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Abstract—Contactless biometrics identification using finger 
knuckle images has shown significant potential for the e-
business and forensic applications. One of the key challenges in 
accurately matching the real-world contactless finger knuckle 
images is related to the knuckle pattern deformations that are 
involuntarily generated due to finger pose changes. Earlier work 
in this area therefore acquired fixed pose finger images for the 
authentication and therefore the performance achieved from 
such images cannot reflect the expected performance under the 
deployment scenarios. This paper adopts a new approach to 
accurately match such finger knuckle images and presents first 
attempt to authenticate finger-knuckle patterns under severe 
pose changes. This approach attempts to correct pose related 
deformations by identifying the correspondence between a fixed 
number of chosen points between two matched images. The 
match score is computed using local feature descriptors, at each 
of these correspondence points, and consolidated to generate 
average match score. The experimental results are presented in 
this paper, both using two-session and single-session index 
finger knuckle images from 221 different subjects, using 
publicly available database. These results are outperforming 
and indicate the merit of spatial-domain approach to match 
deformed finger knuckle images using a fixed number of 
correspondence points. 
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I. INTRODUCTION 

Personal identification using anatomical characteristics from 
human body have attracted a number of researchers and 
system integrators in developing a range of civilian and law-
enforcement applications. Several physiological and 
behavioral features have been studied in the biometrics 
literature to evaluate their effectiveness for the real-world e-
security and forensic applications. Despite increasing 
applications in forensics and law-enforcement applications, 
contactless finger knuckle is one of the least studied biometric 
trait and technologies to utilize its full potential are yet to be 
developed. High agility of finger knuckle joints, i.e. proximal 
interphalangeal (PIP) joint, can result in severe deformations 

on the knuckle surface. Therefore, earlier research work in the 
literature [4]-[8] employed finger knuckle images acquired 
with a fixed pose where the middle phalanx and proximal 
phalanx appear along a straight line. A range of spectral and 
spatial domain methods have been introduced to match finger 
knuckle images. The accuracy of matching such images 
depends on the acquisition mode and fixed pose images 
acquired from a fixed device have shown to offer very high 
accuracy, e.g. [5]. Further efforts to use images acquired from 
over 500 different subjects with the mobile camera, under 
ambient illumination, have shown degradation in match 
accuracy [8] but represents an important step towards 
developing highly accurate matching capability for the 
ubiquitous knuckle identification using mobile devices. 

II. MOTIVATION AND CHALLENGE 

Contactless finger knuckle matching has attracted increasing 
attention in the literature [4] and a range of databases are 
available in the public domain. All prior databases (see 
summary in [4]) were acquired with high degree of user 
cooperation where the subjects are expected to present their 
fingers with straight pose, i.e. in a manner that allows rich 
information from the major finger knuckle to be aggregated 
from the additional skin which is anatomically present to 
enable the finger movements in the forward direction. 
Recently [2] released a completely contactless finger knuckle 
database which presents finger knuckle images with varying 
poses. Such images are more realistic to develop advanced or 
ubiquitous biometrics identification capabilities for a range of 
civilian and law-enforcement applications. This is however a 
challenging task as the matching accuracy significantly 
degrades when images with different poses are matched. In 
addition, the results in [2] were only presented for the 
recognition and no attempt was made to study the 
authentication performance. 

This paper presents a new approach for more accurate 
contactless finger knuckle authentication under severe finger 
pose changes. It is first attempt to match completely 
contactless finger knuckle images with varying poses for the 

Figure 1: Sample images from index finger major knuckle with deformations caused by the variation in finger poses. Knuckle creases in 
red colour are manually added to illustrate such variations in the corresponding knuckle creases when the angle between phalenges is 
varied from zero degrees towards extreme (left to right). These images of major knuckle patterns are from the same finger. Therefore, such 
images should be accurately matched among themselves to realize completely contactless and pose-invariant finger knuckle authentication. 



user authentication. It should be noted that the finger knuckle 
images considered in this research have very high intra-class 
variations due to pose changes and are most challenging as 
compared to the other publicly available finger knuckle 
databases. Figure 1 presents such sample images from the one 
subject in this database. The method introduced in [2] 
presented encouraging results for the recognition performance 
but this approach is not suitable to achieve high match 
accuracy for the verification problem. Therefore we introduce 
a new approach to match such deformed finger knuckle 
images. The experimental results presented in this paper 
indicate outperforming results, both for the single session and 
two session matching, and validates the effectiveness of this 
approach for the finger knuckle authentication.  

III. FINGER KNUCKLE ALIGNMENT AND MATCHING  

The algorithm adopted in this work to match contactless finger 
knuckle images is similar to the one introduced in [12] to 
match contactless palmprint images. This work is motivated 
by the success of local feature descriptors in [8]-[9] and the 
spectral domain approach to alight two region of interest 
images using [1], [3]. Unlike earlier attempts [23] which used 
finger knuckle images acquired using contact-based and 
constrained imaging setups, this work is focused on matching 
completely contactless finger knuckle images with severe 
pose deformations. 

      Each of the two-finger knuckle region of interest (RoI) 
images, say G and F, are firstly marked with equally spaced n 
× n grid points which serve as the reference points align the 
local regions in two images. Each of the knuckle RoI images 
are normalized to 128×128 pixels and 13 × 13 grid points are 
marked with the spacing of 6 pixels between the neighboring 
points. The important task is to locate correspondence points 
in two deformed images. The method detailed in [1] attempts 
to compute the correspondence, i.e., extent of horizontal and 
vertical displacements for two grid-points, between two sub-
image regions using phase only correlation function. This 
approach has shown to offer accurate estimation of required 
displacements for the palmprint [3] and finger knuckle [23] 
images. Therefore, this approach was incorporated in this 
work with some modifications. The block diagram for various 
steps in matching, each of the corresponding image sub-
blocks say fb and gb, for every key point is shown in Figure 2. 

More details on the exact steps to extract correspondence 
points between two images are provided in [1], [23]. The 
match score between the local regions representing the 
correspondence points is computed using their local feature 
descriptors [8]-[9]. A spatial filter with integer values, 1 or -1, 
is employed to perform local convolution with every pixels in 
the local regions corresponding to the correspondence points. 
Among various possibilities, one such spatial filter ℎ(𝑥, 𝑦) to 
encode the ordinal measurements can be defined as follows:   

       ℎ(𝑥, 𝑦) = ቐ

1            𝑖𝑓 |𝑥| < |𝑦|
−1          𝑖𝑓 |𝑥| > |𝑦| 

0            𝑖𝑓 |𝑥| = |𝑦|
                               (1) 

The variables 𝑥, 𝑦  represents spatial locations in the filter 
while the  |. | is the absolute operation This spatial filter can 
be visualized as in the following or Figure 3(a) where above 
three values are shown with light gray, dark gray and white 
pixels. 

 

 

 

                                  (a)              (b) 

Figure 3: Spatial filter (a)-(b) to encode local feature 
descriptors.  

Similar to as in [12], the binarized features for each of the 
(sub) image block corresponding to the correspondence points 
is computed as follows:  

      𝐹(𝑥, 𝑦) = ቄ
1      𝑖𝑓 𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) > 0 
0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (2)        

where ∗  represents pixel-wise convolution operation. The 
binary features generated from (2) are influenced by the 
illumination variations as the knuckle images were acquired 
under ambient lighting. The influence of noise from such 
source is minimized by performing morphological opening 
( 𝐹

, 𝐺
) and closing ( 𝐹

, 𝐺
) operations, on the templates 

generated from (2). These templates are used to consolidate 
the match scores from the two corresponded local knuckle 
image regions.  The match score 𝑠 between two translated or 

Figure 2: Block diagram to match two key point regions between knuckle image pairs for the user authentication. 



the corresponded ith sub-image blocks, between the 
normalized knuckle image F and G, is computed as follows: 

𝑠 =   [𝑤ଵ × 𝑋𝑂𝑅(𝐹, 𝐺) + 𝑤ଶ × 𝑋𝑂𝑅(𝐹
 , 𝐺

)

+ 𝑤ଷ × (𝐹
 , 𝐺

)]                                      (3) 

where the 𝑤ଵ, 𝑤ଶ  and 𝑤ଷ  represents the weights assigned to 
the each of the three cases and were empirically fixed as 3, 1, 
1, respectively, for all the experimental results reported in this 
paper. The XOR is the Boolean operator employed to compute 
the Hamming distance between two binary sub-images. 
Similarly, the match scores from all the grid points are 
computed using (3) and averaged to generate the final or the 
consolidated match score between the two matched finger 
knuckle images. 

Figure 4: Completely contactless finger knuckle images with 
severe pose deformations. Each of the subject’s right-hand 
index finger provides knuckle images under six different 
poses as shown from the above sample images.  

IV. EXPERIMENTS AND RESULTS 

This work uses recently introduced PolyU contactless finger 
knuckle database version 3 [13] in which the finger knuckle 
images are acquired under different poses. There are a total of 
six different poses for each of the 221 different subjects index 
fingers. were acquired from 221 volunteers using different 
smartphones. The images are acquired using the mobile phone 
camera and under indoor and outdoor environment which 
presents more realistic challenges for the real-world 
applications. All the volunteers were requested to present their 
index fingers under six different poses, where the first image 
was acquired while the finger was straight while the last or 
sixth image representing the image when finger was bent 
excessively. Such sample images are shown in Figure 4. 
Please refer of [2] for more details on the data acquisition and 
the method used to automatically detect the finger knuckle 
regions. The segmentation images are provided along with 
this database and were used to ascertain the authentication 
performance in this work.   

     Unlike for the earlier methods such as in [5] which require 
image enhancement, the approach adopted in this work does 
not use any enhancement of the ROI knuckle images. The 
match protocols for the two-session (inter-day) and one-
session (intra-day) finger knuckle images are exactly same as 
employed in [2]. The baseline methods have used phase only 

correlation [14] and band-limited phase only correlation [3]. 
Therefore, this approach was also attempted to ascertain the 
comparative performance. The effectiveness of the phase-
based correspondence point estimation for matching severely 
deformed finger knuckle images is firstly visualized from the 
location in correspondence points among the deformed 
knuckle images from the same subject or the finger. Figure 4 
presents such image samples that illustrate the location of 
correspondence or grid points when the first or straight pose 
knuckle image is matched with other six pose images from the 
same user but using the second session. The image samples 
selected in Figure 5-7 are from subject 47 in this database.  

The first two image columns, in each of the Figures 5-7, 
are the original or knuckle ROI images from same subject, the 
third image shows the grid point for the first image, and the 
forth image is the corresponding grid point for the second 
image after computing the correspondence point locations. 
The match scores obtained from the two respective images in 
each row are also presented in the respective Figure captions 
in the same order. shown are in the same order as the matches. 
In summary, the first images in Figure 5-7 columns are the 
same subjects’ images from the second session, where the 
second images correspond to the six different images in 
different row from same subject in the first session imaging. 

 

Figure 5: Matching second session first image from same 
subject with different pose knuckle images acquired in the first 
session. The match scores, respectively for the first-row image 
pairs to the last row image pairs are 0.445, 0.646, 0.775, 0.921 
0.927, and 1.027. 



 

Figure 6: Matching second session fifth image from same 
subject with different pose knuckle images acquired in the first 
session. The match scores, respectively for the first-row image 
pairs to the last row image pairs are 1.177, 1.068, 0.956, 0.849, 
0.803 and 0.6440.  

Table 1: Summary of match score statistics from 
experiments. 

 Two-
Session 
Database 

One-                                  
Session             
Database 

Number of 
Genuine_Scores 624 (6×104) 1326 (221× 6) 

Number of 
Iimpostor Scores 

64272 
(6×104× 
103) 

145860(6×221×220)/ 
2 

Range of Genuine 
Scores 

0.4453 to 
1.3883 

0.4448 to 2.0089 

Mean of Genuine 
Scores 0.9881 1.0260 

Range of Impostor 
Scores 

0.5710 to 
1.4776 1.5150 to 2.0699 

Mean of Impostor 
Scores 1.3232 1.8570 

Equal Error Rate 
14.74% 
(Th=1.2899) 6.03% (Th= 1.7738) 

                     Th: Decision Threshold at Equal Error Rate 

 

Figure 7: Matching second session last/sixth image from 
same subject with different pose knuckle images acquired in 
the first session. The match scores, respectively for the first-
row image pairs to the last row image pairs are 1.246, 1.256, 
1.305, 1.091, 1.069, and 0.973. 

It can be observed from the match scores in Figure 5 that the 
match score gradually degrades, with worst or the highest 
when first pose image is matched with the last or severely 
deformed pose images. However even the worst-case match 
score in Figure 5 is smaller as compared to the impostor scores 
(please see Table 1 for exact decision threshold at EER) and 
therefore these image pairs can be considered as matched. 

      The receiver operating characteristics (ROC) from the 
authentication experiments is shown in Figure 8. Table 1 
presents number of match scores generated from two different 
set of experiments and includes other relevant statistics 
relating to the reproducibility of the experiments. The ROC in 
Figure 8(a) indicates the results from two potential masks or 
the spatial filters to encode the features. The results labelled 
‘A’ uses the filter shown in Figure 3(a) while the results 
labelled ‘B’ use the filter shown in Figure 3(b). The results 
from these two filters are quite similar, with the filter ‘A’ 
achieving better performance. Therefore, this filter was only 
used for the single session experiments in Figure 8(b). The 
results in Figure 8 consistently indicate superior matching 
performance over the baseline methods using BLPOC and 
POC. Matching knuckle features using local feature 
descriptors is also computationally simpler and the methods 
using POC or BLPOC requires FFT and IFFT operations 
which are known to be quite complex. The match score and 
the distribution of correspondence points in Figure 7 images 



indicates that even when the when the two images from same 
subject but with extreme pose changes (last row image pair) 
can generate low match score or higher similarity confidence. 
The degradation in match score is severe when the difference 
in poses between the matched finger knuckle images are large.   

 

                                                    (a) 

 

                                                       (b) 
Figure 8: The ROC for matching (a) two-session contactless 
finger knuckle images and (b) one session contactless finger 
knuckle images acquired from 221 different subjects.  

V. DISCUSSION 

A range of experiments were performed to adopt different 
feature descriptors, in an attempt to generate best performance 
for   matching deformed   finger knuckle images. The method 
detailed in [2] was also attempted for the authentication 
problem but the results were quite poor. The comparative roc 
performance using ternary contrast context vector (TCCV) 
[2], and its combination using spectral domain matching, is 
presented in Figure 9. These results indicate that 
correspondence point-based matching considered in this work 
can offer superior matching performance for the deformed 
finger knuckle images. 

   There are a range of other spatial-domain feature descriptors 
that have shown to offer attractive performance for matching 
biometric images. Therefore, similar to as in [2], a number of 
other matchers were attempted to ascertain verification 
performance for matching deformed knuckle images. The 
multi local binary (LBP) [22] used three scales to consolidate 

 

Figure 9: Comparative performance for two-session 
contactless finger knuckle matching using TCCV [2] for the 
verification problem considered in this paper. 

 
(a) 

 
(b) 

Figure 10: Comparative performance using other feature 
descriptors for (a) two session and (b) single-session finger 
knuckle images. 
 
the scores. The binary orientation co-occurrence vector 
(BOCV) [16] has shown highly accurate results for the 
palmprint matching and was also attempted. The BOCV 
matcher used 49 × 49 size block and thresholds of 0.06 and 



0.3. These parameters were empirically selected to achieve 
the best performance. Two other matchers, i.e. local 
derivative patterns (LDP) [17] and local ternary patterns 
(LTP) [21], were attempted. The experiments for LDP used 3 
× 3 size blocks with step size of 18. These comparative results 
for two-session and one-session verification performance are 
presented in Figure 10. These results indicate that BOCV 
offers superior performance than other considered methods. 
However as can be observed from the results in Figure 8, the 
performance from the approach detailed in section 2 is 
significantly better and is suggested for matching finger 
knuckle images with severe pose deformations. 

VI. CONCLUSIONS AND FURTHER WORK 

Completely contactless finger knuckle identification can offer 
promising alternative to address hygiene and privacy related 
concerns with the established biometric modalities. 
Capabilities to accurately match deformed finger knuckle 
image pairs is also highly desirable for a range of laws 
enforcement applications, e.g. [10]. However, completely 
contactless finger knuckle acquisition can offer extremely 
high intra-class variations, largely due to involuntary finger 
poses or the view-angle changes. Therefore, the knuckle 
verification problem considered in this paper is highly 
challenging and not attempted earlier in the best of our 
knowledge. The results presented in this paper should be 
considered preliminary, or the first attempt for the user 
verification using severely deformed finger knuckle images.  

        The method introduced in [2] to detect the finger knuckle 
images under varying poses has several limitations. It can be 
observed from this reference that many of the detected or 
segmented images fail to represent the true region of interest, 
i.e., major finger knuckle region. This is another reason for 
relatively lower performance observed from the verification 
results presented in this paper. Further work is required to 
accurate detect such finger knuckle regions and mask-RCNN 
based detectors [18] have shown to work well under complex 
backgrounds and is suggested in the further extension of this 
work. Deep learning-based methods have shown to offer 
attractive performance for a range of computer vision and 
biometrics applications. However limited availability of 
deformed finger knuckle images has posed severe constraints 
in attempting such methods for the verification tasks. The 
match accuracy indicated in results in Figure 5-8 is high and 
attractive for forensic applications but not yet attractive for e-
business or other civilian applications. Therefore, further work 
is required to develop advanced methods that can generate 
more accurate results to utilize full potential from this 
biometric modality. This work used more convenient protocol 
to match second session images, with the best of the first 
session or registration images scores (Table 1, 6×104 or 624 
genuine match scores). Further work should consider more 
challenging protocols where each of the second session 
images are matched with each of the first session images, i.e., 
6×6×104 or 3744 genuine match scores, to evaluate the 
effectiveness of the future or proposed algorithms for the 
surveillance and forensic applications. 
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