods presented in [18] for
this database which also uses extensive tuning of param-
eters, under the same matching protocols, present average
recognition accuracy of 98.78%. As can be observed from
results in Figure 4, our CrossDB evaluation achieves average
recognition accuracy of 99.73%. Therefore above additional
results on the database from [18] also achieve outperforming
results and illustrate high generalization capability of our
approach using residual features.

3.5 Sample Failure Cases and Analysis

Figure 6 illustrates sample contactless palmprint images
from our experiments that falsely matched using the pro-
posed model. It can be observed that some of the mismatch
pairs in this figure have high similarity in major palm lines
(e,g. in a or b) which could can results in false match from
their closer feature map.

The feature map (Figure 5) generated from some palm-
print images mismatched pairs are illustrated in Figure 6.
This figure presents image samples from right hand images
in IITD [18] database and the feature maps are resized
from original (32 x 32) for ease in visualization. A possible
reason for such mismatch can be observed the from these
feature maps as their shifted distances are relatively smaller.
i.e., their hot point from corresponding feature maps are
likely to be aligned by shifting horizontally and vertically.
Therefore, there appears to be a tradeoff in the generation
of feature map using the shifted loss. On the one hand,
such loss provides a much softer way to align the feature

Fig. 5. Sample resized feature maps from two mismatched palmprint
image pairs from different subjects.
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Fig. 6. Sample images pairs from different subject that falsely matched

using our network trained from IITD left hand palmprints. Image pairs

in (a)-(b) are image samples from IITD right hand while image pairs in
(c)-(d) are left hand palmprint images from database in [?].

maps which is much needed due to nature of imaging for
the contactless palmprint images. On the other hand, such
shifts can result false matches from the palmprint images
of different subjects as such shifts reduce the similarity
between the feature maps with higher similarity in major
palmprint lines or creases. Further extension of this work
should therefore focus on learning more robust feature map
information, possibly through deeper networks to reduce
adverse impact from such mismatches.

4 ONLINE PALMPRINT IDENTIFICATION

In earlier sections, we discussed on our approach for the
development of trained model to match contactless palm-
print images. The performance evaluation presented in sec-
tion 3 used automatically segmented contactless palmprint
images in respective public databases. The success of this
matcher for online palmprint identification also requires
a deep learning based palm detector that can automati-
cally detect palmprint, or the region of interest, from the
presented hands under complex backgrounds. Currently
employed palmprint detectors in the literature use pixel-
wise operators to recover the palm region using key points
and are suitable for the hand images acquired under rela-
tively fixed backgrounds or for the images used in previous
section. However these methods are not suitable for the
palmprint images acquired under complex and dynamic
backgrounds, largely due to their failure in the detection
of reference points. Such challenges are also underlined in
more recent references, e.g. [20] use manually labelled 14
key points for the region of interest extraction. Therefore we
also developed a palm detector that can detect palmprints
under complex and dynamic backgrounds, which is also
considered as a challenge using the conventional methods
of palmprint detection available in the literature.

4.1 Palmprint Detection

The online palmprint detector developed in our work is
based on the Faster R-CNN introduced in [5]. It is com-
posed of two modules. The first module is a deep fully
convolutional network (CNN) that proposes possible object
regions. The second module is a Fast R-CNN detector [6]
that uses these proposed regions to classify the palmprint



Fig. 7. Sample images from our online system, running on a mobile
laptop, depicting palmprint detection from hand images under complex
backgrounds.

ones. The entire system is a single, unified network for the
palm detection, which employs the popular terminology of
neural networks with ”attention” mechanisms. The regional
proposal network (RPN) modules in the system updates
Fast R-CNN module on the specific regions of interest to
detect palm region. Our Tensorflow based implementation
incorporated [23] for the palmprint data augmentation.

4.2 Palmprint Dataset for Training and Detection

We firstly acquired a set of videos under indoor and outdoor
environment for developing the detector. These videos were
acquired under 11 different environments with various pos-
tures and illuminations. The videos were then segmented at
the interval of every 10 frames which resulted in a dataset of
3K raw palmprint images under varying backgrounds. This
raw data is then augmented 10 times which resulted in a
total of 30K palmprint images that were employed to train
the palmprint detector.

The palmprint detector development requires training
from ground truth data. The training videos/data acquired
under different environment was used to generate ground
truth labels (coordinates of the desired bounding box) us-
ing semi-automated process. The image frames from the
training data were firstly marked manually marked with
locations of two key points, i.e., (i) index and middle finger
joint, (ii) little and ring finger joint. Each of these two key
points were used to automatically generate four coordinates
of the bounding boxes representing palmprint region. The
method of generating the coordinates corners representing
such bounding box is similar to as in [18] or [15]. Each of
the image frame, with ground truth locations of bounding
box location, is further enriched for the training phase using
(automated) data augmentation. Several data augmentation
methods are available in the literature, e.g. Gaussian blur,
random addition, multiplication on three color image chan-
nels, contrast normalization, additive Gaussian noise, etc.
and reference [23] provides more details on these augmen-
tation methods. Figure 8 illustrates a typical sample from
our database and resulting images from the augmentation.

The images in the Figure 8 use following augmentation,
addition (-20, 20) in first row, contrast normalization (0.5 -
1.75) in second row, multiplication (0.8 - 1.2) in third row
while scale and aspect ratio augmentation in the last row.

Fig. 8. A typical image sample from training database and resulting
images from the augmentation.

Our work also employed scale and aspect ratio augmenta-
tion to enhance robustness in the detection of palmprint.
There are evidences in the literature that indicate that when
deeper neural network is incorporated, this augmentation
method can offer better performance. More details on the
parameters used in our experiments for the augmentation
appear the following.

o Random area ratio (a = [0.08, 1]).

o Random aspect ratio (s = [3/4,4/3]).

o Cropsize: W = sqrt(W«H xaxs); H = sqrt(W =
H xa/s).

e Random offset to select crop center, then crop and
resize

4.3 Performance Evaluation

We trained the palmprint detection model with 20K epochs
which required about 7 hours for convergence on a sin-
gle NVIDIA Quadro M6000. The test phase of the trained
model requires an average of 0.101 seconds to generate the
proposal bounding box with 300 RPN outputs.

We also performed experiments to ascertain the perfor-
mance during the test phase. These experiments are orga-
nized in two categories using the strategy and parameters:
(a) Separate the dataset randomly in 0.9:0.1 ratio where 0.9
represents the fraction of data for training while and 0.1
represents remaining data for test/evaluation; (b) Separate
the dataset by backgrounds, where 10 different background
are mixed together to form the training data and the re-
maining background dataset is used for the test/evaluation.
The first strategy tests randomly separate the dataset into
0.9:0.1 ratio while the second strategy selects one of differ-
ent backgrounds as the test set to ascertain performance.
Table 3 shows the values obtained for mean average pre-
cision(mAP), and recall for the all experiments performed.
One can observed that the network generates higher accu-
racy even up-to 0.5 to 0.6 overlap of IOU [36] threshold.
Slight degradation in accuracy is observed when overlap
IOU threshold is more than 0.6. The exact sample size for
tests using strategy (a) and (b) is 3517 and 4770 respectively.
Our palmprint detection is least affected by the rotation
since we incorporate rotation as a part of data augmentation



TABLE 3
The mAP and recall value at different (IOU) threshold.
mAP recall
Experiments | Overlap IOU threshold | Overlap IOU threshold
0.35 0.5 0.6 0.35 0.5 0.6
strategy(a) 100.0 | 99.89 | 98.20 | 100.0 | 99.84 | 98.97
strategy(b) 100.0 | 9844 | 86.45 | 100.0 | 98.78 | 90.50

strategy during the network training process. A video file
attached with this paper, along with samples in Figure 7,
provides successful examples of online palmprint detection
using unknown test samples, i.e., none of these samples
were used for training. In the best of our knowledge, this
is first successful attempt to detect palmprint images under
complex imaging backgrounds.

Traditional or more successful methods for palmprint
matching, e.g. [2], [21], incorporate multiple templates gen-
erated from different rotation while the deep learning-based
architecture can incorporate augmented triplet pairs, as also
in our work, during the network training. We also evalu-
ated the online performance for the palmprint recognition
using the developed detector and acquired a two-session
video dataset under complex backgrounds and achieved
very high accuracy. However, such video palmprint dataset
was acquired from eight different subjects palmprints, or
volunteers in our lab, and quite small to ascertain any
reliable performance estimate expected during the real de-
ployments.

5 CONCLUSIONS AND FURTHER WORK

This paper has developed a novel deep learning based
contactless palmprint feature representation model, which
can offer superior matching accuracy and high generaliza-
tion capability for matching contactless palmprint images.
We designed a soft-shifted triplet function to enable effec-
tive supervision, in learning comprehensive and spatially
corresponding residual features, using fully convolutional
network. This paper also developed a robust palmprint de-
tector that can detect contactless palmprint images from the
hands presented under complex and dynamic backgrounds.
Our experimental results presented in section 3 using this
detector are quite encouraging and indicate promises for
its usage in identifying palmprints under complex back-
grounds. These results should however be considered pre-
liminary and more work is required to further improve the
palmprint detector performance, e.g. changing the detector
backbone from Faster RCNN to other detector [3] which
can help to reduce dislocation especially when IOU is not
high. Further extension of this work should focus on jointly
evaluating large-scale contactless palmprint detection and
identification performance. Such evaluation requires a large-
scale video dataset using palmprints acquired under com-
plex backgrounds, with palm-pose deformations similar to
recently introduced in [16] for finger knuckle, and is also
part of further work in this area.
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