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Fingerprint Images for Biometrics Identification
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Abstract—Vast databases of billions of contact-based finger-
prints have been developed to protect national borders and
support e-governance programs. Emerging contactless fingerprint
sensors offer better hygiene, security and accuracy. However
the adoption/success of such contactless fingerprint technologies
largely depends on advanced capability to match contactless 2D
fingerprints with legacy contact-based fingerprint databases. This
paper investigates such problem and develops a new approach
to accurately match such fingerprint images. Robust thin-plate
spline (RTPS) is developed to more accurately model elastic
fingerprint deformations using splines. In order to correct such
deformations on the contact-based fingerprints, RTPS based
generalized fingerprint deformation correction model (DCM) is
proposed. The usage of DCM results in accurate alignment of
key minutiae features observed on the contactless and contact-
based fingerprints. Further improvement in such cross-matching
performance is investigated by incorporating minutiae related
ridges. We also develop a new database of 1800 contactless
2D fingerprints and the corresponding contact-based fingerprints
acquired from 300 clients which is made publicly accessible for
further research. The experimental results presented in this pa-
per, using two publicly available databases, validate our approach
and achieve outperforming results for matching contactless 2D
and contact-based fingerprint images.

Index Terms—Contactless fingerprint sensor interoperability,
Biometrics, Deformation correction model (DCM).

I. INTRODUCTION

F INGERPRINTS is the most popular biometrics modality
widely used by the law-enforcement departments and

national ID programs around the world [1]. It offers high level
of uniqueness, accuracy and permanence which has attracted
wide range of applications in e-governance, law-enforcement
and e-business [2]. Since more and more centralized iden-
tification systems are increasingly deployed for fingerprint
identification which can receive fingerprint images acquired
from different kinds of fingerprint sensors, the fingerprint
sensor interoperability problem has attracted growing attention
[3]. For example, large scale fingerprint systems Aadhaar
system [4] matches fingerprints from over a billion of different
subjects that are acquired using wide variety of sensors [5].

In recent years, contactless fingerprint identification systems
have been introduced for better hygiene, security and to over-
come the limitations from traditional contact-based fingerprint
identification systems. Contact-based fingerprint sensors have
to cope up with hygienic concerns, sensor surface noise, latents
from previous impression, and fingerprint deformation due to
improper placement or uneven distribution of pressure [6].
As a result full potential from the fingerprint modality is not
yet to be realized. On the other hand, contactless fingerprint
imaging can preserve and recover the ground truth information
without the deformation. Therefore much higher matching
accuracy can be expected from the contactless fingerprints

than those from the contact-based fingerprint identification.
Although more and more contactless fingerprint identifica-
tion systems have been developed [7]–[10], [40], there has
been almost no or nil attention for the development of al-
gorithms to enhance interoperability between contact-based
and contactless fingerprint sensors. Instead of investigating
on the development of algorithms for more accurate con-
tactless fingerprint identification, our focuses on improving
accuracy for matching contactless to contact-based fingerprint
to advance interoperability of emerging contactless fingerprint
technologies. The success of emerging contactless fingerprint
sensors largely depends on their capability to match with
legacy fingerprint database images. Therefore it is important
to develop specialized algorithms to improve fingerprint senor
interoperability between the contact-based and the contactless
fingerprint sensors.

It is well-known that the elastic deformations are inherent
on images acquired from the contact-based fingerprint sensors
and this is the key source of degradation in accuracy of
matching fingerprints. Several methods have been detailed in
the literature [12]–[17] to address the fingerprint deformation
problems. Among these, the approaches in [15], [16] and
[17] estimate the deformations using thin-plate spline (TPS)
model [18] and have illustrated outperforming results for the
fingerprint deformation correction. However these methods
cannot be considered as reliable because they use thin-plate
spline model to estimate and correct fingerprint deformations
from the template and query fingerprint images, while both
of these have been acquired from contact-based sensors,
which themselves suffer from the elastic deformations. Several
promising methods to achieve fingerprint sensor interoperabil-
ity and estimate/correct fingerprint deformations have been
proposed in the literature. However this area requires further
attention as the review of earlier works underline following
limitations:

• There has been almost nil attention to develop effective al-
gorithms to accurately match fingerprint images acquired
from the contactless and contact-based fingerprint sen-
sors, i.e., ensure interoperability between contact-based
and contactless fingerprints. The fingerprint matching
algorithms introduced in the literature to match fingerprint
images from different fingerprint sensors or with rolled
fingerprint images deliver very limited performance when
employed for matching contact-based fingerprints with
contactless 2D fingerprint images.

• The methods that use TPS model to correct the fingerprint
deformations on the contact-based fingerprints [14], [15],
[17] are computationally complex and fail to correct the
fingerprint deformations relativeto the ground truth. As a
result, the fingerprint matching techniques introduced in
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Fig. 1: Block diagram for the contactless to contact-based fingerprint matching approach using deformation correction model.

(a) (b) (c) (d)

Fig. 2: Same fingerprint acquired from different sensors. (a) Contact-based fingerprint from Digital Persona (b) Contactless
fingerprint from contactless camera (c) Contact-based fingerprint from Futronic (d) Rolled fingerprint.

the literature, for cross-sensor fingerprint matching, only
can deliver limited improvement in performance while
matching fingerprint images acquired from contact-based
and contactless fingerprints sensors.

A. Our Work and Contributions

This paper investigates the problem of fingerprint sensor
interoperability when the images from the same fingers are
acquired using the contact-based and contactless fingerprint
sensors [40]. Contactless imaging inherently introduces scale,
rotational and spatial variations in three dimensional spaces
and therefore this problem is more challenging than fingerprint
sensor interoperability for two contact-based sensors which
has received more attention in the literature. The key contri-
butions of this paper are summarized in the following:
a. A robust thin-plate spline (RTPS) model for accurate

localization of key points to accurately match for con-
tactless to contact-based fingerprints is proposed. Unlike
traditional TPS interpolation approach, our model attempts
to minimizes the localization errors for all the key points
many of which can appear in the unregistered test images
(more details in section III-A). Our experimental results
(Fig 5, 11) suggest more accurate data interpolation by
using proposed RTPS model than using traditional TPS
model [18] or approximating TPS model [19].

b. A generalized fingerprint impression deformation correc-
tion model (DCM) is developed using robust thin-plate
spline by comparing contact-based fingerprint impressions

with several contactless fingerprint (ground truth) impres-
sions from the same finger. We used this model on each of
the unknown contact-based fingerprints to achieve better
alignment with the corresponding contactless fingerprint.
This method is significantly different from the methods
in [15] and [16] which highly rely on accurate extraction
of minutiae. Our method is more robust and offers faster
and more accurate fingerprint deformation correction (more
details are in section III-D).

c. This paper has also developed a database of 2D contactless
fingerprint images and their corresponding contact-based
fingerprint images [20]. This database consists of 1800
fingerprint images acquired from 300 clients and is made
available in the public domain to advance much needed
research in this area.

The block diagram of the proposed contactless to contact-
based (cross) fingerprint matching approach is illustrated in
Fig 1. A triangulation based fingerprint method is developed
for contact-based and contactless fingerprints scale correction.
The RTPS model developed in this paper is used to offline train
a generalized contact-based fingerprint impression deformation
correction model. Contact-based fingerprint impression types
and intensity are automatically estimated. Based on these
estimations, appropriate pre-trained deformation correction
model is used to correct the deformations in the contact-based
fingerprints. The minutiae features are employed for the global
fingerprint alignment and matching.
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B. Related Work

Research on fingerprint sensor interoperability has attracted
considerable attention in the literature as a wide variety of
contact-based fingerprint sensors are deployed worldwide.
Reference [3] investigated fingerprint sensor interoperability
problem for two different flat (plain) fingerprint sensors and
examined the extent of degradation in the matching accuracy
when images from two such different sensors are matched.
Reference [21] details a series experiments on plain-to-rolled
fingerprint identification and demonstrated that it can be more
difficult than matching plain-to-plain fingerprints. Alonso et al.
[22] investigated fingerprint sensor interoperability and sensor
fusion using a multi-sensor fingerprint database acquired from
three different fingerprint sensors including thermal and op-
tical sensors. The experimental results in this reference also
illustrate that the matching performance drops dramatically
when fingerprints acquired from different sensors are matched.
The technical report in [23] also investigates fingerprint sensor
interoperability problem using the fingerprints acquired from
nine different sensors including one thermal sensor, four
capacitive sensors and four optical sensors. The work detailed
in above references is quite promising but limited to addressing
the fingerprint sensor interoperability problem only for the
contact-based fingerprints acquired from different sensors. It is
more challenging, meaningful and relevant, in view of recent
technological advances, to match contact-based fingerprint
images in legacy fingerprint databases with the contactless
fingerprints sensors.

References [24], [25] described the unwrapping of 3D
touchless fingerprints to achieve compatibility for unwrapped
touchless fingerprints with the legacy rolled fingerprint images.
Authors have used a commercial matcher to evaluate the
matching performance for touchless rolled impressions and
contact-based rolled fingerprints. Although these promising
but preliminary studies have investigated the interoperabil-
ity problem between unwrapped touchless fingerprints and
contact-based rolled fingerprints, the focus of problem inves-
tigated is different. Contactless rolled fingerprint acquisitions
have higher bulk and cost as it requires multiple cameras to
recover contactless rolled fingerprints. Therefore contactless
fingerprints that are generate 2D images equivalent to those
from popular flat fingerprint sensors is considered in this work
as they provide low-cost and flexible alternative to contact-
based fingerprint sensors. Also the work in [24], [25] should be
considered preliminary on a limited size proprietary database,
i.e. reference [24] uses images from 38 fingers with two
samples while reference [25] uses images from 102 fingers
with two samples, and there has been no attempt to correct the
deformations in the rolled fingerprints. The technical reports
in [26], [27] and the references [37], [41] describe outcome
from a range of experiments that were designed to investigate
the matching performance and interoperability of contact-
based and contactless fingerprints (rolled and unwrapped fin-
gerprints) acquired from a variety of commercial fingerprint
sensors. These experimental results also indicate significant
degradation in the matching performance when the fingerprint
images acquired from a contactless fingerprint sensor were

matched with the respective fingerprint images acquired using
contact-based commercial fingerprint sensor. These references
provide very interesting insights on the interoperability among
the contact-based and contactless fingerprint devices; however,
these are only evaluation reports and do not make any at-
tempt/research to further improve interoperability or correct
the deformations in contact-based fingerprint images that could
help to improve such cross matching accuracy.

In order to address inherent deformations in the contact-
based fingerprints, several approaches have been proposed
in the literature. In [13] a plastic distortion model is pro-
posed to address the non-linear deformations in contact-
based fingerprints. Although the results demonstrated its ef-
ficiency in minutiae extraction from fingerprints with higher
deformations, authors did not perform any experiments for
the fingerprints matching using the proposed model. The
conference version of this paper [40] has also evaluated
performance degraded resulted from contact-based fingerprint
deformation and provided preliminary results for improving
contact-based to contactless fingerprint interoperability. Ref-
erence [28] presents an automated approach to remove finger-
print deformations by using an inverse distortion transform
model. This work has some promises but it fails to model
the fingerprint deformation by comparing it with the ground
truth. Some publications have also discussed the distortion
on contactless fingerprint images. Reference [42] proposed an
approach to address perspective distortion and rotation effect
on contactless fingerprint in less controlled applications, like
mobile devices. The experimental results on the contactless
fingerprints database with intentional rotation indicate that
such proposed approach can improve recognition performance
by directly using minutiae-based matching. However, this
paper incorporates neural network which generally require
large training samples which is the key limitation for the
application of this method.

The thin-plate splines (TPS) model has demonstrated its
effectiveness for the deformation correction in contact-based
fingerprints. There are few publications that have investigated
this model to correct fingerprint deformation and illustrated
promising results. In [15], thin-plate spline model was in-
troduced to describe the deformation in fingerprints. For
each of the two fingerprints, local minutiae are extracted for
the deformation correction and global minutiae are used for
further refining the correction. Then fingerprints are matched
using the corrected global minutiae features. This method was
introduced for the first time to correct minutiae deforma-
tions by using approximating TPS model [19] and achieved
promising matching performance. However this method is
highly relies on the accurate extraction of minutiae and
due to the iterative selection of the matching thresholds
the computational complexity of this method is also high.
Reference [16] proposed an average deformation model to
correct fingerprint impressions deformation. Authors applied
thin-plate spline model on multiple fingerprint impressions
from the same fingers and estimated average deformation of
the fingerprints. Similar to [16], authors in [14] proposed a
thin-plate spline calibration model to address fingerprint sensor
interoperability. The average deformation model was trained
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Fig. 3: Similar triangle samples from contactless and contact-
based fingerprint. Red point represents the minutiae.

to correct the deformations of fingerprints from the different
sensors. However this method is highly computationally com-
plex as it requires computations for different parameters of
the average deformation model. Their template fingerprint and
query fingerprint are both 2D contact-based fingerprints and
therefore have distortions. Therefore the model trained from
the fingerprint images, which themselves have deformations,
cannot be expected to be reliable. In addition, the TPS model
[18] employed in most references lacks robustness since the
localization errors for the transformed points are not estimated.

II. SENSOR INTEROPERABILITY AND DATA PROCESSING

Fingerprint sensor interoperability refers to the capability for
accurately matching the fingerprint images that are acquired
using different fingerprint sensors. As discussed in several pub-
lications, the matching accuracy from fingerprint identification
systems dramatically degrades when the fingerprint images
acquired from the different contact-based/contactless sensors
are matched. Sensor interoperability between the contact-
based and contactless fingerprint sensors is among the most
challenging problems but has attracted very little attention
from the researchers. With the increasing development and
deployment of contactless fingerprint identification systems,
in depth study on contact-based and contactless fingerprint
sensor interoperability becomes important and meaningful. As
illustrated in Fig 2 (a)-(b), our study uses the fingerprint im-
ages acquired from same subject/finger using different contact-
based and contactless sensors.

As a first step for contact-based and contactless fingerprint
cross-matching, fingerprint image enhancement and fingerprint
scale normalization is performed on each of the acquired
images. The original resolution of contactless fingerprint im-
age and the corresponding contact-based fingerprint image
is 1400×900 and 356×328 pixels. In order to enhance the
contrast of contactless fingerprint ridge and valley, adaptive
histogram equalization [29] is performed. The contact-based
fingerprints are then rotated 90 degrees counter clockwise
followed by a horizontal flip (Fig 2). Fingerprint scaling is
essential to address sensor interoperability problem. Several
methods [30], [31] for fingerprint scale normalization have
been developed to improve the performance from fingerprints
cross-matching. In this paper, we propose a simple but efficient

method that uses fingerprint minutiae triangulations to align
contactless and contact-based fingerprints into same scaling
ratio. In [31], Delaunay triangulation based fingerprint scaling
is proposed. This method fails to recover or match Delaunay
triangles when false or missing minutiae are extracted as the
features. This has motivated us to develop a more robust and
automated approach for the fingerprint scale normalization by
using minutiae triangulations. Firstly the contactless finger-
print is resized to 350×225 using bilinear interpolation. Then
minutiae are extracted from each contact-based fingerprint
and contactless fingerprint using [32] and minutiae triangles
are extracted based on each three minutiae (m1,m2,m3).
Similar to ISO/IEC minutiae template [33], fingerprint minutia
template can be represented as m = [x, y, θ, q, t], where x, y
specifies the minutiae location, θ is the minutia direction, q is
the minutia quality and t is the type of minutia (ridge ending
or ridge bifurcation). Triangle features can be represented as:

[ϕ, lmax

ls max
,
lmax

lmin
, θ̃max, θ̃min] (1)

where ϕ is the largest angle in the triangulation, lmax and
lmin represent the largest side and smallest side respectively.
ls max is the second largest side. θ̃ = θ1 − θ2 is differences
of minutiae direction while θ̃max represents the orientation
difference between two minutiae of the largest side lmax.
Based on the invariant features representation in (1), similar
triangles can be computed as in the following.
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»»»»» (2)
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»»»»»»»»»
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−
l
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»»»»»»»»»
(3)

∆θ̃max =
»»»»»θ̃Pimax − θ̃Qjmax

»»»»» ,∆θ̃min =
»»»»»θ̃Pimin − θ̃Qjmin

»»»»» (4)

where P and Q represent the triangulations of contactless
fingerprint and contact-based fingerprint respectively. If ∆ϕ,
∆l1, ∆l2, ∆θ̃max, and ∆θ̃min are smaller than pre-determined
threshold, two triangulations can be considered as similar tri-
angulations. The scale value sl can be estimated by computing
the average scale of the corresponding sides of two similar
triangulations.

sl =
1

3
(
l
Pimax

l
Qjmax

+
l
Pis max

l
Qjs max

+
l
Pimin

l
Qjmin

) (5)

In order to exclude the outliers or the influence from spurious
minutiae, we automatically exclude scale values if they are
smaller or larger than predetermined threshold. We then use
the mean scale value slmean computed from all possible
similar triangles, excluding the outliers, as the scale factor
between contactless and contact-based fingerprint images. The
algorithm for cross fingerprints scale normalization can be
summarized as shown in algorithm 1. Fig 3 illustrates image
samples from the same subject/finger, with their automatically
extracted triangulation samples, that are used to compute scale
factor for the image normalization.
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Algorithm 1 Computing Scale Factor for Normalization

Input: Contactless and contact-based fingerprints CL, CB
and corresponding triangulations P and Q.

Output: Mean scale values slmax for cross fingerprints
1: for each triangulation Pi in P do
2: extract minutiae triangulation features (1);
3: for each triangulation Qj in Q do
4: extract minutiae triangulation features (1);
5: if equation (2), (3), (4)<Threshold then
6: compute scale value sln using (5)
7: end if
8: end for
9: end for

10: for n similar triangulations in P and Q do
11: slmean = sum(sln)/n
12: end for

III. FINGERPRINT DEFORMATION CORRECTION

The fingerprint scale correction algorithm described in previ-
ous section results in better alignment between the contactless
and contact-based fingerprint images. However this is not
adequate to correct the nonlinear deformations in the contact-
based fingerprint images. Such deformations can seriously
degrade the matching performance, especially for the cross-
matching between contactless and contact-based fingerprints.
Thin-plate spline (TPS) model [18] and approximating TPS
[19] are widely used to correct elastic deformation. In this
paper, we presented a more robust thin-plate spline (RTPS)
model by minimizing transformed points localization errors.
Based on RTPS, a generalized fingerprint deformation cor-
rection model (DCM) is proposed. It may be noted that the
influence of perspective distortion is more pronounced at a
distance away from image center. As also presented in many
references (e.g. [10]) the useful region of interest (ROI) in
contactless fingerprint reduces and it is reasonable to ignore
the perspective distortion in such region of interest near image
center. Therefore, in this work, ROI of contactless fingerprint
image was used for training and testing the deformation
correction model as the perspective distortion in the contactless
fingerprint images is assumed to be significantly small. It is
judicious to consider the contactless fingerprint as the ground
truth since such images are not expected to have any defor-
mations, particular near the image center or region of interest
used in our work. Each of the contact-based fingerprint images
are corrected for the deformations using the transformation
correction model detailed in following sub sections.

A. Robust Thin-plate Spline Model

Thin plate splines (TPS) represent a spline-based technique
for the data interpolation and smoothing. Let (xi, yi) denote
the original minutiae location of contact-based fingerprint and
(x′i, y′i) be the transformed locations of contactless fingerprint.
This relationship can be described by TPS interpolation func-
tion:

(x′, y′) = f (x, y) (6)

(a) (b)

Fig. 4: (a) Original contact-based fingerprint skeleton and
its reference grid. (b) Contact-based fingerprint skeleton with
deformation correction and its reference grid.

f (x, y) = a1 + a2x + a3y +
n

∑
i=1

wiU (∥(xi, yi) − (x, y)∥) (7)

where a = (a1, a2, a3) defines affine transformation and w
represents additional deformation. U (∥(xi, yi) − (x, y)∥) is the
basis function. The function f minimizes the bending energy,

Jf = ∬
R2

(f2xx + f2xy + f2yy) dx dy (8)

The parameters of f can be recovered from the solution of the
following equation,

Kw +Pa = v,P
T
w = 0 (9)

where the ith element of K is U (∥(xi, yi) − (x, y)∥), the ith

row of P is (1, xi, yi), the ith element of v is (x′i, y′i), w =

[w1,⋯, wn]T and a = [a1, a2, a3]T .
The use of conventional thin-plate spline interpolation ap-

proach [18] on contact-based fingerprint images can help to
accurately transform the landmark (manually marked minutiae
location) points. However in addition to these landmarks,
the other possible points, that can be key points or ridges
on other unregistered test images, that cannot be accurately
aligned with ground truth. In order to achieve more accurate
transformation, it is therefore necessary to incorporate a model
that can minimize the transformed points localization errors.
Such model is referred here as RTPS and the localization error
can be modeled using the following equation,

Eerror =

m

∑
j=1

∥(x′j , y′j) − f (xj , yj)∥ (10)

where (xj , yj) is marked minutiae location in contact-based
fingerprint. (x′j , y′j) is marked transformed minutiae locations
for contactless fingerprint. m is the number of marked points
that used for evaluating TPS accuracy. The bending energy
function for the proposed RTPS can be represented as,

JRf = ∬
R2

(f2xx + f2xy + f2yy) dx dy + Eerror (11)
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(a) (b) (c) (d)

Fig. 5: Red skeleton represents contactless fingerprint, black skeleton represents contact-based fingerprint and corresponding
reference grid (a) Fingerprint alignment without correction (b) Fingerprint alignment using TPS (c) Fingerprint alignment using
proposed model and iteration number is 5 (d) Fingerprint alignment using proposed model and iteration number is 8.

The parameters of f can be recovered from the solution of the
following equation,

(K +E)w +Pa = v,P
T
w = 0 (12)

where K, P and v are same as (9). E is a matrix with some
initial parameter (ω) to minimize Eerror. The jth E is:

Ej = U (∥(xj , yj) − (x, y)∥ + ωj ∥(xj , yj) − (x, y)∥) (13)

ωj is initial parameter which is empirically selected in the
range of 0 to 0.3. A close fit between this model or ωj to
minimize the error Ej is achieved in a number of iterations.
The value of Eerror and ω are initialized to zero for com-
puting original TPS function. Then marked location (xj , yj)
is transformed using original TPS function and Eerror is cal-
culated. Next, the original landmarks with the corresponding
ωj are also transformed to generate new transformation matrix
and marked location (xj , yj) is transformed to compute new
Eerror. The process is repeated until Eerror is stabilized or
doesn’t decrease in the next three iterations.

B. Deformation Correction Model
Based on RTPS model, a generalized model, which is referred
here as DCM, is trained for contact-based fingerprint deforma-
tion correction. In order to train from the contact-based finger-
print sample P , the original landmarks (xi P , yi P ) from the
specific minutiae and the corresponding points for minimizing
the localization errors (xj P , yj P ) are marked manually. The
transformed locations (x′i P , y

′
i P ) and (x′j P , y

′
j P ) for the

corresponding minutiae in ground truth sample i.e. contactless
fingerprint, are also marked. The RTPS interpolate function
f (x, y) can be firstly computed using these landmarks, i.e.

(x′i P , y
′
i P ) = f (xi P , yi P ) (14)

All the other points of the contact-based fingerprints can
be transformed using this function. Based on f (xj P , yj P )
and (x′j P , y

′
j P ), the robust TPS transformation function is

computed. The image sample in Fig 4 illustrates skeleton
image corresponding to ridges of a transformed contact-
based fingerprint using RTPS. Each of the fingerprints can
be represented using a cylindrical model and are expected to
have similar shape. Therefore corresponding contact-based fin-
gerprint images are divided into n blocks from the fingerprint
center (xc P , yc P ), we assume that the deformation of the
fingerprint in the same block is similar. Let (xbi, ybi) represents
the each pixel in the same block, the deformation of each pixel
can be represented by the following equations,

(xbi d, ybi d) = (xbi, ybi) − f (xbi, ybi)
= (xbi, ybi) − (x′bi, y′bi)

(15)

∣(xbi d, ybi d) − (xbj d, ybj d)∣ =< (dx, dy) (16)

where (xbi d, ybi d) and (xbj d, ybj d) represents the deforma-
tion correction of each two pixels in the same block. (dx, dy)
is the difference of deformation correction between each two
pixels in the same block. The width kP of the fingerprint P can
be estimated from the maximum distance between, across the
fingerprint image, after edge detection operation. The deforma-
tion correction of each block can be modeled as (xb d,yb d).
For each test or unknown contact-based fingerprint sample
Q, the fingerprint image center (xc Q, yc Q) is computed. Let
kQ be the width of fingerprint Q. The widthwise scale of
train/gallery fingerprint and query fingerprint can be estimated
as,

sk = kP /kQ (17)
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(a) (b) (c)

Fig. 6: Red/blue point represents core point and image center
(a) Sample where center part touches the contact-based sensor
with or without deformation (b) Sample where left part touches
the sensor with or without deformation (c) Sample where right
part touches the sensor with or without deformation.

With the consideration of widthwise scale, each query or
test fingerprint can also be divided into n blocks from the
fingerprint image center. The deformations in the two blocks of
P and Q are considered as the same if the following conditions
are met,

dp = sk ∗ dQ (18)

dp =
√
(xbc P − xc P )2 + (ybc P − yc P )2 (19)

dQ =

√
(xbc Q − xc Q)2 + (ybc Q − yc Q)2 (20)

where dP represents the distance between each block center
(xbc P , ybc P ) and fingerprint image center (xc P , xc P ) of
training fingerprint P . dQ represents the corresponding dis-
tance of Q. The transformed locations of this block can be
calculated by the following equation,

(x′bi Q, y
′
bi Q)

= g(xbi Q, ybi Q)
= (xbi Q, ybi Q) + (xbi d, ybi d)
= (xbi Q, ybi Q) + (xbi P , ybi P ) − (x′bi P , y

′
bi P )

(21)

g(x, y) is deformation correction function. Then for each
block of Q, transformed locations of each pixels can be
calculated. The marked points (xj P , yj P ) can be transformed
using g(x, y) and compared with (x′j P , y

′
j P ) to calculate

transformed points localization errors,

E
′
error =

m

∑
j=1

∥(x′j P , y
′
j P ) − g(xj P , yj P )∥ (22)

In order to ensure robustness, two contactless fingerprints
and three contact-based fingerprints are used to train the

(a) (b) (c)

Fig. 7: (a) Typical fingerprint impression and light fingerprint
impression. Automatically selected blue region ROI to exclude
residual latents. (b) Histogram of fingerprint gray level (where
G < 230). (c) Respective gray level (where G > 230) counts
for two fingerprint impressions.

deformation correction models. Equations (12) and (13) are
calculated in iterations to generate one optimal deformation
correction model which minimizes each model’s E ′

error. A
typical fingerprints alignment between the contactless skeleton
fingerprints and transformed contact-based skeleton finger-
prints with/without using proposed deformation correction
models are illustrated in Fig 5.

C. Fingerprint Impression Types and Intensity Estimation

The different spatial positions, on the different user’s finger,
actually touching the contact-based sensor will generate dif-
ferent fingerprint impression type and result in different non-
linear deformations. In addition, fingerprint impression inten-
sity can also represent the extent of fingerprint deformation.
For each test or query contact-based fingerprint image, its
impression type and intensity are firstly estimated. Different
deformation correction model, based on the estimated im-
pression types and intensity, are employed for the correction.
We classify each of the unknown query fingerprint images
into one of the three possible impression types which are
automatically estimated by comparing the core point (xcp, ycp)
and image center (xic, yic) of the contact-based fingerprint.
The core point, i.e. reference point can be computed by the
method described in [34]. We define the image center as the
center of the region of interest (ROI) of the fingerprint. The
ROI of a fingerprint image is also extracted automatically
by implementing edge detection and the image segmentation
based approach [10]. Fingerprint impression types can be
determined by comparing the vertical coordinate of core point
and image center.

−a < (ycp − yic) < a (23)
a < (ycp − yic) < b (24)

−b < (ycp − yic) < −a (25)
(ycp − yic) > b or (ycp − yic) < −b (26)

Equations (23)−(25) can be used to respectively ascertain
whether the center part, left part or the right part of the finger
touches the fingerprint sensor prominently. Parameter a and b
are empirically selected as 15 and 45 for all the experiments in
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(a) (b) (c)

Fig. 8: Red points represent the minutiae from contactless fingerprint sample and blue crosses represent the minutiae
from contact-based fingerprint sample (a) Cross minutiae matching with deformation (b) Cross minutiae matching without
deformation using proposed deformation correction model (c) The details of aligned minutiae comparison in (a) and (b).

this paper. If the vertical distance between the core point and
image center is very large (26), we define such types as the
unknown to reduce the impact of false core point detection. Fig
6 shows the typical skeleton of fingerprint ridges for different
fingerprint impression types and corresponding transformed
skeleton fingerprint with/without deformation.

Fingerprint impression intensity can be estimated by calcu-
lating the average gray level G of the fingerprint. In order to
exclude the influence of fingerprint latent/residue impressions
on the contact-based sensor on the gray level estimation, the
center region of the ROI is extracted to compute G. After
testing on 40 impressions, the impressions can be divided into
two types. If G < 100, we define it as normal impression.
If G > 100, we define it as light impression. The sample
fingerprints with normal and light impressions are illustrated
in Fig 7.

D. Cross Matching using Deformation Correction Model

The cross matching process to match contact-based and the
contactless fingerprints can be divided into offline training and
the testing or the matching stage. During the training stage,
based on the combination of three fingerprint impressions
types and two fingerprint impressions intensity, six deforma-
tion correction models are trained. In order to alleviate the
influence from undesirable imaging factors or the noise, for
each model, three contact-based fingerprints and two contact-
less fingerprints are used to train the parameters. The average
values of the parameters are selected as the final parameters.
The deformation correction (xd, yd) of each block and the
width k of each model are recorded. Minutiae from contact-
based and contactless fingerprint are extracted separately using
the approach described in section II.

During the matching stage, based on the fingerprint im-
pression type and intensity estimation of each contact-based
fingerprint, different deformation models are automatically
selected. Let m

Q
= [x

Q
, y

Q
, θ

Q
, q

Q
, t

Q
] be each minutia

extracted from the contactless fingerprint image Q. Let m
P
=

[x
P
, y

P
, θ

P
, q

P
, t

P
] be each minutia extracted from contact-

based fingerprint image P . After fingerprint impression types
and intensity estimation, the widthwise scale of P and training
model’s fingerprint is calculated by (17). The blocks of P are

determined using (18)∼(20). Each minutia can be transformed
by the following equation,

(x′P , y′P ) = (xP , yP ) + (xd, yd) (27)

where (xd, yd) represents the deformation correction of the
block associated with this minutia. Then transformed minutia
m

′
P from P and original minutia mQ from Q are used for

fingerprints minutiae matching. The matching process is simi-
lar to the approach described in [17], [32]. The minutiae from
P and Q are converted into spherical coordinate and global
alignment is applied to align every minutia. The predetermined
thresholds are used to determine whether each two minutiae
should be considered as the matched pair or not. Then the
final matching score is computed as follows:

S =
n
2

NP ∗NQ
(28)

where n is the total number of cross matched minutiae pairs
and NP , NQ are the number of minutiae in contact-based
fingerprint P and contactless fingerprint Q respectively. Fig 8
illustrates the alignment and matched minutiae pairs during a
typical cross matching with or without the proposed deforma-
tion correction model. It can be observed from this figure that
the transformed minutiae of contact-based fingerprint can now
be better aligned with the contactless fingerprint minutiae.

IV. MINUTIAE AND RIDGES MATCHING

For fingerprint sensor interoperability problem, the spurious or
missing minutiae can seriously degrade the cross matching per-
formance. This aspect is particularly problematic when these
minutiae are extracted from the contact-based and contactless
fingerprint sensors and the reason can be attributed respec-
tively to the imaging resolution/capability of different sensors
and higher susceptibility to noise resulting from high degree of
freedom in the contact-based fingerprint sensors. Therefore in
addition to the minutiae feature, we also investigated the use
of minutiae related ridges and attempted to improve accuracy
for the cross matching. Unlike the work in [17], [32] where the
minutiae and related ridges are employed for the alignment or
matching, we only use minutiae for the alignment and related
ridges are considered as an additional feature during the final
stage of cross matching.
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(a) (b)

Fig. 9: Sample fingerprint image after thinning in (a) and
respective image after processing in (b) for ridge matching.

Fig. 10: Matching fingerprint ridge features where ml rep-
resents any point on the ridge. d represents the distance
between minutiae ending to this point. θ̃ is minutiae orientation
difference.

A. Minutia and Related Ridges Extraction for Matching

In order to extract minutiae related ridges, the traditional
minutiae extraction algorithm is implemented. The Gabor
filter is used to enhance the image which is followed by the
binarization and thinning to generate the ridge image. The
preprocessing approach for the ridge image is similar to as
in [35]. The closed ridges (small holes) are disconnected and
short ridges are removed after preprocessing. The bifurcation
minutiae related ridges are split into three ridges. Fig 9
illustrates typical preprocessing of the fingerprint ridges.

Let (me,mb) be the original minutiae ending and bifurcation
and m

′
b be the split bifurcation point. For each minutia, the

related ridges (re, r′b) are recorded. The duplicated ridges,
i.e. one ridge that contains both minutia ending and split
minutia bifurcation, will only be considered as one ridge.
Based on the extracted minutia and the related ridges, ridge
features can be localized as (L,D, Θ̃), where L = (xr,yr)
is the position of each point of the ridge, D represents the
distance from each point on the ridge L to the position
of minutia me or m

′
b while Θ̃ is orientation differences

between each point on the ridge and the minutia. Let mQ

represent a sample minutia extracted from the contactless
fingerprint image Q. Let mP represent a sample minutia ex-
tracted from the contact-based fingerprint image P . Fingerprint
minutiae alignment and matching method is applied to find

matched minutiae pairs, say, mQ = (mq1, ...,mqk, ..,mqn)
and mP = (mp1, ...,mpk, ..,mpn) where n is the number of
matched minutiae pairs. For each matched minutiae pair, the
features of related ridges are used for computing the ridge
matching score. For example, the related ridge rpk of matched
minutia mqk from Q is (Lqk,Dqk, Θ̃qk) and the related ridge
rqk of matched minutia mpk from P is (Lpk,Dpk, Θ̃pk). If
the difference between rpk and rqk is smaller than a given
threshold, i.e.,

∆L = ∣Lpk − Lqk∣
∆D = ∣Dpk −Dqk∣
∆Θ̃ = ∣Θ̃pk − Θ̃qk∣

(29)

If ∆L < thL, ∆D < thD and ∆Θ̃ < thΘ̃, two related
ridges can be considered as matched. The minutiae type is
also considered into account when the related ridges are used
for the matching. For minutiae bifurcation related three ridges,
if two of them can be matched, we consider such bifurcation
related ridges as being matched. However for the minutiae
ending and bifurcation related ridges, if one of bifurcation
related ridges can be matched with minutiae ending related
ridges, this ridge pair is considered as being matched. The
match score from the ridges are computed as follows:

S =
nr

n
(30)

Sr = ω11 ∗ Se r + ω12 ∗ Sb r + ω13 ∗ Sbe r (31)
ω11 + ω12 + ω13 = 1 (32)

where nr is number of matched ridges. ω11, ω12 and ω13

are the weight for the types of matched ridges. Se r is the
matching score of minutia ending related ridges. Sb r is the
matching score of minutia bifurcation related ridges. Sbe r

is the match score of minutia bifurcation and ending related
ridges. The final or consolidated match score between the
fingerprints is computed as follows:

Sfinal = ω1 ∗ Sminutiae + ω2 ∗ Sr (33)

where Sminutia is matching score using minutia while ω1 and
ω2 represent the weight for the minutiae and related ridges. Fig
10 illustrates the sample minutia related ridge and its features
for the matching.

B. Ridge Matching using Deformation Correction Model

In addition to investigating the deformation correction for
fingerprint minutiae, the deformations in minutiae related
ridges can also be corrected by using the proposed model.
For each of the contact-based fingerprint image P , based
on the respective fingerprint impression type and intensity
estimation, different deformation correction models are auto-
matically selected. Besides minutiae correction for mp, each
point on the minutia related ridge rp can also be transformed
by the proposed model. The transformed minutiae m

′
p and

transformed related ridges r′p are then used for the matching.
The deformation correction and ridge matching strategy has
been detailed earlier in section III-D and section IV-A.
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TABLE I: The equal error rate from different matching approaches

Database Experiments Equal Error Rate

PolyU Contactless to Contact-based
Fingerprint Database [20]

Contact-based fingerprint matching using [38] 10.56%

Contact-based fingerprint matching using [15] 7.42%

Contact-based fingerprint matching using [39] 11.90%

Contact-based fingerprint matching using TPS+DCM 5.72%

Contact-based fingerprint matching using RTPS+DCM 4.46%

Cross matching using [38] 36.30%

Cross matching using [15] 25.37%

Cross matching using [39] 38.90%

Cross matching using minutiae with TPS+DCM 18.12%

Cross matching using minutiae & ridge with TPS+DCM 16.14%

Cross matching using minutiae with RTPS+DCM 15.35%

Cross matching using minutiae & ridge with RTPS+DCM 14.33%

Benchmark 2D/3D Fingerprint Database [37]

Cross matching using [38] 40.34%

Cross matching using [15] 26.83%

Cross matching using [39] 31.28%

Cross matching using minutiae with RTPS+DCM 19.81%

V. EXPERIMENTAL RESULTS

In this section we detail experimental results to ascertain
the usefulness of matching contactless to contact-based fin-
gerprints using the approach described in previous section.
In this work, a dataset consisting of 1800 2D contactless
fingerprint images and corresponding 1800 2D contact-based
fingerprints from 300 distinct client fingers was acquired from
the volunteers in or visiting our university. Six fingerprint
image samples were acquired from each of the client fingers.
The contactless 2D fingerprint images are acquired using a
low-cost camera and lens. Corresponding 2D contact-based
fingerprints were acquired using URU 4000 fingerprint reader
[36] which meets FBI/NIST [38] specifications. Like many
other references on contactless fingerprint matching, e.g. [25],
[26], [27], [37]. It is assumed that user is cooperative, has
an interest in positive authentication, and therefore the imag-
ing distortion due to the rotation or incorrect placement of
fingerprint can be assumed smaller. All the images in this
database are employed for the test experiments. Several other
contactless and contact-based fingerprints using the same set
of sensor were acquired (also available in [20]) and used for
training the deformation correction model. In addition to the
performance evaluation using this database, the experimental
results are also reported by using another publicly available
database provided recently made available by the authors
from reference [37]. This dataset contains 1500 fingers, for
each finger there are two contactless fingerprint samples and
four corresponding contact-based fingerprint samples. In our
experiments the 1000 fingers of the dataset were used for the
performance evaluation. All these images from 1000 fingers in
this database are employed for the test experiments. Several
other contactless and contact-based fingerprint images from
the rest 500 fingers are used for training the deformation
correction model. The programs of our experiments were run
on a PC with i7-4770 CPU under Windows 7. The origi-
nal resolution of acquired 2D contactless fingerprint images
and contact-based fingerprint was respectively 1400×900 and
356×328 with 500 dpi respectively. The original resolution
of contactless fingerprint images in [37] is 1024×1280 and

corresponding contact-based fingerprint resolution is 640×480
with 500 dpi respectively.

We also comparatively evaluated the performance from the
algorithm described in section III and IV and using other
popular or competing fingerprint matching algorithms detailed
in the literature. We firstly evaluated the fingerprint matching
performance from only using the contact-based fingerprints
images. The deformation in each of the contact-based finger-
print images is corrected by comparing with the respective
contactless fingerprints using different methods. The general-
ized deformation correction model is trained using indepen-
dent contact-based fingerprints and corresponding contactless
fingerprint images that are not available in the test database.
This verification experiment generated 4500 (300×15) genuine
and 1614600 (300×6×299×3) imposter matching scores. The
proposed algorithm is compared with the method proposed
in [15], conventional fingerprint matching algorithm provided
by NIST [38] and Minutia Cylinder-Code (MCC) method
proposed in [39]. In order to make fair comparison with
the method in [15] and achieve the best possible perfor-
mance for the benchmarking, we first correct the contact-
based fingerprint deformations based on the respective con-
tactless fingerprint from the same subject using minutiae-
based approach in [15]. Then contact-based fingerprint (with
deformation correction) matching experiment is performed.
The average number of minutiae generated using proposed
method from contactless fingerprint is 28.83 and from contact-
based fingerprint is 29.79. The average number of minutiae
generated using NBIS matcher implemented by NIST [38]
from contactless fingerprint is 33.57 and from contact-based
fingerprint is 41.36. These comparative experimental results
are presented in Fig 11 (a) using the ROC. These results
suggest that the contact-based fingerprint matching using the
proposed deformation correction model and the robust thin-
plate spline (EER = 4.46%) can achieve more accurate
performance than those from using deformation correction
model and thin-plate spline (EER = 5.72%), method in [38]
(EER = 7.42%), method in [15] (EER = 10.56%) and
method in [39] (EER = 11.90%).

The second sets of experiment are performed to evaluate
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Fig. 11: Comparative experimental results using PolyU Contactless to Contact-based Fingerprint Database [20] (a) ROC curve
for matching contact-based fingerprints using proposed method, the method in [15], the method in [38] and the method in [39]
(b) ROC curve for cross matching using deformation correction model, the method in [15], the method in [38] and the method
in [39] (c) ROC curve for cross matching using deformation correction model and ridge features with different parameter (d)
ROC curve for cross matching using proposed method with minutiae and ridge features, and the other methods (e) CMC curve
for matching contact-based fingerprints using proposed method, the method in [15], the method in [38] and the method in [39]
(f) Comparison CMC curve for cross matching using proposed algorithm and other methods
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Fig. 12: Comparative experimental results using benchmark 2D/3D fingerprint database [37] (a) ROC curve for cross matching
using proposed method, the method in [15], the method in [38] and the method in [39] (b) CMC curve for cross matching
using proposed method, the method in [15], the method in [38] and the method in [39]

TABLE II: The rank-one recognition accuracy from different matching approaches

Database Experiments Rank-1 accuracy

PolyU Contactless to Contact-based
Fingerprint Database [20]

Contact-based fingerprint matching using [38] 76.44%

Contact-based fingerprint matching using [15] 86.50%

Contact-based fingerprint matching using [39] 78.02%

Contact-based fingerprint matching using TPS+DCM 92.11%

Contact-based fingerprint matching using RTPS+DCM 94.11%

Cross matching using [38] 16.61%

Cross matching using [15] 44.22%

Cross matching using [39] 19.50%

Cross matching using minutiae with TPS+DCM 54.55%

Cross matching using minutiae & ridge with TPS+DCM 61.17%

Cross matching using minutiae with RTPS+DCM 60.39%

Cross matching using minutiae & ridge with RTPS+DCM 66.67%

Benchmark 2D/3D fingerprint database [37]

Cross matching using [38] 27.30%

Cross matching using [15] 21.56%

Cross matching using [39] 36.15%

Cross matching using minutiae with RTPS+DCM 36.25%

the proposed algorithm on cross matching using contactless
and contact-based fingerprints. The scales have been normal-
ized between the images from contact-based and contactless
fingerprint for matching using method [15], NBIS and MCC
matcher. This set of experiments generated 10800 (300×36)
genuine matching scores and 3229200 (300×6×299×6) im-
poster matching scores. The sample images for the alignment
in Fig 8 suggest that contact-based fingerprint can be better
aligned with the contactless fingerprint by using proposed
deformation correction model. As a result, the average match-
ing score for this (Fig 8) cross-matching sample has been
improved from 0.3194 to 0.6079. As can be observed from
the ROC curve in Fig 11 (b), the proposed method offers
superior matching results than the method in [15], [38] and
[39]. The EER from the cross matching experiment using
proposed DCM and RTPS is 15.35%, using proposed DCM
and TPS is 18.12% and it is 25.37% using the method in [15].

We also performed experiments to ascertain further im-
provement in the performance for cross-matching of contact-
less and contact-based fingerprints using the minutiae and

related ridges approach as discussed in section IV-B. These
experimental results are shown in Fig 11 (c) using ROC,
along with related parameters employed for such score level
combination. The EER is decreased from 18.12% to 16.31%
combining the ridge features with the minutiae features. The
result in Fig 11 (d) illustrates comparative ROC for the cross-
matching using proposed method that combines with ridge
feature and other methods. In combination with the ridge
features, the proposed RTPS and DCM method achieves best
performance with 14.33% EER.

We also performed experiments to ascertain the recognition
performance and the CMC (cumulative match characteris-
tics)curve and the average rank-one accuracy were used to
evaluate the performance for the recognition problem. The
CMC curve Fig 11 (e) illustrates the matching performance by
only using contact-based fingerprints. The comparative cross-
matching results using the proposed algorithm and using other
methods are shown in Fig 11 (f). These experimental results
also suggest superior performance using the proposed method.

At last we also present the experimental results using
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the dataset in [37] and ascertain the performance from the
proposed algorithm. The average number of minutiae gener-
ated using the proposed method from contactless fingerprint
is 31.97. The average number of minutiae generated using
NBIS matcher implemented by NIST [38] from contactless
fingerprint is 38.57 and from contact-based fingerprint is
42.91. The comparative ROC and CMC for the cross matching
performance using the proposed methods and other competing
methods is illustrated in Fig 12 (a) and (b). This verifica-
tion experiment generated 8000 (1000×2×4) genuine match-
ing scores and 7992000 (1000×4×999×2) imposter matching
scores. The EER for the cross-matching using proposed DCM
and RTPS is 19.81%, using the method in [15] is 26.83% ,
using the method in [38] is 40.34% and using the method in
[39] is 31.28%. The rank-one accuracy is 36.25% for the cross-
matching using proposed DCM and RTPS, using the method in
[38] is 27.30% , using the method in [15] is 21.65% and using
method in [39] is 36.15% . Table 1 and Table 2 consistently
suggest the improvement in EER and (rank-one) recognition
accuracy using proposed method on both the datasets. The
identification experimental results, using the proposed method,
on this public dataset also indicate superior performance.

VI. CONCLUSIONS AND FURTHER WORK

This paper has described the development of deformation
correction model for efficiently and accurately matching con-
tactless and contact-based conventional fingerprint images. We
proposed a robust thin-plate spline model that was incorpo-
rated for the correction of deformations to address contact-
based and contactless sensor interoperability problems. The
proposed model (section III) is generalized, does not rely on
the quality of extracted minutiae and has shown to achieve
significant improvement in the alignment of contact-based and
contactless fingerprints. A method to estimate contact-based
fingerprint impression type and intensity is also introduced.
The experimental results are reported using a dataset that
had contact-based fingerprints and the corresponding contact-
less fingerprints. The experimental results using this publicly
available database illustrate that the proposed method can
achieve superior matching performance than the other com-
peting methods [15], [38] and [39]. Our efforts to incorporate
minutiae and the simultaneously made available respective
ridge features also yielded promising results. Such experimen-
tal results were presented in section five and illustrate further
improvement in performance by incorporating the minutiae
and ridge based features for the cross fingerprint matching.

The deformation correction model developed in Section III
of this paper incorporates a model that requires training sam-
ples from contact-based and contactless fingerprint sensors. In
order to ensure interoperability of algorithm, such requirement
can be relaxed when fingerprint sensors comply with some
standard. However, the contactless fingerprint sensors used
from two public databases in this work are very different, do
not meet any common standard and therefore do not meet
expectation for cross-database performance evaluation. Sensor
interoperability using contact-based and contactless fingerprint
is a challenging problem but needs to be addressed to advance

acceptability of emerging contactless fingerprint technologies.
Despite significant improvement in the accuracy for such
matching, the current cross-matching error rates are not yet
attractive for the deployment. Our experimental results also
illustrate significant improvement over the methods in the
literature. However the achieved error rates need to be further
improved.

The databases employed in this work makes reasonable
assumption that the user is cooperative during contactless fin-
gerprint imaging and such cooperation is often expected from
contactless biometrics systems like during the iris imaging.
Perspective distortion in contactless images, specifically when
user is less-cooperative, can further degrade the matching
performance. Therefore, automated detection and correction of
perspective distortion in contactless fingerprint images is ex-
pected to reduce the error rates. In addition, usage of more ro-
bust core detection algorithm and incorporating more powerful
matching strategy can also reduce error rates and are suggested
for the further work. Deep learning based approaches have
the potential to achieve more accurate fingerprint recognition
[43] and such methods can also be explored for contactless to
contact-based fingerprint matching in the further work.
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