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Abstract—Accurate and efficient feature descriptors are 

crucial for the success of many pattern recognition tasks including 

human identification. Existing studies have shown that features 

extracted from 3D depth images are more reliable than those from 

2D intensity images because intensity images are generally noisy 

and sensitive to illumination variation, which is challenging for 

many real-world applications like biometrics. Recently introduced 

3D feature descriptors like Binary Shape and Surface Code have 

been shown improved effectiveness for 3D palm recognition. 

However, both methods lack theoretical support for the 

construction of the feature templates, which limits their matching 

accuracy and efficiency. In this paper, we further advance the 

Surface Code method and introduce the Efficient Surface Code, 

which describes whether a point tends to be concave or convex 

using only one bit per pixel. Our investigation also reveals that the 

discriminative abilities of the convex and concave regions are not 

necessarily equal. For example, line patterns on human palms and 

finger knuckles are expected to reveal more discriminative 

information than non-line regions. Therefore, we also propose a 

weighted similarity method in conjunction with the Efficient 

Surface Code instead of the traditional Hamming distance adopted 

in both Binary Shape and Surface Code. Comparative 

experimental results on both 3D palmprint and 3D finger knuckle 

databases illustrate superior performance to the aforementioned 

state-of-the-art methods, which validates our theoretical 

arguments. 
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I.  INTRODUCTION 

Research on feature description is critical for accurate and 
efficient automated biometric system. An advanced feature 
descriptor should be accurate, efficient, and meet the following 
requirements: (i) capable of extracting discriminative 
information, which is invariant for genuine match pairs but 
different for imposter match pairs; (ii) tolerant to illumination 
and pose variations among genuine match pairs; (iii) containing 
the minimum amount of information needed to discriminate the 
expected number of classes; and (iv) providing theoretical 
support and physical interpretation for further investigation.  

Discriminative biometrics features can be extracted from 2D 
intensity images or 3D depth images. However, the formation of 
intensity images is dependent on surface reflection properties, 
surface orientation, illumination, and sensor noise. By contrast, 
3D depth images are generally more reliable, because physical 
depths are not affected by pose and illumination variations.  

The relevant literature has illustrated that extracting features 
from 3D depth images offers promising results. Shape index [1] 

describes local shape information and is particularly useful to 
produce a stable description of nine well-known surface types 
[2]. Surface Code [5] representation adopts information of 
surface types and encodes a pixel into one of the nine surface 
types. However, this method requires four bits per pixel, which 
is quite inefficient. Furthermore, the use of Hamming distance 
for matching the four-bit codes lacks adequate theoretical 
support. Another more recent descriptor, Binary Shape [8], uses 
ordinal measurements for encoding 3D surface features. This 
method has been found quite efficient and accurate. However, 
only incorporating the general ordinal representation for 3D 
images may not produce the best distinctive surface feature, 
because other information (e.g. orientation) may also be useful.  

In this paper, we build on the Surface Code feature descriptor 
and introduce Efficient Surface Code. In addition, we also 
propose a weighted similarity approach in conjunction with 
Efficient Surface Code to address the limitations of the 
traditional Hamming distance. Our feature descriptor encodes 
the concave and convex points with much smaller template sizes 
for efficient matching. Our comparative experimental results to 
be presented in this paper have achieved superior performance 
and demonstrated the effectiveness of our approach for 3D 
palmprint and 3D finger knuckle biometric recognition.  

Two key contributions from this paper can be summarized 
as follows: 

(1) In view of the limited efficiency of, and the lack of 
theoretical support for, the discretization of shape indexes 
associated with Surface Code [5] and Finger Surface Code [6], 
we have developed an Efficient Surface Code feature descriptor 
which reduces the template size from four-bit to one-bit per 
pixel. This advancement enables a more accurate and efficient 
description of the concave and convex surface details for 
discriminative feature extraction.  

(2)  Our investigation also indicates that the discriminative 
abilities of the convex and concave regions on biometric 
surfaces are not necessarily equal. For example, line patterns on 
human palms and finger knuckles generally contain more 
discriminative information than non-line regions. We therefore 
propose a weighted similarity method in conjunction with 
Efficient Surface Code as a compelling alternative for the 
popular Hamming distance measure adopted in both Binary 
Shape [8] and Surface Code. Our comparative experimental 
results demonstrate the effectiveness of the proposed method. 

The rest of this paper is organized into five sections. Related 
work in the literature is reviewed in Section II before our 
proposed approach is introduced in Section III. Comparative 



 

 

experimental results are presented in Section IV and discussed 
in Section V. The key conclusions of this paper are summarized 
in Section VI. 

II. RELATED WORK 

Development of distinctive feature description using 2D 
intensity images has attracted extensive efforts in the literature. 
For examples, feature descriptors using Local Binary Patterns 
(LBP) [14, 15], Improved LBP (ILBP) [16], 1D Log-Gabor 
Filter [17] and Phase Only Correlation (BLPOC) [18] are 
shown to be effective for person recognition. Zheng et al [19] 
extracted 3D features from a single 2D contactless image and 
introduced Difference of Normal (DoN) feature descriptors for 
more accurate palmprint matching. These studies have shown 
that local variations, global statistical information, ordinal 
measurements, and some physical characteristics such as curve 
orientations can be used to discriminate identities. Several 
research efforts [5-6, 8, 19-22] underlines the effectiveness of 
human identification using 3D information from the popular 2D 
biometric identifiers. 

    Existing work shows that extracting features from 3D 
depth images produces promising results. Shape index [1] is a 
well-known 3D feature in the literature. It captures the local 3D 
shape information computed from the curvatures of a point on a 
surface and can approximately describe nine well-known 
surface types with a scalar value from 0 to 1 [2].  This feature is 
shown to be highly stable and discriminative in many research 
work [2-6]. Woodard and Flynn [3] employed shape index 
features extracted from finger knuckle range images for personal 
identification. Zhang et al [4] employed shape type (ST), a 
feature similar to shape index, for 3D palmprint identification. 

   Surface Code [5] is a binary representation of shape index 
information. This method discretizes the shape index values into 
nine parts non-linearly, with these parts corresponding to the 
nine defined surface types. Since four bits are required to encode 
nine information levels, four binary images are generated as the 
templates for matching. During the matching stage, the four 
binary images are considered equally. Hamming distance 
between a pair of templates will be computed for all pixels and 
the mean among all pixels is the dissimilarity score. Finger 
Surface Code [6] is proposed specifically for extracting features 
on finger surfaces. Its discretization method is slightly different 
from Surface Code. 

   On the other hand, ordinal information is also shown to be 
robust against illumination, contrast and misalignment 
variations and effective for complex palmprint recognition [19]. 
Reference [8] details the development of an efficient 3D feature 
descriptor (Binary Shape) for biometric images, which encodes 
the local variations of depth details as the discriminative 
features. The sign of the response from an efficient filtering 
operation represents the feature value, which is of one bit. 
Therefore, one binary image is generated for each 3D image. 
Similar to Surface Code, Binary Shape also adopts Hamming 
distance for computing the matching scores. This method is 
efficient and quite accurate. However, such generalized binary 
features in 3D biometric images may not be the best distinctive 
surface feature and other information (e.g. local 3D or surface 
normal orientation) deserves careful consideration. 

III. EFFICIENT SURFACE CODE AND WEIGHTED SIMILARITY 

In this section, we first analyze the discretization steps in 
Surface Code and Finger Surface Code, and identify the 
effective components. We then propose Efficient Surface Code 
feature descriptor. This is followed by an analysis on the 
importance of white and black pixels in binary feature 
descriptors and our proposal of a weighted similarity method. 

A. Discretization on Surface Code and Finger Surface Code 

Any point on a 3D hand biometric surface can be categorized 
into one of the nine surface types [2]. Surface Code [5] describes 
each of the nine surface types, with the help of shape index, into 
a four-bit feature representation. Table I shows the mapping 
between ranges of shape index and the individual code 
representations of Surface Code. The matching score between a 
pair of templates are computed by using Hamming distance. 
Finger Surface Code [6] is a modification of Surface Code with 
a different discretization method. Table II shows the mapping 
between ranges of shape index and the code representations of 
Finger Surface Code. Similarly, this method also generates four-
bit codes and employs Hamming distance for the matching. 

In order to begin with this analysis, the information encoded 
in each binary feature descriptor is first examined. Figure 1 (a) 
and (b) show such sample binary feature images which are 
encoded using Surface Code and Finger Surface Code. Images 
in the first two rows belong to the same subjects while those in 
the third rows are from different subjects. Each column presents 
one-bit images, with the left most being the most significant bit. 
It is obvious that human specialists can only distinguish the 
subjects by observing the second bit image of Surface Code or 
the first bit image of Finger Surface Code. Binary images for the 
remaining bits may only contain noise. To further justify this 
argument, the information from each bit image is further 
explored. 

Table III illustrates the corresponding range for each bit 
image. For example, the white pixels of the forth bit image of 
Surface Code correspond to ranges 2-3, 6-7, 10-11, and 14-15, 
while the black pixels correspond to the remaining ranges. 
Suppose, the shape index of a point in template A falls in range 
3 and that in template B falls in range 11, they share the same 
value for the fourth bit image of Surface Code. This arbitrary 
grouping approach is not expected to encode useful information 
and the bit images may not be necessary.  

Another problem with these two representations lies in the 
use of Hamming distance. For example, when Hamming 
distance is used for Surface Code, the distance is 1 between level 
1 (0001) and level 5 (0101) but 4 between level 7 (0111) and 
level 8 (1000).  These resulting distances cannot correctly 
represent the actual difference between different levels. This 
limitation also exists in Finger Surface Code [6]. 

B. Efficient Surface Code 

The above analysis of the feature representations suggests 

that not all four binary images may be needed. More 

importantly, the use of Hamming distance raises issues for 

further investigation. We therefore introduce a new 

discretization method which is more effective and efficient. It 



 

 

can be observed that the second bit of Surface Code and the first 

bit of Finger Surface Code contains useful discriminative 

information (white pixels corresponding to ranges 8-15 and 

ranges 10-16 respectively). This implies that the discriminative 

information can be interpreted as whether the shape index falls 

in the range above 8 or below 9 (equivalent to a shape index 

value of 0.5). With the support of the histogram of the shape 

index distribution of 1770 3D palm images presented in Figure 

2, it is observed that the most discriminative information lies in 

the concave and convex regions, which corresponds to the line 

patterns on human skin. Therefore, it is judicious to discretize 

shape index into only two levels. Let ESC denotes Efficient 

Surface Code.  

𝐸𝑆𝐶 =  {
0, 𝑆𝐼 < 0.5
1, 𝑆𝐼 ≥ 0.5

                              (1) 

This discretization also accords with the suggestion of using 
two classes in [8]. Sample 3D depth images from palmprints and 
finger knuckles, as well as the corresponding binary feature 
images are shown in figure 3 and figure 4, respectively. 

C. Importance of white and black pixels 

In biometric recognition problems such as iris, palmprints 

and finger knuckle recognition, binary images are generally 

preferred and used as templates for matching. Hamming 

distance is widely adopted for computing dissimilarities 

between two binary images. This well-known distance measure 

is effective when all the values in the coding space encode 

equally important information for discriminative identities. 

However, whether all the values in the coding space encode 

equally important information depends on the choices of feature 

extraction, discretization and binarization methods. Therefore,  

TABLE I. CODE CONVERSION TABLE FOR SURFACE CODE 

Meaning Spherical 

Cap 

Trough Rut Saddle 

Rut 

Saddle Saddle 

Ridge 

Ridge Dome Spherical 

Cap 

Range a. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Level 0 1 2 3 4 5 6 7 8 

Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 

a.
 Shape index is evenly divided into 16 ranges. Range 1 represents shape index [0, 0.0625]. 

TABLE II.  CODE CONVERSION TABLE FOR FINGER SURFACE CODE 

Meaning Spherical 

Cap 

Trough Rut Saddle Rut Saddle Saddle 

Ridge 

Ridge Dome Spherical 

Cap 

Range a. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 

a.
 Shape index is evenly divided into 16 ranges. Range 1 represents shape index [0, 0.0625]. 

       
(a)                                                                               (b)  

Fig. 1. Sample binary feature imagaes of (a): Surface Code; (b): Finger Surface Code 

TABLE III. CORRESPONDING RANGE FOR EACH BIT IMAGE 

Bit images Bit-1 Bit-2 Bit-3 Bit-4 

Range for Surface Code 16 8-15 4-7, 12-15 2-3, 6-7, 10-11, 14-15 

Range for Finger Surface Code 10-16 5-9, 14-16 3-4, 7-9, 12-13, 16 2, 4, 6, 8-9, 11, 13, 15 

 



 

 

such an equal probability or maximum entropy assumption may 

not be always true. For our discussion, white pixels of Efficient 

Surface Code represent concave pixels while black pixels 

represent convex pixels. 

We performed new experiments to validate this argument. 

Since manual alignments of genuine image pairs are required 

for this experiment, only ten genuine image pairs and ten 

imposter image pair were used. Although the small dataset may 

not be representative, the results indicate a good possibility that 

the white and black pixels are of different importance. 

Comprehensive experimental results presented in the 

experimental section have helped to validate our argument. 

Let the number of white and black pixels in template X be 

NW(X) and NB(X) respectively. Let the number of white and 

black matching pixels between templates A and templates B be 

NWM(A,B) and NBM(A,B) respectively. We defined the white 

pixel matching rate (WPMR) and the black pixel matching rate 

(BPMR) for matching template A and template B as follows: 

𝑊𝑃𝑀𝑅(𝐴, 𝐵) =
2∗𝑁𝑊𝑀(𝐴,𝐵)

𝑁𝑊(𝐴)+𝑁𝑊(𝐵)
                      (2) 

𝐵𝑃𝑀𝑅(𝐴, 𝐵) =
2∗𝑁𝐵𝑀(𝐴,𝐵)

𝑁𝐵(𝐴)+𝑁𝐵(𝐵)
                        (3) 

We found that the genuine image pairs had an average 
WPMR of 0.5067 and an average BPMR of 0.6954. The 
corresponding values for the imposter image pairs were 0.3892 
and 0.6105. Apparently, the matching rates for the genuine 
image pairs are higher than those for the imposter image pairs. 
Furthermore, the increment of WPMR is more significant than 
that of BPMR. Therefore, it is reasonable to conclude that white 
pixels are more important for this dataset. 

D. Weighted Similarity  

Since discriminative information from palmprints and finger 

knuckle patterns lies in the irregular line patterns corresponding 

to the concave/white pixels representation in the respective 

feature map, it is reasonable to argue that a match between a 

concave pair offers a higher level of confidence than a match 

between a convex pair. Hence, we propose a more effective 

similarity measure which can judiciously consider the 

individual importance of features in the coding space for 

computing the matching scores. Our suggestion also accords 

with the azzoo similarity measure [9]. For a pair of template A 

and template B with dimension M×N, the matching score 

computed using Hamming distance (HD) is: 

𝑠𝑐𝑜𝑟𝑒 =
1

𝑀×𝑁
∑ ∑ 𝐻𝐷(𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦))𝑀

𝑥=1
𝑁
𝑦=1          (4) 

𝐻𝐷(𝑎, 𝑏) =  {
1, 𝑖𝑓 𝑎 ≠ 𝑏
0, 𝑖𝑓 𝑎 = 𝑏

                        (5) 

where a, b ∈ {0,1}. We introduce the Weighted Similarity (WS) 

function to replace HD by as follows: 

𝑠𝑐𝑜𝑟𝑒 =
1

𝑀×𝑁
∑ ∑ 𝑊𝑆(𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦))𝑀

𝑥=1
𝑁
𝑦=1        (6) 

𝑊𝑆(𝑎, 𝑏) =  {

𝑤1, 𝑖𝑓 𝑎 = 𝑏 = 1
𝑤2, 𝑖𝑓 𝑎 = 𝑏 = 0

𝑤3,          𝑖𝑓 𝑎 ≠ 𝑏
                        (7) 

where a, b ∈ {0, 1}. For 𝑤1=0, 𝑤2=0, 𝑤3=1, WS is exactly 

equals to HD. For convenience, we represent distance measure 

for similarity instead of dissimilarity. When 𝑤1=1, 𝑤2=1, 𝑤3=0, 

WS represents the Hamming similarity measure. In order to 

 
(a) 

 
(b)  

Fig. 3: (a) and (b) shows sample 3D palmprint images and the binary 

features extracted using Efficient Surface Code 
 

 
(a) 

 
(b)  

Fig. 4: (a) and (b) shows sample 3D finger knuckle images and the binary 

features extracted using Efficient Surface Code 
 

 
Fig. 2: Histogram of shape index distribution of 1770 3D palm images 



 

 

simplify the equation for efficient optimization, we can rewrite 

the equation for the Simplified WS (SWS) function as follows: 

𝑆𝑊𝑆(𝑎, 𝑏) =  {

2 − 𝑠, 𝑖𝑓 𝑎 = 𝑏 = 1
𝑠,         𝑖𝑓 𝑎 = 𝑏 = 0

0,                  𝑖𝑓 𝑎 ≠ 𝑏
                    (8) 

Parameter s controls the significance of one of the coding 
pairs. Hamming distance is a special case when s is set to be 1. 
If the four possible scenarios (𝑎𝑏 ∈{00,01,10,11}) are equally 
likely, the expected similarity score will be 0.5, which is 
independent of the parameter s. Since it is possible that the 
coding spaces may not encode equally important information, 
the weighted similarity can also be adopted for other useful 
applications. 

IV. EXPERIMENTS AND RESULTS 

The effectiveness of our proposed method was evaluated on 
the PolyU contactless 2D/3D palmprint database and a 3D finger 
knuckle database, which contain 3D images for extracting 
features required by Efficient Surface Code. 

The PolyU contactless 2D/3D palmprint database [5] is 
publicly available and contains 1770 palmprint images from 177 
subjects in two sessions. There are five 3D images for each 
subject per session. This contactless 3D palmprint database is 
acquired from only from one hand (right hand palms) and was 
preferred to avoid adverse influence from the correlation [7] 
between the palmprint features between left and right palmprint 
images.  We have evaluated our proposed method using 177 
subjects with two sessions, each with five images. The first 
session images were used as the training set, and the second 
session images were used as the testing set, yielding 885 (177 × 
5) genuine and 155760 (177 × 176 × 5) imposter matching 
scores. To account for the translation variations in this database, 
the templates were shifted with vertical and horizontal 
translations. The maximum score was considered as the final 
score. Figure 5 illustrates comparative performance using ROC 
curves, which compares our proposed methods with the two 
state-or-the-art methods Binary Shape [8] and Surface Code [5]. 
Ours (A) refers to our Efficient Surface Code with simplified 

weighted similarity (s = 0.78). Ours (B) refers to using the 
templates generated from Binary Shape [8] with simplified 
weighted similarity (s = 0.87). The observed improvement in 
performance is more evident for high security applications, 
where a very small false acceptance rate is expected. 

The 3D finger knuckle database has been developed by us 
and contains 600 forefinger images from 50 subjects with two 
sessions. There are six 3D depth images for each subject per 
session. The first session images were used as the training set, 
while the second session images were used as the testing set, 

resulting in 300 (50 × 6) genuine and 14700 (50 × 49 × 6) 
imposter matching scores. Since there are large translation and 
rotation variations in this database, the templates were shifted 
with rotation, vertical and horizontal translations. The maximum 
score was considered as the final score. Figure 6 illustrates 
comparative performance using Receiver Operating 
Characteristics (ROC) curves, which compared our proposed 
methods with the state-or-the-art methods. Ours (A) refers to our 
Efficient Surface Code with simplified weighted similarity (s = 
0.75). Ours (B) refers to using the templates generated from 
Binary Shape [8] with simplified weighted similarity (s = 0.7). 
The observed improvement in performance is more evident for 
high security applications, where a very small false acceptance 
rate is expected.  

V. DISCUSSION 

Although the parameter s in our experiments was empirically 
selected, it can also be estimated from the feature templates. 
White pixels corresponding to the line regions were found to be 
more important than the black pixels corresponding to the non-
line regions. Meanwhile, the total number of white pixels was 
smaller than the total number of black pixels in the feature 
templates. Therefore, there is a correlation between the 
importance of white/black pixels and the number of the 
respective pixels. The parameter s can be estimated from the 
total number of white and black pixels in the feature templates. 

Our experimental results indicated that the performance 
improvement for the finger knuckle matching was more 
pronounced than that for the palmprint matching. This is due to 
the noise existing in the palm images (Figure 4) which 

 
Fig. 5: Comparative ROCs on PolyU contactless 2D/3D palmprint database 

 
Fig. 6: Comparative ROCs on PolyU contactless 2D/3D finger knuckle database 



 

 

influenced the decision from concave/convex pixels and resulted 
in the performance degradation. Noise removal algorithms can 
therefore be further incorporated for denoising the 3D palm 
images. 

    In order to further investigate the effectiveness of 
weighted similarity measure, we also evaluated the performance 
of our method using Efficient Surface Code on the PolyU 2D/3D 
Palmprint database [10] (contact based), denoised mean 
curvature images (MCI) employed in Li et al [11], log-Gabor 
filter based templates from IIT Delhi iris database [12], 
templates from even Gabor filter with morphological operators 
on PolyU finger image database [13] and DoN feature 
descriptors [19] on 2D images of the PolyU contactless 2D/3D 
Palmprint database. In all these analyses, the observed 
improvements were not significant, and this could be attributed 
to the fact that the importance of white and black pixels 
generated from the above methods may have similar weights, 
especially when the images are noisy. Therefore, the Efficient 
Surface Code would produce comparable performance to 
Hamming distance measures for those binary template images. 
These findings also support our theoretical arguments that 
weighted similarity is useful when the white and black pixels in 
the binary images templates encode information with different 
importance, which is demonstrated in our palmprint and finger 
knuckle experiments.  

VI. CONCLUSIONS AND FURTHER WORK 

    This paper has proposed a new feature descriptor, Efficient 
Surface Code. This feature descriptor can efficiently encode 
concave and convex surface details and has been shown to be 
useful for accurately matching palmprint and finger knuckle 
images. This discriminative feature descriptor produces 
templates with one bit per pixel, which are four times smaller 
than those produced by Surface Code [5]. 

We have also introduced a weighted similarity measure for 
more accurately matching two binary feature images. The white 
and black pixels in some binary images do not necessarily 
encode information with equal importance. In our experiments, 
concave regions in palmprint and finger knuckle images were 
found to be more useful than the convex regions for accurate 
person identification. Our experimental results have indicated 
that our proposed methods can significantly outperform state-of-
the-art methods for matching these biometric images. Despite 
the superior experimental results presented in this paper, 
sophisticated methods for the computation of the parameter s 
requires further investigation and is suggested for further work. 

ACKNOWLEDGEMENT 

This work is supported by General Research Fund from Hong 

Kong Research Grant Council grant number PolyU152192/E. 

REFERENCES 

[1] J. J. Koenderink and A. J. van Doorn, “Surface shape and curvature 
scales”, Image and Vision Computing, vol. 10, issue 8, pp. 557-564, 
October 1992 

[2] C. Dorai, A. K. Jain, "COSMOS-A representation scheme for 3D free-
form objects" IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 19, issue 10, pp. 1115-1130, October 1997 

[3] D. L. Woodard, P. J. Flynn, “Finger surface as a biometric identifier”, 
Computer Vision and Image Understanding, 2005 

[4] L. Zhang, Y. Shen, H. Li, “3D palmprint identification using block-wise 
features and collaborative representation”, IEEE Trans. Pattern Analysis 
and Machine Intelligence, vol. 37, no. 8, pp. 1730-1736, 2015 

[5] V. Kanhangad, A. Kumar, D. Zhang, “A unified framework for 
contactless hand identification,” IEEE Trans. Information Forensics & 
Security, vol. 20, no. 5, pp. 1415-1424, May 2011 

[6] A. Kumar, C. Kwong, “Towards contactless, low-cost and accurate 3D 
fingerprint identification”, IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 3438-3443, Portland, USA, June 2013. 

[7] A. Kumar and K. Wang, “Identifying humans by matching their left 
palmprint with right palmprint images using convolutional neural 
network,” Proc. DLPR 2016, Intl. Workshop on Deep Learning in 
Biometrics, Cancun, Mexico, Dec. 2016. 

[8] Q. Zheng, A. Kumar, G. Pan, “Suspecting Less and Doing Better: New 
Insights on Palmprint Identification for Faster and More Accurate 
Matching”, IEEE Transactions on Information Forensics and Security 
(TIFS), vol. 11, pp. 633-641, March 2016 

[9] S. H. Cha, S. Yoon, C. C. Tappert, “Enhancing Binary Feature Vector 
Similarity Measures”, CSIS Technical Reports, Paper 18, 2005 

[10] D. Zhang, G. Lu, W. Li, L. Zhang and N. Luo, “Palmprint Recognition 
Using 3-D Information”, IEEE Transactions on Systems, Man, and 
Cybernetics-Part C: Applications and Reviews, vol. 39, no. 5, September 
2009 

[11] W. Li, D. Zhang, L. Zhang, G. Lu, and J. Yan, “Three Dimensional 
Palmprint Recognition with Joint Line and Orientation Features”, IEEE 
Transactions on Systems, Man, and Cybernetics-Part C: Applications and 
Reviews, vol. 41, no. 2, pp.274-279, March 2011 

[12] A. Kumar and A. Passi, “Comparison and combination of iris matchers 
for reliable personal authentication,” Pattern Recognition, vol. 43, no. 3, 
pp. 1016-1026, Mar. 2010 

[13] A. Kumar and Y. Zhou, “Human Identification using Finger Images”, 
IEEE Transactions on Image Processing, vol. 21, pp. 2228-2244, April 
2012 

[14] T. Ojala, M. Pietikainen and T. Maenpaa, “Multiresolution gray-scale and 
rotation invariant texture classification with local binary patterns”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, Issue 
7, July 2002 

[15] T. Ojala, M. Pietikäinen, “Unsupervised texture segmentation using 
feature distributions”, Pattern Recognition, vol. 32, pp. 477-486, 1999 

[16] H. Jin, Q. Liu, H. Lu, and X. Tong, “Face detection using improved LBP 
under Bayesian framework,” Third International Conference on Image 
and Graphics (ICIG), December 2004 

[17] D. J. Field, “Relations between the statistics of natural images and the 
response properties of cortical cells”, Journal of the Optical Society of 
America A, vol. 4, Issue 12, pp. 2379-2394, 1987 

[18] K. Ito, T. Aoki, H. Nakajima, K. Kobayashi, T. Higuchi, “A palmprint 
recognition algorithm using phase-only correlation,” IEICE Trans. 
Fundamentals of Electronics, Communications and Computer Sciences, 
vol. E91-A, pp. 1023-1030, April 2008. 

[19] Q. Zheng, A. Kumar, G. Pan, “A 3D Feature Descriptor Recovered from 
a Single 2D Palmprint Image”, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 38, no. 6 pp. 1272-1279, 2016 

[20] P. Yan and K. W. Bowyer, “Biometric recognition using 3D ear shape”, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, 
no. 8, pp. 1297-1308, Aug 2007 

[21] A. S. Mian, M. Bennamoun, and R. Owens, “An efficient multimodal 2D-
3D hybrid approach to automatic face recognition”, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1927-
1943, Nov 2007 

[22] K. I. Chang, K. W. Bowyer, and P. J. Flynn, “An evaluation of multimodal 
2D+3D face biometrics”, IEEE Transactions. on Pattern Analysis and 
Machine Intelligence, vol. 27, no. 4, pp. 619-624, Apr 2005.

 


