Artificial Intelligence

Fiona Yan Liu

Department of Computing

The Hong Kong Polytechnic University
Final Exam

- Examination
 - Sat. Dec. 12 12:30 – 14:30
 - P306
 - Close book
 - Calculator is permitted

- Office hour
 - Sat. Dec. 12 9:00 – 11:00
 - Fri. Dec. 11 15:00 – 17:00
 - Tue. Dec. 8 10:00 – 12:00

- Form of questions
 - True or False 20%
 - Answer the questions and calculation 80%

- Cover all lectures
 - No matlab
 - No EEG
A Typical Artificial Neural Networks

Input layer Hidden layer Output layer

Nov. 24, 2015
An artificial neuron transforms weighted input non-linearly:

\[y = \varphi(w^T x) \]

\(\varphi \) is called activation function.
Neuron is the structural constituent of the brain
- Each neuron is a cell that uses biochemical reactions to receive, process and transmit information
- The brain is a collection of about 10 billion interconnected neurons, with approximately 60 trillion connections
Artificial Neuron

- Neurons are specialized for information transmitting through generating spiking sequences
- Dendrites receive inputs from other neurons through synaptic connection
- At the synapses between the dendrite and axons, electrical signals are modulated in various amounts
- Axon carries neuronal outputs to other neuron cells
Perceptron

- Two-layer ANN, with threshold activation function
- Used for classification problem

Assume \(\{x_i\}_{i=1}^N \) are \(N \) data vectors, \(\{y_i\}_{i=1}^N \) are their labels, \(y_i \in \{-1, +1\} \). Perceptron is to find a weight \(\mathbf{w} \) satisfying:

\[
y_i = \text{sgn}(x_i^T \mathbf{w})
\]

(1)
Perceptron Learning Algorithm

1. Initialize a random \mathbf{w}_0;
2. For each (\mathbf{x}_i, y_i), η is the learning rate:
 2a: calculate the estimated label $\hat{y}_i = \text{sgn}(\mathbf{w}_n^T \mathbf{x}_i)$
 2b: update the weight $\mathbf{w}_{n+1} = \mathbf{w}_n + \eta (y_i - \hat{y}_i) \mathbf{x}_i$
3. The algorithm stops until \mathbf{w} converges.
The perceptron algorithm is guaranteed to converge if the data is linearly separable.

- The algorithm does not converge for linearly inseparable cases.

\[y = \text{sgn}(x^T w) \]
Artificial Neural Networks

- ANNs are biologically inspired computer programs designed to simulate the way in which the human brain processes information
- A massively parallel distributed processor made up of simple processing
Multilayer Perceptron (MLP)

- One or several hidden layers
- Continuous activation function, sigmoid
- Learning with a teacher signal
- Powerful ability for classification and function approximation

\[o = \sigma(\text{net}) = \frac{1}{1 + e^{-\text{net}}} \]
MLP Learning: Back Propagation

- Back propagation searches weights w to minimize the total error of the network over the set of training examples
- Gradient descent based method
- Backpropagation consists of two repeated process: forward process and error propagation process

$$f(w, x)$$

$\{(x_i, y_i)\}_{i=1}^{N}$ is the training set, back propagation tries to minimize

$$w^* = \min_w \frac{1}{2N} \sum_{i=1}^{N} \|y_i - f(w, x_i)\|^2$$
MLP learning: Forward Process

Fix the weights \mathbf{w}, compute the output for any given sample \mathbf{x}_i:

$$\tilde{y}_i = f(\mathbf{w}, \mathbf{x}_i)$$

For neuron j, its associated weight is \mathbf{w}_j, the input signal to j is \mathbf{x}_i, then the output is calculated as:

$$o_{ji} = \sigma(\mathbf{w}_j^T \mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{w}_j^T \mathbf{x}_i)}$$
MLP learning: Backward Process

In this step, the network error is used for updating the weights.

\[e = \frac{1}{2N} \sum_{i=1}^{N} \left\| y_i - \tilde{y}_i \right\|^2 \]

The error is propagated backward from the output layer through the network layer by layer. Weights \(\mathbf{w} \) are updated according to the propagated error signal:

\[\mathbf{w}_j(n+1) = \mathbf{w}_j(n) + \eta \Delta \mathbf{w}_j \]

where \(\eta \) is the learning rate, \(\Delta \mathbf{w}_j = \{ \Delta w_{jk} \} \)

\[\Delta w_{jk} = o_{ji}(1-o_{ji}) \delta_j x_{ik} \]

where \(x_{ik} \) is the \(k \)-th element of \(\mathbf{x}_i \), \(\delta_j \) is:

\[\delta_j = \sum_p w_{jp} \delta_p \]

For final layer:

\[\delta_p = (y_{ip} - \tilde{y}_{ip}) y_{ip} (1 - y_{ip}) \]