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Abstract—Accurate comparison of contactless 2D fingerprint
images with contact-based fingerprints is critical for the success
of emerging contactless 2D fingerprint technologies, which offer
more hygienic and deformation-free acquisition of fingerprint fea-
tures. Convolutional neural networks (CNN) have shown remark-
able capabilities in biometrics recognition. However, there has
been almost nil attempt to match fingerprint images using CNN-
based approaches. This paper develops a CNN-based framework
to accurately match contactless and contact-based fingerprint
images. Our framework firstly trains a multi-Siamese CNN
using fingerprint minutiae, respective ridge map and specific
region of ridge map. This network is used to generate deep
fingerprint representation using a distance-aware loss function.
Deep fingerprint representations generated in such multi-Siamese
network are concatenated for more accurate cross comparison.
The proposed approach for cross-fingerprint comparison is eval-
uated on two publicly available databases containing contactless
2D fingerprints and respective contact-based fingerprints. Our
experiments presented in this paper consistently achieve outper-
forming results, over several popular deep learning architectures
and over contactless to contact-based fingerprints comparison
methods in the literature.

Index Terms—Contactless and contact-based fingerprint, Sen-
sor interoperability, Multi-Siamese CNN

I. INTRODUCTION

F INGERPRINT recognition technology has become one of
the most reliable approaches for human identification [1],

[2]. Contactless 2D/3D fingerprint identification systems [3],
[4] have been recently introduced to address the limitations
of traditional contact-based fingerprint systems [5]. Develop-
ment of advanced capabilities to accurately match contactless
fingerprint images with contact-based fingerprints is critical
for the success of such technologies as billions of fingerprints
in legacy databases have been acquired using contact-based
technologies. The studies in several publications [6]–[8] have
indicated that the fingerprint comparison performance drops
dramatically while matching the fingerprints acquired from
different sensors, especially for the fingerprints acquired from
contactless and contact-based sensors [9], [10].

Recent emergence of contactless fingerprint sensors and
imaging convenience with smartphone sensors requires the
development of specialized methods for matching contact-
less fingerprint images with those stored/acquired in legacy
databases using contact-based fingerprint sensing technologies.
These solutions have wide applications, especially in areas like
forensics and e-business. Therefore, development of advanced
algorithms to accurately match contactless to contact-based
fingerprint images (cross-matching) has emerged as challeng-
ing research problem and is focus of our work in this paper.

The minutia feature is believed to be the most accurate
fingerprint feature which has proved its efficiency and reli-

ability in fingerprint recognition [11], [12]. However due to
significant differences in the nature of image acquisition tech-
nologies, between the contactless and contact-based fingerprint
sensors, it is very difficult to accurately extract minutiae
features and to ensure their correspondences in images from
two such sensors. Contactless imaging itself is known to
introduce significant intra-class variations which results from
the high degree of freedom availed by fingers along the
three axes during the sensing. In addition, different kinds
of deformations in contactless (perspective distortion) and
contact-based (elastic deformation) fingerprints also add to
the challenges in such cross-fingerprint comparison problem
than matching the fingerprints from different contact-based
sensors. Although several fingerprint comparison methods [9],
[13], [14] have been proposed to address such problem, the
comparison performance remains far from the expectations for
the deployments.

In recent years, the advancement in deep learning technolo-
gies have shown to offer remarkable success for the image
recognition, classification and feature representation [15]–[17],
particularly for the challenging biometrics problems [18], [52]
such as for the face recognition [19], [20]. Matching biometric
images using CNN approach shown to offer superior per-
formance than traditional image-based or handcrafted feature
based identification algorithms. In addition, recent publications
[21], [22] have investigated fine-grained recognition problems
using CNN approach. Fingerprint recognition, which also need
to identify the images from same category, can be considered
similar to fine-grained recognition problem.

A. Related Work

In this section, we briefly review the related work on finger-
print sensor interoperability and CNN-based image recognition
and representation. There have been many promising studies
on the fingerprint sensor interoperability [7], [23]–[25]. Ref-
erence [24] has investigated fingerprint sensor interoperability
using a multi-sensor fingerprint database acquired from dif-
ferent contact-based fingerprint sensors. In reference [7], the
authors proposed an ‘average’ deformation model based on
thin-plate model to address contact-based fingerprint sensor
interoperability problem. Contact-based fingerprint sensor in-
teroperability problem was also investigated in reference [25].
The experimental results in all above references have indicated
degradation in the matching accuracy even for matching finger-
print images acquired from different contact-based fingerprint
sensors.

In addition to investigating contact-based fingerprints sensor
interoperability, the challenges in contactless to contact-based
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fingerprint cross comparison have been detailed in recent
references [9], [26]. Reference [27], [28] evaluated finger-
print sensor interoperability on commercial matchers using
contact-based and contactless (2D/unwrapped 3D) fingerprints.
Reference [14] investigated fingerprint mosaicking from three
touchless fingerprint images and evaluated the interoperability
between touchless and plain contact-based fingerprints using
SIFT and minutiae features. The experimental results pre-
sented in all above references underline significant degradation
in contactless to contact-based comparison accuracy. It may be
important to underline that these studies have only evaluated
the comparison performance instead of providing any new
methods to address such problem.

More recently, reference [13] presented a new method to
improve contactless to contact-based cross comparison perfor-
mance by introducing a contact-based fingerprint deformation
correction model. This is a more promising and efficient
method to address the cross-comparison problem. However,
the performance improvement is very limited and needs sig-
nificant improvement for the real applications.

There have been many successful implementations of deep
learning for the challenging pattern recognition problems and
many CNN models have been introduced to achieve state-of-
the-art performance for image recognition and classification
[19], [29]. Siamese CNN consisting of two identical CNNs
was introduced in [30] to learn the similarity metric from
the face images. This approach has been quite promising in
achieving higher performance for the face verification task.
The Siamese CNN was further improved in [31] by combining
two Siamese streams into two-channel with one stream net-
work. The experimental results evaluated on image benchmark
recognition validated this superior approach. The cross-domain
sketch similarities using Siamese CNN were investigated in
[32] and demonstrated significant performance improvement
over the state-of-the-art approaches. The conference version
of this paper [33] also investigated Siamese CNN architec-
ture to address contact-based to contactless fingerprint cross
comparison and illustrated preliminary results for improving
the matching performance. Although these promising studies
achieved high performance for image recognition and feature
description using Siamese CNN, in the best of our knowledge,
there have been very few attempts to address challenging
problems in the fingerprint recognition using the deep learning
algorithms.

In more recent years, fine-grained recognition problems
have been investigated in the literature. Reference [21] pro-
posed a triplet sampling algorithm to generate deep rank-
ing model and learn the fine-grained image similarity. The
experimental results demonstrated the superior performance
of their approach than the other methods using hand-crafted
visual features. A CNN-based bilinear model is proposed
in reference [22] to generate fine-grained image descriptor.
The network was firstly fine-tuned on ImageNet dataset to
generate initialized parameters. The results demonstrated the
effectiveness of their methods on various fine-grained recog-
nition datasets. In reference [34], the authors proposed to train
neural language models using CNN. The model incorporated
raw text description with respective images and learned a

Fig. 1: Illustration of high intra-class variation between con-
tactless fingerprints and respective contact-based fingerprints
from different subjects due to intrinsic differences in the nature
of imaging technologies and user habits/interaction.

scoring function between them. Their proposed approach
significantly outperformed the state-of-art method on birds
classification. A generic iterative framework was proposed in
[35] for fine-grained categorization and dataset bootstrapping.
A low dimensional feature embedding with anchor points was
learned using deep metric learning. Based on these features,
the authors retrained the proposed model. The experimental
results on different datasets showed their approach achieved
better performance than state-of-art methods. Inspired by all
their successes in the above brief summary, it’s meaningful and
of significance to investigate the contactless to contact-based
fingerprint cross comparison problem using deep learning.

B. Open Challenges and Our Work

This paper develops a novel CNN-based framework to ad-
dress the problem of accurately matching contactless 2D
fingerprints with respective contact-based fingerprints. Our
framework incorporates a robust multi-Siamese CNN to learn
fingerprint minutiae feature correspondences. The proposed
network improves Siamese CNN in both architecture and the
loss function (as detailed in section II.D). The feature vectors
generated from the multi-Siamese CNNs are concatenated
to form more robust fingerprint deep feature representation,
which is expected to incorporate more information to describe
the similarities between contactless and contact-based finger-
prints.

Although CNN-based approaches have achieved success
in biometrics images recognition, matching cross-sensor fin-
gerprint images using CNN is still a challenging problem,
especially matching the fingerprints acquired from contactless
and contact-based sensors. As compared with general bio-
metrics recognition problem using same sensing technologies,
relatively smaller inter-class variation and high intra-class
variation among fingerprint images pose significant challenges
for the comparison. The inter-class variation observed among
fingerprint images is smaller, as compared to those from dif-
ferent objects used in general object recognition [29] problem,
since these images are acquired from the same object/finger
illustrating ridge-like pattern. On the other hand, due to
significant differences in the nature of sensing technologies,
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(a) (b) (c) (d)

Fig. 2: (a) Contactless fingerprint and respective contact-based
fingerprint from same subject (b) Enhanced fingerprints using
Gabor filter (c) Enhanced fingerprints (ridge flow maps) using
Gabor filter and adaptive histogram equalization (d) Minutiae
maps generated from the fingerprints.

user interaction and habits, the cross-sensor images generally
result in high intra-class variations. It makes the fingerprint
cross-sensor comparison problem more challenging than the
fingerprint recognition problem using the same sensor. Figure
1 illustrates the fingerprint image samples acquired from
different fingers with high intra-class variation. Low inter-
class variation and high intra-class variation among the cross-
sensor fingerprint images also pose challenges for accurately
matching fingerprint images using conventional CNN as the
database available for training CNN is also quite limited.
Therefore, this paper develops a specially designed CNN based
framework to robustly extract deep feature representations
that can more accurately describe the similarities between the
contactless and contact-based fingerprint images.

The problem of missing minutiae or spurious minutiae is
well known [1] to degrade fingerprint matching performance.
One possible approach to increase the reliability of recovered
minutiae features is to incorporate contextual information in
the learning process for the minutiae feature correspondences
from contactless and contact-based fingerprints. The finger-
print ridge patterns surrounding respective minutiae repre-
sentations can provide such valuable contextual information.
Different fingerprints may have similar structure but different
ridge singularity which is embedded with texture details.
Unlike face recognition, which largely benefits from the global
high-level features [36], most fingerprint systems available
today rely on the information extracted from the texture
details (minutia) [1]. Any direct application of conventional
convolution and pooling process on fingerprint ridge flow
patterns can degrade important texture details. Therefore we
propose to incorporate available ridge flow features with their
singularity (minutiae features) in our framework, to enhance
the learning process for the cross-fingerprint comparison. The
effectiveness of such contextual information and the distance-
aware loss function, introduced in section II.D, is also vali-
dated using separate experimentations. The key focus of this
work has been to develop a specific deep learning based
framework that can be used to accurately match a variety of
contactless fingerprints with their corresponding contact-based

(a) (b) (c) (d)

Fig. 3: (a) Original contactless and contact-based fingerprint
(b) Enhanced fingerprints (c) Ridge details of original finger-
prints (d) Ridge details of enhanced fingerprints.

fingerprints.
We present extensive experimental results on two different

publicly available databases. Comparative experimental results
presented in section III.E of this paper suggest that our
specifically designed approach can significantly improve the
performance over those from several popular CNN architec-
tures and over state-of-the-art methods for the contactless to
contact-based fingerprint cross comparison.

II. CROSS FINGERPRINT COMPARISON FRAMEWORK

This section details proposed fingerprint cross-comparison
framework. We briefly introduce the fingerprint image prepro-
cessing and data augmentation approach for this framework
in next subsection. We then elaborate the approach for simul-
taneously incorporating minutiae features and the respective
ridge map and the approach for generating multiple inputs
of proposed network is also described. The architecture and
distance-aware loss function of proposed multi-Siamese CNN
are described in following section. The details on generating
fingerprint cross matching score are introduced is the last
subsection.

A. Data Preprocessing and Augmentation

Due to fundamental differences in the intrinsic nature of
contact-based and contactless sensing technologies, the images
from the same finger using such sensors appear quite different.
Therefore it is necessary to incorporate fingerprint image
preprocessing. The downsampling operation is further helpful
to ensure same scale ratio or the size. The region of interest
(ROI) in each of the images is automatically cropped using the
center position of fingerprint impression. The sample finger-
print images acquired from the two sensors are illustrated in
Figure 1. Histogram equalization is applied on all contactless
fingerprints. In order to increase the similarity between the two
cross sensor fingerprints, from the same subject/finger, Gabor
filter in [11] and adaptive histogram equalization filter [37] are
used to enhance these two kinds of fingerprint images. Figure 2
(a)-(c) illustrates such preprocessing of fingerprint images. As
the ridge detail regions illustrated in Figure 3, we can see that
such two steps enhancement operation improves the similarity
of contactless and contact-based fingerprint images.
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Fig. 4: Fingerprint ridge map and minutiae map fusion process
and sample feature maps using HSV color space.

Data augmentation is a common strategy employed in the
deep learning to increase the volume of training dataset. The
contactless fingerprint images generally have larger angular
rotations than the contact-based fingerprint images because
of less restriction during the acquisition process. Hence, each
contact-based training sample image is rotated by ±8 and ±15
degrees and each contactless training sample image is rotated
by ±10 and ±20 degrees. This step increases the size of dataset
five times and the further rotations of training sample images
will not significantly improve the performance. The experi-
mental results also indicate that the matching performance is
improved with the fingerprint image enhancement operations
and the data augmentation process.

B. Fingerprint Ridge Map and Minutiae Features

The minutiae features are widely believed to be the most accu-
rate [1] and employed in almost all the fingerprint technologies
available today. However the degradation in matching accuracy
due to missing or spurious minutiae is also well known in the
literature [1]. This problem is more serious for the contactless
fingerprints, largely due to the nature of contactless imaging
that allows high degree of freedom in the acquisition under
limited field of view and pronounced distortions in regions
away from the image center. Several promising studies in the
image recognition using CNN have also demonstrated the im-
proved performance by incorporating contextual information
or images with hand-crafted features [38], [39]. Therefore, it
is judicious to incorporate (also experimentally justify) the
minutiae feature and respective ridge feature to enhance the
learning for the joint fingerprint feature correspondences from
the two sensors.

The fingerprint minutiae extracted using the method in
[11] can be represented as m = [x, y, θ, q], where x, y are
minutiae location, θ is the minutia direction and q is the
minutia quality. For each fingerprint, minutiae map is gen-
erated by marking the minutiae location, direction (minutiae
related ridge) and quality on the image. In order to avoid
minutiae overlapping, each minutia point is represented using
a solid circle with radius equal to 2 pixels. The minutiae

Fig. 5: Fingerprint ridge map, fingerprint core point region and
fingerprint with blurred core point region.

direction is represented using 8 pixels’ short line along the
fingerprint ridge. Minutiae quality values from 0 to 1 are
mapped into 0 to 255 so that it can be represented by
using gray values. Figure 2 (c)-(d) illustrate the enhanced
fingerprints (ridge flow maps) and related minutiae maps. The
feature level combination in our architecture is expected to
generate more accurate fingerprints feature correspondences
for the cross-comparison. The ridge flow map and related
minutiae map fusion process of the fingerprints from same
subject is illustrated in Figure 4. The feature maps generated
after first convolution layer and generated from concatenation
layer using HSV color space are also shown in Figure 4. The
feature map g(⋅) generated from enhanced ridge flow map (rm)
samples of the contactless and corresponding contact-based
fingerprints can be represented using g(rm)cl and g(rm)cb
respectively. We use g(mm)cl and g(rmm)cl to respectively
represent features generated from minutiae map (mm) sam-
ples and our combination (rmm) of contactless fingerprint
samples. The average Euclidean distance D between each
two feature maps among 6 samples from same finger (Fig.4
as example case) is used to represent the similarity of two
feature maps. The average normalized distance among such 6
enhanced ridge flow map samples from this finger (Fig.4) is
D(g(rm)cl, g(rm)cb) = 0.0429 and the average distance among
6 minutiae map samples is D(g(mm)cl, g(mm)cb) = 0.0675.
With the proposed combination, the average distance reduces
to D(g(rmm)cl, g(rmm)cb) = 0.0226 for the samples from
this finger considered for illustration.

In order to generate more robust deep feature representation
from the proposed network, besides of fingerprint ridge map
and corresponding minutiae map, the specific regions of the
fingerprint ridge map based on fingerprint core point are also
extracted for the input of proposed network. The specific
regions include fingerprint core point region and blurred core
point region. This operation, i.e. incorporating the specific
regions, can help the network to learn relative ridge pattern
details that may be lost due to the convolution and pooling
operation on fingerprint ridge map.

Fingerprint core point is automatically detected using the
method in [40]. For the fingerprints, which have more than one
core point, we always select the point with smaller horizontal
value as the core point. For the fingerprints, which have no
core point, we crop the center region of fingerprint images as
core point region. Based on the core point, we crop the 120×
120 pixels surrounding region as the core point region from
the fingerprint ridge map (192 × 192 pixels). The ridge map
with blurred core point region (164× 164 pixels) is generated
by applying Gaussian blur (filter size equals to 13 and sigma
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TABLE I: Configurations of each single CNN for each of three sub-networks 

 Sub-net1 Sub-net2 Sub-net3 

Operation Filter Size Output Num Stride Filter Size Output Num Stride Filter Size Output Num Stride 

Conv1 11 64 3 7 64 3 5 64 1 

Max Pool1 3 - 2 3 - 2 3 - 2 

Concat - 128 - - - - - - - 

Conv2 5 256 1 3 256 1 3 256 1 

Max Pool2 3 - 2 3 - 2 3 - 2 

Conv3 3 512 1 3 512 1 3 512 1 

Max Pool3 3 - 2 3 - 2 3 - 2 

Conv4 3 1024 1 3 1024 1 3 512 1 

FC - 1024 - - 1024 - - 1024 - 

 

equals to 2) to the resized ridge map image on 80× 80 pixels
region surrounding the core point position. The contactless
fingerprint image samples for core point region and the ridge
map with blurred core point region are illustrated in Figure 5.

C. Networks for Cross-Comparison Framework

In this work, our goal is to accurately match the finger-
prints acquired from two different sensors. The contactless
and contact-based fingerprints from same subject generally
have different shapes, rotations and noises from range of
sources (like residue of leftover latent, etc.). Therefore under
such high inter-class and intra-class variations, it is difficult
to achieve accurate feature correspondences using traditional
CNN. Siamese CNN [30] includes twin CNN which benefits
from the shared weights in these CNN and can offer better
performance with enhanced learning capability. It learns a
similarity metric between the two channels input data and is
specifically incorporated to address inherent challenges for the
contactless to contact-based fingerprint comparison problem.

The proposed fingerprint cross comparison framework takes
the advantages of existing hand-crafted fingerprint features
and Siamese CNN architecture, and differs from it in both
architecture and loss function. This framework mainly consists
of three sub-networks and each of them contains two single
CNNs. The inputs of the three sub-networks are fingerprint
ridge map and minutiae map (sub-net1), ridge map with
blurred core point region (sub-net2) and core point region
of ridge map (sub-net3) respectively. For each CNN in sub-
net1, the network structure includes four convolution layers,
each one followed by a max pooling layer, one concatenation
layer, one fully connected layer. For each CNN in sub-net2,
the network structure includes four convolution layers and max
pooling layers and one fully connected layer. Each CNN in
sub-net3 consists of four convolution layers and max pooling
layers and one fully connected layer. The distance-aware loss
function introduced in section II.D is jointly used for each two
CNNs in each sub-nets. Each two corresponding convolution
layers from two channels CNNs share the same weights.
Parametric Rectified Linear Unit (PReLU) [16] is applied after
the fully connected layer. The configurations of each single

CNN for each of three sub-networks are illustrated in Table I.
The architecture of sub-net1 is shown in Figure 6. The deep
feature representations generation process from each three sub-
nets, for the contactless fingerprint, is shown in Figure 7.

D. Distance-Aware Loss Function

The Siamese CNN framework consists of two CNNs and one
contrastive loss function. We represent the given pair of input
images as (X1, X2), i.e. one contactless fingerprint and one
contact-based fingerprint for our problem. Let W represent
the learned parameters in this network, Y represents the label
of the input pair images, if input images (X1, X2) belong
to the same subject or finger (Genuine pair) Y = 0 and
otherwise (Imposter pair) Y = 1. dn(W,X1, X2) represents the
L2 − norm distance to measure the similarities between the
output (JW (X1), JW (X2)) generated by mapping (X1, X2). n
represents the nth sample pair in each batch and N represents
the batch size. The loss function includes two parts, genuine
and imposter part, which can be represented as,

L(W, (Y,X1, X2)n)=Y max(M1−d
n(W,X1, X2), 0)2

+(1−Y )(dn(W,X1, X2))2
(1)

d
n(W,X1, X2) = ∥(JW (X1) − JW (X2))∥ (2)

The loss function requires the distance for imposter pairs
larger than margin M1. The training phase trains the Siamese
network to reduce the distance among the genuine pairs
and increase the distance for imposter pairs. The Siamese
CNN has shown [30], [41] to offer better performance than
the traditional CNN on image recognition and classification.
However further improvement is required for challenging
applications with high inter- and intra-class variations, partic-
ularly those with limited amount of training data. In general,
more overlapping region between genuine and imposter dis-
tribution will result in higher probability of matching error.
Our goal is to reduce this overlapping region. The imposter
part max(M1 − d

n(W,X1, X2), 0)2 of loss function indicates
that the network focuses on training the imposter pairs with
distance smaller than margin M1. It helps to reduce the
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Fig. 6: Architecture of our contactless to contact-based fingerprint cross comparison network. Including three parts: fingerprint
ridge map and minutiae map generation, the Siamese CNN and the distance-aware loss function.
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Fully ConnectedFully Connected Fully Connected

Deep Feature Representation

Fig. 7: Deep feature representation generation process for
contactless fingerprint from each three sub-nets.

overlapping region of genuine and imposter distribution by
increasing the distance between imposter pairs. However, the
original contrastive loss function is not robust because there
is no specific constraint on training genuine pairs. Therefore,
we introduce an important parameter M2 to add constraint on
the genuine part of the loss function. Such loss function can
account for the distance between genuine pairs and is therefore
referred as distance-aware loss function. This distance-aware
loss function is motivated by the success of double-margin
contrastive loss function in [54] and can be represented as
follows:

L(W, (Y,X1, X2)n)=I(W, (Y,X1, X2)n)
+G(W, (Y,X1, X2)n)
=Y max(M1−d

n(W,X1, X2), 0)2

+(1−Y )max(dn(W,X1, X2)−M2, 0)2
(3)

This genuine part max(dn(W,X1, X2) −M2, 0)2 of this loss
function can ensure that the network focus on training the

genuine pairs with larger distance M2. It aims to focus on
training the challenging genuine samples (genuine pairs with
large distance or intra-class variations) to ensure robustness
of the network in responding to intra-class variations. In such
way, the overlapping region between genuine and imposter dis-
tribution can be further decreased. Hence further improvement
in matching performance is expected.

Given this loss function, the stochastic gradient decent
approach is used to optimize the Siamese CNN framework
for cross-comparison. The gradient of the distance-aware loss
function consists of two parts and can be computed from the
following equations,

∂L(W, (Y,X)n)
∂w

= g(w, (Y,W )n) + i(w, (Y,X)n) (4)

For each imposter pair, i(w, (Y,X)n) is same as original
imposter part of contrastive loss function. For each genuine
pair, if dn(w, x1, x2) <M2,

∂L(W, (Y,X)n)
∂w

= 0 (5)

if dn(w, x1, x2) >M2,

∂L(W, (Y,X)n)
∂w

=
∂L

∂dn(w, x1, x2)
⋅
∂d

n(w, x1, x2)
∂w

=2(∥(Jw(x1)−Jw(x2))∥−M2)

⋅
∂∣∣(Jw(x1) − Jw(x2))∣∣

∂w

(6)

The genuine and impostor pairs are expected to achieve more
robust classification with the usage of this loss function. The
experimental results (in section III.E) with test on statis-
tical significance, also illustrate noticeable improvement in
matching performance with the usage of this loss function.
In addition, we follow the processes described in [30] and
[31] to validate the effectiveness of proposed loss function
respectively. The comparative experimental results in section
III.A can further support/evaluate the loss function.
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Fig. 8: (a) ROC curves using distance-aware loss function and contrastive loss function on UBC patch dataset (b) ROC curves
using distance-aware loss function and contrastive loss function on AT&T dataset (c) ROC curves using distance-aware loss
function and contrastive loss function on AR dataset.

TABLE II: Comparative experimental results using method/protocol in [31] and [43]

Dataset False positive rate at 95% recall (FPR95)

Train Test Distance-aware loss Contrastive loss
Siamese with

Euclidean loss in [31]
Siamese with

Euclidean and Hamming loss in [43]
Notre Dame Liberty 8.04% 12.34% 13.24% 8.50%

TABLE III: Comparative experimental results using method/protocol in [30]

Experiments False Accept Rate (%)
10% 7.5% 5% 1%

AT&T Dataset
Distance-aware loss function 0.00% 0.00% 0.44% 2.67%

Contrastive loss function 0.00% 0.00% 0.89% 5.67%
Contrastive loss function reported in [30] 0.00% 1.00% 1.00% N/A

AR Dataset
Distance-aware loss function 6.15% 8.28% 11.52% 31.96%

Contrastive loss function 9.05% 12.86% 19.03% 48.51%
Contrastive loss function reported in [30] 11.00% 14.60% 19.00% N/A

E. Generating Cross Comparison Score

Similar to the feature fusion processes in many publications
[35], [36], during the testing phase, the extracted feature vec-
tors for contactless/contact-based fingerprints from the fully
connected layer of each three sub-nets are concatenated as
one deep feature representation. Each test fingerprint image
sample can be represented by three 1 − d vectors of length
1024. Let f (⋅) be the function to generate feature vector
from each sub-net of proposed network. Then the six feature
vectors of contactless (cl) and contact-based (cb) fingerprint
pairs generated from three sub-nets can be represented as
(f (acl), f (acb)), (f (bcl), f (bcb)) and (f (ccl), f (ccb)), where a
represents the input combination of fingerprint ridge map and
minutiae map, b represents the input ridge map with blurred
core point region and c represents the input core point region
of ridge map. For each of the test or unknown fingerprint
image pair, the corresponding enhanced ridge map and minu-
tiae map, core point region of ridge map and ridge map with
blurred core point region are generated automatically. After
the feature fusion, the robust deep feature can be represented
as (f ((a, b, c)cl), f ((a, b, c)cb)). Then the similarity between the
deep feature representation of each contactless and contact-
based fingerprint pair can be computed from the following

equation,

S = Dis(f ((a, b, c)cl), f ((a, b, c)cb)) (7)

where Dis represents the Euclidean distance between each two
deep feature representations generated from the input pair.

III. EXPERIMENTS

In this section, we detail on a range of experiments that
were performed to evaluate the proposed approach for con-
tactless to contact-based fingerprint cross comparison. Our
fingerprint cross comparison network is implemented using
the deep learning framework Caffe [42]. In the following
experiments, stochastic gradient descent algorithm is used to
optimize the network. The initial learning rate lr is set at
0.001 and decreases by following equation lrnew = lr ∗ (1 +
gamma ∗ iter)−power, where gamma is 0.0001 and power
is 0.75. Weight decay and momentum we select for training
the network are 0.005 and 0.9. M1 = 10 and M2 = 5 are
selected as the parameters of distance-aware loss function.
The imposter pairs are three times larger than the genuine
pairs for effectively training the network. We employed two
publicly available datasets in our experiments to evaluate
the proposed contactless to contact-based fingerprint cross-
comparison framework.
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Fig. 9: Contactless fingerprint and corresponding contact-
based fingerprint from same subject in dataset B.

A. Evaluation of Distance-aware Loss Function

In order to illustrate the robustness of proposed distance-aware
loss function, before applying proposed method on finger-
print cross-sensor comparison problem, we first performed
comparative experiments using Siamese-based network with
traditional contrastive loss and distance-aware loss function
on popular face recognition [30] and patch recognition [31],
[43] problems.

In recent references [31] and [43], the authors have pre-
sented several experimental results using Siamese-based net-
work with different loss functions on a benchmark dataset [44].
This dataset includes three subsets, Yosemite, Notre Dame, and
Liberty and each of them contains more than 450,000 image
patches. Since the Yosemite set is not available from [44], we
use Notre Dame set for training and Liberty set for testing.
The well-defined training set contains 500,000 patch pairs and
the test set contains 100,000 patch pairs with equal number of
matching and non-matching patch pairs. Reference [31] and
[43] use the same training and testing protocol, we also use this
protocol for making a fair comparison. We follow the network
structure in [43] but using distance-aware loss function. The
evaluation criterion is ensured to be the same as in [31]
and [43], i.e. false positive rate at 95% recall (FPR95) and
ROC curves. The comparative experimental results in Table
II and Figure 8 (a) consistently confirm the effectiveness of
the distance-aware loss function. Since the data augmentation
operation in [43] is not described in details, we also attempted
different rotation-based data augmentation and we achieved
better performance by using distance-aware loss function. The
network structures in [31] and [43] are specially designed
for respective proposed structure and loss function, which
may result in poor performance using Siamese network with
contrastive loss, than the methods in [31] and [43].

In addition, In reference [30], the authors evaluated Siamese
network on two face datasets [45], [46]. For the first dataset
[45], it includes 400 images from 40 subjects, with variations
in lighting, facial expression accessories, and head position.
The training set consists of 350 images for 35 subjects and
test set consists of 50 images for 5 subjects. The second
dataset [46] contains 3536 images for 136 subjects with 26
images per subject. The images with expression variations,
lighting variations, dark sunglasses and face-obscuring scarves
make the dataset extremely challenging. It is combined with
a subset (randomly selected) of [47] as the training dataset

that includes 2496 images from 96 subjects in [46] and 1122
images from 187 subjects in [47]. The test set contains 1040
images from 40 subjects in [45]. In order to ensure a fair
comparison, we used the same training and testing protocol
and the network structure described in [30] but using distance-
aware loss function. The evaluation criterion is ensured to be
the same as in [30], i.e. false reject rate for different false
accept rates. In addition, we plot ROC curves for performance
evaluation. The comparative experimental results in Figure 8
and Table III consistently illustrate significant performance
improvement and confirm the effectiveness of the distance-
aware loss function.

B. Training and Testing Dataset A

The first dataset [48] consists of 5760 contactless and re-
spective contact-based fingerprint images acquired from 320
fingers. A total of 3840 fingerprints from 160 fingers were
used for training the network and remaining fingerprints
were used for the performance testing. Each training finger
contained 12 contact-based and contactless fingerprint samples
while each testing finger had 6 contact-based and contactless
fingerprint samples. Each fingerprint image was resized into
the same resolution (192×192). The training dataset contained
19200 (160×60×2) fingerprint images after implementing data
augmentation approach detailed in section II.A.

C. Fine-tuning Proposed Network on Dataset B

In order to validate the robustness of proposed cross com-
parison approach, another public available dataset [10] is
also utilized. This dataset contains 1500 fingers data with
3000 contactless fingerprint samples and 6000 corresponding
flat contact-based fingerprint samples. In this experiment first
1000 fingers containing 6000 fingerprint samples were used
to evaluate the proposed method. A total of 500 fingers
images from the dataset B were used for fine-tuning the fully
connected layer of the proposed network that has been trained
using dataset A. The rest of 500 fingers images were used for
the testing. In order to fine-tune this network, each fingerprint
image was also resized into the same resolution (192 × 192).
Each of the training fingerprint ridge map and related minutiae
map were rotated by ±3 and ±6 degrees. The image samples
of contactless and contact-based fingerprints from the dataset
B are illustrated in Figure 9.

D. Evaluation Protocol

In order to demonstrate the effectiveness of proposed method,
we not only compare the proposed method with the other
popular CNN architectures, but also present comparison with
more accurate minutiae based method recently presented for
the same problem in [13]. Since all the image samples in
both the databases are complete or acquired in advance under
supervision, the failure to capture or extract case [57] is
not considered in both databases. We use ROC (Receiver
Operating Characteristic) and EER (equal error rate) to as-
certain the performance from the proposed method. The CMC
(cumulative match characteristics) and rank-one accuracy are
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Fig. 10: (a) The ROC curves for cross comparison using minutiae map (MM) and ridge map (RM) with Gabor filter and
adaptive histogram equalization(AHE), with Gabor filter only and fingerprint image without enhancement (b) ROC curves for
cross comparison using 4 times rotated training data, 2 times rotated training data and training data without augmentation (c)
ROC curves of our method using MM and RM with distance-aware loss function, MM and RM with contrastive loss function
and RM with distance-aware loss function (d) ROC curves for cross comparison using whole multi-Siamese CNN and three
subnetworks.

also employed to ascertain the cross comparison performance
for the recognition problem. In addition, we also perform test
for the statistical significance (p − value as also employed
in [49], [51]) to ascertain significance of the performance
improvement using the ROC. For two ROC curves, it can be
reasonably established that the area under the ROC curve 1 is
significantly different from the area under ROC curve 2 if the
respective p value is smaller than 0.05 (p-value < 0.05) [49].

E. Experimental Evaluations
This section provides a range of comparative experimental
results. For contactless to contact-based fingerprint cross com-
parison using dataset A, 5760 (160 × 36) genuine matching
scores and 915840 (160×6×159×6) imposter matching scores
were generated. We generated 4000 (500×8) genuine matching

scores and 1996000 (500×2×499×4) imposter matching scores
for the cross comparison experiments using dataset B.

In the first two experiments, we evaluated the effectiveness
of fingerprint preprocessing and data augmentation approach
using fingerprint ridge map and minutiae map. The Euclidean
distance was computed as the matching score between each of
the two test data representations. As we can observe from the
ROC curve in Figure 10 (a), the fingerprint cross comparison
performance has significant improvement with the usage of
Gabor filter and the adaptive histogram equalization. The EER
achieved 10.95% when using enhanced fingerprint ridge map
with two filters and the related minutiae map. It is 19.19%
when using enhanced fingerprint ridge map with Gabor filter
and related minutiae map. We also evaluated the results of data
augmentation in the second experiment. Although Siamese
CNN architecture generated much more input data pairs than
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Fig. 11: (a) ROC curves for cross comparison using our method and other CNN-based methods. (b) ROC curves for cross
comparison using our method and minutia-based methods. (c) CMC curves for cross comparison using our method and minutia-
based method. (d) ROC curves on dataset B for cross comparison using whole multi-Siamese CNN and three subnetworks. (e)
ROC curves on dataset B for cross comparison using our method and other methods. (f) CMC curves on dataset B for cross
comparison using our method and other methods.
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TABLE IV: Experimental evaluations on two datasets

Experiments Equal
Error Rate

Rank-one
accuracy

Deformation correction
model [13] on dataset A 16.17% 41.82%

Minutiae matcher in
NIST [12] on dataset A 43.83% 10.99%

Our method on dataset A 7.93% 64.59%

Deformation correction
model [13] on dataset B 21.60% 38.90%

Minutiae matcher in
NIST [12] on dataset B 38.01% 24.92%

Our method on dataset B 7.11% 58.87%

traditional CNN, in our particular case, the size of the data
was not large enough to train a robust deep network. As
illustrated in Figure 10 (b), matching performance is improved
by incorporating data augmentation.

Then the efficiency of proposed approach to incorporate
fingerprint ridge maps and related minutiae maps was eval-
uated. The architecture of designed network for training fin-
gerprint images only is similar to the network in Figure 6 but
by removing Concat layers. The comparative experiment to
evaluate the proposed distance-aware loss function was also
performed. The proposed cross comparison method was used
for training and testing on dataset A. It can be observed
from the ROC in Figure 10 (c) that training the network
using proposed approaches, i.e. incorporating fingerprint ridge
map with the related minutiae map, with distance-aware loss
function achieved better performance than only using the
fingerprint ridge maps. The EER values of using proposed
approach and only using fingerprint ridge map are 10.95% and
13.46% respectively. Our comparative results also indicated
that fingerprint cross comparison using the distance-aware
loss function achieved better performance than that using the
traditional contrastive loss function (EER = 12.91%). As
compared with the approach using contrastive loss function
and the approach using fingerprint ridge map only, the im-
provement using distance-aware loss function was statistically
significant (p-value < 0.0001).

In addition, several experiments were performed to evaluate
the effectiveness of proposed multi-Siamese network. The
ROC curves of the results for cross-fingerprint comparison by
separately using three sub-networks and the whole network
were illustrated in Figure 10 (d). Our results demonstrate that
more robust/effective deep fingerprint feature representations
can be learned from the proposed multi-Siamese network.
From the ROC curves, we can see that better performance
for the cross-fingerprint comparison can be achieved by using
the proposed multi-Siamese network framework than using
individual sub-network. The EER is further decreased to
7.93% using the proposed approach.

Several experiments were performed to evaluate the pro-
posed fingerprint cross comparison approach by comparing
with other competing or popular methods. We firstly compared
the proposed approaches with four promising CNN-based
methods such as Resnet [29], triplet network [19] and in
[50] or [31]. According to the network structure in [31], a

TABLE V: Results of statistical significance test (p-value) for
comparison of ROCs

Comparison p-value
Database A Database B

Distance-aware loss function &
Contrastive loss function < 0.0001 /

Our method &
Method in [13] < 0.0001 < 0.0001

Our method &
Method in [19] < 0.0001 < 0.0001

6-layer 2-channel network was implemented using fingerprint
ridge map and related minutiae map as the input. In order
to implement Residual network [29], contactless and contact-
based fingerprints from the same subject were combined as
one class. Then fingerprints were classified into 160 classes by
this network. Since the size of fingerprint dataset is not large
enough for training very deep network, we implemented a 6-
layer Resnet following the network structure in [29]. In order
to ascertain the effectiveness of batch normalization [50], we
added batch normalization layer after each convolution layer
of our network. We also generated the fingerprint dataset for
training a 6-layer triplet network [19]. The testing fingerprint
deep representations were extracted from the fully connected
layer of above networks for the cross comparison. The match-
ing performances are evaluated using the ROC and shown in
Figure 11 (a). Although these methods achieve great success
in image recognition or classification, in our particular case
the proposed method achieves outperforming results than from
these competing methods.

Another competing method appears in [13] as it provides
comparison with some methods in the literature. Therefore,
this approach and the method in [12] were also evaluated
for the cross fingerprint comparison performance. In order to
ensure fairness in comparison and to achieve the best perfor-
mance of conventional minutiae based method, the contactless
fingerprint images with 512 × 384 resolution and the contact-
based fingerprint with 328 × 356 resolution in database A
were used for minutiae-based matching. The resolution of
contactless fingerprint images and contact-based fingerprints
used for minutiae-based matching in database B is 512 × 640
and 640×480 respectively. Such comparative results in Figure
11 (b) illustrate that the proposed approach (EER = 7.93%)
can significantly improves the state-of-the-art method (EER =

16.17%) in [13]. Contactless to contact-based fingerprint cross
comparison performance was also evaluated using the CMC
curve and rank-one accuracy in Figure 11 (c) and Table IV. The
rank-one accuracy is improved to 64.59% compared with the
best performing method (41.82%). The statistical significance
levels (p-values) were also computed for the above experi-
ments. Comparing the ROC of proposed method with the ROC
of other methods, the improvement of proposed method was
shown to be statistically significant (p-values < 0.0001).

We also performed comparative experiments on dataset
B to ascertain the robustness of proposed framework. The
comparative ROC curves, CMC curves and rank-one accuracy
were respectively generated. Figure 11 (d) illustrated the
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TABLE VI: Comparative time and storage complexity between
different cross fingerprint comparison methods

Approaches
Number of
parameters

Feature
extraction

Matching
Template

size

Minutiae-based <10 1.682s 1.256s
292 − d

vector

Triplet CNN ∼32.5 M 0.008s 7.98 ∗ 10
−5

s
1024 − d

vector

Two channel CNN ∼15.7 M 0.009s 8.68 ∗ 10
−5

s
1024 − d

vector

Residual CNN ∼10.1 M 0.012s 7.12 ∗ 10
−5

s
1024 − d

vector

Proposed method ∼22.6 M 0.014s 1.49 ∗ 10
−4

s
3072 − d

vector

results for cross-fingerprint comparison by separately using
three sub-networks and the whole network. We also attempted
to incorporate different weights to concatenate the feature
representations generated from three subnets. When weight
ratio of sub-net1 (ridge and minutiae map), sub-net2 (blurred
core point region) and sub-net3 (core point region) is 2:3:5,
we achieved the best performance and respective EER value
is 7.11%. It can be observed from Figure 11 (e) and Figure
11 (f), the proposed cross comparison method also achieved
outperforming results than the other methods on dataset B.
This again validated the robustness and efficiency of the
proposed method. The EER is 7.11% using proposed model
and it is 21.60% using traditional minutiae-based matching
and it is 22.10% using triplet CNN-based matching. The rank-
one accuracy in Table IV is also improved from 38.9% to
58.87% by incorporating proposed approach. The proposed
method on this dataset also shows a significant improvement
(p-value< 0.0001) of traditional methods. Table V illustrated
the statistical significance (p-value) of the performance im-
provement using distance-aware loss function and proposed
approach. The results indicate that, by the commonly used
confidence level of 95%, the improvement of distance-aware
loss function is statistically significant and our method sig-
nificantly outperforms other two methods [13], [19] on two
databases (p-value is expressed as < 0.0001 because the
computed z-statistics are too large that the corresponding
p-value exceed double precision).

F. Time Complexity Analysis

The proposed implementation runs on an Intel i5-2500 3.3GHz
CPU with NVIDIA 980Ti GPU. It takes around 4 hours to
train the sub-net1 for around 20k iterations, around 5 hour
to train the sub-net2 for around 40k iterations and around 4
hours to train the sub-net3 for around 30k iterations. Although
training the whole networks takes several hours, during the
testing phase, the deep feature representations are generated by
simply forwarding operations. In addition, the matching scores
are generated by simply computing the Euclidean distance be-
tween each two feature representations, which takes less than
0.10 second for feature extraction and comparison. Comparing
with minutiae-based approaches, the proposed method does
not need complicated feature extraction and time-consuming
minutiae alignment processes and therefore offers faster fin-
gerprint cross comparison. Table VI illustrates comparative

(a)

(b)

Fig. 12: (a) Falsely rejected image sample pairs from test
dataset A (first two rows) and dataset B (last two rows); (b)
Falsely accepted image sample pairs from test dataset A (first
two rows) and dataset B (last two rows).

storage requirements for the respective templates and the
computational complexity between the methods considered in
this work.

G. Discussion

Despite significant improvement in the accuracy for contact-
less to contact-based fingerprint cross comparison, further
improvement is required to meet the expectations for the
deployment. The limitations in the matching accuracy from
the proposed method can be observed from the falsely rejected
genuine fingerprints and falsely accepted imposter fingerprints.
Figure 12 presents such falsely rejected image samples and
falsely accepted image samples from the two public databases
used in this work. As can be observed from images in Figure
12 (a), most false rejects in both datasets can be attributed to
three key reasons. Firstly, the quality of these contactless or
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Fig. 13: ROC curves for cross comparison using combination
of ridge and minutiae map, and for direct marking the minutiae
on ridge map.

contact-based fingerprint images is quite poor. Secondly, con-
tactless or contact-based fingerprints have very large rotation.
Thirdly, there is very little overlap between the contactless and
contact-based fingerprints due to significant differences in the
image sensing and/or acquisition approaches. False acceptance
of image pairs in both datasets, as can also be appreciated
from sample images in Figure 12 (b), can be attributed to
two key reasons. Firstly, the contactless and contact-based
fingerprints illustrate similar contour or structure. Secondly,
the contactless and respective falsely accepted contact-based
fingerprints present high similarities in image details including
similar core point region and ridge flow patterns. The limita-
tions in accurately matching these images can be addressed by
incorporating larger database, (using more challenging data for
the training), and further advancing the network architecture
to more accurately learn local ridge map from the fingerprints,
especially under the deformation.

We also performed additional experiments to ascertain the
performance improvement, from the combination of ridge and
minutiae map, over the usage of marking minutiae on the ridge
map as we used in [33]. Such comparative experimental results
using the database B are shown in Figure 13. These experi-
mental results indicate further improvement in the performance
when combination of ridge and minutiae map is used in our
approach for the contactless to contact-based cross fingerprint
comparison problem. The EER value is reduced from 8.14%
to 7.11% using such combination.

IV. CONCLUSIONS AND FURTHER WORK

In this paper, we have presented a specially designed multi-
Siamese fingerprint cross comparison framework to accurately
match contactless to contact-based fingerprints. In the best
of our knowledge, this is the first such attempt to address
challenging cross-fingerprint comparison problem using deep
learning. Our framework detailed in this paper incorporates
most reliable minutiae features along with the respective
ridge flow maps to ensure robustness in the learning minutiae

feature correspondences. A multi-Siamese CNN with distance-
aware loss function is used to generate the fingerprint feature
representation vectors. In addition, the hand-craft features
(fingerprint core point) is utilized to generate more robust
fingerprint deep feature representation. Each three fingerprint
representation vectors from three sub-nets are concatenated
for more accurate cross comparison. The experimental results
from two public datasets presented in section III.E illustrated
that proposed method can achieve outperforming results than
many other promising deep learning methods. Our experi-
ments also indicated that the proposed method can achieve
significantly improved performance over other minutiae based
fingerprint cross comparison methods.

Unlike contact-based fingerprint cross-sensor comparison,
the cross comparison using contact-based to contactless fin-
gerprints is more challenging. In practice, lack of sufficient
training data, i.e. contact-based and respective contactless fin-
gerprints, in proposed framework can significantly degrade the
matching accuracy. Incorporating different data augmentation
strategies like scale-based data augmentation and using more
promising learning strategies including different stochastic
optimization algorithms like Adagrad [55] or Adam [56], are
expected to improve the cross comparison performance and
should be considered in the extension of this work. Deep learn-
ing based architecture which is specially designed to learn inter
and intra class variations for other cross-sensor problems, e.g.
contact-based to rolled fingerprints, offers significant potential
to improve the accuracy and is suggested for further work.
Further work is also required to develop and incorporate larger
dataset, better architecture and strategy to achieve performance
improvement to meet the expectations from the biometrics
community for the deployments.
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