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Abstract—Periocular recognition has been emerging as an 

effective biometric identification approach especially under less 

constrained environments where face and/or iris recognition is not 

applicable. This paper proposes a new deep learning based 

architecture for robust and more accurate periocular recognition 

which incorporates attention model to emphasize important 

regions in the periocular images. The new architecture adopts 

multi-glance mechanism, in which part of the intermediate 

components are configured to incorporate emphasis on important 

semantical regions, i.e., eyebrow and eye, within a periocular 

image. By focusing on these regions, the deep convolutional neural 

network (CNN) is able to learn additional discriminative features 

which in turn improves the recognition capability of the whole 

model. The superior performance of our method strongly suggests 

that eyebrow and eye regions are important for periocular 

recognition, and deserve special attention during the deep feature 

learning process. This paper also presents a customized 

verification-oriented loss function, which is shown to provide 

higher discriminating power than conventional contrastive/triplet 

loss functions. Extensive experiments on six publicly available 

databases are performed to evaluate the proposed approach. The 

reproducible experimental results indicate that our approach 

significantly outperforms several state-of-the-art methods for the 

periocular recognition. 

 
Index Terms—Periocular recognition, deep learning, attention 

model, region of interest. 

I. INTRODUCTION 

UTOMATED human identification under less constrained 

environment has become one of the key research areas in 

biometric recognition in recent years. Periocular recognition 

has been receiving increasing attention for its promising 

performance especially under less constrained conditions [1-9]. 

Although there is no strict definition or standard, the periocular 

region usually refers to the region around the eye, which 

preferably includes the eyebrow [8]. Periocular region has been 

validated to be highly discriminative for different persons, and 

is considered as an effective alternative or supplement to face 

and/or iris recognition especially when the complete face or 

clear iris images are not available [11] [15]. Some researchers 

also point out that the periocular region suffers less impact from 

expression variations [8] and aging [10], as compared with the 

entire face.  

In spite of usefulness of periocular recognition, matching 

periocular images accurately under less constrained 

environments remains a challenging problem in the community. 

This is largely due to the fact that this region reveals less 

information than the whole face, and may suffer from severe 

interference from artifacts like glasses and hair. By reviewing 

the recent development of periocular recognition algorithms [1-

9], we can conclude that there is still considerable space for the 

matching accuracy improvement in order to meet the need for 

large scale real applications, and therefore further research 

efforts are necessary to advance state-of-the-art performance 

for periocular recognition. 

A. Our Work and Contributions 

In this paper we propose the attention based deep learning 

architecture, referred to as AttNet, for more accurate and robust 

periocular recognition under less constrained environments. 

The key assumption of our approach is that, the eyebrow and 

eye region are critical for periocular recognition and should 

attract additional attention for feature learning. This is inspired 

by human perception as well as the recent trend in the deep 

learning community, which suggests that incorporating visual 

attention to potentially more important regions can significantly 

benefit the performance for a number of image understanding 

tasks [23-26]. As illustrated in Fig. 1, when human performs 

recognition tasks, salient regions such as eye and eyebrow 

within periocular may provide more discriminative information, 

and naturally attract more attention than the surrounding 

regions. 

 With such assumption, we develop the explicit attention 

based deep neural network, which incorporates a region of 

interest detection network and attention implication module. 

The proposed framework is shown to extract more 

comprehensive periocular features with higher discriminative 
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Figure 1: Illustration of implicit human visual attention while performing 

recognition tasks such as periocular verification. Critical regions that can 
provide more discriminative information attract more attention, especially for 

the find-grained recognition. 
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capability. The main contributions of our work can be 

summarized as follows: 1) the proposed approach achieves 

superior accuracy for periocular recognition under less 

constrained environments with visible and near-infrared (NIR) 

imaging. Extensive experimental results on four publicly 

available databases suggest that our attention based model 

outperforms several state-of-the-art methods significantly. 

Such results provide strong support to our assumption on the 

importance of critical regions, i.e., eye and eyebrow, for more 

accurate periocular recognition. 2) We also present a 

customized loss function, referred to as Distance-driven 

Sigmoid Cross-entropy (DSC) loss. The DSC loss is shown to 

offer a marginal effect for both positive and negative training 

samples during the verification oriented learning, which results 

in more effective supervision compared with other loss 

functions such as contrastive loss and triplet loss. 

The trained models and source codes of our approach are 

provided in [38] for reproducing our experimental results, so 

that other researchers can easily follow our work for further 

research progress on periocular recognition.  

B. Related Work 

Continuous research efforts have been devoted into 

investigating periocular recognition algorithms under different 

environments [39] [40]. The early feasibility study on using 

periocular region for human identification was performed by 

Park et al. [1] in 2009, and promising results have been reported, 

which provides support to subsequent research. Bharadwaj et al. 

[3] further ascertained the usefulness of periocular recognition, 

especially when iris recognition fails. Some of the later research 

focuses on cross-spectrum periocular matching [7] using 

techniques of neural network. Above explorative works have 

motivated further research efforts to continuously improve the 

accuracy of periocular recognition. One of the state-of-the-art 

approaches is proposed by [2] in 2013, which exploited DSIFT 

features of periocular images, followed by K-means clustering 

for dictionary learning and representation. This work also 

explored score level fusion of iris and periocular recognition 

and reported encouraging results. However, this approach did 

not investigate periocular-specific feature representation, and 

the employed DSIFT feature is computationally expensive. 

Smereka et al. [8] has proposed the Periocular Probabilistic 

Deformation Model (PPDM) in 2015, which provided a sound 

modelling for potential deformation existing between 

periocular images. Inference of the captured deformation using 

correlation filter is utilized for matching periocular pairs. Later 

in 2016, the same group of researchers improved their basic 

model by selecting discriminative patch regions for more 

accountable matching [41]. These two methods achieved 

promising performance on multiple datasets. Nevertheless, both 

of them rely on patch-based matching scheme, and therefore are 

less resistant to scale variation or misalignment that often 

violate the patch correspondence but is more likely to happen 

during the real deployments. 

Deep learning techniques, especially convolutional neural 

networks (CNN), have gained immense popularity for 

computer vision and pattern analysis tasks in recent years. 

CNN-based methods have been impressively successful for 

handwritten character recognition [12], object detection [16] 

[17], image classification [18-20], face recognition [21] [22], 

palmprint matching [42] and many others. However, surveys on 

periocular recognition [39] [40] suggest that few studies have 

exploited deep learning techniques for boosting periocular 

matching accuracy. Reference [9] proposed semantics-assisted 

CNN (SCNN) in 2017 for utilizing latent semantical 

information from periocular images to improve the feature 

representation. By leveraging additional supervision from 

semantical information (gender and side) of the training 

samples, the SCNN has shown to offer better discriminating 

power with limited training data, and achieved promising 

performance under cross-database training/testing scenarios. 

More recently, Proença and Neves [45] claimed that iris and 

sclera regions may be less reliable for periocular recognition 

and proposed Deep-PRWIS. In their work, periocular images 

are augmented with inconsistent iris and sclera regions for 

training a deep CNN, so that the network implicitly degrades 

the iris and sclera features during learning. Good results were 

reported from the Deep-PRWIS on two public databases. 

Despite the significant and encouraging research progress 

gained by aforementioned studies, the performance of 

periocular recognition still needs to be further improved in 

order to meet the expectation for real applications. Besides, 

existing periocular feature extraction methods seldom consider 

the underlying regional significance that may exist in periocular 

images. In summary, the following aspects require further 

research in order to facilitate the performance of periocular 

recognition: 

 Hand-crafted features and shallow learning models are still 

in the majority of focus for periocular recognition algorithms. 

Advanced deep learning architectures and technologies, 

whose effectiveness has already been largely ascertained, 

have immense potential but not yet been fully exploited in 

this area, possibly due to the need for large amount of training 

data; 

 Several studies already revealed the importance of eye and 

eyebrow regions for periocular recognition, but most of 

existing approaches only consider including these regions for 

the input/acquired images, and little effort has focused on 

emphasizing these regions during feature extraction process. 

Based on the above facts as well as earlier studies on the 

human visual attention, this paper proposes an attention based 

CNN architecture for more accurate and robust periocular 

feature learning, under the assumption that eyebrow and eye 

regions preserve higher importance and deserve more attention 

than the surrounding skin areas. As discussed earlier, 

employing visual attention mechanism may address the 

regional significance for the deep feature extraction and benefit 

the recognition accuracy [23-26]. Besides, several mechanisms 

including customized network structure, pair-wise training and 

dynamic data augmentation are adopted to relax the need for 

training data.  

The rest of this paper is organized in the following way: 

Section II details the methodology of the proposed approach, 
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including the visual attention based model and the customized 

DSC loss function; Section V provides the experimental 

configurations and the analysis on the results; Section VI draws 

conclusions of this work and introduces our future research 

goals. 

II. METHODOLOGY 

As discussed earlier, the key innovation of our method is the 

incorporation of attention model which draws the network 

attention to specific region of interest (RoI) during feature 

learning and matching for the periocular recognition. The 

overall framework is illustrated in Fig. 2. The proposed network 

structure, referred to as AttNet in this paper, firstly exploits a 

convolutional unit (i.e., conv1) for extracting low-level features 

from the input image. The network is then split into two 

branches, where the first branch process the bottom inputs as 

usual CNNs, while the second branch incorporates RoI 

information in its intermediate layers (i.e., conv2 and conv4)  so 

that higher attention is imparted to the specific areas of the input 

periocular image. The first branch without utilizing attention 

mechanism is designed to recover global features that a typical 

CNN can perform, which is able to maintain the robustness of 

the network when RoI information is incorrect, and improve 

overall performance by feature conjunction. The RoI 

information is provided by a fully convolutional network (FCN) 

[30], i.e., FCN-Peri in Fig. 2. The detailed layer configuration 

of these two networks are provided in Table 1. It is worth noting 

that both networks employed in this work are relatively simple 

compared with popular and very deep architectures such as 

VGG [27] and ResNet [19], considering the availability of 

training data. Besides, we adopt the Siamese infrastructure for 

training the network in end-to-end verification protocol, and 

develop a new compositional loss function which is referred to 

as Distance-driven Sigmoid Cross-entropy (DSC) loss. This 

new DSC loss has shown to offer superior performance than 

traditional verification oriented loss functions like contrastive 

loss and triplet loss.  

In this section, the detailed mechanisms for RoI detection and 

attention implication are explained in Section A and Section B 

respectively; Section C presents the newly developed DSC loss 

function, followed by the details on the training and test 

configurations in Section D.  
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Figure 2: Architecture of the proposed attention based convolutional neuron network, referred to as AttNet (top), and the utilized fully convolutional network for 

specific region detection, called FCN-Peri (bottom). 
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A. FCN-Peri – Semantical Region Detection 

The key issue for incorporating visual attention model is to 

identify potentially important regions that deserve more 

attention than other regions during learning. In general image 

classification/understanding, the inference of important regions 

is often jointly learned with the specific tasks [23] [26], as the 

input data generally involves significantly different background 

information and those regions could not be predefined. Such 

strategies, however, require huge amount of training data with 

sufficient variation to limit the freedom of learning. For fine-

grained tasks such as periocular recognition, predefined region 

detection is preferred [25] as prior knowledge about the input 

images is usually available, so that the learning process can be 

better regularized with limited training data. In our approach, 

based on human perception model, we assume that the regions 

containing eyebrow and eye are relatively important for 

periocular recognition. Under such assumption, we firstly 

exploit a fully convolutional network (FCN) to detect the 

eyebrow and eye regions.  

 The FCN employed in our work was firstly proposed for the 

semantic segmentation in [30]. Different from common CNNs, 

FCN does not contain fully connected layers, and the 

upsampling layers are utilized to integrate intermediate 

convolutional feature maps at different scales. The spatial 

correspondence between the input image and the output 

features is therefore maintained to achieve pixel-to-pixel 

prediction. The FCN is supervised by a pixel-wise softmax loss 

function using groundtruth labels. In our approach, we 

employed a simplified version of the FCN proposed in [30] for 

segmenting eyebrow and eye from background in the input 

periocular image, which we refer to as FCN-Peri. The detailed 

architecture of FCN-Peri is illustrated in Fig. 2 (bottom), which 

contains about 0.1M parameters.  

 The original FCN in [30] was developed to classify each 

pixel into one of 21 classes. In our work, eyebrow and eye are 

regarded as two different classes, and pixels in the original input 

image are to be segmented into three classes, i.e., eye, eyebrow 

and background. We manually labeled the eyebrow and eye 

regions for about 100 images from the training sets of visible 

and near infrared (NIR) data (details of datasets are in Section 

III) respectively as the ground truths to train FCN-Peri from 

scratch. It should be noted that by “eye region”, we refer to the 

region including the iris, sclera, eyelid and eyelash, etc., rather 

than just the iris region. Fig. 3 shows several region 

segmentation results from trained FCN-Peri on the test sets. It 

    

    
(a) 

    

    
(b) 

Figure 3: Samples outputs of FCN-Peri for test images with visible (a) and near 

infrared (b) imaging. The black pixels represent predicted background, and the 

white and gray pixels identify predicted eyebrow and eye respectively. 

 

Table 1: Detailed layer configurations for AttNet and FCN-Peri. 

Unit Layer Type 
#Output 

channels 

Kernel 

size 
Stride 

AttNet 

conv1 

conv1_1 convolution 32 5×5 1 

relu1_1 ReLU / / / 

conv1_2 convolution 32 5×5 1 

relu1_2 ReLU / / / 

pool1 max pooling / 2×2 2 

conv2 

conv2_1 convolution 32 3×3 1 

relu2_1 ReLU / / / 

conv2_2 convolution 32 3×3 1 

relu2_2 ReLU / / / 

pool2 max pooling / 2×2 2 

att2* attention / / / 

conv3 

conv3_1 convolution 64 3×3 1 

relu3_1 ReLU / / / 

conv3_2 convolution 64 3×3 1 

relu3_2 ReLU / / / 

pool3 max pooling / 2×2 2 

conv4 

conv4_1 convolution 64 3×3 1 

relu4_1 ReLU / / / 

conv4_2 convolution 64 3×3 1 

relu4_2 ReLU / / / 

pool4 max pooling / 2×2 2 

att4* attention / / / 

fc5 fc5 fully connected 64 / / 

FCN-Peri 

conv1 

conv1 convolution 16 5×5 1 

relu1 ReLU / / / 

pool1 max pooling / 2×2 2 

conv2 

conv2 convolution 32 3×3 1 

relu2 ReLU / / / 

conv2_s convolution 3 1×1 1 

pool2 max pooling / 2×2 2 

conv3 

conv3 convolution 64 3×3 1 

relu3 ReLU / / / 

conv3_s convolution 3 1×1 1 

pool3 max pooling / 4×4 2 

conv4 

conv4 convolution 128 3×3 1 

relu4 ReLU / / / 

conv4_s convolution 3 1×1 1 

* Two branches of AttNet as shown in Fig. 2 have the same layer configuration, 

but attention layers are only placed in the second branch. 
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can be observed that the region predictions are quite robust 

despite that it makes some mistakes for some challenging 

samples. The proposed attention based deep neural network, i.e., 

AttNet, is however expected to be tolerant to such level of errors 

in a few samples. It should also be noted that the networks for 

visible and NIR spectrums are separately trained. 

B. AttNet – Incorporating Visual Attention for Periocular 

Feature Learning 

With the detected regions containing eyebrow and eye for an 

input image from FCN-Peri, we then incorporate the resulting 

RoI in AttNet for attention model implementation. As shown in 

Fig. 2, after convolutional units conv2 and conv4, the output 

map from FCN-Peri indicating eyebrow and eye positions is 

utilized to adjust the convolutional features. There is no 

standard procedures for accomplishing attention in deep neural 

networks. Some methods use the RoI for affine transformation 

and alignment [24], while others consider bluring/masking the 

background for the input images or intermediate features [26], 

or feed cropped areas into multiple deep networks [25]. In our 

approach, we apply a straightforward yet effective mechanism 

for emphasizing important areas inferred by FCN-Peri, i.e., 

increasing the magnitudes of the convolutional features within 

the RoI and decreasing those outside the RoI. More specifically, 

an attention layer is placed after a convolutional unit and 

performs the follow operation:  

 
,
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, if ( , )

1
, otherwise

x y

x y

x y

f x y R

f
f








  



 (1) 

where R is the set of x-y coordinates where the current position 

is considered as RoI, f  is the convolutional feature map from 

the previous layer, f  is the processed feature map before 

entering the next layer, and   is a positive parameter 

controlling the intensity of adjustment. It was empirically fixed 

to 5 for all our experiments. Such operation attempts to simulate 

human visual attention by weighting the features within the RoI 

more than those in the background for the subsequent layers of 

the network. The feature adjustments for eyebrow and eye are 

separately performed, each on half of the channels of the feature 

maps respectively, as these two regions present quite different 

characteristics. We selectively incorporate such attention 

mechanism for conv2 and conv4 to account for both low-level 

and high-level convolutional features. Since conv1 is shared by 

the RoI-aware and common branches, conv2 is therefore more 

appropriate to incorporate for the low-level attention. On the 

other hand, conv4 is right before the fully connected layer fc5 

(i.e., the layer generating feature vectors) and is also judicious 

to be selected to impart high-level attention. Fig. 4 visualizes 

the effect of the employed attention model for the features from 

the two convolutional units. It can be observed that the 

background features which do not belong to the RoI “fade” after 

the operation by attention layers. In this way, the foreground 

features make more impacts on the feature extraction process 

by subsequent layers. Although simply increasing the feature 

magnitudes inside the RoI may not be an optimal approach to 

incorporate visual attention, it is quite scientific and easy-to-

implement scheme to achieve key objective of our research, i.e., 

to investigate and evaluate the importance of eye and eyebrow 

regions to advance periocular recognition through the deep 

periocular feature extraction. 

C. Distance-driven Sigmoid Cross-entropy (DSC) Loss for 

Verification Oriented Supervision 

We adopt Siamese-like pair-wise network infrastructure for 

training our AttNet, i.e., instead of classifying a single image 

into a standalone class, a pair of images are jointly evaluated to 

predict whether they belong to the same class or not. Such 

configuration is illustrated by Fig. 5. Contrastive loss [28] or 

triplet loss [29] are often used for the pair-wise training. 

Compared with the classification training protocol which 

usually uses a softmax loss function for supervision, the pair-

wise protocol is closer to the verification problem (one-to-one 

matching) which is a fundamental application scenario for most 

biometric systems. A classification based model, in contrast, 

may require additional transfer learning to make itself more 

effective and scalable, such as in [29]. Besides, the pair 

combination from training samples introduce more data 

variation, which can is likely to reduce the overfitting of trained 

model. In the following, we present a brief introduction to 

conventionally used loss functions for the pair-wise training, 

followed by our newly designed DSC loss function. 

1) Conventional Verification Oriented Loss Functions 

 The conventional contrastive loss function for training 

Siamese network is formulated as follows: 

 
2 2(1 ) max(0, )conL td t m d      (2) 

where t is the label of the current pair, i.e., t=1 if the two 

samples come from a same class and t=0 otherwise, and d is 

simply the Euclidean distance between the two input feature 

vectors Xf  and Yf : 

conv1 conv2
attention 

layer
conv3

attention 
layer

conv4

Image

RoI  
 
Figure 4: Visualization of convolutional features from intermediate layers 

before and after attention layers. Attention layers increase the feature values 

within the RoI, and meanwhile decrease those in background. Feature maps of 
different scales are upsampled to the same size for better illustration. 
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2X Yd  f f   (3) 

m is a preset margin for regularizing the distance from a 

negative pair (i.e., a pair for samples from different classes). 

The contrastive loss is designed to reduce the distance between 

a positive pair as a quadratic energy term, while for negative 

pairs, the distance between a negative pair would be increased 

until it exceeds the hard margin m. The effect of m is to force 

the network to concentrate on relatively challenging negative 

pairs only. However, there is no regularization on the positive 

pair samples. As the training progresses, more and more 

negative pairs do not produce any losses due to the hard margin, 

while all the positive pairs still have continues impact on the 

backpropagation. This causes unbalanced training for positive 

and negative pair samples. 

 The above side effect is to some extent alleviated by triplet 

loss, which can be considered as a variant of contrastive loss. 

Instead of evaluating a simple pair, the triplet loss composes 

positive and negative pair into a triple structure, and measures 

the loss by:  

 
1 2 1

2 2

2 2
max( ,0)tri X X X YL m    f f f f  (4) 

where 
1Xf  and 

2Xf  are features from a same class while 
Yf  is 

extracted from another class. Different from contrastive loss, 

which uses an absolute margin to regularize negative pairs, the 

triple loss relies on a relative margin m  to enlarge the 

difference between the positive pair distance and negative pair 

distance. In this way, the balance of positive and negative pair 

samples is always retained during the training process. 

Verification oriented applications, however, mostly use an 

absolute value as threshold instead of relative margin for 

decision making, and therefore slight inconsistency exists 

between the training process supervised by triplet loss and the 

actual test (matching) process. 

2) Distance-driven Sigmoid Cross-entropy (DSC) Loss 

In order to address the above limitations, in this paper we 

introduce a customized compositional loss function called 

Distance-driven Sigmoid Cross-entropy (DSC) loss. Given the 

distance d between a pair of features to be evaluated, we firstly 

perform following mapping on it: 

 
2s b ad   (5) 

 
1

1 s
p

e



 (6) 

where a and b are positive constants which are used for linear 

transformation on the square of the Euclidean distance, p is 

obtained by a sigmoid function on the transformed s and can be 

regarded as the probability that the two samples come from a 

same class. The motivation of using sigmoid function is that it 

maps any real value into (0, 1), and varies significantly near 

zero but much slower at two ends. Such property essentially 

enables a kind of soft margins for the low and high values of s. 

In this way, the learning process for both positive and negative 

pairs can be regularized, so that it mainly focus on challenging 

samples with s values near zero. The loss for the obtained 

probability p is then measured by the cross-entropy function: 

 [ log (1 ) log(1 )]DSCL t p t p      (7) 

The sigmoid cross-entropy loss is widely used when the task is 

to predict probabilities of certain events. In this case, we regard 

our task as predicting the probability of a binary event – same 

class or different classes. Different from common approaches 

which feeds a single neuron output spanning over ( , )   

into the sigmoid function, we originally map the Euclidean 

distance d to a term s that spans over ( , ]b , then transfer to 

approximated probability p. The constant b should be selected 

such that its sigmoid value 1/ (1 )be  is very close to one. Such 

transfer is the key to the new DSC loss function which utilizes 

the soft margins of sigmoid function in a straightforward way. 

 Fig. 6 demonstrates the comparison of the newly developed 

DSC loss function and conventional contrastive loss function 

w.r.t d, for both positive (t = 1) and negative (t = 0) cases. It can 

be clearly observed that for negative cases the two losses have 

similar distribution that, when d is greater than certain values, 

the losses approach to zero. Such marginal effects make sure 

that the learning process does not waste energy on 

unchallenging negative pairs that already have large distance. 

For positive cases, however, notably different characteristics 

weight sharing

CNN

CNN

fx

fY

L(fx , fy)

 
 
Figure 5: Illustration of Siamese architecture for training CNN in verification 

protocol. Two identical CNNs are placed in parallel to process a pair of 

samples. Specific pair-wise loss function (e.g., contrastive loss) is employed to 
supervise the training, and the weights (parameters) of the two networks are 

kept the same (weight sharing) during the entire training process. 

DSC loss

contrastive
loss

t = 0 t = 1

soft margin  
 

Figure 6: Comparison of DSC loss (a = 1, b = 4) and conventional contrastive 

loss (m = 2) with respect to d. The DSC loss provides a (soft) margin for 
positive cases (t = 1) which achieves better regularization for genuine pairs, 

such that the learning process mainly focuses on challenging samples. 
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are presented by the two losses. The contrastive loss simply 

evaluates the distance with a quadratic term, which results in 

the fact that unchallenging positive samples would have 

continuous impact on the learning process. In contrast, a 

number of negative samples would be ignored due to the hard 

margin m. Such imbalance may mislead the training process to 

focus too much on positive samples, even for unchallenging 

ones. On the other hand, our DSC loss provides a (soft) 

marginal effect for positive cases as well, i.e., when d is in 

certain small range, it produces a loss close to zero. Such minor 

loss values indicate that the current samples are typically 

unchallenging, and they do not generate noticeable gradients for 

the backpropagation of the training process. In this way, the 

learning keeps focusing on challenging samples, for both 

positive and negative cases, to maximally increase the 

discriminating capability of the network.  

As would be shown from the experiments in Section V, the 

proposed DSC loss contributes to better discriminating power 

than conventional contrastive loss and triplet loss, especially for 

lower false acceptance rates. 

D. Training and Test Configuration 

In order to improve the network generalizability and feature 

effectiveness, we have adopted several commonly used data 

augmentation techniques for the training process, as well as 

feature composition during the matching phase. These 

measures are explained in the following. 

1) Training Data Augmentation 

All the training images are resized to 300×240 in advance. 

Besides, we have performed several on-the-fly image 

augmentation approaches. These approaches are randomly 

applied before each image is fed into the network, and are 

described in the following: 

 Scaling – There is 80% probability for each image to be 

enlarged, with a factor randomly drawn from a uniform 

distribution over (1, 1.3). 

 Cropping – Each image is cropped with a window of 

240×240 that is randomly placed across the entire image 

region. 

 Color/intensity jittering – For an RGB image (visible 

imaging), a color augmentation method called Fancy PCA as 

described in [13] is applied. For a grayscale image (NIR 

imaging), a random value drawn from (0, 0.02) is added to 

its pixel intensities to simulate illumination variation. 

Above random parameters are drawn once for each image in 

the mini-batch during the training process. When a same image 

appears again in a later iteration, the parameters will be 

randomly drawn again to create a different variant of that image. 

In this way, one source image can produce a good amount of 

different versions without consuming much of the storage space. 

Such augmentation measures can effectively reduce the risk of 

over-fitting when training deep neural networks, especially 

when the number of training samples is not very large. 

2) Test Feature Composition 

As mentioned earlier, our network model accepts 240×240 

square image as the input. On the other hand, the source 

periocular images used in our experiments have rectangular 

aspect ratios close to 5:4. During the test phase, we adopt 

feature composition similar to [21] and [27], to make our model 

adaptive to (slightly) different resolutions / aspect ratios, and 

also to obtain multi-scale feature representation. The 

composition process is described sequentially in the following: 

a) The input image is resized to w×240, where w is larger than 

240 and subject to the image’s original aspect ratio.  

b) The resized image is cropped with three 240×240 windows 

that are placed on the left end, center and right end of it 

respectively.  

c) The resized image is enlarged with a factor of 1.2, then 

another 240×240 window is placed in the center of it, to 

create the fourth cropped version. 

d) Four cropped versions are fed into the network separately, 

each generating a 128-D feature vector. These four vectors 

are then concatenated into a 512-D vector for the matching.  

The Euclidean distance between two vectors is regarded as 

the dissimilarity score. Above feature composition process can 

cover the entire image region and account for the multi-scale 

feature representation to certain extent. 

III. ANALYSIS ON REGION SELECTION 

In this section, we provide justification on the selection of pre-

defined regions for the visual attention enhancement. As 

outlined earlier, we select eyebrow and eye as the RoI mainly 

due the following two reasons: 

a) Inspired by human perception, eyebrow and eye regions will 

attract most of attention when humans observe periocular 

images. It is useful to note that many machine learning / deep 

learning algorithms are inspired by human perception/ 

behaviors, including neural networks, reinforcement learning, 

long-short term memory (LSTM) and also the referenced 

attention models in this paper.  

b) The importance of eyebrow and eye characteristics for 

periocular recognition has been ascertained by a number of 

earlier research works [1],[3],[8],[15],[47], where excluding 

or masking eyebrow or eye regions leads to performance 

degradation in most cases. 

In order to statistically ascertain the effect of selecting these 

areas for attention enhancement, we also trained different 

versions of AttNet by adjusting the feature weights   in 

Equation (1), detailed as follows: 

- Eye + Eyebrow: 
eye eyebrow

5    

- Eye only: 
eye eyebrow

5,  1    

- Eyebrow only: 
eye eyebrow

1,  5    

- No attention: 
eye eyebrow

1    

The above settings enable a preliminary investigation for the 

effect of selected regions, for attention enhancement, on the 

recognition results. The results from such comparative analysis 

using UBIPr database are shown in Fig. 7. It can be observed 
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that with explicitly enhanced attention on eye and eyebrow 

regions simultaneously, we can largely benefit the recognition 

accuracy. Emphasizing the eyebrow regions separately yields 

higher improvement than focusing only on the eye regions. This 

is likely due to the fact that the eyebrow characteristics are more 

stable and resistant to the illumination variations, eyeball 

movements, etc. The above observations have validated the 

positive effect of incorporating visual attention within the 

detected eyebrow and eye regions during deep feature 

extraction for more accurate periocular recognition. 

IV. ANALYSIS ON TRAINING 

The effectiveness of training scheme is a key aspect for the 

success of deep learning based approaches, which is related to 

a number of factors such as the classification task, network 

complexity, volume of training data and learning algorithm. As 

compared with typical deep learning solutions for ImageNet 

classification [18-20], semantic segmentation [30], etc., one of 

the most critical challenges when researchers explore deep 

learning’s potential for biometrics problems are on the 

availability of large amount of labeled training data. 

Insufficient training data can cause severe over-fitting, i.e., the 

model fits too well on the small scale of training data but is not 

able to properly classify test data which was unseen during 

training phase. In this section, we present analysis on the 

training processes for AttNet and FCN-Peri to validate that our 

models are adequately trained and the level of over-fitting is 

within acceptable range. 

A. Training of AttNet 

There is no definite conclusions so far on the minimum required 

numbers to properly train a CNN for the classification problem. 

Generally, it is accepted that when there are more parameters to 

learn and the problem is more complicated, the required amount 

of training data will be larger in order to avoid over-fitting. A 

practical way is to refer to some typical architectures and the 

training configuration which have been widely adopted by 

researchers/developers in the literature. Table 2 presents the 

summary of scale of our networks as well as some existing 

architectures for different classification tasks.  

It can be inferred from Table 2 that (1) our network is much 

smaller than other typical network architectures in terms of 

parameter scale, and it is therefore reasonable to assume that 

the required number of training samples should be less than 

other examples in this table; (2) For the general image 

classification tasks such as in [13] or [27], intra- and inter-class 

variation are dramatically high and therefore a large volume of 

training data should be devoted for sufficient learning. On the 

other hand, for typical biometric problems such as for iris or 

periocular recognition, relatively small amount of training has 

been employed to achieve promising results. This is probably 

because smaller inter-image variation for biometric recognition 

may not require that many training samples to supply over-

complex information. The periocular recognition problem 

discussed in this paper belongs to such category of problems. 

Considering the above two factors, our configuration for 

training the small AttNet with about 3,000 (on UBIPr dataset 

which will be detailed in the next section) images is justifiable.  

In order to statistically evaluate the convergence condition of 

our configuration, we vary the number of training samples to 

train AttNet on UBIPr database, for several times, and observe 

the convergence status. These results are shown in Fig. 8. It can 

be observed that employing several hundreds of training images 

may easily cause over-fitting as there is a large gap between the 

train loss and the test loss. However, when this number 

Table 2: Comparison of network configurations for our work and other typical 

architectures. 

Architecture Problem #Classes #Param. 
# Train 

Images 

AlexNet [13] Image class. 1,000 60M ~1M 

VGG-16 [27] Image class. 1,000 138M ~1M 

ResNet-152 [19] Image class. 1,000 60M ~1M 

DeepIrisNet [48] Iris recog. 356 138M ~30K 

PRWIS [46] Periocular recog. 518 248M ~8K 

AttNet Periocular recog. 224 7.7M ~3K 
 

FCN [30] Semantic segm. 21 134M ~8K 

FCN-Peri Semantic segm. 3 0.1M 100 

 
 

 

 

 

   

Figure 7: Comparison of different weights on the selected regions of interest 

for attention incorporation. 
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Figure 8: Learning status of AttNet with different number of training samples 

(NS). With NS no less than 1,000, test loss converges to a stable level. Train 
losses with different NS are similar and therefore only one is plotted for clarity. 

Best viewed in color. 
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increases to 1,000 or above, test loss converge to similar level 

and the gap becomes smaller. Note that it is difficult to totally 

eliminate the gap for most deep learning approaches. The above 

results indicate that the actual configuration we incorporated in 

this paper, in which approximately 3,000 images were used for 

training AttNet, is practically appropriate for sufficient training. 

B. Training of FCN-Peri 

The problem of training an FCN for semantic segmentation is 

quite different from training a CNN for image classification. 

Semantic segmentation (e.g., detecting eyebrow and eye 

regions in this paper) is a pixel-wise classification task, rather 

than entire image classification task. In other words, with 

semantic segmentation, each pixel in the input image is 

classified into one of several pre-defined classes. Therefore, 

analysis on the number of training samples, or data points, 

should be casted at pixel level instead of image level. However, 

not all the pixels should be considered as independent data 

points, as adjacent pixels will have highly redundant 

information. The concept of receptive field can help to more 

scientifically estimate meaningful data points in an image when 

training FCN. 

 In a single or multiple regular convolution/pooling 

operations, one output element or pixel is computed from a 

certain region in the input image/map, and this region is referred 

to as the receptive field. For example, with one convolutional 

layer in CNN/FCN having a 3×3 kernel, the receptive field is 

3×3. With two such convolutional layers, the receptive field 

from input to output is 5×5.  Fig. 9 can help to illustrate the 

concept. Since FCN mainly comprises convolutional layers and 

pooling layers, the output of each element/pixel is determined 

by a patch from the input rather than the entire image. We can 

therefore compute the receptive field of FCN-Peri first to 

estimate the approximate number of non-redundant data points 

available in the training process. 

 The receptive field can be computed in a top-down manner 

to identify the region at bottom layer determining one pixel at 

the topmost layer. Following the longest path from input to 

output in FCN-Peri, this process is illustrated in the following: 

 

Layer Kernel, Stride Receptive Field 

output - 1×1 

upsample×3 - 2×2 

conv4 3×3, 1 4×4 

pool3 4×4, 4 16×16 

conv3 3×3, 1 18×18 

pool2 2×2, 2 36×36 

conv2 3×3, 1 38×38 

pool1 2×2, 2 76×76 

conv1 5×5, 1 80×80 

 

 These observations indicate that each output pixel of FCN-

Peri is determined by a patch of 80×80 from the input image. 

We can roughly assume that two patches can be considered as 

independent data points when the overlap between them is no 

less than 25% (otherwise the information will be highly 

redundant). As a result, a 300×240 image we used as input can 

provide approximately 108 (9×12) non-redundant data points. 

As discussed earlier, we have labelled about 100 images for 

training FCN-Peri, generating approximately 10,000 data 

points for learning classification of three classes (i.e., eyebrow, 

eye and background). On average, about 3,000 training samples 

per class are available for training. Note that network is more 

than 1,000 times smaller than the original FCN as revealed from 

Table 2, which suggest that the number of available training 

samples should be sufficient. In fact, the segmentation results 

on test data shown in Fig. 3, which were visually appropriate, 

can also validate that our FCN-Peri has been properly trained. 

V.  EXPERIMENTS AND RESULTS 

Thorough experiments have been performed to evaluate the 

proposed approach from various perspectives, and comparisons 

are made with several state-of-the-art methods. Our 

experimental results are reproducible via [38]. We have 

conducted two sessions of experiments, which focuses on 

Open-World problem and Closed-World problem respectively. 

In this section we detail the problem definition, experimental 

configurations as well as observation and analysis on the results. 

A. Open-World vs. Closed-World Verification 

The open-world problem refers to the configuration that the 

subjects to be enrolled into the gallery in the deployment 

process may be unseen during the training phase. On the other 

hand, the closed-world problem has a constraint that all the 

subjects to be recognized in the deployment process are already 

known during the training phase.  

 The open-world problem is apparently more challenging but 

closer to the real deployment environments for most 

applications, such as citizen authentication, general access 

control and searching for missing people, as it is not feasible for 

these systems to collect data from all possible subjects in 

advance during training/development phase. The closed-world 

setting may result in higher recognition accuracy as more 

precise data adaptation can be achieved during training, but the 

system may be less scalable for the deployment, which is also 

clarified by [45]. 

1x1

33

33 5

5

Conv. 
3x3

Conv. 
3x3

   

Figure 9: Illustration of receptive fields. Through one or more convolutional or 

pooling layers, each output neuron in the top layer is determined by a patch in 
the bottom/input layer. 
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 It should be clarified that the approach presented in this paper, 

especially the newly developed DSC loss function, are 

proposed for the open-world problem. However, we noticed 

that some recent method and contest [43] [45] in the literature 

focus on closed-world problem only, and therefore we 

investigate the performance under both settings. 

B. Baseline Methods 

Several state-of-the-art methods, i.e., [2], [8], [9] and [45], are 

selected as baselines to evaluate the performance of proposed 

approach. These methods are used as baselines because they 

focus on the same problem with us, i.e., less constrained 

periocular recognition, and report state-of-the-art performance 

on multiple datasets in the recent years and with judicious 

theoretical significance. It should be noted that the methods in 

[2], [8], [9] and also ours are adaptive to the open-world setting, 

while [45] is only developed for closed-world setting as also 

clarified in their paper. 

C. Datasets and Protocols 

We employ six publicly available databases for the experiments. 

Four of them are acquired under visible spectrum while the 

other two are with NIR imaging. The brief information of the 

employed datasets are described in the following.  
 

 UBIPr [36] 

This database contains 5,126 left and 5,126 right periocular 

images from 344 subjects, and simulates less constrained 

periocular acquisition environment under visible spectrum. 

Noticeable amount of images from this dataset present 

occlusion, off-angle or illumination variation. For the 

experiments, only left periocular images are used. We 

employed the same training set of 3,359 images as used in [9] 

for model learning. The remaining 1,767 left images are used 

for test phase for performance evaluation. This database is used 

for open-world experiments and therefore no subjects are 

overlapping between the training and test sets. 

 

 Face Recognition Grand Challenge (FRGC) [31] 

This dataset is released by the National Institute of Standards 

and Technology (NIST), and was primarily provided for 

evaluating advanced algorithms for the face recognition. 

Similar to as in [2] and [9], the periocular regions are 

automatically extracted from the source face images within a 

subset of 540 samples, using publicly available face and eye 

detection algorithms [32]-[33]. The 540 right eye images from 

163 subjects are employed in our experiments, from which the 

first 40 images form the training set and the rest 500 form the 

test set. Experiments on this dataset also adopt the open-world 

configuration.  

 

 Face and Ocular Challenge Series (FOCS) [34] 

The FOCS dataset is also released by NIST, and comprises face, 

ocular images and videos acquired under NIR imaging 

spectrum. We employ 4,792 left periocular images from 136 

subjects of the “OcularStillChallenge1” part for the 

experiments. The imaging condition for this dataset is highly 

challenging that many of the images suffer from significant 

Table 3: Summary of the employed databases for training and testing. The training sets of FRGC and CASIA.v4-distance are used for training [2] and [8]. Our 

method and [9] only adopt UBIPr and FOCS for training. 

Database UBIPr FRGC FOCS CASIA.v4-dist. UBIRIS.v2 VISOB 

Spectrum visible visible NIR NIR visible visible 

Imaging distance 4 – 8m N/A N/A ≥3m 3 - 8m 8 - 12 in. 

World scenario Open Open Open Open Open/closed Closed 

Division Train Test Train Test Train Test Train Test Train Test Train Test 

#Subjects 224 120 13 150 80 56 10 131 518 518 484 475 

#Images 3,359 1767 40 500 3,262 1,530 79 998 8,886 2,215 5,270 5,103 

#Genuine scores (Test) 12,351 826 39,614 3,371 2,215 4,914 

#Imposter scores (Test) 1,547,910 123,425 1,130,071 494,132 1,145,155 2,464,938 

 
 

 

 

 
    

(a) UBIPr 

    

(b) FRGC 

    
(c) FOCS 

    
(d) CASIA.v4-distance 

    
(e) UBIRIS.v2 

    
(f) VISOB 

Figure 10: Sample images from the employed databases, which present 
noticeable pose, illumination variation and occlusions due to the less 

constrained imaging environments. 
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illumination variation and misalignments. It can be observed 

that some extremely low-quality samples are included in this 

dataset, which brings great challenges to accurate recognition. 

We use 3,262 left periocular images from the first 80 subjects 

for training, and the remaining 1,530 images from 56 subjects 

for testing. Open-world configuration is applied for this dataset.  

 

 CASIA.v4-distance [35] 

This database contains 2,567 upper face images from 142 

subjects in single session, which are acquired under NIR 

spectrum at a distance (> 3m). Similar as for FRGC, the 

publicly available eye detector [32]-[33] is applied to 

automatically segment the left periocular images which are 

used in our experiments. The first eight samples of each subject, 

excluding a few very poorly segmented images, form the subset 

of 1,077 images used in our experiments. The first 79 samples 

are used for training while the remaining 998 samples are used 

during the test phase. Experiments on this dataset also follow 

the open-world protocol.  

 

 UBIRIS.v2 [46] 

This dataset is released for noisy iris recognition under visible 

spectrum. The full set contains 11,101 eye images from 518 

subjects, which are acquired from 3-8 meters away. 

Experiments on this dataset is mainly set for closed-world 

verification and comparison with method [45], but will also 

attach open-world results for comparative study. In the closed-

world setting (as in [45]), 80% of images from all 518 subjects 

are used for training and the remaining 20% are selected for 

testing. In the open-world setting, images from the first 400 

subjects are used for training while the remaining are used for 

testing.  

 

 VISOB [43] 

This competition dataset comprises ocular images captured 

with three different smartphones under three illumination 

conditions. The Visit-1 involves 550 subjects and was released 

for algorithm development. The Visit-2 has images from 290 

subjects and was used for performance evaluation in the 

competition. It is important to note that the competition 

organizers have only provided Visit-1 part of this database in 

public domain and was also downloaded by us. Therefore our 

    

(a) UBIPr                                                                                     (b) FRGC 

   
(c) FOCS                                                                        (b) CASIA.v4-distance 

Figure 11: ROCs of training AttNet with DSC loss and conventional losses on four employed databases. The parameters of DSC loss are empirically set to a=10 

and b=5; margins for contrastive loss and triplet loss are tuned among {1, 2, 3, 4} and the best performing ones are used here for comparison, which are m=3 and 

m’=4. 
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experimental results were obtained on Visit-1 part only and 

should not be directly compared with the published ranked 

methods in [43]. Closed-world setting was applied on the 

experiments on this dataset.  

Above datasets cover both visible and NIR spectrums, and 

were acquried under varying and less constrained imaging 

environments that are close to real world application scenarios. 

A few sample images from them are provided in Fig. 10. More 

detailed information about the employed databases and 

training/test set division is provided in Table 3.  

For experiments carried out under open-world configuration, 

it is important to clarify the reasonable difference of training 

mechanisms for the four methods: a) For our method and [9], 

the visible models are trained on UBIPr database and tested on 

UBIPr and FRGC databases; the NIR models are trained on 

FOCS and tested on FOCS and CASIA.v4-distance datasets. In 

other words, experiments on FRGC and CASIA.v4 are under 

cross-database scenarios. Such a training/test configuration is 

identical to the original one in [9], which therefore provides a 

fair comparison. b) For methods [2] and [8], the required 

training efforts are less, and it is observed that the within-

database training and testing manner offers better results for 

these two methods. Therefore the training and testing are 

performed on the same dataset for them. Aforementioned 

experimental configuration is also the same as used in [9], and 

justification has been provided to incorporate the best possible 

performance from these two baseline methods and ensure 

fairness in the performance comparisons.  

D. Open-World Performance 

1) Effectiveness of DSC Loss Function 

The performance of the proposed DSC loss function which is 

designed for open-world verification is firstly examined. We 

compare it with conventional contrastive loss and triplet loss, 

  
(a) UBIPr                                                                                    (b) FRGC 

 
(c) FOCS                                                                       (d) CASIA.v4-distance 

Figure 12: ROC curves of the periocular verification using our method and comparison with other state-of-the-art methods on different databases. 
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Ours (EER=4.90%)

SCNN [9] (EER=6.61%)

PPDM [8] (EER=10.46%)

Texton [2] (EER=8.27%)

Table 4: Results of significance test for comparison of our method and [9]. p-

value indicates the probability of the null hypothesis, i.e., two sets of data do 

not differ significantly. 

Comparison 

with [9] 
UBIPr FRGC FOCS 

CASIA.v4 

-distance 

z-statistic 14.323 3.859 25.259 8.829 

p-value* <10-4 1.14×10-4 <10-4 <10-4 

*  p will be denoted as <10-4 if the computed z is too large such that the 

corresponding p is too small for the computer to return exact value. 
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which are also designed for 1:1 verification purpose. The 

experiment is performed on UBIPr, FRGC, FOCS and 

CASIA.v4-distance. Three AttNet models with identical 

structures are trained with DSC loss, contrastive loss and triplet 

loss respectively. When training with contrastive loss and triplet 

loss, the margins are discretely tuned from {1, 2, 3, 4}, and the 

ones providing best performance are used for comparison. The 

receiver operating characteristic (ROC) curves are shown in Fig. 

11.  

 It can be observed that DSC loss delivers noticeable and 

consistent improvements over the other two loss functions, 

especially for lower false acceptance rates (FAR). The 

performance at low FAR is regarded as more important for 

biometric verification systems, and the key factor to this metric 

is the ability to verify challenging cases, i.e., highly dissimilar 

genuine pairs and similar imposter pairs. The superiority of 

DSC loss is mainly attributed to the marginal effects for both 

positive and negative pair samples during the feature learning 

process, such that more training efforts can be put into 

challenging cases.  

2) Comparison with State-of-the-art Works 

As discussed earlier, the performance of the proposed approach 

has been comparatively evaluated with state-of-the-art methods 

[2], [8] and [9] in the literature. The resulting ROC curves are 

provided in Fig. 12. We can observe from these results that our 

method consistently outperforms the other three baseline 

methods on all of the four employed databases. It is important 

to note that the advancements from our method are particularly 

significant at lower FAR, which indicates the outstanding 

capability of our method for verifying challenging periocular 

samples. Even under the challenging cross-database training 

and test protocol, the proposed method has exhibited high level 

of robustness. The promising results from the proposed 

attention-based model have further validated the importance of 

eyebrow and eye regions for the periocular recognition.  

 We have also performed significance tests to ascertain the 

statistical significance of the improvements from our method. 

The method for the significance test is described in [14], which 

is based on the area under the curve (AUC) of the ROC statistics. 

Comparison has been made with [9] only, as this method 

delivers the best performance among the three baselines. The 

results from the tests are provided in Table 4. It can be inferred 

that, with widely used confidence level of 95%, the 

improvements from our method are statistically significant over 

its competitors.  

E. Closed-World Performance 

As discussed earlier, the proposed approach is mainly designed 

for open-world verification problem. However, some recent 

methods/competitions also adopt or focus on closed-world 

setting, in which all the subjects to be recognized are known 

during training/development phase, and it is usually allowed to 

use the gallery set for the training process. Typical examples 

include [43][44][45]. Despite the fact that closed-world setting 

is less challenging, it may be feasible for some applications to 

know all the interested subjects in advance during training 

phase, such as watchlist system. Hence, we also supplement 

experiments under the closed-world configuration, which were 

conducted on UBIRIS.v2 and VISOB databases.  

  Under the closed-world setting, we maintained the 

architecture of AttNet but trained it in a different way. Similar 

to [45], we added a softmax layer after the feature layer (fc5 in 

Fig. 2) with NC output neurons, where NC is the number of 

classes (subjects) to be recognized. As closed-world setting is 

applied, NC is consistent during training and test phases. Each 

output neuron at the softmax layer is regarded as the probability 

  

(a) UBIRIS.v2 (open-/closed-world)                                             (b) VISOB (closed-world) 
 

Figure 13: ROC curves on UBIRIS.v2 database and VISOB database (iphone-day-light-short subset). Note that the AttNet result under closed-world setting on 

UBIRIS.v2 is close to line y = 1. Best viewed in color. 
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Figure 14: Visualization of convolutional features on a VISOB image which 

does not contain eyebrow. In this case the attention mechanism does not much 
impact on the feature distribution, and AttNet will basically act like a common 

CNN to guarantee fundamental performance. 
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that input sample belongs to a specific subject, and therefore is 

used as the verification score. Fig. 13 provides ROCs for the 

verification results on UBIRIS.v2 with comparison to [45], and 

on VISOB with comparison to [2], [8] and [9]. Note that for 

experiments on UBIRIS.v2, we also attached open-world 

results for comparative study. To obtain the comparative open-

world results from [45], we used the l2-norm distance between 

the feature vectors from fc7 layer as suggested in their paper.  

 From the results on UBIRIS.v2, we can observe that  our 

approach consistently outperforms the recently published state-

of-the-art method [45]. Under the closed-world settings, our 

results have scored significantly high accuracy (0.14% EER), 

due to reason that class-specific recognition has been learned 

with softmax loss function for given and fixed set of subjects 

(and same for the baseline method). In contrast, when switched 

to open-world setting, both [45] and our method suffer from 

obvious performance degradation, which reflects that open-

world problem inherently brings more challenges compared 

with the closed-world problem. However, our appraoch can still 

achieve superior results over that from [45].  

 The results on VISOB dataset reveal that our method still 

consistently outperforms other methods investigated in this 

paper. It should be noted that the eye images in this database do 

not include the eyebrow region, and the eye region occupies 

most the image area (Fig .10f). This implies that the proposed 

visual attention mechanism may not benefit much the 

recognition performance. Fig. 14 visulizes the intermediate 

features learned by AttNet on such data, from which we can 

observe that enhancing attention within the eye region does not 

affect much the feature contents. In this case, AttNet can serve 

as a common CNN for backing up the perfomance even if 

desired regions are absent or can not be correctly segmented. 

Another aspect worth noticing is that, as discussed earlier, only 

Visit-1 subset (550 subjects) is provided in public domain but 

not the Visit-2 (290 subjects) part that was used for 

benchmarking in [43]. Therefore it will be unfair to directly 

compare the results provided in this paper with those in [43].  

VI. CONCLUSIONS 

 This paper has developed an attention based CNN architecture 

for more accurate and robust periocular recognition. The 

proposed framework includes FCN-Peri, which can accurately 

detect eyebrow and eye regions as key regions of interest, and 

AttNet, which makes use of the RoI information for more 

discriminative feature learning. A newly developed verification 

oriented loss function, referred to as DSC loss, has also been 

introduced in this paper. The new loss function has shown to 

provide marginal effects for both positive and negative training 

samples during learning, which contributes to more robust 

feature representation for matching challenging periocular 

image pairs. Extensive experiments on four publicly available 

databases presented in Section V of this paper indicate that, the 

proposed attention-based framework achieves significantly 

better results than several state-of-the-art methods for the 

periocular recognition. The effectiveness of the newly designed 

DSC loss function was also separately validated through 

comparison with conventional contrastive loss and triplet loss. 

The experimental results provide strong support to our 

assumption that, information within eyebrow and eye regions 

are critical to periocular recognition, and deserve more attention 

during feature learning and matching. The trained models and 

source for reproducing our experimental results are made 

publicly available via [38].   

 Despite success in simulating human visual attention model 

for the automated periocular recognition, as illustrated from 

promising results on multiple databases in this paper, a lot more 

work needs to be done, e.g., to develop on-the-fly and more 

intelligent RoI learning through the feedback from the feature 

learning process, on the basis of pre-trained FCN-Peri. More 

robust and adequate visual attention mechanisms, in addition to 

the currently used feature adjustment strategy, is also expected 

to further improve the performance and therefore pursued in the 

future extension of this work. Last but not least, the separate 

impact from each of eyebrow and eye regions is another 

interesting and important aspect to investigate.  
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