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Abstract

This paper proposes a deep learning based unified and generalizable frame-

work for accurate iris detection, segmentation and recognition. The proposed

framework firstly exploits state-of-the-art and iris-specific Mask R-CNN, which

performs highly reliable iris detection and primary segmentation i.e., identifying

iris/non-iris pixels, followed by adopting an optimized fully convolutional net-

work (FCN), which generates spatially corresponding iris feature descriptors.

A specially designed Extended Triplet Loss (ETL) function is presented to in-

corporate the bit-shifting and non-iris masking, which are found necessary for

learning meaningful and discriminative spatial iris features. Thorough experi-

ments on four publicly available databases suggest that the proposed framework

consistently outperforms several classic and state-of-the-art iris recognition ap-

proaches. More importantly, our model exhibits superior generalization capa-

bility as, unlike popular methods in the literature, it does not essentially require

database-specific parameter tuning, which is another key advantage.

Keywords: iris recognition, deep learning, spatially corresponding features

1. Introduction

Iris recognition has emerged as one of the most accurate and reliable biomet-

ric approaches for the human recognition. Automated iris recognition systems

therefore have been widely deployed for various applications from border con-

trol [1], citizen authentication [2], forensic [3] to commercial products [4]. The5
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usefulness of iris recognition has motivated increasing research effort in the past

decades for exploring more accurate and robust iris matching algorithms under

different circumstances [5, 6, 7, 8, 9, 10, 11].

In recent years, deep learning has gained tremendous success especially in

the area of computer vision, and accomplished state-of-the-art performance for10

a number of tasks such as general image classification [12], object detection

[13] and face recognition [14, 15]. However, unlike face, in the field of iris

recognition, in the best of to our knowledge, there is almost nil attention to

incorporate remarkable capabilities of the deep learning and achieve superior

performance than popular or state-of-the-art iris recognition methods.15

In the conference version of this paper [16], we proposed a new deep learning

based iris recognition framework which not only achieves satisfactory match-

ing accuracy but also exhibits outstanding generalization capability to different

databases. With the design of effective fully convolutional network, our model is

able to learn comprehensive spatially corresponding iris features which general-20

ize well on different datasets. A newly developed Extended Triplet Loss (ETL)

function provides meaningful and extensive supervision to the iris feature learn-

ing process with limited size of training data.

In the conference version [16], as the key focus was on learning effective iris

feature representation, the approach relies on external and conventional method25

[17] for iris circle detection, which is parameter-sensitive and less generalizable to

different datasets. This paper extends our previous work by integrating iris de-

tection and segmentation from raw eye images into a unified framework, which is

based on deep learning and referred to as UniNet.v2 and is shown in Fig.1. Such

an approach essentially improves detection and segmentation accuracy as well30

as robustness, and finally benefits the recognition performance as shown from

the extensive experimental results. More importantly, by incorporating deep

neural networks into the iris detection process, our framework can easily adapt

to varying image qualities without additional parameter tuning. The high level

of integration of our architecture also enables more consistent and smooth learn-35

ing for the iris feature representation with respect to the deep learning based
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Figure 1: Overall framework of the proposed UniNet.v2. Raw acquired eye image is taken as

input and parsed by an iris-specific Mask R-CNN for detecting iris location and segmenting

iris region pixels. A normalization layer is developed and applied to fit circles and normalize

the iris. Spatially corresponding feature map is then extracted by FeatNet for feature learning

or matching.

detection and segmentation results. Kindly note that by ”unified framework”

we mainly refer to the fact that our framework utilizes deep learning techniques

to cover all the major tasks in the workflow of an iris recognition system rather

than implying an end-to-end optimization process for the framework.40

The main contributions of this paper can be summarized as follows: (i) We

develop a new deep learning based iris feature extractor which can generate

highly effective deep iris representation. A new Extended Triplet Loss function

has been developed to successfully address the nature of iris pattern for the fea-

ture learning. Significant advancement therefore has been made to bridge the45

gap between deep learning and iris recognition. (ii) Under fair comparison, our

approach consistently outperforms several state-of-the-art methods on multiple

datasets. Even under challenging scenario that without having any parameter

tuning on the target dataset, our model can still achieve superior performance

over state-of-the-art methods that have been extensively tuned. (iii) We present50

a deep learning based framework that can accurately detect, segment and recog-

nize irises from raw eye images as input. Such unified framework provides higher

robustness and consistency for the iris segmentation and feature optimization

processes.
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1.1. Related Work55

One of the most classic and effective approaches for automated iris recogni-

tion was proposed by Daugman [5] in 2002. In his work, Gabor filter is applied

on the segmented and normalized iris image, and the responses are then bi-

narized as IrisCode. The hamming distance between two IrisCodes is used as

the dissimilarity score for verification. Based on [1], 1D log-Gabor filter was60

proposed in [6] to replace 2D Gabor filter for more efficient iris feature ex-

traction. A different approach, developed in [7] in 2007, has exploited discrete

cosine transforms (DCT) for analyzing frequency information of image blocks

and generating binary iris features. Another frequency information based ap-

proach was proposed in [9] in 2008, in which 2D discrete Fourier transforms65

(DFT) was employed. In 2009, the multi-lobe differential filter (MLDF), which

is a specific kind of ordinal filters, was proposed in [8] as an alternative to the

Gabor/log-Gabor filters for generating iris templates.

In addition to exploring various iris feature representations, researchers have

devoted significant efforts to improving iris segmentation accuracy and robust-70

ness. In earlier years the integro-differential operator [5] and circular Hough

transform [6] are adopted for detecting iris and pupil circles in eye images.

These methods work well for high-quality iris images but are usually less reli-

able for noisy or blur images acquired under relaxed environments. An improved

method proposed in [18] exploits an iterative approach to coarsely cluster the75

iris and non-iris region before applying integro-differential operator, which of-

fers higher reliability for segmenting iris pixels. Following similar coarse-to-fine

strategy, a competitive work detailed in [19] makes use of Random Walker algo-

rithm [20] for coarsely locating the iris region, followed by a couple of gray-level

statistics based thresholding to refine the boundaries. These thresholding oper-80

ations enable pixel-level precision for the iris masks. Recent approaches include

[17] which utilizes an improved total variation model to deal with undesired

noise and artifacts in casually captured iris images, and [21] which relies on

color/illumination correction and watershed transform for segmenting noisy iris

images captured under visible wavelength.85
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Unlike the popularity of deep learning for various computer vision tasks, es-

pecially for face recognition, the literature so far has not yet fully exploited its

potential for iris recognition. There has been very little attention on exploring

iris recognition using deep learning. A deep representation for iris was pro-

posed in [22] in 2015, but the purpose was for spoofing detection instead of iris90

recognition. A recent approach named DeepIrisNet in [23] has investigated deep

learning based frameworks for general iris recognition. This work is essentially

a direct application of typical convolutional neural networks (CNN) without

much optimization for iris pattern. Our reproducible experimental compari-

son in section 5.3 further indicates that under fair comparison, this approach95

[23] cannot deliver superior performance even over other popular methods. An-

other recent work [24] has attempted to employ deep belief net (DBN) for iris

recognition. Its core component, however, is the optimal Gabor filter selection,

while the DBN is again a simple application on the IrisCode without iris-specific

optimization. Above studies have made preliminary exploration but failed to100

establish substantial connections between iris recognition and deep learning.

1.2. Limitations and Challenges

Despite the popularity of iris recognition in biometrics, conventional iris fea-

ture descriptors do have several limitations. The summaries of earlier work in

[25, 26] reveal that existing methods can achieve satisfactory performance, but105

the performance needs to be further improved to meet the expectations for wider

range of deployments. Besides, traditional iris features, such as IrisCode, are

mostly based on empirical models which apply hand-crafted filters or feature

generators. As a result, these models rely heavily on parameter selection when

applied for different databases or imaging environments. Although there are110

some standards on iris image format [27], the selection of parameter for feature

extraction remains empirical, or based on training methods such as boosting

[28]. This situation can be observed from [8], where eight different combina-

tions of parameters for ordinal filters delivered varying performance on three

databases, or from [29] which employed two sets of parameters for log-Gabor115
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filter on two databases by extensive tuning. Another limitation is that due to

the simplicity of conventional iris descriptors, they are less promising to fully ex-

ploit the underlying distribution from various types of iris data available today.

Learning data distribution from large amount of samples to further advance

performance is one of the key trends nowadays. Approaches for iris segmenta-120

tion also suffer from similar challenges. Most of existing methods, such as [30],

[18] and [17], rely on hand-crafted procedures for identifying iris pixel regions.

These operators are usually defined by a set of empirically tuned parameters

and less generalizable to different types of images.

Deep learning has the potential to address the above limitations, since the125

parameters in deep neural networks are learned from data instead of being

empirically set, and deep architectures are known to have good generalization

capability. However, new challenges emerge while incorporating typical deep

learning architectures (e.g., CNN) for the iris recognition, which can be primar-

ily attributed to the nature of iris patterns. Different from face, iris pattern is130

observed to reveal little structural information or meaningful hierarchies. Iris

texture is believed to be random [31]. Earlier promising works on iris recogni-

tion [5, 6, 7, 8, 9] mainly employed small-size filters or block-based operations

to obtain iris features. Therefore, we can infer that the most discriminative

information in the iris pattern comes from the local intensity distribution of an135

iris image rather than the global features, if any. CNN is known as effective for

extracting features from low level to high level, and from local to global, due to

the combination of convolutional layers and fully connected layers [32]. How-

ever, as discussed above, high level and global features may not be the optimal

for iris representation.140

This paper aims to develop a unified framework for more accurate and robust

iris detection, segmentation and recognition, making solid contributions towards

fully discovering the potential of deep learning for the iris biometrics. Such

objectives have not yet been pursued in the literature. Different from [23] and

[24], this paper proposes a novel deep network and customized loss function,145

which are highly optimized for extracting discriminative iris features and have
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been comparatively evaluated with several state-of-the-art methods on multiple

iris image databases.

The rest of this paper is organized as follows: Section 2-4 detail the pro-

posed approach in terms of network architecture, improved triplet loss function150

and feature encoding respectively; Section 5 presents the experimental config-

urations, results and analysis; finally, the key conclusions from this paper are

presented in Section 6.

2. Network Architecture

In this paper we propose a unified and highly optimized deep learning frame-155

work, referred to as UniNet.v2, for iris detection, segmentation and feature ex-

traction from raw eye images. As shown in Fig. 1, the unified architecture

consists of several sub-components, which are an iris-specific Mask R-CNN [33],

a normalization layer and a feature extraction network referred to as FeatNet.

The technical specifications and optimization methods for these sub-networks160

are detailed in the following sections.

2.1. Mask R-CNN for Iris Detection and Segmentation

Accurate iris detection and segmentation are critical for achieving higher

performance for the iris based personal identification. Inadequate segmentation

can lead to severe degradation of the performance for automated iris recognition165

systems. We propose to exploit Mask R-CNN [33], one of state-of-the-art archi-

tectures designed for general instance segmentation, for improving iris detection

and segmentation accuracy and reliability. A unified framework is enabled by

the introduction of Mask R-CNN, which improves the stability and consistency

between the iris masks and corresponding features. Kindly note that in mod-170

ern iris recognition approaches, iris segmentation usually involves two parts:

(a) pixel-level identification of iris and non-iris regions (e.g., excluding eyelash,

sclera and reflection) and (b) fitting circles/ellipses or other geometric represen-

tations on iris structures to assist part (a) and to serve for normalization. In
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Figure 2: Summary of structure of Mask R-CNN employed in our work. A backbone CNN (we

use ResNet-101 [35]) extracts features from the input image and proposes possible RoIs for the

desired object. A head branch is used to evaluate objectiveness and regress bounding boxes,

while another FCN branch predicts the object masks within each proposed RoI. Kindly note

that prediction object class is reduced compared with the original implementation as only one

class, i.e., iris, is of our interest.

earlier works [5, 6], part (b) is the main focus, while more recent and advanced175

methods [17, 18, 19] also heavily address part (a). In this paper, we employ

Mask R-CNN for part (a) of the iris segmentation process, i.e., identifying iris

and non-iris pixel regions from the input eye images.

2.1.1. Basic Introduction to Mask R-CNN

The overall structure of Mask R-CNN employed in our framework is illus-180

trated in Fig. 2. Mask R-CNN is built on top of its predecessor, i.e., Faster

R-CNN [34]. In this framework, the input eye image from iris sensor is firstly

subjected to a backbone CNN, which serves as region proposal network (RPN),

to obtain initial guesses of regions that may contain a desired object. The pro-

posed regions are then sent to a branch classification network for identifying185

object classes within each region. In our approach, however, there is only one

foreground class (i.e., iris) to be detected, therefore the classification branch is

reduced. In addition, we assume each input eye image contains just a single iris,

hence only the proposal with highest confidence will be processed subsequently.

Such simplification of Mask R-CNN can better regularize the training process190

to avoid over-fitting when it is adopted to learn iris regions and masks.

Mask R-CNN includes one more branch, which is a fully convolutional net-

work [14], to the Faster R-CNN in order to segment instance masks simulta-
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neously inside the proposed regions. According to [33], RoIAlign operation is

introduced to recover pixel-level segmentation accuracy on downsampled feature195

maps, and state-of-the-art performance was reported for the COCO segmenta-

tion challenge [36]. Due to its outstanding performance and built-in detection-

segmentation design, Mask R-CNN is highly promising for addressing the reli-

ability and generalizability for the iris segmentation as well as constructing a

unified framework for iris recognition.200

2.1.2. Training of Mask R-CNN for Detecting and Segmenting Irises

Adequate number of training samples along with their ground truth bound-

ing box labels and instance masks are required to sufficiently train Mask R-CNN

for the specific task, i.e., iris detection and segmentation in this paper. We

adopted a semi-manual procedure to label images from multiple publicly avail-205

able databases in order to enrich data variation in less available time. Firstly,

a conventional iris segmentation approach [17] with well tuned parameters was

applied on the training sets from each database. The training sets are subject-

disjoint with the test sets as will be explained in more details in the experimental

section. We then manually inspected the segmentation results and selected best210

ones, then incorporated some manual operations, such as filling holes and re-

moving isolated pixels, to refined the segmentation results. Such filtered iris

masks were regarded as ground truths and formed a training set of 1,700 images

and a validation set of about 300 images. These samples were then used to fine-

tune a Mask R-CNN model which has been pre-trained on the COCO dataset215

with some modification as discussed in previous section.

2.1.3. Iris Normalization Layer

A normalization layer is appended after Mask R-CNN, as shown in Fig. 1, to

perform iris and mask normalization (unwrapping) before learning iris features.

Input to this layer is the cropped image and mask from the full size image, where220

the crop region centers at the detected bounding box but is 1.2 times larger in

order to accommodate marginal errors. Within this layer, simple circular Hough
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transform which is similar to the one in [17] is applied for detecting iris and

pupil circles. However, unlike in [17] where the circle detection is performed

on the entire image as no prior information is known, in this framework the225

search region for the circle center is made near the center of the bounding

box (especially the x-position), and the fitting range for the radius is also set

to be around half of the width of the RoI. With such spatial constraints, the

circle detection is least likely to generate erroneous output compared with the

approach in [17].230

Kindly note that unlike common iris segmentation approaches, there is no

dataset-specific parameters required for the above circle detection step. Vari-

ables like possible range of radius are automatically inferred from the dynami-

cally detected RoI from Mask R-CNN in order to achieve good generalizability.

As will be shown from the experiments, the circle detection accuracy from the235

proposed framework is much higher than conventional methods. After the iris

and pupil circles are detected, the iris region and mask are normalized using

the classic rubber-sheet model [5] into a resolution of 512 × 64. The next step

is to learn effective spatially corresponding features using our original FeatNet

component and extended triplet loss (ETL) function, which will be detailed in240

the following sections.

2.2. FeatNet: Learning Spatially Corresponding Iris Features

2.2.1. Image Preprocessing

After the iris is detected and normalized, we apply a simple contrast enhance-

ment process, which adjusts the image intensity so that 5% pixels are saturated245

at low and high intensities respectively. The enhanced images are the fed into

the subsequent network, referred to as FeatNet, for extracting comprehensive

features. Fig. 3 illustrates the key steps of image preprocessing.

2.2.2. Learning Spatially Corresponding Features

FeatNet is designed for extracting discriminative iris features and based on250

fully convolutional networks (FCN), which is originally developed for semantic
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Figure 3: Illustration of enhancement effect for normalized iris image
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Figure 4: Detailed structures for FeatNet. This network gathers convolutional feature maps at

different scales and resize them to the same resolution to form a feature stack. These features

are then fused by a convolutional layer to generate a single-channel feature map which retains

spatial correspondence with the original input.

segmentation [14]. Different from common convolutional neural network (CNN),

the FCN does not have fully connected layer. The major components of FCN are

convolutional layers, pooling layers, activation layers, etc. Since all these layers

operate on local regions around pixels from their bottom map, the output map255

can preserve spatial correspondence with the original input image. By incor-

porating up-sampling layers, FCN is able to perform pixel-to-pixel prediction.

The detailed structure of FeatNet is provided in Fig. 4 and Table 1.

As shown in Fig. 4, the input iris image is forwarded by several convolutional

layers, activation layers and pooling layers. The network activations at different260

scales, i.e., TanH1-3, are then up-sampled if necessary to the size of original
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Table 1: Layer configurations for FeatNet

customized loss function, named Extended Triplet Loss 
(ETL), has been developed to accommodate the nature of 
iris texture in supervised learning. The motivations and
technical details for the proposed approach are explained in 
the following sections. 

2.1. Image Preprocessing 
For all the experiments presented in this paper, we use a 

recent iris segmentation approach [10] for iris detection and 
normalization. The resolution after normalization is
uniformly set to 64 512× . We then apply a simple contrast 
enhancement process, which adjusts the image intensity so 
that 5% pixels are saturated at low and high intensities. The 
enhanced images are used as input to the deep network for 
training and testing. Figure 1 illustrates the key steps of 
image preprocessing. 

2.2. Fully Convolutional Network 
The proposed unified network (termed as UniNet) is 

composed of two sub-networks, FeatNet and MaskNet, 
whose detailed structures are presented in Figure 2 and 
Table 1. Both of the two sub-networks are based on fully 
convolutional networks (FCN) which is originally 
developed for semantic segmentation [15]. Different from
common convolutional neural network (CNN), the FCN
does not have fully connected layer. The major components 
of FCN are convolutional layers, pooling layers, activation 
layers, etc. Since all these layers operate on local regions 
around pixels from their bottom map, the output map can 
preserve spatial correspondence with the original input 
image. By incorporating up-sampling layers, FCN is able to 
perform pixel-to-pixel prediction. In the following we 
detail the two components of UniNet. 

 FeatNet
FeatNet is designed for extracting discriminative iris

Table 1: Layer configurations for MaskNet and FeatNet. 

FeatNet 

Layer Type Kernel 
size Stride # Output 

channels 
Conv1 Convolution 3 7× 1 16 
Conv2 Convolution 3 5× 1 24 
Conv3 Convolution 3 3×  1 32 
Conv4 Convolution 3 3×  1 1 

Tanh1, 2, 3 TanH activation / / / 
Pool1, 2, 3 Average pooling 2 2× 2 / 

MaskNet 

Layer Type Kernel 
size Stride # Output 

channels 
Conv1 Convolution 3 3×  1 16 
Conv2 Convolution 3 3×  1 32 

Conv2_s Convolution 1 1×  1 2 
Conv3 Convolution 3 3×  1 64 

Conv3_s Convolution 1 1×  1 2 
Conv4 Convolution 3 3×  1 128 

Conv4_s Convolution 1 1×  1 2 
Pool1, 2 Max pooling 2 2× 2 / 
Pool3 Max pooling 4 4× 4 / 

Figure 2: Detailed structures for FeatNet (top) and MaskNet (bottom) respectively. The FeatNet generates a single-channel feature map 
for each sample for matching. The MaskNet outputs a two-channel map, on which the values for each pixel along two channels represent
the probabilities of belonging to iris and non-iris regions, respectively. 

Conv1 Pool1Tanh1 Conv2 Pool2Tanh2 Conv3 Tanh3 Upsample

Upsample

Feature Stack

Conv4

Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4

Conv2_s

Conv3_s

Conv4_s

Upsample +

Upsample

Upsample

FeatNet

MaskNet

UniNet

input. These features form a multi-channel feature stack which contains rich

information from different scales, and are finally convolved again to generate an

integrated single-channel feature map.

The reason for selecting FCN instead of CNN for iris feature extraction pri-265

marily lies in the previous analysis on iris patterns in Section 1.2, i.e., the most

discriminative information of an iris probably comes from small and local pat-

terns. FCN is able to maintain local pixel-to-pixel correspondence between input

and output, and therefore is a better candidate for the iris feature extraction.

Regarding the format of the iris feature and depth of the network, there are270

trade-offs among the level of feature locality, complexity and compatibility with

traditional iris recognition systems. When the network goes deeper, the recep-

tive field, which describes how large the input area affects each output element,

becomes larger and fine details can be more easily lost, resulting in higher level

and more global feature descriptors [37]. As pointed out earlier, global features275

may not be suitable for iris recognition. On the other hand, networks with

shallow layers can hardly capture enough or comprehensive information from

the input images. After extensive exploration, we employed four convolutional

layers for FeatNet as shown in Fig. 4 to achieve balance between maintaining

feature locality as well as enabling comprehensive feature extraction. Another280

factor is the number of channels of the output iris feature map. In theory, multi-

channel or multi-scale features can enrich the information in the descriptor and

lead to higher recognition accuracy with more complex matching mechanisms

[38, 8]. However, in this paper the primarily goal is to investigate fundamen-
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Figure 5: Triplet-based network organization for training

tal feature effectiveness, and also for the easier and fair comparison with other285

existing methods, we therefore only focus on single-channel iris feature map.

2.3. Triplet-based Network Architecture

A triplet network [39] was implemented for learning the convolutional kernels

in FeatNet. The overall structure for the triplet network in the training stage

is illustrated in Fig.5. As shown in the figure, three copies of Uninets, whose290

weights are kept identical during training, are placed in parallel to forward

and back-propagate the data and gradients for anchor, positive and negative

samples respectively. The anchor-positive (AP) pair should come from the same

person while the anchor-negative (AN) pair comes from different persons. The

triplet loss function in such architecture attempts to reduce the anchor-positive295

distance and meanwhile increase the anchor-negative distance. However, in

order to ensure more appropriate and effective supervision in the generation of

iris features by the FCN, we improve the original triplet loss by incorporating

a bit-shifting operation. The improved loss function is referred to as Extended

Triplet Loss (ETL), whose motivation and mechanism are detailed in the next300

section.

3. Extended Triplet Loss Function

In this paper we develop a problem-specific loss function for more effective

iris feature learning, which is referred to as extended triplet loss (ETL) function.
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Iris normalizationIris normalization

Figure 6: Illustration of occlusions (labeled in blue) and horizontal translation which usually

exist between two normalized iris images even from a same iris.

The original loss function for a triplet network is defined as follows:

L =
1

N

N∑
i=1

[
‖fA

i − fP
i ‖ − ‖fA

i − fN
i ‖+ α

]
+

(1)

where N is the number of triplet samples in a mini-batch, fA
i , fP

i and fN
i

are the feature maps of anchor, positive and negative images in the i-th triplet

respectively. The symbol [·]+ is the as same as used in [39] and is equivalent305

to max(·, 0). α is a preset parameter to control the desired margin between

anchor-positive distance and anchor-negative distance. Optimizing above loss

will lead to the anchor-positive distance being reduced and anchor-negative

distance being enlarged until their margin is larger than a certain value.

In our case, however, using Euclidean distance as the dissimilarity metric is310

far from sufficient. As discussed earlier, we propose using spatial features which

have the same resolution with the input, the matching process has to deal with

non-iris region masking and horizontal shifting, which are frequently observed

in iris samples as illustrated in Fig.6. Therefore in the following, we extend the

original triplet loss function to address the above issues.315

3.1. Incorporating Masking and Shifting

As discussed earlier, in this paper we extend the original triplet loss function

Eq.1 to deal with non-iris regions and horizontal translation, which we refer to
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as the Extended Triplet Loss (ETL):

ETL =
1

N

N∑
i=1

[
D
(
fA
i ,f

P
i

)
−D

(
fA
i ,f

N
i

)
+ α

]
+

(2)

where D
(
f1,f2

)
is the Minimum Shifted and Masked Distance (MMSD) func-

tion, defined as follows:

D
(
f1,f2

)
= min
−B≤b≤B

{
FD

(
f1
b ,f

2
)}

(3)

fb represents a shifted version of f obtained by horizontally shifting it by b

pixels, and FD denotes the Fractional Distance. The shifted and the original

feature maps have the following spatial correspondence:

fb[xb, y] = f [x, y]

xb = (x− b+W ) mod W
(4)

where x, y are the spatial coordinates and xb is obtained by shifting the pixel to

the left by a step of b, assuming W is the width of the 2-D feature map. Note

that when x is less than b, the pixel position will be directed to the right end of

the map, as the iris map is normalized by unwrapping the original iris circularly

and the left end is therefore physically connected with the right end. When b

is negative, the bit-shifting operation would shift the map to the right by −b

pixels. The Fractional Distance FD in Eq.3 measures the relative difference

between two feature maps within non-masked regions only and normalize it by

the number of involved pixels:

FD
(
f1,f2

)
=

1

|M |
∑

(x,y)∈M

(
f1x,y − f2x,y

)2
(5)

where M is the common non-masked regions for the two feature maps.

Eq.3 and Eq.5 indicate that the new loss function will only evaluate the dif-

ference between features within non-masked areas and a shifting operation will

be performed to address the horizontal translation, so that matching of the pro-320

posed spatially corresponding iris features is meaningful. In the following we will

derive the gradients of the proposed ETL in order to perform back-propagation

for the learning process. The cases of real-valued and binary versions ETL are

quite different and therefore we will separately proceed.
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3.2. Back-propagation for ETL325

The components of the real-valued ETL are all differentiable and therefore

the computation of gradients is quite straightforward. Firstly, in order to main-

tain simplicity of the notations for the upcoming derivation, we denote the

offsets that fulfills the MMSD of AP-pair and AN-pair as follows:

bAP = arg min
−B≤b≤B

{
FD

(
fA
b ,f

P
)}

bAN = arg min
−B≤b≤B

{
FD

(
fA
b ,f

N
)} (6)

During the back-propagation (BP) of the training process, the gradients (or

partial derivatives) of the new loss on the anchor, positive and negative feature

maps need to be computed. For simplicity, let us firstly derive the partial

derivative w.r.t the positive feature map fA . From Eq.2 it can be derived that

for one sample in the batch:

∂ETL

∂fP
=


0, if ETL = 0

1

N

∂ETL

∂D (fA,fP )

∂D
(
fA,fP

)
∂fP

, otherwise
(7)

Again from Eq.2 we can see that ETL = 0 is equivalent to D
(
fA
i ,f

P
i

)
−

D
(
fA
i ,f

N
i

)
+ α ≤ 0. We only need to show the derivation when ETL is not 0.

Let us define the set of common valid iris pixel positions for AP pair as MAP ,

from Eq.3 and Eq.4 we have the following pixel-wise derivatives:

∂D
(
fA,fP

)
∂fP [x, y]

=
∂FD

(
fA
bAP

,fP
)

∂fP [x, y]

=


0, if (x, y) /∈MAP or ETL = 0

−2
(
fA[xbAP

, y]− fP [x, y]
)

N |MAP |
, otherwise

(8)

And apparently
∂ETL

∂D (fA,fP )
= 1, thus combining Eq.7 and 8 we can obtain:

∂ETL

∂fP [x, y]
=


0, if (x, y) /∈MAP or ETL = 0

−2
(
fA[xbAP

, y]− fP [x, y]
)

N |MAP |
, otherwise

(9)
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Similarly, for the partial derivatives on the negative feature map, we have:

∂ETL

∂fN [x, y]
=


0, if (x, y) /∈MAN or ETL = 0

2
(
fA[xbAN

, y]− fN [x, y]
)

N |MAN |
, otherwise

(10)

The remaining step is to calculate the derivatives w.r.t the anchor feature map.

It can be seen from Eq.3 - Eq.5 that shifting the first map to the left by b

pixels is equivalent to shifting the second map to the right by b pixels when

computing the distance. Making use of this property, we have FD
(
fA
bAP

,fP
)

=

FD
(
fA,fP

−bAP

)
and FD

(
fA
bAN

,fN
)

= FD
(
fA,fN

−bAN

)
. It is therefore quite

straightforward to obtain from Eq.2, 3 and 5 that:

∂ETL

∂fA[x, y]
= − ∂ETL

∂fP [x−bAP
, y]

+
∂ETL

∂fN [x−bAN
, y]

(11)

After calculating the derivative maps w.r.t fA, fP and fN respectively, the rest

of the BP process is the same as for common CNNs. Above derivation shows

that gradients will be computed only for pixels that are not masked. In this

way, features are learned only within valid iris regions, while non-iris regions

will be ignored since they are not of our interest. After the last convolutional330

layer, a single-channel feature map is generated which can be used to measure

similarities between the iris samples.

4. Feature Encoding and Matching

For the real-valued features output from UniNet.v2, we perform a simple

encoding scheme for the matching. The feature maps originally contain real335

values, and it is straightforward to measure the fractional Euclidean distance

between the masked maps for matching, as the network is trained in this man-

ner. As discussed earlier, however, binary features are more popular in most of

the research works on iris recognition, since it is widely accepted by the com-

munity that binary features are more resistant to illumination change, blurring340

and other underlying noise. Besides, binary features consume smaller storage

and enable faster matching. Therefore, we also investigated the feasibility of

binarizing our features with a reasonable scheme as described in the following:
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FeatNet Output MaskNet Output

Binarization:
value > mean   1
value < mean  0

Mask where

|value – mean| < t

Compute mean

Matching

Figure 7: Illustration of feature binarization process

For each of the output feature map, the mean value of the elements within

the non-masked iris regions is firstly computed as m. This mean value is then345

used as the threshold to binarize the original feature map. In order to avoid

marginal errors, elements with feature values f close to m (i.e., |f − m| < t)

are regarded as less reliable and will be masked together with the original mask

output by MaskNet. Such a further masking step is inspired by the Fragile Bits

[40], which discovered that some bits in IrisCode, with filtered responses near the350

axes of the complex space, are less consistent or unreliable. The range threshold

t for masking unreliable bits is uniformly set to 0.6 for all the experiments. The

feature encoding process can be demonstrated in Fig.7. For matching, we use the

fractional Hamming distance [6] from the binarized feature maps and extended

masks.355

Fig. 8 presents the performance comparison between the original real-valued

features and the binarized version as well as illustrating the effect of the addi-

tional masking operation, on ND-IRIS-0405 database [41]. Real-valued features

are matched using Euclidean distance within the common valid iris regions while

binary features are matched with Hamming distance, both averaged by the num-360

ber of valid pixels. As shown in the receiver operating characteristic (ROC)

curves, directly binarizing the real-valued features leads to performance degra-

dation. After masking ambiguous feature points whose original value are close

to the mean value, the performance from the binarized feature is improved and
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Figure 8: Comparison of ROCs from diverse deep learning architectures and configurations

for the iris recognition problem.

becomes even slightly better than the real-valued version. Such improvement365

can be possibly attributed to the removal of less reliable features and relatively

higher tolerance to noise in the binary feature representation. The threshold for

selecting the fragile features, 0.6 as mentioned earlier, is determined from the

feature value distribution and by extensive tuning.

5. Experiments and Results370

Thorough experiments were conducted to evaluate the performance of the

proposed approach from various aspects. The following sections detail the ex-

perimental settings along with the reproducible [42] results.

5.1. Databases and Protocols

We employed the following four publicly available databases our experiments:375

• ND-IRIS-0405 Iris Image Dataset (ICE 2006)

This database [41] contains 64,980 iris samples from 356 subjects and is one

of the most popular iris databases in the literature. The training set for this

database is composed of the first 25 left eye images from all the subjects, and

the test set consists of first 10 right eye images from all the subjects. The test380
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set, after removing some falsely segmented samples, contains 14,791 genuine

pairs and 5,743,130 imposter pairs.

• CASIA Iris Image Database V4 distance

This database (subset) [43] includes 2,446 samples from 142 subjects. Each

sample captures the upper part of face and therefore contain both left and right385

irises. The images were acquired from 3 meters away. An OpenCV-implemented

eye detector [36] was applied to crop the eye regions from the original images.

The training set consists of all the right eye images from all the subjects, and

the test set comprises all the left eye images. The test set generates 20,702

genuine pairs and 2,969,533 imposter pairs.390

• IITD Iris Database

The IITD database [44] contains 2,240 image samples from 224 subjects. All

of the right eye iris images were used as training set while the first five left eye

images were used as test set. The test set contains 2,240 genuine pairs and

624,400 imposter pairs.395

• WVU Non-ideal Iris Database Release 1

The WVU Non-ideal database [45] (Rel1 subset) comprises 3,043 iris samples

from 231 subjects which were acquired under different extends of off-angle, il-

lumination change, occlusions, etc. The training set consists of all of the right

eye images, and the test set was formed by the first five left eye images from all400

the subjects. The test set has 2,251 genuine pairs and 643,565 imposter pairs.

From the above introduction we can observe that the imaging conditions

for these databases are quite different. Sample images from the four employed

datasets are provided in Fig.9, where noticeable variation in image quality can be

observed. It is therefore judicious to assume that these databases can represent405

diverse deployment environments.
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4. Feature Encoding and Matching
We perform a simple encoding process for the feature

map output from UniNet. The feature maps originally 
contain real values, and it is straightforward to measure the 
fractional Euclidean distance between the masked maps for 
matching, as the network is trained in this manner. However, 
binary features are more popular in most of the research 
works on iris recognition (e.g., [1]-[6], [9]), since it is 
widely accepted by the community that binary features are 
more resistant to illumination change, blurring and other 
underlying noise. Besides, binary features consume smaller 
storage and enable faster matching.  Therefore, we also 
investigated the feasibility of binarizing our features with a 
reasonable scheme as described in the following: 
 For each of the output feature map, the mean value of the 
elements within the non-masked iris regions is firstly 
computed as m. This mean value is then used as the 
threshold to binarize the original feature map. In order to 
avoid marginal errors, elements with feature values v close 
to m (i.e., | |v m t− < ) are regarded as less reliable and will be 
masked together with the original mask output by MaskNet. 
Such a further masking step is conceptually similar to 
“Fragile Bits” [12], which discovered that some bits in 
IrisCode, with filtered responses near the axes of the 
complex space, are less consistent or unreliable. The range 
threshold t for masking unreliable bits is uniformly set to 
0.6 for all the experiments. The feature encoding process 
can be demonstrated in Figure 5. For matching, we use the 
fractional Hamming distance [2] from the binarized feature 
maps and extended masks. It is observed that using the 
binary features does not degrade the performance compared 
with using the real-valued features, and even yield slight 
improvements in some cross-dataset scenarios, probably 
due to the factors discussed above. 

5. Experiments and Results
Thorough experiments were conducted to evaluate the

performance of the proposed approach from various aspects. 
The following sections detail the experimental settings 
along with the reproducible [38] results. 

5.1. Databases and Protocols 
We employed the following four publicly available 

databases our experiments: 

 ND-IRIS-0405 Iris Image Dataset (ICE 2006)
This database [32] contains 64,980 iris samples from 356
subjects and is one of the most popular iris databases in
the literature. The training set for this database is
composed of the first 25 left eye images from all the
subjects, and the test set consists of first 10 right eye
images from all the subjects. The test set, after removing
some falsely segmented samples, contains 14,791
genuine pairs and 5,743,130 imposter pairs.

 CASIA Iris Image Database V4 – distance
This database (subset) [33] includes 2,446 samples from
142 subjects. Each sample captures the upper part of face
and therefore contain both left and right irises. The
images were acquired from 3 meters away. An OpenCV-
implemented eye detector [36] was applied to crop the
eye regions from the original images. The training set
consists of all the right eye images from all the subjects,
and the test set comprises all the left eye images. The test
set generates 20,702 genuine pairs and 2,969,533
imposter pairs.

 IITD Iris Database
The IITD database [34] contains 2,240 image samples
from 224 subjects. All of the right eye iris images were
used as training set while the first five left eye images
were used as test set. The test set contains 2,240 genuine
pairs and 624,400 imposter pairs.

WVU Non-ideal Iris Database – Release 1
The WVU Non-ideal database [35] (Rel1 subset)
comprises 3,043 iris samples from 231 subjects which
were acquired under different extends of off-angle,
illumination change, occlusions, etc. The training set
consists of all of the right eye images, and the test set was
formed by the first five left eye images from all the
subjects. The test set has 2,251 genuine pairs and
643,565 imposter pairs.

From the above introduction we can observe that the
imaging conditions for these databases are quite different. 
Sample images from the four employed datasets are 
provided in Figure 6, where noticeable variation in image 

Figure 5: Illustration of feature binarization process. 

FeatNet Output MaskNet Output

Binarization:
value > mean   1
value < mean  0

Mask where
|value – mean| < t

Compute mean

Matching Figure 6: Sample raw images from four employed databases. 

ND-IRIS-0405 CASIAv4
-distance IITD WVU Non-

ideal 

Figure 9: Sample raw images from four employed databases

Figure 10: Sample results for the iris bounding box detection and mask segmentation from

the proposed UniNet.v2.

5.2. Detection and Segmentation Accuracy

As the unified framework incorporating iris detection and segmentation is

the key extension for our work compared with the conference version, we firstly

evaluate the performance for this part. The iris detection and segmentation ac-410

curacy is of vital importance for the task of iris recognition as discussed earlier.

Sample results of the iris bounding box detection and mask segmentation are

provided in Fig. 10, from which it can be observed that the proposed frame-

work can generalize well for varying image qualities. In this section we mainly

compared our work with its earlier version, i.e., UniNet.v1 [16], and a recent415

promising work [17].

• Detection Accuracy
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Table 2: Comparison of correct rates of iris detection obtained from this approach and a

competitive baseline

ND IRIS 0405 Casia.v4 IITD WVU Non-ideal

UniNet.v2 94.4% 96% 96.8% 89.6%

RTV-L1 [17] 92.8% 92% 96% 85.6%

The term detection accuracy here refers to the accuracy in automatically

detecting the iris and pupil circle positions compared with manually labeled

ground truths. To generate ground truth circle positions, we randomly selected

500 sample images from test sets of the four employed databases which do not

have overlapping subjects with the training sets. Then we manually labeled the

positions of both pupil and iris circles as the ground truths. Let us represent

a circle as C = {x, y, r} where x and y are coordinates of the center and r

is the radius, and assume we have a automatically detected circle Cd and the

ground truth circle Cg. The detection is considered as accurate if the following

conditions persist: 
√

(xd − xg)2 + (yd − yg)2

rg
< 5%,

|rd − rg|
rg

< 10%

(12)

which considers the distance between two centers and the difference between the

radii. An iris is then considered correctly detected if both iris and pupil circles

are accurately found. Table 2 shows the comparison of iris detection accuracy420

from UniNet.v2 and a recent method [17] which appeared in the conference

version of this paper.

The comparative results shown in Table 2 indicate that consistent improve-

ments on the iris detection accuracy have been achieved by exploiting Mask

R-CNN in place of parameter-dependent hand-crafted approach [17]. Note that425

the results of our approach is obtained from one model without fine-tuning

whereas the parameters of [17] have been extensively tuned for each of the em-

ployed database separately. Therefore we can infer that our new model offers
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superior generalization capability, which has been the key motivation for the

work in this paper.430

• Segmentation Accuracy

Apart from detection accuracy which evaluates the correctness of the loca-

tion of detected iris, we should also examine the segmentation accuracy that

measures pixel-level precision for the iris mask. Manually labeled ground truth

masks are necessary for such evaluation. The IRISSEG-EP [46] has provided435

manually labeled iris masks for part of images from ND-IRIS-0405 and IITD

databases, and another research work [19] has released ground truth masks for

the Casia.v4-distance dataset. We utilize these masks as ground truths for the

evaluation. After removing duplicated samples in the training set for training

our model, we obtain 819, 1,890 and 437 ground truth masks for the images440

from ND-IRIS-0405, IITD and Casia.v4-distance databases respectively.

The segmentation accuracy is evaluated using the NICE.I protocol [47] which

is widely adopted in the literature:

E =
1

Ns

Ns∑
i=1

Ei

Ei =
1

Wi ×Hi

Wi∑
x=1

Hi∑
y=1

Oi[x, y]⊕Gi[x, y]

(13)

where Oi and Gi are the output binary mask from the algorithm and the ground

truth binary mask respectively for the i-th sample, and with a size of Wi ×Hi,445

while ⊕ denotes the exclusive-or operation. The above formulation evaluates the

number of inconsistent pixels between the predicted and ground truth masks,

and normalized by the resolution of the image as the segmentation error rate.

We compare the results using this metric (13) from our approach with that of

[17] and our conference version, MaskNet [16] The results are shown in Table 3.450

As shown from the segmentation results, iris masks generated from our

framework using Mask R-CNN achieve consistently higher accuracy as compared

with those from hand-crafted or post-normalization segmentation approaches.
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Table 3: Comparison of segmentation error rates from different approaches

ND IRIS 0405 Casia.v4 IITD

UniNet.v2 1.68% 0.67% 5.34%

UniNet [16] 1.74% 0.83% 6.63%

RTV-L1 [17] 1.93% 0.70% 5.89%

Such observation underlines the usefulness of Mask R-CNN is addressing prob-

lem of iris segmentation with superior generalization capability. It is again455

important to note that there is no dataset-specific parameter tuning for our

approach for the automated iris segmentation.

5.3. Ablation Study for Recognition

In this section we will compare the recognition accuracy of UniNet.v2 with

the results in the conference version, to investigate possible performance im-460

provements by incorporating the Mask R-CNN for unified iris detection and

segmentation. However, it is important to underline a key step to ensure fair

comparison. In our conference paper, as the key focus was on learning effec-

tive iris features for the matching only, we manually removed some samples

with badly detected iris circles, or corrected some of the detection results from465

both training set and test set to avoid learning meaningless information. This

setup has been stated in the original paper [16] and such manual filtering for

test images was identically performed for each baseline to ensure fairness in the

comparison. In the experiment presented in this section, however, as automated

iris detection is also part of our new framework, we skip such human interven-470

tion on the iris detection results to eliminate bias on the earlier version [16].

Comparative receiver operating characteristic (ROC) curves for the matching

are shown in Fig. 11.

It can be observed from the ROCs shown in Fig. 11 that the matching

accuracy has been consistently improved as compared with the results in con-475

ference version of this paper. Our work has implemented fully automated iris
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Figure 11: ROCs for comparison with the conference version of this paper [16] Best viewed in

color.
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segmentation with no human intervention, and results have ensured fairness in

the comparison. Such results indicate that the addition of iris detection and

segmentation module using Mask R-CNN offers encouraging usefulness on the

recognition performance.480

5.4. Comparison with Earlier Works

In this section we present comparative experimental results using several

earlier and highly competitive baselines.

5.4.1. Test Configurations

During the comparison, we incorporated following two configurations in the485

test phase for extensive evaluation.

• CrossDB

In the CrossDB configuration, we use the ND-IRIS-0405 as the training set.

During testing, the trained model was directly applied on CASIA.v4-distance

and IITD without any further tuning. The purpose of the CrossDB setting490

is to examine the generalization capability of the proposed framework under

challenging scenario that few training samples are available.

• WithinDB

In this configuration we use the network trained on ND-IRIS-0405 as the ini-

tial model, then fine-tune it using the independent training set from the target495

database. The fine-tuned network is then evaluated on the respective test set.

Being capable of learning from data is the key advantage of deep learning, there-

fore it is judicious to examine the best possible performance from the proposed

model by fine-tuning it with some samples from the target database. The fine-

tuned models from the WithinDB configuration are expected to perform better500

than the one with CrossDB, due to higher consistency of image quality between

the training set and test set.

It should be noted that in both of the above configurations, training set and

test set are totally separated, i.e., none of the iris images are overlapping between
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the training set and test set. All the experimental results were generated under505

all-to-all matching protocol, i.e., the scores of every image pair in the test set

have been counted.

5.4.2. Comparative Results

We employ several highly competitive baselines for the comparison. Gabor

filter based IrisCode [5] has been the most widely deployed iris feature descrip-510

tor, largely due to the fact that few alternative iris features in the literature are

universally accepted as better than IrisCodes. Instead, the majority of recent

works on iris biometrics are more on improving segmentation and/or normal-

ization models [17, 48], applying multi-score fusion [29] or feature bits selection

[40]. In other words, in the context of iris feature representations, IrisCode is515

still the most popular and highly competitive approach, and therefore is defi-

nitely a fair benchmark for the performance evaluation. IrisCode has a number

of advanced versions. From the publicly available ones, we selected OSIRIS

[49], which is an open source tool for iris recognition. It implements a band

of multiple tunable 2D Gabor filters that can encode iris patterns at different520

scales, therefore is a highly credible competitor. Another classic implementation

of IrisCode is based on 1D log-Gabor filter(s) [6], which is claimed to encode iris

patterns more efficiently, and is also widely chosen as benchmark in a variety

of research works (e.g., [10, 17]). Therefore, this approach is also investigated.

Apart from the Gabor series filters, ordinal filters proposed in [8] can serve as525

a different type of iris feature extractors to complement the comparisons. The

aforementioned benchmarks have been extensively tuned on target databases

during testing to ensure as good performance as possible.

The comparison results are shown in Fig. 12 and Table 4. Significant and

consistent improvements from our deep learning based methods over other base-530

lines have been shown on all of the four databases, under both WithinDB and

CrossDB configurations. Such results suggest that the proposed iris feature rep-

resentation not only achieves superior accuracy but also exhibits outstanding

generalization capability. Even without additional parameter tuning, the well-

27



10
−3

10
−2

10
−1

10
0

0.95

0.96

0.97

0.98

0.99

1

False Accept Rate

G
e
n
u
in

e
 A

c
c
e
p
t 
R

a
te

 

 

Ours

IrisCode (2D Gabor − OSIRIS)

IrisCode (1D log−Gabor)

Ordinal

(a) ND-IRIS-0405

10
−3

10
−2

10
−1

10
0

0.8

0.85

0.9

0.95

1

False Accept Rate

G
e
n
u
in

e
 A

c
c
e
p
t 
R

a
te

 

 

Ours − CrossDB

Ours − WithinDB

IrisCode (2D Gabor − OSIRIS)

IrisCode (1D log−Gabor)

Ordinal

(b) CASIA.v4-distance

10
−3

10
−2

10
−1

10
0

0.97

0.98

0.99

1

False Accept Rate

G
e
n
u
in

e
 A

c
c
e
p
t 
R

a
te

 

 

Ours − CrossDB

Ours − WithinDB

IrisCode (2D Gabor − OSIRIS)

IrisCode (1D log−Gabor)

Ordinal

(c) IITD

10
−3

10
−2

10
−1

10
0

0.85

0.9

0.95

1

False Accept Rate

G
e
n
u
in

e
 A

c
c
e
p
t 
R

a
te

 

 

Ours − CrossDB

Ours − WithinDB

IrisCode (2D Gabor − OSIRIS)

IrisCode (1D log−Gabor)

Ordinal

(d) WVU Non-ideal

Figure 12: ROCs for comparison with other state-of-the-art methods on for the employed

databases. Best viewed in color.

trained model from our framework is promising to be directly used in deploy-535

ment environments with varying image qualities. The relaxation of parameter

tuning is apparently a highly desirable property for many real-life applications.

An interesting finding is that on IITD database, the CrossDB model performs

better even than the fine-tuned one. This is possibly because most of the images

in IITD are with high qualities and less challenging, and its training set is not540

large enough, which causes slight over-fitting problem.

5.5. Comparison with Other Deep Learning Configurations

In order to ascertain the effectiveness of the proposed network architecture

for spatial feature extraction and the extended triplet loss, we also compared

our method against typical deep learning architectures that are widely employed545
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Table 4: Summary of false reject rates (FRR) at 0.1% false accept rate (FAR) and equal error

rates (EER) for the comparison.

ND-IRIS-0405 CASIA.v4-distance IITD WVU Non-ideal 

FRR EER FRR EER FRR EER FRR EER 

IrisCode (OSIRIS) 3.73% 1.70% 19.93% 6.39% 1.61% 1.11% 13.70% 4.43% 

IrisCode (log-Gabor) 3.31% 1.88% 20.72% 7.71% 1.81% 1.38% 11.63% 6.82% 

Ordinal 3.22% 1.74% 16.93% 7.89% 1.70% 1.25% 9.89% 5.19% 

Ours-CrossDB / / 12.83% 4.41% 0.82% 0.68% 5.42% 2.36% 

Ours-WithinDB 2.02% 1.12% 11.61% 4.07% 1.12% 0.76% 5.06% 2.20% 

in various recognition tasks. The tested configurations are introduced in the

following:

(a) CNN+softmax/triplet loss

CNN+softmax is the most widely employed deep learning configurations in the

community, such as in [12] and [32]. Besides, CNN+triplet loss is gaining in-550

creasing popularity after it was proposed in [39], and therefore may also be

interesting and worth evaluating. For the CNN model, we have chosen the

popular VGG-16 which has achieved superior performance in face recognition.

(b) FCN+triplet loss

Comparative evaluation has also been performed on using the proposed FCN555

(FeatNet only) and the original triplet loss function without incorporating bit-

shifting and masking. Such comparison may assert the necessity of extending

the original triplet loss.

(c) DeepIrisNet [23]

We also compared our method against the recent deep learning based iris recog-560

nition framework, DeepIrisNet, which reports promising results. This archi-

tecture actually belongs to the CNN+softmax category, but we separately in-

spected it as it is directly proposed for iris recognition. Since the original model
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Figure 13: Comparison of ROCs from diverse deep learning architectures and configurations

for the iris recognition problem.

in their paper is not publicly available, we carefully implemented and trained

the CNN according to all the details in [23].565

The comparison with aforementioned configurations was performed on ND-

IRIS-0405 dataset, which has the largest number of training images among

employed ones. The test set is kept consistent during the comparison. Hyper-

parameters of the training processes for above architectures have been carefully

investigated to achieve best possible performance. It should be noted that the570

iris segmentation and normalization procedures were made exactly the same

for the different configurations introduced above, and therefore the only factor

impacting the final recognition accuracy is the performance of the extracted

features from these networks. The results are presented in Fig.13.

It can be observed from Fig.13 that our newly developed architecture sig-575

nificantly outperforms other deep learning configurations. CNN based configu-

rations have failed to deliver satisfactory results especially at lower FAR. Such

results support our previous analysis that global and high level features ex-

tracted by CNN may not be suitable for iris recognition. The poor performance

from FCN+triplet loss strongly suggests that it is necessary to account for580

bit-shifting and non-iris region masking when learning spatially corresponding

features through FCN.
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Table 5: Execution time of the proposed framework and other methods per eye image. The

resolutions for the original image and normalized template are 640× 480 and 512× 64 respec-

tively.

Detection/Segmentation Time Feature Extration Time

GPU CPU GPU CPU

UniNet.v2 271ms 4.3s 5.9ms 193ms

RTV-L1 [17] / 763ms / /

OSIRIS [49] / 93ms / 17ms

5.6. Execution Speed

We also evaluated the computational efficiency of the proposed framework

by measuring the execution time. The programs were executed on a desktop585

computer with Intel Core 3.4GHz i7-4770 CPU, 16GB RAM and NVIDIA GTX

1080 GPU. The summary is provided in Table 5.

It can be observed from the summary that the overall execution time of the

proposed framework is within reasonable range. It should be note that: (a) in

practical systems, the iris detection, segmentation and feature extraction are590

one-time effort for the on-line probe sample and template generation for the

gallery subjects can be done off-line in the registration process, and (b) the gen-

erated iris templates from the proposed framework are in the same format as

those from conventional methods, e.g., iriscodes. Consequently, there is no ad-

ditional computational cost for matching/searching iris templates for the probe595

to gallery samples compared with existing approaches.

6. Conclusions

This paper has developed a novel deep learning based framework, referred to

as UniNet.v2, for effective iris detection, segmentation and recognition, which

can offer superior performance and generalization capability for the focused600

problems. Higher iris detection and segmentation accuracy has been achieved

by introducing Mask R-CNN compared with the earlier version of UniNet. As
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for the feature learning, the specially designed Extended Triplet Loss function

can provide effective supervision for learning comprehensive and spatially cor-

responding iris features through the fully convolutional network. Further exten-605

sion of this work should focus on developing more effective algorithms for the si-

multaneous optimization for the iris segmentation and feature learning processes

through the deep networks, including more advanced and backpropagation-

complaint iris contour fitting and normalization, which is expected to further

exploit the spatially corresponding features for the problem of iris recognition.610
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