Artificial Intelligence

Fiona Yan Liu

Department of Computing

The Hong Kong Polytechnic University
Learning Outcomes of Search Agents

- Informed search
 - Also called blind search
 - The strategies have no additional information about states beyond that provided in the problem definition
 - Depth-first search
 - Breadth-first search
 - Uniform-cost search

- Informed search
 - Also called heuristic search
 - The strategies know whether one non-goal node is “more promising” than another
 - Greedy best-first search
 - A* search

- Reference reading
 - Chapter 3
Admissible Heuristic of A* Search

- The tree-search version of A* is optimal if $h(n)$ is admissible
 - Evaluation function: $f(n) = g(n) + h(n)$
 - $g(n)$: the cost so far to reach the node n
 - $h(n)$: the estimated cost to goal from the node n
 - $f(n)$: the estimated total cost of path through the node n to goal

- An admissible heuristic never overestimates the cost to reach the goal
 - A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
Domination of Heuristic Functions

- If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
 - then \(h_2 \) dominates \(h_1 \), which indicates that \(h_2 \) is better for search
- Domination translates directly into efficiency
 - \(A^* \) using \(h_2 \) will never expand more nodes than \(A^* \) using \(h_1 \).

\[h_1(S) = 8 \]
\[A^*(h_1) = 39,135 \text{ nodes} \]
\[h_2(S) = 18 \]
\[A^*(h_2) = 1,641 \text{ nodes} \]
N-queens Problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts
Place 8-queens on a chessboard such that no queen attacks any other

- A queen attacks any piece in the same row, column, or diagonal
Local Search

- Problem: Romania
 - The search algorithms explore search space systematically
 - When a goal is found, the path to the goal also constitutes a solution to the problem

- Problem: N-Queens
 - The path to the goal is irrelevant

- Local search
 - Operate using a single current node
 - Generally move only to neighbors of that node
 - Useful to find the best state according to an objective function
State-space Landscape

- Location: defined by the state
- Evaluation: defined by the value of the objective function
Hill-climbing Search

- Depending on initial state, can get stuck in local maxima
Arthur Samuel

- Professor at Stanford University
- Proposed hill-climbing search in 1963
 - Made the first computer checker program on IBM's first commercial
- Applications of hill-climbing search
 - Network flow problem
 - VLSI (Very Large Scale Integration) design
Simulated Annealing Search

- **Hill-climbing**
 - Never makes downhill moves
 - Get stuck on a local maximum

- **Random walk**
 - Moving to a successor chosen uniformly at random
 - Is complete but extremely inefficient

- **Simulated annealing**
 - Escape local maxima by allowing some "bad" moves but gradually decrease their frequency
 - In metallurgy, annealing is the process used to temper or harden metals and glass by heating them to a high temperature and then gradually cooling them
 - The algorithm is quite similar to hill-climbing
 - Instead of picking the best move, it picks a random move
 - If the move improves the situation, it is always accepted
Simulated Annealing Search

Sept. 15, 2015 Local Algorithms 12
Simulated Annealing Search Proposed in 1983

- Scott Kirkpatrick
 - Ph.D. in Physics from Harvard University
- C. Daniel Gelatt, JR
 - PhD in Physics from Harvard University
- Mario P. Vecchi
 - PhD in Electrical Engineering from Massachusetts Institute of Technology