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1. Introduction 

Automated personal identification using unique anatomical 

characteristics of humans is widely employed for e-governance, 

border crossing security and a range of e-business applications. 

There has been significant increase in the detection of surgically 

altered fingerprints, fake iris stamps, or the usage of sophisticated 

face masks, during the last decade. Vascular biometrics 

identification, like using finger vein images, can help to preserve 

the integrity of biometrics system as it’s extremely difficult to 

surgically alter vascular biometrics. Another advantage with the 

usage of finger vein image based identification lies in the enhanced 

anonymity during personal authentication as the subsurface 

vascular patterns are largely hidden underneath and difficult to 

steal or imaged under visible illumination.  

The possibility of personal identification using vascular patterns 

imaged by the light transmitted through hands was indicated in 

1992 [20] but was not demonstrated until 2000 [21].  Such earliest 

work demonstrated feasibility of finger vein identification using 

the normalized-cross correlation. Miura et al. [10] later introduced 

repeated line tracking approach to improve the performance of 

finger vein identification, and they further enhanced the 

performance with maximum curvature [2]. Kumar and Zhou [4] 

introduced earliest publicly accessible finger-vein images database 

and comparatively evaluated range the effectiveness of hand-

crafted features for the finger-vein identification. The method 

introduced in [4] using Gabor filter based enhancement and 

morphological operations is still regarded the best performing 

methods for matching finger-vein images. A range of other hand-

crafted finger vein features [2], [4], [10], [12]-[16], [22], primarily 

obtained from the careful evaluation of the registered images, have 

been attempted in the literature with very promising results. 

Multiple features acquired from the two cameras [14] or using 

multiple feature extractors can be combined to significantly   

improve the performance for the vascular biometrics matching. 

One of the limitations of finger-vein identification methods 

introduced in the literature is related to their large template size. 

Smaller template size is highly desirable to reduce storage and/or 

enhance the matching speed for the online applications. There 

have also been successful attempts to reduce the finger-vein 

template size, like in [12], [15] or recently in [13] using sparse 

representation of enhanced finger-vein images using the Gabor 

filters. Table 1 presents summary of some promising methods for 

finger vein matching in the literature. This table also presents the 

template size in the respective reference (several of these have 

been estimated from details provided in respective reference), 

performance in terms of EER and the database used for the 

performance evaluation. The last two rows in this table summarize 

best performing results from our investigation detailed in this 

work. 

Table 1. Summary of hand-crafted feature based methods for finger vein 

matching in the literature with this work. 

* Computed by us using the details in the respective reference. 

AB ST R ACT  

Automated personal identification using vascular biometrics, such as from the finger vein images, is highly desirable as it helps 

to protect the personal privacy and anonymity in automated personal identification. The Convolutional Neural Network (CNN) 

has shown remarkable capability for learning biometric features that can offer robust and accurate matching. This paper 

introduces a new approach for the finger vein authentication using the CNN and supervised discrete hashing. We also 

systematically investigate comparative performance using several popular CNN architectures in other domains, i.e., Light CNN, 

VGG-16, Siamese and the CNN with Bayesian inference based matching. The experimental results are presented using a publicly 

available two-session finger-vein database. Most accurate performance is achieved by incorporating supervised discrete hashing 

from a CNN trained using the triplet-based loss function. The proposed approach not only achieves outperforming results over 

other considered CNN architecture available in the literature but also offers significantly reduced template size as compared with 

those over the other finger-vein images matching methods available in the literature. 
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The key objective of this work is to investigate and develop 

advanced capabilities for matching finger-vein images using deep 

learning. Section 2 details preprocessing and image enhancement 

steps incorporated in the experiments for evaluating effectiveness 

of various CNN architectures which are detailed in section 3. The 

supervised hashing is introduced in section 4 while the 

experimental protocols and results [23] are discussed in section 5. 

The discussion on some of our findings appears is section 6. The 

key conclusions from this paper are summarized in section 7. 

2. Image Normalization for Finger Vein Images 

2.1 Preprocessing 

Finger vein image acquisition can introduce translational and 

rotational changes among the different images from the same 

finger or subject. Therefore, automated extraction of fixed region 

of interest (ROI) that can minimize such intra-class variations is 

highly desirable. The method of ROI localization considered in our 

work is same as detailed in [4]. Figure 1 illustrates acquired image 

sample, extracted ROI and the image sample after enhancement to 

improve the image contrast (as detailed in [4]. 

 

 

 

 

 

Fig. 1. Finger vein image samples before (first row and after preprocessing 

(second row) steps that automatically extracts and enhances the region of 

interest images. 

2.2 Image Enhancement 

The vascular patterns in the normalized image samples can be 

further enhanced by spatial filtering from orientation selective 

band pass filters, similar as employed for the enhancement of 

fingerprint ridges. We also attempted to ascertain usefulness of 

such enhanced finger vein images using the Gabor filters. These 

filters from the twelve different orientations are selected to 

generate enhanced finger vein images as shown in figure 2. Such 

enhanced images using Gabor filters are effective in accentuating 

the vascular features and therefore its possible usage in 

automatically learning features from CNN was also investigated in 

the experiments.   

 

 

Fig. 2. Enhanced finger vein images to emphasize on vascular features and 

suppress associated noise. These Gabor filter based enhanced images are 

respective to ROI in figure 1. 

3. Convolutional Neural Network Architectures 

Several successful models for the deep learning have been 

developed to learn useful feature representation but largely for the 

face biometric image patterns. A variety of such models using 

CNN have been introduced in the literature and were investigated 

to ascertain performance for the finger vein image matching. A 

brief introduction to various CNN architectures considered in this 

work is provided in the following sections. 

3.1 Light CNN 

The light CNN (LCNN) framework introduces a Max-Feature-

Map (MFM) operation [3] between convolutional layers which  

Fig. 3. Illustration for computing the Max feature map in LCNN. 

establishes a competitive relationship for superior generalization 

capability and reduces parameter space (compact feature 

representation). Such maxout activation function (Figure 3) 

significantly reduces the complexity and makes CNN lighter. 

The architecture of LCNN employed in our experiments is 

shown in Figure 4 (MFM part is excluded to maintain the clarity). 

The network contains 9 convolutional layers (conv), 4 pooling 

layers (pooling) and 2 fully connected layers (fc) and some 

assistant layers. 

 

 

 

 

 

 

 

Fig. 4. The architecture for LCNN investigated in our experiments. 

3.2 LCNN with Triplet Similarity Loss Function 

Deep Siamese networks have been successfully incorporated in the 

literature to learn a similarity metric between a pair of images. We 

incorporated triplet similarity loss function as detailed in [7] for 

LCNN to learn the similarity metric. We randomly select an image 

𝑥𝑟 from training set as random sample in Figure 5. Then we choose 

image 𝑥𝑝  which is from the same class referred to as positive 

sample and image 𝑥𝑛 which is from a different class referred to as 

negative. After LCNN, we get the features 𝑓(𝑥𝑟) , 𝑓(𝑥𝑛)  and 

𝑓(𝑥𝑝). Our objective is to decrease the similarity distance between 

random and positive features, and increase it between random and 

negative features, which indicates why it’s named as triplet 

similarity loss. At the same time, we need to ensure there is a 

sufficient margin between them. 

Suppose we have a random set 𝐗𝒓 = {𝑥𝑖
𝑟}𝒊=𝟏

𝑵  and its 

corresponding positive set 𝐗𝒑 = {𝑥𝑖
𝑝

}𝒊=𝟏
𝑵  and negative set 𝐗𝒏 =

{𝑥𝑖
𝑛}𝒊=𝟏

𝑵 . Considering these notations, we can write our loss 

function as follows: 

∑[‖ 𝑓(𝑥𝑖
𝑟) − 𝑓(𝑥𝑖

𝑝
)‖

2
− ‖ 𝑓(𝑥𝑖

𝑟) − 𝑓(𝑥𝑖
𝑛)‖2 + 𝑚𝑎𝑟𝑔𝑖𝑛]+

𝑁

𝑖=1

 

where [ ]+  represents that we maintain positive values and 

change others to zero. The detailed architecture of LCNN with 

such triplet loss function is shown in figure 5 and table 2. When 

the set of input consists of n random samples, n positives and n 

negatives, we generate 3n × 500 features. These pairs were split 

into three parts, each with the size of n × 500, and used as the input 

for computing triplet loss for updating the neuron weights during 

the network training. 

 

(1)



 

 

 

 

 

Fig. 5. The LCNN architecture with triplet similarity loss function. 

Table 2. Details of layer information of LCNN with triplet loss function 

3.3 Modified VGG-16 

The Visual Geometry Group architecture with 16 layers (VGG-16) 

[8] was modified for the CNN to directly recover the match scores, 

instead of the feature vectors, in our experiment. Our modification 

was motivated to fit the rectangular finger vein ROI images 

without introducing the distortions. We used pair of images rather 

than single image as the input in conventional VGG-16 since we 

wanted to compare the similarity of two finger vein images. The 

input image size is also different from conventional VGG-16, 

which is 224 × 224, while its 128 × 488 pixels for our finger vein 

ROI images. The training phase utilized the cross-entropy loss 

function which can be written as follows: 

 −
1

𝑛
∑ [𝑦𝑖 log(𝒚�̂�) + (1 − 𝑦𝑖) log(1 − 𝒚�̂�)]𝑛

𝑖=1  () 

where 𝒚�̂� = 𝑔(𝒘𝑻𝒙𝒊) , 𝑔(∙)  is the logistic function, 𝒙𝒊  is the 

extracted feature and w is the weight that needs optimized during 

training. The architecture of Modified VGG-16 (MVGG) is 

illustrated in the following Figure 6. 

 

 

 

 

 

Fig. 6. Architecture of modified VGG-16 for finger-vein matching 

4. Supervised Discrete Hashing 

One of the key challenges for the successful usage of biometrics 

technologies are related to efficient search speed (fast retrieval) 

and template storage/size. Hashing is one of the most effective 

approaches to address such challenges and can efficiently encode 

the biometrics templates using binary numbers (2000 in our 

experiments) that closely reflect the similarity with input 

data/templates. With such strategy we can only store the 

corresponding short/compact binary codes, instead of original 

feature templates, and significantly improve the search or the 

matching speed by highly efficient pairwise comparison using the 

Hamming distance. 

This framework for an effective supervised hashing scheme is 

introduced in [1] and the objective in the learning phase is to 

generate binary codes for the linear classification. We firstly 

define the problem and assume that we have n samples/features 

𝐗 = [𝐱1 𝐱2 … 𝐱𝑛], and our goal is to recover corresponding binary 

codes 𝐁 = [𝐛1 𝐛2 … 𝐛𝑛] , where  𝐛𝑖 ∈ {−1, 1}, 𝑖 = 1, 2, … , 𝑛 . 

Since we have labels, in order to make good use of these 

information, we define a multi-class classification function: 

 𝐲 = 𝐖T𝐛 where 𝐖 = [ 𝐰1  𝐰2 … 𝐰𝐶 ], (3) 

where C is the total number of classes, and 𝐲 ∈  ℝ𝐶×1 is the label 

vector, where the maximum one indicates its class of input 𝐱. Now 

we can formulate the hashing problem as follows: 

 
min 

𝑩, 𝑾, 𝐹
∑ 𝐿(𝒚𝑖 ,  𝐖𝐓𝐛𝑖

𝑛
𝑖=1 ) +  𝜆‖𝐖‖2

   s. t.   𝐛𝑖 = sgn(𝐹(𝐱𝑖)) () 

where 𝐿(∙) represents the loss function used by us which is the L2-

norm in our experiments, 𝜆 is the regularization parameter, and at 

the same time,  𝐛𝑖 is generated by the hash function sgn(𝐹(𝐱𝑖)), 

where  sgn(∙)  is the sign function. With the help of Lagrange 

Multiplier, we then can rewrite (4) as: 

 
min 

B,W,F
∑ L(yi,  W

Tbi
n
i=1 )+ λ‖W‖2

+μ ∑ ‖bi-F(xi)‖2n
i=1  () 

where 𝜇 is the Lagrange multiplier. We further select a non-linear 

form of function for 𝐹(𝐱): 

 𝐹(𝐱) =  𝐔T𝜙(𝐱) () 
where  𝐔  is the parameter matrix and 𝜙(𝐱)  is a k-dimensional 

kernel that 

 𝜙(𝐱) =  [

exp (
‖𝐱−𝒂1‖2

𝜎
)

…

exp (
‖𝐱−𝒂𝑘‖2

𝜎
)

] () 

𝒂𝑗 , 𝑗 = 1, 2, … , 𝑘 , are randomly selected anchor vectors from 

input. In order to compute 𝑼 in the function, we can rewrite (4) as 

following format: 

 
𝑚𝑖𝑛 

𝐔
∑ ‖𝐛𝑖 − 𝐹(𝐱𝑖)‖2𝑛

𝑖=1 =  
𝑚𝑖𝑛 

𝐔
‖𝐔TΦ(𝐗) −  𝐁‖2 () 

where Φ(𝐗) = {𝜙(𝐱𝑖)}𝑖=1
𝑛 and our purpose is to set the gradient to 

zero, which is 

 𝛻𝐔(‖𝐔TΦ(𝐗) −  𝐁‖2) = 2(𝐔TΦ(𝐗) −  𝐁)Φ(𝐗)T = 0 () 
It is simpler to achieve the final computation for 𝐔 as follows. 

 𝐔 = (Φ(𝐗)Φ(𝐗)T)−1Φ(𝐗)𝐁T () 
In order to solve for 𝐖, we make use of the same method, first 

simplify (4) to 

min 
𝐖

∑ 𝐿(𝒚𝑖 ,  𝐖𝐓𝐛𝑖

𝑛

𝑖=1

) +  𝜆‖𝐖‖2
 

 =  
min 

𝐖
‖𝐘 −  𝐖T𝐁 ‖

2
+  𝜆‖𝐖‖2

  () 



and then calculate its gradient based on 𝐖 

𝛻𝐖 (‖𝐘 −  𝐖T𝐁 ‖
2

+  𝜆‖𝐖‖2
) = 2𝐁( 𝐁T𝐖 −  𝐘T) + 2𝜆𝐖,() 

which can be set as zero and we get 

 𝐖 = (𝐁𝐁T + λ𝐈)−1𝐁𝐘T () 

Finally we can solve for 𝐁, we exclude those variables which have 

no relation to 𝐁 and then rewrite (4) as follows. 

min 
𝐁

‖𝐘 −  𝐖T𝐁 ‖
2

+  𝜇 ‖𝐁 − 𝐹(𝐗)‖2
 

=  
min 

𝐁
‖𝐘‖2

− 2tr( 𝐘T𝐖T𝐁) + ‖𝐖T𝐁 ‖
2
 

 + 𝜇(‖𝐁 ‖
2

+  2tr( 𝐁T𝐹(𝐗)) + ‖𝐹(𝐗)‖2
) () 

or can be further simplified as follows. 

 
min 

𝐁
‖𝐖T𝐁 ‖

2
−  2tr( 𝐁T(𝐹(𝐗) + 𝐖𝐘)) () 

‖𝐁‖𝟐
 is excluded here because 𝐛𝑖 ∈ {−1, 1}, 𝑖 = 1, 2, … , 𝑛 , 

indicating that ‖𝐁 ‖
2
 is some constant. 

We can now solve this problem bit-by-bit. Let 𝐩T represent the 

𝑙𝑡ℎ row of 𝐁, and  𝐁′ is the matrix without  𝐩T. Similarly let  𝐯T be 

the 𝑙𝑡ℎ  row of 𝐖 , and let  𝐪T  be the 𝑙𝑡ℎ  row of 𝐐 , where 𝐐 =
𝐹(𝐗) + 𝐖𝐘, then we can ignore  𝐖′ and  𝐐′. While moving a row 

to the end for all matrices would not cause problems, to better 

understand the problem. In order to enhance clarity of the problem, 

we can move all the 𝑙𝑡ℎ  row to the end and rewrite 𝐁 =
[ 𝐁′  𝐩T]𝑇, and the same for 𝐖 and 𝐐.We can then rewrite first 

term in (15) as follows. 

‖𝐖T𝐁 ‖
2

= ‖[ 𝐖′T 𝐯] [
 𝐁′

 𝐩T] ‖
2

 

= ‖ 𝐖′T𝐁′ ‖
2

+ ‖𝐯𝐩T ‖
2

+ 2tr( 𝐁′T𝐖′𝐯𝐩T) 

 = ‖ 𝐖′T𝐁′ ‖
2

+ tr(𝐯𝐩T𝐩𝐯T) + 2 (𝐖′𝐯)T 𝐁′𝐩 () 

While ‖ 𝐖′T𝐁′ ‖
2

+ tr(𝐯𝐩T𝐩𝐯T) is equal to some constant, and 

because our goal is to solve for 𝐩, we can regard other parts as 

constant. ‖𝐯𝐩T ‖
2

 is omitted because ‖𝐯𝐩T ‖
2

=  ‖𝐩𝐯T ‖
2

=
tr(𝐯𝐩T𝐩𝐯T) = 𝑛 tr(𝐯𝐯T), where 𝐩T𝐩 = 𝑛. And the other part can 

be simplified as follows. 

 tr( 𝐁𝐓𝐐) =  tr( 𝐁′𝐓𝐐′ + 𝐩𝐪T) =  tr( 𝐁′𝐓𝐐′) + tr(𝐩𝐪T) 
 = tr( 𝐁′𝐓𝐐′) +  𝐪𝑇𝒑 () 

Combining these terms, we can rewrite (15) as follows. 

 
min 

𝐁
𝐯T 𝐖′T 𝐁′𝐩 −  𝐪T𝐩 =  

min 
𝐁

(𝐯T 𝐖′T 𝐁′ − 𝐪T)𝐩() 

This is an optimization problem, and 𝐩 ∈ {−1, 1}𝑛, therefore we 

just need to incorporate the opposite sign of its first argument. 

 𝐩 =  −sgn(𝐯T 𝐖′T 𝐁′ −  𝐪T) = sgn(𝐪T − 𝐯T 𝐖′T 𝐁′) () 

 

We can now explicitly outline computed parts in the following. 

             𝐖 = (𝐁𝐁T + λ𝐈)−1𝐁𝐘T,                              () 
             𝐔 = (Φ(𝐗)Φ(𝐗)T)−1Φ(𝐗)𝐁T                    () 
              𝐩 =  sgn(𝐪T − 𝐯T 𝐖′T 𝐁′)                                    () 

 

Shen et al. [1] have provided another computation based on the 

hinge loss. However for the simplicity, we incorporated L2-norm 

in our experiments and therefore this part has been excluded here. 

We now have the required equations here and can summarize our 

algorithm as follows. 

 

 

 

 

Algorithm: Supervised Discrete Hashing 

Input: Training data {𝐗, 𝐘} 

Output: Binary codes 𝐁 

1. Randomly select k anchors 𝒂𝑗 , 𝑗 = 1, 2, … , 𝑘, from 𝐗 and calculate 

Φ(𝐗) 

2. Randomly initiate 𝐁 

3. Loop until converge or reach maximum iterations 

* Calculate 𝐖 and 𝐔, which are describe in (13) and (10) 

* Learn 𝐁 bit by bit, with the help of (19) 

5. Experiments and Results 

This section provides details on the experiments performed using 

various CNN architectures discussed in previous sections. 

5.1 Database and Evaluation Protocol 

In order to ensure reproducibility of experimental results, we 

utilized publicly available two session database [5]. This database 

of 6264 images has been acquired from 156 different subjects and 

includes finger-vein images from two fingers for each subject. 

However, the second session images are only from 105 different 

subjects. In our experiments we only used first session images to 

train different network architectures discussed in previous section, 

and excluded 51 subjects without second session. The 

experimental results are presented using second session test data. 

Therefore each of the receiver operating characteristics uses 1260 

(210 × 6) genuine scores and 263340 (210 × 209 × 6) impostor 

scores.  

We experimented on ROI images, enhanced ROI images and 

even Gabor filtered images separately. ROI images have 256 × 513 

pixels, enhanced ROI images have 218 × 488 pixels and even 

Gabor filtered images have 218 × 488 pixels. The experimental 

results using ROC and CMC from the respective CNN architecture 

are presented in the following. 

5.2 Results using LCNN 

We firstly performed the experiments for the CNN trained using 

the ROI images, enhanced ROI images and the enhanced images 

using Gabor filters (figure 1-2). The experimental results using 

respective second session dataset are shown in figure 7. The 

respective ROC in this figure illustrates that enhanced images can 

achieve superior matching performance than those from using ROI 

images. The enhancement of ROI images using Gabor filters 

significantly helps to suppress the noisy pixels and accentuate the 

vascular regions and is the plausible reason for superior accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparative ROC performance using LCNN in figure 4. 

 



5.3 Results using LCNN with Triplet Similarity Loss Function 

The experimental results using LCNN trained with Siamese triplet 

similarity loss function are presented in Figure 8. These results 

consistently illustrate superior performance using this architecture 

than the LCNN. The performance from the ROC of enhanced ROI 

with Gabor filters is superior and this observation is in line with 

the trends observed from results using LCNN in the Figure 7. 

LCNN without triplet similarity loss tries to match a sample with 

its label, while LCNN with the similarity loss focuses on 

similarities between the images, this is the likely reason for the 

superior ROC performance.  

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparative ROC performance using triplet similarity loss based 

LCNN in figure 5. 

5.4 Results using CNN and Joint Bayesian Formulation 

Another scheme that has recently shown superior performance for 

the ocular identification in [11] uses joint Bayesian [9], instead of 

L2 norm, as the metrics for the similarity. The LCNN with the joint 

Bayesian classification scheme was also attempted to ascertain the 

performance. The ROC using this approach is illustrated in figure 

9 and indicates notable performance improvement over LCNN. 

 

 

 

 

 

 

 

 

 

 

 

Fig.  9. Comparative ROC using LCNN with Bayesian approach. 

5.5 Comparisons and Results using Supervised Discrete Hashing 

The supervised discrete hashing (SDH) scheme detailed in section 

4 was also investigated for the performance improvement. Only 

first session data was employed for the training part and employed 

for generating the binarized bits that were used for computing 

match score using the Hamming distance. The resulting ROC in 

Figure 10 illustrates consistent performance improvement with the 

usage of SDH and the trends in the usage of enhanced ROI images 

are also consistent with our earlier observations. 

The LCNN trained with triplet similarity loss function was also 

employed used with the SDH to evaluate the performance. We 

attempted to ascertain the performance with different number of 

bits. Higher number of bits for SDH can be generally expected to 

offer superior results but requires more training time. It should be 

noted that this method is actually a second-step training, and tries 

to map features from the Euclidian space to the binary space. The 

training phase and hamming distance metrics can contribute to its 

superior performance. The combination of CNN with the hashing 

to reduce for the faster and real-time identification has also been  

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Comparative ROC using LCNN and SDH. 

attempted earlier [17] but for the face recognition problem. 

Authors in [17] incorporated Boosted Hashing Forest (BHF) for 

the hashing and therefore we also attempted to incorporate such 

BHF scheme to comparatively evaluate the performance. 

However, our results illustrated superiority of SDH over BHF and 

the template size using BHF was also fixed to 2000 bits. Although 

our results did not achieve significant improvement in the 

performance using BHF, its usage can help in remarkably reducing 

the template size. In order to as-certain comparative performance 

for matching finger vein images using the hand-crafted features, 

we also performed additional experiments. The ROC from the 

same test images and matching protocols but using Repeated line 

tracking [9] (also used as baseline method in [16]) and maximum 

curvatures [2] method is illustrated in Figure 11. We can observe 

from these experimental results that using SDH and LCNN can 

offer superior performance and  significantly reduce the template 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparative ROC using triplet loss based LCNN with SDH and 

previous work. 

size. Our results over the method using [4] are can be considered 

as competing and not yet superior but offers significantly reduced 

template size (~26 times smaller) over the best of the methods in 

[4]. 



5.6 Results using Modified VGG-16 

The experimental results using modified VGG-16, as detailed in 

section 3.3 are presented in Figure 12. It should be noted that this 

CNN architecture generates single match score and therefore 

prohibits use from using the SDH scheme to the infer features. We 

can infer from the ROCs that the modified VGG-16 architecture 

generates superior performance for matching finger-vein images 

as compared with the network trained using LCNN. This structure 

generates matching scores directly, the problem of feature space is 

excluded, which may be a convincible reason for its superior 

results. 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Comparative ROC performance using modified VGG-16. 

5.7 Results using Single Fingers and Unregistered Fingers 

Since we used both finger-vein images from two fingers to form 

larger dataset (as in [4]) for above experiments, it is judicious to 

ascertain the performance when only one, i.e., index or middle, 

finger vein images are used in the training and test phase. The 

results using respective finger-vein images from 105 different 

subjects are comparatively shown in Figure 13 using the ROC. The 

performance using the images from both fingers (using 210 class 

formed by combination of index and middle finger for 105 

different subjects) is superior to single finger, and index finger 

shows better performance than middle finger. Similar trends are 

also observed while using hand crafted features in in [4] and can 

be attributed to the nature of imaging or the dataset. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparative ROC performance using triplet loss based LCNN and 

SDH using the finger vein images from a single finger. 

In earlier experiments, the first session data had images 

acquired from the same subjects who were providing their images 

during the second session and were used as test set for the 

performance. In order to ascertain robustness of self-learned 

features using the best scheme so far, we also evaluated the 

performance from the independent 51 subjects in this dataset 

which did not have any two-session finger-vein images. Therefore 

images from none of these subjects images were employed during 

the training for CNN in any of the earlier experiments. The six 

images from these 51 subjects were used to ascertain performance 

using challenging protocol, i.e., all-to-all, so that we generated a 

total of 1530 genuine scores and 185436 impostor scores to 

ascertain such performance. The ROC corresponding to this 

independent test subjects finger vein data is shown in Figure 14 

and the results indicate promising performance from the self-

learned features using a model trained (in section 3.2 and SDH) 

for matching finger-vein images from unknown subjects. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The performance using independent test subjects in [5] for matching    

finger-vein images. 

6. Discussion 

This paper has investigated finger vein matching performance 

using convolutional neural network architectures. Unlike earlier 

work on finger vein image matching which largely employed hand 

crafted features, our emphasis has been to investigate 

automatically learned features using the capabilities of deep 

learning. We systematically investigated the performance 

improvement using just the ROI images and the systematically 

enhanced images that mainly emphasizes on subsurface vascular 

network. Our results consistently indicate superior performance 

from the CNN that are trained with images which have such 

enhanced vascular features.  

According to our experimental results in section 5.6, modified 

VGG-16 (MVGG) achieves superior performance than LCNN. 

However MVGG requires significantly higher time for the training 

(also for the test phase). This can be largely attributed to the fact 

that it directly generates the match scores and therefore the loss 

function outputs propagate iteratively through the whole network 

to ascertain the similarity between a pair of finger vein images. At 

the same time, we cannot incorporate SDH (hashing scheme) with 

the MVGG, due to non-availability of intermediate features, while 

the usage of SDH has shown to offer remarkable improvement in 

the performance.   

It should be noted that the triplet similarity loss function helps 

to significantly improve the experimental performance using the 

LCNN. However, this approach cannot adequately make use of the 

label information, because it attempts to decrease the feature 

similarity between the pairwise images from the same subject, but 

cannot accurately locate the labels, i.e., identity of the subjects 

they are associated with. Supervised discrete hashing approach 

further improves the performance and retrieval speed, and 

decrease the storage which requires only 250 bytes (2000 bits) for 



the one template (feature vector). However, it should also be noted 

that this method needs a separate training phase and training time 

rapidly increases when the bit length or number of features are 

increased. In this context, it is possible to incorporate recently 

introduced end-to-end learning schemes that incorporate deep 

neural networks to hash the features for fast image retrieval or 

matching [27]-[29]. Therefore, we also attempted to ascertain the 

performance from such deep supervised hashing scheme detailed 

in [28]. In order to ensure fairness in the comparison with SDH or 

two-step training model, same training data was used for training 

and test phase. Figure 15 illustrates comparative performance with 

the CNN based deep supervised hashing and our SDH scheme 

detailed in section 4. These results indicate that two step training 

model using SDH can achieve superior performance for matching 

the finger vein images. The plausible reason for poor performance 

from deep supervised hashing scheme lies in the lack of sufficient 

training data for our problem as we are attempting to directly map 

210 class data, with high intra-class variations, into 500 or more 

bits. However with our two-step approach, the first step from CNN 

helps to extract useful information and therefore the second step 

with SDH received better input to consolidate the output into 

smaller number of bits.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Comparative performance using deep supervised hashing scheme. 

The work detailed in this paper also had several constraints and 

therefore should be considered only preliminary. The database 

employed, although one of the largest two session finger vein 

database available in public domain, is still of smaller size for the 

deep learning based algorithms. There are several references in the 

literature that have shown promising performance but yet to 

demonstrate superior matching performance over the method in 

[4] using fair comparison or the same matching protocols. 

Therefore, we are justified in using the performance from [4], for 

this publicly available dataset, as the reference. 

7. Conclusions and Further Work 

This paper has investigated finger vein matching performance 

using various convolutional neural network architectures. Unlike 

earlier work on finger vein matching which employed hand crafted 

features, our emphasis has been to investigate performance from 

the automatically learned features using the capabilities of deep 

learning. We systematically investigated the performance 

improvement using the ROI finger vein images, and the enhances 

images and consistently observed that the usage of ROI images 

with enhanced vascular features and attenuation of background 

(noise) can significantly improve the performance. The factors that 

most influence the accuracy of matching finger vein images is the 

depth of the network, the pre-training and the data augmentation 

in terms of random crops and rotations.  

The usage of supervised discrete hashing with a Siamese 

network trained using the triplet loss function achieves most 

accurate performance among the all architectures considered in 

this work. The usage of hashing also significantly reduces the 

template size, to 2000 bits, for every subject and is the key 

advantage of this approach over other methods for finger vein 

matching available in the literature. The matching accuracy using 

this scheme also achieves outperforming results as compared with 

baseline methods considered in this work. 

 The work detailed in this work also had several constraints and 

therefore should be considered only preliminary. The database 

employed, although the largest two session finger vein images 

database available in public domain, is still of smaller size for the 

deep learning algorithms. Larger size database is expected to result 

in better learning of the representative features. One possibility is 

to use synthesized finger vein images, such as those generated in 

[24], to enrich the learning phase and should be carefully 

considered in further work. Further work should also be directed 

to develop deep learning architectures for finger vein images that 

can directly recover binary codes, e.g. [26], and achieve efficient 

matching. More baseline methods, instead of just two in this work, 

should be selected for the comparison with the performance using 

the hand crafted methods and is part of our ongoing work in this 

area.  
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