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Contactless Biometric Identification using     
3D Finger Knuckle Patterns 

Kevin H. M. Cheng, Ajay Kumar 

Abstract— Study on finger knuckle patterns has attracted increasing attention for the automated biometric identification. 

However, finger knuckle pattern is essentially a 3D biometric identifier and the usage or availability of only 2D finger knuckle 

databases in the literature is the key limitation to avail full potential from this biometric identifier. This paper therefore introduces 

(first) contactless 3D finger knuckle database in public domain , which is acquired from 130 different subjects in two-session 

imaging using photometric stereo approach. This paper investigates on the 3D information from the finger knuckle patterns and 

introduces a new feature descriptor to extract discriminative 3D features for more accurate 3D finger knuckle matching. An 

individuality model for the proposed feature descriptor is also presented. Comparative experimental results using the state-of-the-

art feature extraction methods on this challenging 3D finger knuckle database validate the effectiveness of our approach. Although 

our feature descriptor is designed for 3D finger knuckle patterns, it is also attractive for other hand-based biometric identifiers with 

similar patterns such as the palmprint and fingerprint. This observation is validated from the outperforming results, using the state-

of-the-art pixel-wise 3D palmprint and 3D fingerprint feature descriptors, on other publicly available datasets. 

Index Terms— Biometrics, finger knuckle identification, 3d finger dorsal matching , contactless hand identification 

——————————   ◆   —————————— 

1. INTRODUCTION

IOMETRIC technologies offer enormous potential to 
meet a range of security requirements for the auto-

mated and efficient recognition of humans. Among vari-
ous biometric identifiers, fingerprint [2], [32] is probably 
the most widely deployed biometrics for the e-governance, 
e-business and a range of law-enforcement applications. 
Other biometric identifiers such as face, iris, palmprint, or 
vascular patterns have also established their usefulness for 
a range of applications [1]. The usefulness of biometric 
identifiers depends on the nature of application require-
ments including the accuracy, efficiency, and importantly 
the user convenience.  

Several challenges have emerged with the biometric 
recognition deployments using fingerprints. The degrada-
tion in fingerprint matching accuracy due to frequent skin 
deformations, residual dirt, sweat, moisture and/or scars, 
is well-known while a large number of manual labourers 
and elderly population also suffers from fingerprints with 
less than acceptable quality for the identification. The NIST 
report in [3] submitted for the US Congress stated that 
about 2% of the population does not have usable finger-
prints. Similar conclusions have also been reported in a 
large-scale proof of concept study from UIDAI [4] which 
stated that about 1.9% of subjects cannot be reliably au-
thenticated by using their fingerprints. The finger knuckle 
patterns can be simultaneously imaged during the finger-
print identification and are less susceptible to damages 
during daily life activities. The finger knuckle patterns can 
be more conveniently imaged from a distance, unlike fin-
gerprints, as the major creases and curved patterns are eas-
ily visible with naked eyes. In summary, there are reason-
able arguments to indicate that the addition of finger 

knuckle patterns for biometric recognition could address 
some of the limitations with the usage of only fingerprints.   

Finger knuckle patterns are believed to be quite unique 
in establishing human identities. Several researchers [5]-
[8], [10] have investigated discriminative information from 
finger knuckle patterns using 2D images, and some evi-
dence emerges from the study in [11] which investigated 
discriminative information from 3D images using conven-
tional shape index measurements [12]-[13]. Similar to the 
palmprints [9, 10], it can be inferred that the most discrim-
inative information from finger knuckle patterns is associ-
ated with the knuckle curves and creases. However, accu-
rate extraction of finger knuckle curves and creases using 
2D images is quite difficult because the changes in illumi-
nations (e.g. caused by uneven reflections from 3D knuckle 
surfaces in the vicinity) strongly influences the intensity in-
formation. It is generally known that the biometric systems 
incorporating 2D imaging are more prone to spoof attacks 
(e.g. print attacks). A person impersonating another person 
by presenting a printed image poses serious challenges to 
preserve the integrity of a biometric system. 
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Table 1.  Summary of key differences between 
2D and 3D finger knuckle identification. 

 
2D Finger  

Knuckle Images 

3D Finger  

Knuckle Images 

Information and  

Invariability 

Intensity, affected 

by illumination 

Surface Normal / 

Depth / Curvature, in-

variant to illumination 

Recognition  

Performance 
Medium High 

Identification of Spoof 

and Alterations 
Low High 

Convenience High High 

Earlier Work 
Several promising  

studies 
Almost Nil 
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The usage of 3D finger knuckle information (surface 
normal vector, depth, or curvature) can enable more relia-
ble characterization of finger knuckle patterns as the 3D in-
formation is expected to be invariant to the change of illu-
minations. In addition, the 3D imaging setups generally ac-
quire 2D images and therefore simultaneous usage of 3D 
and 2D finger knuckle images can be used to achieve a per-
formance that may not be possible when either of such in-
formation is employed alone. Printed photograph cannot 
reveal 3D information and therefore 3D finger knuckle im-
aging systems can easily detect such spoof attacks. It is ex-
tremely difficult to present replicas of 3D finger knuckle 
patterns as they require subjects to intentionally present 
their fingers under sophisticated imaging setups, unlike 
those required for 2D finger knuckle images that can also 
be acquired covertly. Table 1 summarizes key differences 
between the potential from 2D and 3D finger knuckle im-
ages for automated biometric identification. 

Despite many advantages with the usage of 3D finger 
knuckle features, there are many challenges in the devel-
opment of an automated 3D finger knuckle biometric sys-
tem. Firstly, it is difficult to design a feature descriptor, to 
robustly recover unique information from 3D curve and 
creases, which can offer more accurate and efficient recog-
nition. Secondly, a key limitation with the emerging 3D 
scanning technologies to replace conventional 2D systems 
is associated with their high cost and bulk which can be 
mainly attributed to the nature of technologies employed 
for the 3D imaging. For example, five cameras were used 
in [1] while [14] uses a high-speed camera and a special-
ized projector to achieve 3D finger scanning. Therefore, 
there is a strong motivation to develop low-cost imaging 
solutions for the 3D finger knuckle imaging.  Finally, most 
important bottleneck in the advancement of much needed 
research efforts on 3D finger knuckle identification is the 
lack of any database in the public domain.  

This paper investigates the development of first auto-
mated biometric system using 3D finger knuckle patterns. 
There are several potential areas of applications for such 
technologies in e-business, forensics, providing secured ac-
cess in buildings and installations. This paper also presents 
a new feature descriptor for matching 3D finger knuckle 
patterns and attempts to estimate the uniqueness of the 3D 
finger knuckle patterns. A 3D finger knuckle database is 
also developed to advance further research efforts in this 
area. 

1.1 Related Work 

Study on finger knuckle patterns has attracted attention 
from many researchers, with many exciting results in the 
literature for the accurate biometric identification. How-
ever earlier attempts have only demonstrated the effective-
ness of 2D knuckle patterns/images for the online personal 
identification and such attempt using 3D knuckle patterns 
is yet to emerge in the best of our knowledge. Many re-
search efforts to study 3D shape patterns using 3D ear [15], 
3D fingerprints [16], and 3D face [17] have resulted in the 

development of more accurate or reliable biometric sys-
tems. Therefore a comprehensive study on the recovery of 
3D knuckle patterns and comparisons of 3D finger knuckle 
features is highly desirable and has been the focus of our 
work.  
       The gray-level 2D knuckle images typically acquire 
anatomy of skin crease patterns between the middle and 
proximal phalanges of fingers. A range of approaches us-
ing such knuckle images have been detailed in the litera-
ture for biometrics based personal identification. Based on 
the nature of feature descriptors, these approaches can be 
largely categorized into three categories; those based on 
subspace learning (e.g. [6], [11]), spectral features (e.g. [18]-
[19], [41]) and those based on the discretization of local fea-
tures (e.g. [8], [20]). Among these, those approaches based 
on the discretization of local features have attracted more 
attention in the literature as such methods generate com-
pact size templates, which leads to faster retrieval or 
matching. Reference [24] provides comparative experi-
mental results, on a range of minor and major knuckle pat-
terns, using publicly accessible database from over 700 dif-
ferent subjects. These results using local feature de-
scriptors achieve outperforming results and is reasonable 
to incorporate such approach as a baseline to ascertain per-
formance from 2D knuckle images. 

1.2 Our Work and Key Contributions 

This paper addresses the key limitations of currently 
available finger knuckle identification technologies by de-
veloping a 3D finger knuckle feature extraction and match-
ing model that can simultaneously recover extended finger 
knuckle features from 3D finger knuckle images recon-
structed from a single 2D imaging sensor. Simultaneous 
availability of 3D information from the finger knuckle im-
ages not only offers significantly improved matching accu-
racy but can also ensure automated detection of sensor-
level spoof attacks using printed knuckle images. Any di-
rect application of known or popular 3D feature de-
scriptors, e.g. those designed for other biometric identifiers 
such as palm or fingerprint, is expected to offer limited 
performance. Instead, specialized feature extractors 
should be designed to recover the most discriminative in-
formation from the 3D finger knuckle patterns which is 
largely embedded in 3D curves and creases with varying 
thickness. Some of the successful attempts in recovering 
3D fingerprints using photometric stereo [16] requires re-
construction or the integration of source 3D information, 
i.e. surface normals. The reconstruction process is gener-
ally complex, e.g. popular method used in [21] requires FFT 
and IFFT which are known for their demanding complex-
ity, and is known to introduce errors in the reconstructed 
depth images. These errors are introduced as it is difficult 
to find closed form solutions for the integration, i.e., inte-
grability problem [21]-[22], and mainly results from the 
discontinuities around irregular ridge valley boundaries 
during the 3D reconstruction. Therefore, any direct usage 
of source 3D information from the surface normal vectors 
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can not only enhance matching accuracy for 3D knuckle 
images but can also help to reduce the complexity and is 
therefore highly desirable. The introduction of new 3D fin-
ger knuckle modality also raises a fundamental question 
on the (theoretical) upper limit on the performance from 
this biometric modality. Therefore, uniqueness of 3D 
knuckle patterns needs to be established to answer some 
of such fundamental questions relating to 3D finger 
knuckle patterns. The key contributions from this paper 
can be summarized as follows: 

 
1. This paper investigates and develops a new biometric 

sys-tem using contactless 3D finger knuckle images. 
Simultaneous acquisition of 3D and 2D finger knuckle 
images can be used to significantly improve the match-
ing accuracy that may not be possible by using either 
2D or 3D finger knuckle patterns alone, and such an ap-
proach is presented in this paper. Experimental results 
presented in this paper indicate that, unlike 2D finger 
knuckle identification, new 3D finger knuckle identifi-
cation system can also help to preserve integrity of the 
biometric system by detecting sensor level print at-
tacks. The individuality of finger knuckle patterns is yet 
to be studied and therefore we also attempt to answer 
the fundamental question on the uniqueness of 3D fin-
ger knuckle biometric modality. An individuality 
model presented in section 4 estimates the theoretical 
upper limit on the expected performance from finger 
knuckle patterns and would facilitate further research 
in this area. 

 

2.  We develop a new feature descriptor to efficiently and 
more accurately match 3D finger knuckle biometric 
patterns. This feature descriptor can efficiently recover 
and encode the curvature and orientation details and 
considers their partial-similarity during the matching. 
Our detailed and comparative experimental results 
presented in section 5 of this paper indicate outper-
forming results and validate our approach developed 
in this paper. Although our feature descriptor is de-
signed for recovering discriminative information from 
3D finger knuckle images, it is also useful for other bi-
ometric identifiers such as palm and fingerprint. Our 
comparative experimental results detailed in section 5 
in this paper indicate outperforming results, over the 

state-of-the-art baselines on public databases, and vali-
date the effectiveness of our feature descriptor. 

 

3.  Lack of any publicly available 3D finger knuckle data-
base is one of the key limitations for much needed fur-
ther research in this area. Therefore, this paper devel-
ops the first two-session 3D finger knuckle database. 
This 3D finger knuckle images database has been ac-
quired from 130 different subjects, with 2820 images, 
and is made publicly available [40] for researchers to 
advance much needed further research in this area. 

 
The rest of this paper is organized as follows. Section 2 

presents a overview of the 3D finger knuckle identification 
system using a simplified block diagram. The details for 
our methodologies, including the proposed feature de-
scriptor, appear in section 3. The uniqueness of finger 
knuckle patterns is discussed in section 4 with details on 
the proposed individuality model. The comparative exper-
imental results are systematically presented in section 5 of 
this paper while the key conclusions from this work are 
summarized in section 6.  

2. SYSTEM OVERVIEW AND BLOCK DIAGRAM 

A simplified block diagram for 3D finger knuckle identifi-
cation system developed in this work is shown in Figure 1.  
Multiple 2D finger knuckle images are firstly acquired un-
der different illuminations and the acquisition is automat-
ically synchronized using with respective illumination us-
ing a computer. The acquired images are then prepro-
cessed and automatically segmented to extract region of 
interest images. These segmented images, acquired under 
different illuminations, are then used for estimating sur-
face normal vectors. Unlike other photometric stereo based 
biometric imaging system (e.g. fingerprint [16], [27]), the 
complex process of integrating surface normal vectors for 
recovering the depth images is not required in our system. 
The 3D finger knuckle features are then directly extracted 
from the surface normal vectors of 3D finger knuckle im-
ages. The 2D finger knuckle image, although noisy as each 

 
4 

Fig. 1.  Block diagram of 3D finger knuckle recognition system. 
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of them is acquired under partial illumination, used to re-
cover 3D finger knuckle images can also be utilized to im-
prove match accuracy for the system and is also investi-
gated in our work. The match scores between the probe 
and gallery pairs are then respectively computed for 3D 
and 2D finger knuckle images. The final decision to assign 
an unknown user to either genuine or imposter class is 
made using the combinate match score and its comparison 
with the decision threshold. 

3. 3D FINGER KNUCKLE IDENTIFICATION 

In the following subsections, key components of the 3D fin-
ger knuckle identification system including the image ac-
quisition, image preprocessing and segmentation, 3D re-
construction, feature extraction steps and the matching 
process is detailed. 

3.1 Image Acquisition 

We use photometric stereo approach and imaging setup in 

[16] to acquire 3D finger knuckle images. This approach re-
quires a low-cost fixed camera, with seven evenly distrib-
uted illuminations surrounding the camera lens, a control 
or driver circuit to power up the illuminations and any 
general-purpose computer. The control circuit is pro-
grammed  to  adjust the illuminations while the computer 
coordinates to synchronize the control circuit during the 
camera imaging. The positions of the illuminations are ap-
proximated by measuring the height and observing the ori-
entation of shadow when a pin is placed at the center of the 
field of view. Relative positions of the illuminations at 
every pixel is computed during the calibration of the im-
aging setup [32]. The finger dorsal region is presented to 
the camera during the 3D imaging. A number of 3D finger 
knuckle images are acquired in quick succession while re-
spective light sources are activated. Figure 2 presents sam-
ple images acquired from different subjects during the im-
aging.  

     
Fig. 2.  Sample raw images acquired from different subjects. 

 

     
Fig. 3.  Sample segmented images acquired from different subjects. 

 

           
                                 (a)                                                         (b)                                                                         (c)       

Fig. 4.  Sample images of surface gradient: (a) with respect to horizontal direction; (b) with respect to vertical direction; (c) Surface normal vectors.  

 

     
                                                                 (a)                                                                                                     (b) 

Fig. 5.  3D reconstructed images using: (a) Frankot Chellappa; (b) Poisson Solver. 
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3.2 Image Preprocessing and Segmentation 

Each of the acquired images are firstly subjected to the seg-
mentation to automatically extract the region of interest 
images. This is achieved by firstly computing an average 
image for each set of stereo images, followed by the edge 
detection. In order to localize the image region containing 
knuckle patterns, a fixed size of rectangular window is 
used to probe the edge-detected image in horizontal and 
the vertical directions. Similar to as in [6], the number of 
edge pixels within this window is computed. A fixed re-
gion of interest is segmented from the image with the max-
imum number of edge pixels within this sliding window. 
These segmented images are further subjected to contrast 
stretching operation and then used for the 3D reconstruc-
tion input as detailed in the next section. Figure 3 shows 
samples from the segmented images of different subjects. 

3.3 3D Reconstruction 

The 3D surface normal vectors from of the photometric ste-
reo images are recovered using the conventional photo-
metric stereo method [23]. A simplified specular reflection 
removal approach is adopted to accurately recover the sur-
face normal vectors. For a set of stereo images, 90% of the 
maximum or highest intensity values are defined as the 
threshold for the detection of outliers. Intensity values 
larger than this threshold are considered as the specular 
values and are automatically discarded. However, when 
there are too many specular reflection values at a pixel po-
sition, at least four lowest intensity values are retained to 
estimate the surface normal vectors. The finger surface is 
assumed be Lambertian and we use such assumptions for 
the traditional photometric stereo approach, as justified in 
many references e.g. [16], [27], to recover 3D surface nor-
mal. Let us define 𝒊 = [𝑖1, 𝑖2 , … , 𝑖𝐷 ]

𝑇  be the intensity values 
of a pixel corresponding to the D different light sources; 
𝒍 = [𝑙𝑥 , 𝑙𝑦  , 𝑙𝑧 ]

𝑇  be the vector of a light source; 𝑳 =
[𝒍1 , 𝒍2 , … , 𝒍𝐷 ]

𝑇 be the matrix of the light sources; 𝒏 =

[𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 ]
𝑇  be the surface normal vector and ρ be the al-

bedo.  
𝒊 = 𝑳 ∙ 𝒏 ∙ ρ                                     (1) 

 Surface normal vectors are computed using the least 
square approximation: 

𝒎 = 𝒏 ∙ ρ = (𝑳𝑇𝑳)−1𝑳𝑇𝒊                            (2) 

ρ = |𝒎|                                           (3) 

       𝒏 =
𝒎

|𝒎|
                                             (4) 

Figure 4 illustrates sample images corresponding to the 
surface gradients and surface normal vectors. Traditional 
3D feature descriptors [30]. [31] extract features from the 
depth images, which can be computed by integrating the 
surface normal vectors in obtained from equation (4). The 
Poisson Solver [22] and Frankot Chellappa [21] approach are 
two popular approach to recover the depth map while ad-
dressing integrability problem. The Poisson Solver ap-
proach generated better visual result (Figure 5) that closely 
resembled with the natural knuckle patterns. However, the 
usage of Frankot Chellappa approach constantly offered 
consistently better performance. Figure 6 presents such 
comparative performance evaluation from 105 subjects six 
forefinger knuckle images, using a two-session protocol-
that generated 630 genuine match scores and 65520 im-
poster match scores, with Surface Code [30] as the feature 
descriptor. Please refer to Section 5.1 for more details on 
the database and experimental protocol. Many state-of-
the-art photometric stereo methods, e.g. [25]-[26], [28] for 
the real objects may not be suitable for accurately recover-
ing 3D finger knuckle patterns for the biometric recogni-
tion. Our comparative experimental results for the verifi-
cation performance using SBL [26] and the traditional least 
square (LS) approach appear in Figure 6. These results can 
justify the choice of traditional least square approach with 
Frankot Chellappa algorithm for our problem.  

3.4 3D Feature Descriptor using Surface Gradient 
Derivatives 

The 3D images generally provide more stable or invariant 
details and can enable more accurate extraction of finger 
knuckle curves and creases (as discussed in section 1). 
Therefore a more specialized feature descriptor to recover 
and match such 3D information is developed. Among 
many 3D surface details (e.g. surface normal vector, depth, 
and curvature), 3D feature descriptors for other hand 
based biometric identifiers, e.g. 3D palm,  have shown out-
performing results using the curvature [30] and depth [31]. 
These are however not expected to be accurate enough to 

 
Fig. 6. Comparisons between different reconstruction methods. 
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extract most discriminative features from the finger 
knuckle patterns as these are presented in 3D curves and 
creases with varying profile/thickness. Another more im-
portant aspect of the feature descriptor introduced in this 
work is that the photometric stereo based 3D biometric im-
aging systems (e.g. fingerprint [16], [27]) computes the 
depth images by integrating surface normal vectors. In 
fact, every ‘reconstruction algorithm’ the surface normal 
needs to be integrated and suffers from integrability prob-
lem [9] which can be more severe for 3D knuckle patterns 
due to the irregular ridge and valley structure. This process 
is not only known to introduce errors but is also computa-
tionally complex. The process of computing curvature in-
formation from depth images even requires significant 
amount of time (shown in section 5.1.1). We therefore at-
tempt to address such limitations by developing a new fea-
ture descriptor, which can directly extract discriminative 
features from the 3D surface normal vectors, alleviating the 

need for computing depth or curvature images. The sur-
face normal vectors essentially present source 3D infor-
mation which is discriminative and also robust to the com-
mon photometric variations. Therefore appropriate sur-
face normal vector based measurements can provide sig-
nificant capabilities for discriminating identities. The fea-
ture descriptor introduced in this section is highly discrim-
inative as it can efficiently capture both the line  and orien-
tation information using two bits per pixel, which cannot 
be achieved neither from descriptor in [30] (four-bits per 
pixel) or in [31] (no orientation information is encoded). 
We now detail the formulation of this feature descriptor 
using the source 3D information. 

Let 𝑟 represent the imaged 3D finger knuckle surface. 
This 3D surface can be explicitly described in terms of a 
function along 2D coordinates 𝑥 and 𝑦 as follows: 

   𝑟 = 𝑔(𝑥, 𝑦)                                            (5) 

 
Fig. 7. Illustration of the derivatives of gradient p. 

Surface Code [30]  

(the most significant bit is on left) 

Binary Shape [31] Surface Gradient Derivatives 

 (𝑆𝐺𝐷𝑥  and 𝑆𝐺𝐷𝑦 ) 

                 

       

Fig. 8.  Sample binary feature images of Surface Code [30], Binary Shape [31] and proposed Surface Gradient Derivatives. Images in a 

row are from the same subject. 
 

  
                                                                     (a)                                                                                (b)     

Fig. 9.  Comparisons of using various matching schemes (a) 30 subjects; (b) 105 subjects. 
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The surface normal vector 𝒏 on this surface 𝑟 can be ex-
pressed as follows: 

𝒏 = [𝑝, 𝑞, 1]𝑇  where   𝑝 =
𝜕𝑔(𝑥 ,𝑦)

𝜕𝑥
, 𝑞 =

𝜕𝑔(𝑥,𝑦)

𝜕𝑦
        (6) 

where 𝑝 and 𝑞 represents the gradient of 𝑔(𝑥, 𝑦) along re-
spective axes. The gradient space is a two-dimensional 
space containing all points (𝑝, 𝑞)  [23].  

If the surface normal vectors are recovered using pho-
tometric stereo approach detailed in section 3.3, unit sur-
face normal vectors in the form of 𝒏 = [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 ]

𝑇 are ob-
tained from equation (4). The surface gradients 𝑝, 𝑞 can 
then be directly computed (without the need of object sur-
face 𝑧) as: 

𝑝 =  
𝑛𝑥

𝑛𝑧
,   𝑞 =  

𝑛𝑦

𝑛𝑧
                                 (7) 

Figure 7 illustrates a schematic representation of surface 
normal vectors (arrows) in a cross-sectional view. In this 
figure, x-axis is pointing towards the right and we define 
sample gradients 𝑝 for the illustration. The derivatives of 
gradient 𝑝 with respect to the direction x can be computed 
as the difference between the neighboring values using a 
simple gradient function. It can be observed that the valley 
region is associated with negative values, of the first deriv-
ative of gradient p with respect to the direction x, while 
ridge region is associated with positive values of the first 
derivatives of gradient p with respect to the direction x. 
Valley and ridge regions can therefore be easily distin-
guished by setting zero as the decision boundary. The most 
discriminative patterns on finger knuckle surface can be 
identified from the high frequency valley and ridge pat-
terns. Therefore, it is expected that the first derivative of 
surface gradients can describe discriminative features in 
finger knuckle patterns. 

We can further consolidate the knuckle feature formu-
lation and recover the derivatives of surface gradient vari-
ables 𝑝, 𝑞 represented as in the following:  

𝜕𝑝

𝜕𝑥
=

𝜕2𝑔(𝑥,𝑦)

𝜕𝑥2      and     
𝜕𝑞

𝜕𝑦
=

𝜕2𝑔(𝑥 ,𝑦)

𝜕𝑦2                     (8) 

We now define the features based on the surface gradient 
derivatives as two-bit binary representations using zero as 
the decision boundaries: 

𝑆𝐺𝐷𝑥 = 𝜏(
𝜕𝑝

𝜕𝑥
)     and     𝑆𝐺𝐷𝑦 = 𝜏(

𝜕𝑞

𝜕𝑦
)                 (9) 

where                        𝜏(𝛼) = {1   , 𝛼 < 0
0   , 𝛼 ≥ 0

                              (10) 

Figure 8 illustrates some sample images representing 
𝑆𝐺𝐷𝑥 and 𝑆𝐺𝐷𝑦. Although the derivatives of p with respect 
to the direction y and the derivatives of q with respect to 
the direction x can also be defined in a similar manner, they 
may not be as useful as 𝜕𝑝/𝜕𝑥 and 𝜕𝑞/𝜕𝑦 which corre-
spond to the physical meanings as illustrated in Figure 7. 
Another related technique, the second partial derivative 
evaluation utilizes all the four information (i.e. 𝜕𝑝/𝜕𝑥, 
𝜕𝑝/𝜕𝑦, 𝜕𝑞/𝜕𝑥, 𝜕𝑞/𝜕𝑦)  for describing the local curvature of 
3D knuckle surface. However, such technique only de-
scribes a pixel in one of the four categories: local minimum, 
local maximum, saddle point, or inconclusive (i.e. can be 
any of the above three). Besides, our 𝑆𝐺𝐷𝑥 and 𝑆𝐺𝐷𝑦 fea-
ture representation is expected to be more useful than the 
other two derivatives because of the aforementioned phys-
ical interpretation. The surface gradient derivatives features 
not only describe the concavity of irregular knuckle curves 
and creases but also their orientations (more explanation 
in section 3.5).  

3.5 Feature Matching with Partial Similarity 

In order to ensure full potential from the surface gradient 
derivatives features for more accurate matching, a sophisti-
cated matching strategy needs to be formulated for match-
ing binary feature templates. One intuitive approach is to 
consider the two binary feature templates independently 
and use the Hamming Distance to ascertain their similarity 
score (represented here as 𝑆𝐺𝐷𝑥 only, 𝑆𝐺𝐷𝑦 only). The final 
match score between two 3D finger knuckle images can be 
computed from the weighted score level combination of 
such similarity scores. Another efficient approach is to con-
solidate two binary feature templates into one using AND 
or OR operator, and use Hamming Distance as the match 
score between two 3D finger knuckle images (represented 
here as 1-bit AND, 1-bit OR). Besides, the two feature tem-
plates can be correspondingly matched with respective 
probe templates using the XOR operator and the resulting 
two pixel-wise similarity templates can be used to generate 
the similarity score using the ADD, OR or AND operator 
(represented here as 2-bit ADD, 2-bit OR, 2-bit AND). We 
performed experiments using the subset of database with 
the first 30 subjects (each with six forefinger knuckle im-
ages in two sessions, results in 180 (30 × 6) genuine match 
scores and 5220 (30 × 6 × 29) imposter match scores) to as-
certain comparative performance from several such match-
ing schemes (Figure 9). Please refer to Section 5.1 for more 
details on the database and experimental protocol. These 
experiments indicate that our matching scheme (denoted 
as Ours final) and (1-bit OR) can achieve two best perform-
ing results. The experiments are further extended using 
105 subjects (each with 6 images in two sessions, results in 
630 (105 × 6) genuine match scores and 65520 (105 × 6 × 104) 
imposter match scores), which validates the effectiveness 

 
Fig. 10.  Schematic representation of the gradient derivative features. 

 

Table 2.  Pixelwise surface gradient derivative features 
mapping function. 

 𝑏
𝑖𝑗

 
00 01 10 11 

𝑎
𝑖𝑗

  

00 0.5 1 1 1 

01 1 0 1 0.5 

10 1 1 0 0.5 

11 1 0.5 0.5 0 
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of our matching scheme over those from the variations of 
Hamming Distance. It is prudent to analyse the proposed 
matching strategy in detail and examine the reasons for su-
perior performance. 

In order to design an effective feature matching scheme, 
the nature of features represented in two binary feature 
templates should be carefully considered. Figure 10 details 
the nature of features expected to be represented/recov-
ered from the 2-bit feature descriptors at every pixel loca-
tion. In this figure, value 1 indicates the detection of a line 
feature (piece-wise linear approximation of knuckle curves 
or creases) in either vertical or horizontal direction. If no 
such line features are detected in any of the two direction, 
it corresponds to a non-line pixel represented by ‘00’. If a 
line feature is detected only in 𝑆𝐺𝐷𝑦 component, the line 
feature is expected to have horizontal orientation denoted 
by ‘01’. Similarly, a line feature in the vertical orientation 
is represented by ‘10’. If such line features are detected in 
both 𝑆𝐺𝐷𝑥 and 𝑆𝐺𝐷𝑦, there can be many possibilities. It 
could be two intersecting lines in the vertical and horizon-
tal direction. It could also represent a line feature in an ar-
bitrary orientation which is neither nearly vertical or hori-
zontal. This situation is described here as an uncertain line 
feature and represented ‘11’. 

Conventional approaches for generating similarity 
scores using binary feature templates use Hamming Dis-
tance to measure the similarity (represented as outcome 0) 
or the dissimilarity (represented as outcome 1) when com-
paring a pair of binary feature values. However, the cases 
of partial similarity is not accounted in such measure-
ments. Therefore, we introduce an alternative matching 
scheme to describe the partially matched scenarios. We 
firstly define perfectly similar outcome (represented as the 
outcome ‘0’) for three situations when the detected feature 
represents: (i) a nearly horizontal line ‘01’; (ii) a nearly ver-
tical line ‘10’; and (iii) as an uncertain line ‘11’ in both the 
probe and gallery templates. We then define perfectly dis-
similar outcomes (represented as the outcome ‘1’) for the 
two situations when the detected feature (i) does not rep-
resent any line ‘00’ in either probe or gallery template, but 
represents as the line in the other template; and (ii) the de-
tected feature represents a nearly horizontal line ‘01’ in ei-
ther probe or gallery template but it represents a nearly 
vertical line ‘10’ in the other template. For the remaining 
situations, we define partially similar outcome (repre-
sented as the outcome 0.5). Let ℎ be be this new function 
which maps two pixelwise surface gradient derivatives fea-
tures into an outcome score, which is represented in Table 
2. Let 𝐴 and 𝐵 be two surface gradient feature templates of 
size 𝑀 × 𝑁. Let 𝑎𝑖𝑗 and 𝑏𝑖𝑗 (𝑖 ∈ [1, 𝑀], 𝑗 ∈ [1, 𝑁]) be the bit-
wise surface gradient features in template 𝐴 and 𝐵 respec-
tively.  The matching score s for computing the distance 
between the templates 𝐴 and 𝐵 is defined as the average of 
outcome from all feature comparisons: 

𝑠 =
1

𝑀 × 𝑁
∑ ∑ ℎ(𝑎𝑖𝑗, 𝑏𝑖𝑗)𝑁

𝑗=1
𝑀
𝑖=1                     (11) 

In order to accommodate pose variations in the acquired 

images, best or the minimum of the match scores resulting 
from the rotational or translational shifting of the probe 
template can be employed and was also investigated in our 
experiments. 

4. UNIQUENESS OF FINGER KNUCKLE PATTERNS 

It is highly desirable to characterize the uniqueness of 3D 
finger knuckle patterns or estimate the probability that two 
persons can have substantially similar 3D finger knuckle 
patterns in a given population. Any such measure to estab-
lish uniqueness of 3D finger knuckle patterns can also pro-
vide us theoretical upper limit on the expected perfor-
mance from 3D finger knuckle based biometrics. There are 
several studies to ascertain theoretical upper limit on the 
expected performance from other biometric system, e.g. us-
ing 3D fingerprints [16], iris [33]-[37] or handwriting [38]. 
Therefore, we attempt to ascertain upper bound on the ex-
pected performance from the 3D finger knuckle biometric 
system presented in this paper.  

The uniqueness of 3D finger knuckle patterns can be 
evaluated from the probability of false matches in a given 
population, i.e., from the probability of false random cor-
respondence between the finger knuckle representations 
from the two arbitrary 3D finger knuckle patterns belong-
ing to different fingers. One of the more judicious ap-
proach to address this problem is to estimate the number 
of degrees of freedom [33]-[35] . It is equivalent to compu-
ting the maximum number of identities which can be dis-
tinguished. Then, the likelihood of two finger knuckle rep-
resentations from different 3D finger knuckle patterns 
agreeing completely by chance can be computed.  

The 2-bit feature descriptor introduced in section 3 con-
sists of four possible representations {‘00’, ‘01’, ‘10’, ‘11’} 
from each of the 3D finger knuckle locations. When two 
such representations from any pixel locations are com-
pared, there can be three possible outcomes with scores 0, 
0.5, or 1. We here make assumption that when two 3D fin-
ger knuckle representations from different subjects are 
matched, the outcome of match scores from the corre-
sponding locations are mutually independent. This inde-
pendence assumption, similar to as in [16], [27], is justified 
here as we are interested in theoretical upper bound and 
as the practical performance is expected to be lower than 
this estimation after considering such factors involving 
mutual independence or the noise [29]. Reference [33]-[34] 
has incorporated binary features for iris biometrics and 
computed the probability of false random correspondence 
by modeling the distribution of imposter match scores us-
ing a binomial function. Since there are three possible out-
comes in our feature representation, a trinomial distribu-
tion model consisting of 𝑛 trails is introduced to model the 
distribution of imposter match scores. Let 𝑝1, 𝑝2 and 𝑝3 rep-
resent the probabilities of having outcome scores 0, 0.5 and 
1 respectively. Let 𝑋1 be the random variable representing 
the number of times outcome 0 is observed over 𝑛 trails 
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and 𝑥1 be the value for 𝑋1 from each of such trials. Simi-
larly, we can define 𝑋2, 𝑥2 𝑋3 and 𝑥3 corresponding to 𝑝2 
and 𝑝3. The probability distribution function correspond-
ing to the trinomial random variables can be expressed as 
follows: 

     𝑓𝑋1,𝑋2𝑋3
(𝑥1, 𝑥2, 𝑥3

) 

= {

𝑛!

𝑥1!𝑥2!𝑥3!
𝑝1

𝑥1𝑝2
𝑥2 𝑝3

𝑥3     ,  when 𝑥1+ 𝑥2 + 𝑥3 = 𝑛

0                            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (12) 

and the expectation, variance, and covariance of 𝑋𝑖 , 𝑖 ∈
{1,2,3} are: 

𝐸(𝑋𝑖 ) = 𝑛𝑝𝑖                                    (13) 

𝑉𝑎𝑟(𝑋𝑖
) = 𝑛𝑝𝑖(1 − 𝑝𝑖)                       (14) 

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = −𝑛𝑝𝑖𝑝𝑗                               (15) 

Let Y be a random variable representing the match score 
between two feature representations. 

Y = 0.5𝑋2 + 𝑋3                               (16) 

Since the sum of 𝑥1, 𝑥2, 𝑥3 is 𝑛, the dependence of 𝑥1, 𝑥2, 𝑥3 
can be computed as follows: 

𝑥2 = 2(𝑦 − 𝑥3 )   , 𝑥3 ∈ [0, 𝑛]                    (17) 

𝑥1 = 𝑛 − 2𝑦 + 𝑥3   , 𝑥3 ∈ [0, 𝑛]                (18) 

Incorporating equations (17)-(18), we can write the proba-
bility distribution function for the distribution of scores: 

𝑓𝑌(𝑦) =  {
∑ 𝑓𝑋1,𝑋2𝑋3

(𝑥1, 𝑥2, 𝑥3)𝑛
𝑥3=0      , when 𝑥1, 𝑥2 > 0

0                                     ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (19) 

with respective expectation and the variance as follows: 

𝐸(𝑌) = 0.5𝐸(𝑋2) + 𝐸(𝑋3 ) = 𝑛(0.5𝑝2 + 𝑝3)             (20) 

𝑉𝑎𝑟(𝑌) = 0.52𝑉𝑎𝑟(𝑋2
) + 𝑉𝑎𝑟(𝑋3

) + 𝐶𝑜𝑣(𝑋2 , 𝑋3
)     (21) 

                  = 𝑛[0.52𝑝2
(1 − 𝑝2

) + 𝑝3
(1 − 𝑝3

) − 𝑝2𝑝3]    (22) 

The cumulative distribution function corresponding to (19) 
represents the false acceptance rate. 

Reference [36] details interesting efforts to model trans-
formations from ‘true’ iris representation to the sensed iris 
representation using a single bit flip probability. However, 
such an approach ignores the influence from frequently 
observed noise introduced from pose and illumination 
changes during the image acquisition, sensor noise, seg-
mentation errors and some other unknown factors. This is 
also the plausible reason that the theoretical ROCs pre-
sented in [36] do not closely fit with the respective empiri-
cal results. Therefore, we did not pursue/incorporate such 
an approach to formulate our individuality model. 

More attractive/realistic approach to model the match 
score distributions from the binary feature templates ap-
pears in [33]-[35]. This approach uses probability distribu-
tion function, of the minimum of independent random var-
iables, to model the final match score and is computed 
from the minimum of scores generated from the rotation-
ally shifted versions of Iris Code templates. However, it 
should be noted that such match scores from the shifted 
versions are not expected to be completely independent. 
For instance, the match score between templates A and B 
is expected to be similar to the match score between tem-
plate A and the shifted versions of template B when the 
shift parameter is small (e.g. translated to the left for one 
pixel). Therefore, such approach will be less accurate when 
the number of employed shifted versions of the template 
is large. It should be noted that there are only seven shifted 
versions of the templates employed in [33]-[35] while there 
are 39627 shifted versions (from translation and rotations) 
of the templates in our work. We incorporate a simplified 
approach to address this problem. The major influence 
from such operations is to compute minimum match score 
which results in the shifting of the score distribution. 
Therefore, we introduce a numerical compensation param-
eter to accommodate such shifts or to adjust the mean and 
is estimated during the training stage using the portions of 
the empirical data. During the training stage, the difference 
between the mean of the empirical distribution and the 
theoretical distribution, which is obtained from equation 
(19), is computed and is defined as the compensation pa-
rameter. During the test stage/phase, the final theoretical 
distribution is obtained from equation (19) using this com-
pensation parameter to accommodate the influence from 
shifting operations.  

In order to theoretically model the distribution of match 
scores, the number of trails for the trinomial distribution 
can be computed using the variance obtained from the em-
pirical results. Let 𝜎2 be such estimated empirical variance. 
The number of trails n can be computed as follows:  

 𝜎2 =
𝑉𝑎𝑟(𝑌)

𝑛2                                     (23) 

  
     (a)                                                 (b) 

  
     (c)                                                 (d) 

Fig. 11. Empirical and theoretical (a) imposter score distribution, (b) 
genuine score distribution, (c) the ROC. The influence from the size of 

training set on the estimated number of degrees of freedom is shown 

in (d). 
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𝑛 = ⌈0.52𝑝2(1−𝑝2)+𝑝3(1 −𝑝3)−𝑝2𝑝3

𝜎2
⌉                   (24) 

Similar to the empirical experiments in Section 5, we 
generate 65520 (105 × 104 × 6) imposter match scores from 
matching the second session images to the first session im-
ages, using the feature extraction and matching method 
described in Section 3.4-3.5, from 105 different subjects, 
each with 6 images per session. Please refer to Section 5.1 
for more details on the database and experimental proto-
col. The occurrence of four possible representations (‘00’, 
‘01’, ‘10’, ‘11’), on per pixel basis, can be obtained from this 
experimental data and used to compute 𝑝1 as 0.1173, 𝑝2 as 
0.3116 and 𝑝3 as 0.5711. Therefore, using equation (24), n 
can be estimated as 886. Similarly, 630 (105 × 6) genuine 
match scores can also be used to model the parameters of 
the same trinomial function for the distribution of genuine 
match scores. The major difference between the theoreti-
cally modeled genuine and imposter score distributions re-
sults from the estimated parameters, i.e., 𝑝1, 𝑝2, 𝑝3 and n. In 
this manner, we can also compute theoretical ROC for the 
comparison. Figure 11 (a)-(c) presents the comparative il-
lustration of our theoretical and empirical results.   

In order to ascertain the reliability of the obtained re-
sults, we performed additional experiments by separating 
the modelling processes into training and test stages. We 
used first Tn subjects as the training set for computing the 
probabilities 𝑝1, 𝑝2 , 𝑝3 and the number n. The rest of the 
subjects (105 - Tn) are then used as the test set for evaluat-
ing the fitting performance. These results are provided in 
the Appendix A. The close fitting of these empirical results 
suggest that our trinomial model can quite accurately pre-
dict the empirical imposter distribution (the probability of 
false random correspondence), genuine distribution and 
ROCs. It can be noted that when Tn becomes larger, less 
number of samples will be used for the test sets. In this sit-
uation, the empirical results are expected to much better, 
which can result in larger differences between the corre-
sponding theoretical results. It can also be observed from 
the results in Figure 11 (d) that the number of trials, also 
referred to as the degrees of freedom, n is quite stable 
(about 1000) when it is computed using the different size 
of training sets/data.  

In summary, the probability of false random corre-
spondence, the imposter distribution and the false accept 
rate can be modelled by the trinomial distribution func-
tion. The genuine distribution and the false reject rate can 
also be modelled using similar approach. Our experiments 
using all the first session images for training have com-
puted n as 886. This suggests that the empirical imposter 
distribution can be modeled using a trinomial distribution 
function with 886 trails. Similar to as in [33]-[35],  it is rea-
sonable to conclude that each of the finger knuckle feature 
representation can be modeled with such 886 independent 
pixels (each with 2 bits). The probability of false random 
correspondence between finger knuckle representations 
from any two arbitrary finger knuckle patterns belonging 
to different fingers is therefore about 4−886 or 10−533. 

Therefore the probability of false random correspondence 
is very small, which indicates high uniqueness in the finger 
knuckle patterns. This probability is much smaller than es-
timated for the fingerprints [16], [39].  Such difference can 
be explained from the usage of limited information from 
(only) the singularity locations or in the extracted minutia 
feature space, while our feature representation utilizes the 
information from the entire image.  

5 EXPERIMENTS AND RESULTS 

5.1 Contactless 3D Finger Knuckle Database 

Lack of any 3D finger knuckle images database in the liter-
ature has required us to acquire a new dataset using the 
setup described in section 3.1. Our 3D finger knuckle data-
base has been acquired from more than 130 different sub-
jects and among these 105 subjects have volunteered to 
provide second session’s data. Each of these subjects pro-
vided six forefinger 3D knuckle images and six middle fin-
ger 3D knuckle images. In our preliminary experiments, it 
was observed that the forefinger images achieve better per-
formance than using middle finger images. Therefore, 
forefinger images were employed for the extensive experi-
mental results detailed in this paper. Entire 3D finger 
knuckle database acquired in this work is made publicly 
available [40] for further work in this area.  

We performed extensive experiments using our pro-
posed method to ascertain effectiveness for the verification 
and identification problems. These experimental results 
are presented using the receiver operating characteristics 
(ROC) curve with equal error rates (EER), and cumulative 
match characteristics (CMC) curve. We use standard pro-
tocol [2], [6], [15], [20] for the two sessions’ database. The 
first session data is used as for the registration or the train-
ing while the second session data is used as test set for the 
performance evaluation. Therefore 630 (105 × 6) genuine 
match scores and 65520 (105 × 6 × 104) imposter match 
scores were generated. None of the earlier work on the fin-
ger knuckle recognition, in the best of our knowledge, has 
attempted to evaluate the performance for the open set 
identification problem. However, the deployed biometric 
systems often have to cope up with unregistered (im-
poster) user attempts who may be identified as the en-
rolled users. Such open set identification is widely consid-
ered as the more challenging problem and therefore we 
also performed such evaluation in this work. The first 105 
subjects who provided registration data during the first 
session were considered as enrolled users while the rest of 
the 25 subjects which only provided one session data were 

Table 3. Comparative computational time (in milliseconds). 
 Surface Normal 

Estimation 
Depth  

Integration 
Feature  

Extraction 
Total 

Surface Code [30] 0.72 0.57 2.77 4.1 

Binary Shape [31] 0.72 0.57 0.86 2.2 
Ours 0.72 - 0.58 1.3 
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considered as the unenrolled users. We evaluated the per-
formance with False Negative Identification Rate (FNIR) 
and False Positive Identification Rate (FPIR). We correct the 
equations from [42] as in the followings and were used for 
open set performance evaluation: 

𝐹𝑃𝐼𝑅(𝑇) =  
1

𝐾
∑ 𝐻(𝑇 − 𝑠𝑖1)𝐾

𝑖=1                     (25) 

𝐹𝑁𝐼𝑅(𝑇) = 1 −
1

𝑀
∑ 𝐻(𝑇 − 𝑠𝑖𝑐)𝑀

𝑖=1                (26) 

where 𝑇 is the threshold; K is the number of searches for 
non-enrolled images; M is the number of searches for en-
rolled images; 𝑠𝑖1 is the score from first rank in ith search; 
𝑠𝑖𝑐 is the score of the true class from ith search; H is the unit 
step function; and N is the number of enrolled subjects. The 
equal error rate (EER) corresponding to these two identifi-
cation rates are also presented. 

5.1.1 Comparative Performance Evaluation  

Since any effective method for 3D finger knuckle feature 
description is yet to be developed, we selected the state-of-
the-art 3D feature description method, which was origi-
nally designed for extracting 3D palm features, as the base-
lines for comparisons. Two selected methods (Surface Code 
[30] and Binary Shape [31]) have shown to be quite effec-
tive/accurate for extracting valley and ridge patterns from 
related hand biometrics. Since both baseline methods re-
quire depth images for feature extraction, depth images are 
computed using Frankot Chellappa approach [21] for 
achieving the best possible performance. Figure 12 shows 
the comparative experimental results using our surface gra-
dient derivatives method (EER=9.6%), Surface Code 
(EER=10.2%) and Binary Shape (EER=10.5%). It can be ob-
served from these results that our approach can signifi-
cantly outperform both of these baselines. These observa-
tions validate the arguments and the effectiveness of the 
surface gradient derivatives method detailed in section 3.4 
and 3.5 of this paper. 

We also comparatively evaluated the computational 
complexity for our proposed approach with the Surface 
Code [30] and Binary Shape [31] approach. In order to fairly 
ascertain the computational complexity with these com-
peting methods, we ensure that the computational time re-
quired for the depth integration and feature extraction is 
separately illustrated for systematic inspection. In order to 
ensure consistency and fairness in these comparisons, 
same pixel resolution of (70 × 100) was used for both the 
surface normal vector images and the depth images. The 
experiments were performed on a machine with Intel Core 
i7-6700HQ (2.60GHz) using MATLAB 2017b, Windows 10. 
Table 3 presents the computational time per sample for 
each of the considered methods. Frankot Chellappa ap-
proach [21] was employed for the reconstruction using the 
depth integration. Respective depth images form the input 
for the feature extraction step as detailed in [30, 31], while 
surface normal vector images form the inputs for our 
method. It can be observed that extracting features using 
Surface Code requires the longest computational time since 

this method requires demanding computation of curva-
ture and shape index values. Extracting features using our 
method is the fastest because only simple gradient compu-
tations are required. Since our approach bypasses the com-
plex process for the depth integration, the total time re-
quired for our approach has further outperformed the 
baseline methods. It is therefore reasonable to expect that 
the matching time using the Binary Shape features will be 
smaller than those from our method since there is only one 
(bit) binary template. Significantly higher matching perfor-
mance in Figure 12, both for the open and close-set perfor-
mance evaluation, can justify the effectiveness of our ap-
proach over the Binary Shape feature method. 

 
 Multiple 2D finger knuckle images acquired under sin-

gle illumination are employed for recovering the 3D finger 
knuckle images. These 2D images, although noisy with 
partial illumination, can also be themselves be employed 
to simultaneously improve the performance. The method 
detailed in reference [20] has shown to offer superior per-
formance over several state-of-the-art feature descriptors 
introduced in the literature for matching 2D hand images. 
Therefore, it is a promising baseline method for evaluating 
the best possible performance from such simultaneously 
made available 2D finger knuckle images. In this work we 
employed the publicly available implementation of 
method in [20] and optimized the parameters for achieving 
best performance from our segmented finger knuckle im-
ages.  
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Simultaneous use of such noisy 2D finger knuckle im-
ages resulted in 630 (105 × 6) genuine scores and 65520 (105 
× 6 × 104) imposter scores. The comparative performances 
using these competing methods can be observed from the 
ROCs presented in Figure 13. The DoN [20] (EER=10.2%) 
feature descriptor outperforms Fast-RLOC [31] 
(EER=10.5%) and Fast-CompCode [31] (EER=11.6%) for 
matching 2D finger knuckle images.  

 Combination of simultaneously acquired 3D finger 
knuckle images and 2D knuckle images can be used to fur-
ther improve the matching accuracy, which may not be 
possible by either of these two modalities alone. Therefore, 
we also performed such experiments to combine match 
scores, from 3D and 2D finger knuckle images, using the 

score level combination. Figure 14 illustrates the results 
from such combination (EER=8.7%), using our proposed 
method of 3D finger knuckle matching (EER=9.6%) and 
the best 2D performing finger knuckle matching method 
using DoN (EER=10.2%). Figure 15 illustrates the distribu-
tion of 3D and 2D finger knuckle matching scores. It can be 
observed that in either dimension, it is difficult to separate 
the genuine scores from the imposter scores. In addition, 
separating the scores in two classes of 2D matching scores 
is more difficult than separating those from the 3D match-
ing scores. However, while combining the scores from 
both dimensions, the task of separating the genuine scores 
from the imposter scores becomes relatively easier.  

   
                                     (a)                                                                        (b)                                                                       (c)       

Fig. 12. Comparative experimental results using 3D features on 3D Finger Knuckle Database : (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

 

   
                                     (a)                                                                        (b)                                                                      (c)       

Fig. 13. Comparative experimental results using 2D features on 3D Finger Knuckle Database : (a) ROC; (b) CMC; (c) FNIR versus FPIR. 

 

   
                                    (a)                                                                           (b)                                                                    (c)       
Fig. 14. Comparative experimental results using both 2D and 3D features on 3D Finger Knuckle Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR.  
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5.1.2 Detecting Spoof Attacks 

The usage of 3D finger knuckle based identification intro-
duced in this paper can offer additional advantage of safe-
guarding integrity of finger knuckle biometric systems 
from fraudulent or printed spoof knuckle samples. We per-
formed experiments to ascertain the vulnerability of 2D 
finger knuckle based biometric systems by simulating 
print attacks from real subjects as detailed in the following. 
Firstly, a set of gallery images are acquired. Then, interme-
diate images are acquired in another session (at least two 
months) from the respective subjects. These intermediate 
images are printed as photographs. These printed photo-
graphs of finger knuckle images are used for the presenta-
tion attacks. During these attacks, it is ensured that the 
photographs are presented with best possible distance, 
from the image sensor, to generate images with similar or 
same scale. Figure 16 illustrates sample 2D and 3D images 

generated from such presentation attacks using a printed 
photograph to the system. The probe images were com-
pared with their respective gallery images. The 2D match-
ing scores are computed using the best performing or the 
DoN [20] approach. The 3D matching scores are computed 
using the proposed surface gradient derivatives approach. 
The decision thresholds corresponding to the respective 

EERs were automatically chosen for the experiments. 
These experimental results are summarized in Table 4. 
When only 2D information are used, 9 out of 10 samples 
can bypass the system, which implies that the fake identi-
ties corresponding to the presentation attacks cannot be 
detected. It can also be observed from this table that when 
only 3D information is used, none of the presented sam-
ples can bypass the system, enabling the detection of fake 
identifies to protect integrity of the system. When both the 
2D and 3D information is incorporated, the results are the 
same as those from only using the 3D information. Unlike 
fraudulent/covert acquisition of 2D finger knuckle photo-
graphs, acquisition of 3D finger knuckle patterns is ex-
tremely difficult as it requires the user to intentionally pre-
sent his/her finger under a complex 3D imaging system. 
In summary, our experiments indicate that 3D finger 
knuckle based biometric system offers significantly en-
hanced security to protect the integrity of system from the 
fake or fraudulent finger knuckle samples.  

5.2 Other Experimental Results 

This section details the additional experiments using pub-
licly available 3D palmprint and 3D fingerprint databases 
to further ascertain effectiveness of our 3D feature match-
ing approach detailed in section 3.4-3.5. The 3D palmprint 

 
Fig. 15. Distribution of normalized 2D and 3D matching scores. 

Table 4.  Dissimilarity scores from the spoof experiments. 
Subject ID 2D Matching 

Score [0,3] 

(Threshold = 

1.1845) 

3D Matching 

Score [0,1] 

(Threshold = 

0.5381) 

2D+3D Fusion 

Score [0,1] 

(Threshold = 

0.5884) 

Score Result Score Result Score Result 

1 0.9146 accept 0.6729 reject 0.6603 reject 

2 0.9771 accept 0.7082 reject 0.6969 reject 

3 0.7199 accept 0.7285 reject 0.6788 reject 

4 0.9966 accept 0.7047 reject 0.6967 reject 

5 1.2088 reject 0.7194 reject 0.7367 reject 

6 1.1189 accept 0.6750 reject 0.6892 reject 

7 1.0451 accept 0.6968 reject 0.6968 reject 

8 0.9618 accept 0.7129 reject 0.6986 reject 

9 1.0160 accept 0.7050 reject 0.6995 reject 

10 0.7707 accept 0.6771 reject 0.6444 reject 
 

         
                                  (a)                                                                (b)                                                                           (c) 
Fig. 16. Sample images from presented photograph to the system: (a) acquired image; (b) resulting 2D image and (c) resulting 3D depth im-

age for the matching. 
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database provided from [30] contains 1770 palmprint im-
ages from 177 different subjects in two sessions. There are 
five 3D images for each subject per session. We have eval-
uated our proposed method using all images. First session 
images are used as training sets while second session im-
ages are used as testing sets, which results in 885 (177 × 5) 
genuine and 155760 (177 × 176 ×5) imposter matching 
scores. To account for the translation variations in this da-
tabase, the templates are shifted with vertical and horizon-
tal translations. The minimum score is considered as the 
final score. For the open set evaluation on the performance 
of identification rates, 142 subjects (80%) are considered as 
enrolled users while the remaining 35 subjects (20%) are 
considered as unenrolled users. Since neither surface 
normal images or photometric stereo 2D images are 
available, we compute the surface normal images from the 
3D images by using a simple gradient method. Our 
method is compared with the state-of-the-art method 
(Binary Shape) [31] on this database, which is also reported 
superior performance than Surface Code [30]. It can be 
observed that the Binary Shape method incorporates a 
masking procedure which is not provided in their 
implementation.  However, the details are not clearly 
presented. In order to ensure fairness in comparison, the 
evaluation on both Binary Shape and our method are 
without masks. Comparative results in Figure 17 indicates 
that our surface gradient derivatives features (EER of 1.1%) 
can also offer outperforming results over the Binary Shape 
(EER of 2.0%) approach for the 3D palmprint matching. 

Furthermore, a template size of (128×128) with 1-bit is 
required for Binary Shape method, while only a template 
size of (64×64) with 2-bits is required for our method for 
obtaining the optimal performance. Therefore, our method 
also outperformed Binary Shape with much higher 
efficiency via the reduction of template sizes.  

The surface gradient derivatives approach introduced in 
this work is quite effective for frequent concave and 
convex-like 3D patterns which generally exists in finger 
knuckle. However, the density of such concave and convex 
patterns is sparse and less pronounced in 3D palmprint 
images. Besides, the central region of 3D palm surface is 
largely concave. This can degrade the accuracy from our 
feature descriptor in encoding the palm line features. 
Therefore, our feature descriptor is expected to be less 
effective for encoding features from 3D palm surface then 
those from 3D finger knuckle patterns. In the 3D palm 
database, the surface normal information was computed 
from the noisy depth images which is another plausible 
reason for some degradation in performance using the 
surface gradient derivatives features. Despite the above 
challenges, our proposed aproach has still shown 
outperforming results for the contactless 3D palm 
database.   

Another public database from contactless 3D finger-
print is available from [16], [27] and was also attempted to 
ascertain comparative performance for matching 3D fin-
gerprint surfaces. This database provides 1560 3D finger-
prints, reconstructed using 10920 2D fingerprint images, 

   
                                         (a)                                                                                 (b)                                                                              (c)       

Fig. 17. Comparative experimental results using 3D features using contactless 3D palmprint database: (a) ROC; (b) CMC; (c) FN IR versus FPIR. 

 

   
                                         (a)                                                                                 (b)                                                                              (c)       

Fig. 18. Comparative experimental results for matching 3D finger surfaces using 3D Fingerprint Database: (a) ROC; (b) CMC; (c) FNIR versus FPIR. 



KEVIN H. M. CHENG AND AJAY KUMAR.:  BIOMETRIC RECOGNITION USING 3D FINGER KNUCKLE PATTERNS 15 

 

obtained from 260 clients. In order to fairly compare with 
the performance reported in [16], [27] for matching finger 
surface, the same evaluation protocol was adopted. Such 
matching of 3D finger surfaces from 240 clients, each with 
six images, resulted in 3600 (240×𝐶2

6) genuine and 1032480 
(𝐶2

240×6×6) imposter matching scores. In order to account 
for the translation variations in this database, the templates 
were shifted with vertical and horizontal translations. The 
minimum score obtained from such shifting was consid-
ered as the final match score. For the open set evaluation 
on the performance of identification rates, 192 clients (80%) 
were considered as the enrolled users while remaining 48 
subjects (20%) were considered as unenrolled users. Figure 
18 illustrates the comparative experimental results, using 
the state-of-the-arts pixelwise feature descriptor (Finger 
Surface Code [27] with Frankot Chellappa approach [21]), 
which was also reported to be superior or outperforming 
in [27] than the Surface Code [30]. It can be observed from 
these results that the proposed surface gradient derivatives 
feature approach significantly outperforms the baseline re-
sults.  

It is well known that state-of-the-art feature descriptors 
for fingerprint images incorporate minutiae features. In 
this paper, our experiments demonstrated that the usage 
of proposed surface gradient derivatives features can achieve 
outperforming results over the state-of-the-art pixelwise 
feature descriptors. The uage of surface singularities or 
non-pixelwise feature descriptors for matching 3D finger 
knuckle patterns is highly desirable in further extension of 
this work. 

6 SUMMARY AND FURTHER WORK 

Currently available online finger knuckle identification 
systems only incorporate discriminative 2D information 
for the user identification. This paper has investigated the 
development of a 3D finger knuckle identification system 
and also introduced 3D finger knuckle images database, 
for the first time in the literature, for the further research.  
Any direct application of existing 3D feature descriptors, 
like those developed for the 3D palmprint or 3D finger-
print identification, is not expected to recover most dis-
criminative features from the 3D finger knuckle patterns. 
Therefore, the development of specialized feature de-
scriptors is critical to realize full potential from 3D finger 
knuckle biometrics. The feature descriptor introduced in 
section 3.4 of this paper addresses such objective and has 
shown to offer outperforming results. One of the funda-
mental questions relating to any new biometric modality 
relates to its uniqueness, or individuality of the finger 
knuckle biometrics, which has not yet been studied in the 
literature. This paper has attempted to address this prob-
lem by developing the individuality model for 3D finger 
knuckle patterns using the best performing feature de-
scriptor.  

Despite the advantages from the 3D finger knuckle 

identification, the deployment of a 3D finger knuckle iden-
tification system is more complex than that of a 2D finger 
knuckle identification system. Such increase in complexity, 
over 2D systems, is largely due to the reconstruction or ac-
quisition of 3D finger knuckle images. Among the existing 
3D imaging technologies such as laser scanning, multi-
view stereo, and structured lighting, our proposed new 
system adopted the photometric stereo approach due to its 
low cost, high quality imaging and simple deployment. 
This approach only requires a single fixed camera with at 
least three light sources, while more light sources may en-
hance the reconstruction accuracy. The key limitation of 
such approach lies in its sensitivity towards the ambient 
illumination. Therefore, efforts are required to appropri-
ately position the camera, select and fix the illuminators, 
which reduce the adverse influence from ambient illumi-
nation during the imaging. Such shortcomings are how-
ever worthy for the tradeoff of more accurate recognition 
and anti-spoofing performance, as also indicated from our 
results in the paper.  

Our work/attempt to systematically evaluate the poten-
tial from 3D finger knuckle patterns for the biometric iden-
tification has achieved promising results. A lot more work 
however needs to be done to realize full potential from this 
biometric identifier. Recovery of non-pixel-wise features 
or those based on the singularity of patterns, such as the 
minutiae features employed for matching fingerprints, is 
expected to be more effective (for higher accuracy and ef-
ficiency) than pixel-wise features and should be pursued 
in further extension of this work. Our attempts to achieve 
further performance improvement by incorporating popu-
lar deep learning based methods were not effective and 
their performance is limited by the size of training data 
which is the key challenge for 3D finger knuckle data em-
ployed in this work. The individuality model presented in 
this paper has made assumptions on the mutual independ-
ence of match scores and has been justified as such model 
can provide theoretical upper limit on the performance ex-
pected from the 3D finger knuckle patterns. Incorporating 
interdependence of features, or the scores during feature 
extraction process, can provide more realistic estimates on 
the individuality and is suggested in the further extension 
of this work. 
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 Appendix A 

This appendix refers to Section 4 of this paper and provides 
additional experimental results by separating the model-
ling processes into training and test stages. We used first 
Tn subjects data as the training set for computing the prob-
abilities p1, p2 , p3 and the number of trials n. The rest of 
the subjects (105 - Tn)  are then used as the test set for eval-
uating the performance. 

 

Tn Imposter Scores Genuine Scores ROC 

(a) 15 

   

(b) 50 

   

(c) 70 

   
Fig. A1. Empirical and theoretical score distribution from split training and test set with (a) 15, (b) 50, (c) and 70 subjects used for the respective 

training. 


