Artificial Intelligence

Fiona Yan Liu
Department of Computing
The Hong Kong Polytechnic University
Learning Outputs of Lecture 01

- **Artificial Intelligence**
 - Is concerned with the design of intelligence in an artificial device

- **Acting humanly**
 - Can machines behave intelligently as the human
 - The Turing test

- **Thinking humanly**
 - Scientific theories of internal activities of the brain
 - Cognitive science and Neuroscience

- **Thinking rationally**
 - Correct argument/thought processes
 - Little widely accepted conclusion has been made

- **Acting rationally**
 - Doing the right thing
 - Which is expected to maximize goal achievement, given the available information
The History of Artificial Intelligence

- Artificial Intelligence
 - Term coined by McCarthy in 1956
- 1956 – 1974
 - Search technology
 - Natural language processing
 - Computer vision
- 1980 – 1987
 - Artificial neural networks
 - Expert systems
 - Industry robots
- 1993 – 2003
 - Support vector machine
 - Machine learning
 - Automatic cars
- 2012 –
Feedback of Questionnaire

- Why choose this course?
 - Be interested in this course
 - Useful for further study

- Expectation of this course
 - Learn solid theory of artificial intelligence
 - Learn some useful skills of developing intelligent system
 - More chance to discuss and practice

- Please choose the course you have taken
 - Data structure

- Please choose the techniques you want to learned
 - Various requirements

- How many courses do you have this semester
 - 5 – 6
 - I have final year project
 - My final year project is related with artificial intelligence
General Information

- Course web page

- Text book
 - Stuart Russell and Peter Norvig, “Artificial Intelligence A Modern Approach”

- Lecture of our class
 - Tue. 15:30 – 17:20
 - Y410
 - Contact with Fiona csyliu@comp.polyu.edu.hk

- Lab of our class
 - Tue. 17:30 – 18:20
 - QT402
 - Contact with Songtao Wu csstwu@comp.polyu.edu.hk

Sept. 8, 2015

Intelligent Agent
Course Presentation

- Introduction to a movie related with artificial intelligence
 - Group work with 1 – 4 person(s) each group
 - Every group should work on different movies

- 10 minutes presentation
 - No requirement of report

- Send email to TA including the following information
 - Group member name and student ID
 - Movie name
 - Before Oct. 13 2015

- Presentation date
 - Oct. 27 2015 at 15:30
 - The confirmed presentation order is announced on Oct. 20

- 100 points and 10% for the final grading
 - For detail information, check notes of lecture 01
A Room Clean Job

- The human perceives the environment
 - which room, clean or dirty
- Decides what to do
 - move right or left, suck the dust
- And then acts
A Vacuum-Cleaner Agent

- How to perceive the environment
 - which room, clean or dirty
- How to make the decision
 - move right or left, suck the dust
- How to make the action
Agents

- An agent is an entity that perceives and acts
 - Perceiving its environment through sensors
 - Acting upon that environment through actuators

![Diagram of agent with actuators and sensors interacting with environment](image)
Rational Agent

- Rational Agent
 - An agent is an entity that perceives and acts
 - An agent function is to determine actions from percept histories:
 \[f: \mathcal{P}^* \rightarrow A \]
 - For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

- Characteristics of rational agent
 - Distinct from omniscience
 - Agents can perform actions in order to modify future percepts so as to obtain useful information
 - An agent is autonomous if its behavior is determined by its own experience
PEAS of Intelligent Agent Design

- Intelligent agent design
 - Under the assumption that there exists rational agent
 - Aim: find a way to implement the rational agent
- PEAS must first specify the setting for intelligent agent design
 - Performance measure
 - Environment
 - Actuators
 - Sensors
- Design an automated taxi driver
 - Performance measure
 - Safe, fast, legal, comfortable trip, maximize profits
 - Environment
 - Roads, other traffic, customers
 - Actuators
 - Steering wheel, accelerator, brake, signal, horn
 - Sensors
 - Cameras, sonar, speedometer, GPS
Intelligent Agent Types

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents

![Diagram showing actuators, sensors, and environment]
Simple Reflex Agents

- Select actions only based on current perception
 - Infinite loops are often unavoidable
Model-based Reflex Agents

- Maintain internal states
 - A model of the world
Goal-based Agents

- Future is taken into account
 - The agent can choose one from among multiple possible solutions
Utility-based Agents

- Cost will be considered to achieve the goal
 - If save the cost is a kind of goal, it can be classified to a kind of goal-based agent
Example of An Intelligent Agent

- Drive from Arad to Bucharest
- Find the best way
Solve the Problem by Search Agent

- Formulate the perception
 - Initial state: In(Arad)
- Formulate goal
 - Be in Bucharest
 - In(Bucharest)
- Formulate the environment
 - States: various cities with known distances
 - Path cost: The sum of the costs of the individual actions along the path
- Formulate the actions
 - Drive between cities
 - Actions: Go(Sibiu), Go(Timisoara), Go(Zerind)
- Find solution
 - Sequence of cities
 - Transition model: RESULT(In(Arad), Go(Sibiu)) = In(Sibiu)
Searching for Solution

- Solution
 - An action sequence
- Search algorithm
 - Considering various possible action sequences
- Search tree
 - Nodes: states in the state space
 - Root: initial state
 - Branches: actions
- Expanding the current state
 - Apply each legal action to the current state, thereby generating a new set of states
 - Add branches from the parent node leading to child nodes
- Essence of search
 - Following up one option now and putting the others aside for later
 - In case the first choice does not lead to a solution
Example of Tree Search
Loopy Path

- Redundant Paths
 - Loopy Path
Search Strategy

Search strategy
- Pick the order of node expansion

Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: number of nodes generated
- space complexity: maximum number of nodes in memory
- optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be ∞)
Uninformed Search

- Breadth-first search
 - Expand the shallowest unexpanded node
- Depth-first search
 - Expand the deepest unexpanded node
- Uniform-cost search
 - Expand least-cost unexpanded node
- Uninformed search
 - Also called blind search
 - The strategies have no additional information about states beyond that provided in the problem definition

Sept. 8, 2015
Intelligent Agent
Informed Search
Informed Search

- Informed search
 - Also called heuristic search
 - The strategies know whether one non-goal node is “more promising” than another
 - The “desirability” of a node is estimated by an evaluation function $f(n)$

- Greedy best-first search
 - Expands the node that is closest to the goal, which is evaluated by the heuristic function $h(n)$

- A* search
 - Avoid expanding paths that are already expensive
 - Evaluation function: $f(n) = g(n) + h(n)$.
 - $g(n)$: the cost so far to reach the node n
 - $h(n)$: the estimated cost to goal from the node n
 - $f(n)$: the estimated total cost of path through the node n to goal