
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID PAGE 1

ROSF: Leveraging Information Retrieval and
Supervised Learning for Recommending

Code Snippets
He Jiang*, Liming Nie, Zeyi Sun, Zhilei Ren, Weiqiang Kong, Tao Zhang, and Xiapu Luo

Abstract—when implementing unfamiliar programming tasks, developers commonly search code examples and learn usage

patterns of APIs from the code examples or reuse them by copy-pasting and modifying. For providing high-quality code

examples, previous studies present several methods to recommend code snippets mainly based on information retrieval. In this

paper, to provide better recommendation results, we propose ROSF, Recommending cOde Snippets with multi-aspect Features,

a novel method combining both information retrieval and supervised learning. In our method, we recommend Top-K code

snippets for a given free-form query based on two stages, i.e., coarse-grained searching and fine-grained re-ranking. First, we

generate a code snippet candidate set by searching a code snippet corpus using an information retrieval method. Second, we

predict probability values of the code snippets for different relevance scores in the candidate set by the learned prediction model

from a training set, re-rank these candidate code snippets according to the probability values, and recommend the final results

to developers. We conduct several experiments to evaluate our method in a large-scale corpus containing 921,713 real-world

code snippets. The results show that ROSF is an effective method for code snippets recommendation and outperforms the-

state-of-the-art methods by 20% - 41% in Precision and 13% - 33% in NDCG.

Index Terms—Code snippets recommendation, information retrieval, supervised learning, topic model, feature.

—————————— ——————————

1 INTRODUCTION

NTERNETWARE is a software paradigm consisting
of self-contained, autonomous entities in Internet

computing environment [30]. As mentioned in
previous work, both desktop software and mobile
applications (apps) are possible entities in
Internetware systems [30], [22]. In the development
process for these software, developers often have to
implement unfamiliar programming tasks. They either
reuse code examples by copy-pasting and modifying
[23], or learn the correct ways to employ an unfamiliar
Application Programming Interface (API) relying on
code examples [54]. As one of the most common ways
for reuse, code reuse can save time and resources and
reduce redundancy [32].

A code snippet refers to a piece of code, which can
accomplish one or more specific programming tasks
[17]. Typically, a programming task, for example
“record sound audio”, is a short text that describes the
requirements on the program to be constructed. To

find high-quality code examples for programming
tasks, developers may search the publicly available
code repositories on the Internet or locally available
projects [28]. Some Internet-scale code search engines,
such as Open Hub [4], can provide code examples for a
given task. However, the dominant measure used by
these engines is textual similarity [11]. Previous studies
show that these results are usually complicated and
not sufficient [17].

In recent years, some researchers propose several
methods to recommend code snippets for free-form
queries[7], [17], [29]. These methods rank the code
snippets in a corpus and return Top-K related code
snippets to developers. An earlier study [23] shows
that the performance of these methods has room for
improvement. The possible reasons may include that a
signal feature is used for ranking and the weights of
features cannot be adjusted automatically. The features
employed in these methods contain textual similarity
between a query and code snippets [29], code metrics
such as the lines of code [36], etc. For achieving better
performance, it is necessary to employ multiple
features and assign different weights for these features
automatically [7], [36]. Supervised learning can handle
this scenario above, which is the machine learning task
of inferring a model from labeled training set. Using
the learned prediction model, one can determine the
class labels for unseen instances in a test set for a new
query [31], [50], and further recommend relevant code
snippets.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

I

————————————————

 H. Jiang is with the School of Software, Dalian University of Technology,
Dalian, China and the Key Laboratory for Ubiquitous Network and
Service Software of Liaoning Province, Dalian, China, is also with the
State Key Laboratory of Software Engineering, Wuhan University,
Wuhan, China. E-mail: jianghe@dlut.edu.cn.

 L. Nie, Z. Sun, Z. Ren, and W. Kong are with the School of Software,
Dalian University of Technology, Dalian, China and the Key Laboratory
for Ubiquitous Network and Service Software of Liaoning Province,
Dalian, China. E-mail: limingnie@mail.dlut.edu.cn;
sunzeyidlut@gmail.com; {zren, wqkong}@dlut.edu.cn.

 T. Zhang is with School of Computer Science & Technology, Nanjing
University of Posts and Telecommunications, Nanjing, China. Email:
cstzhang@njupt.edu.cn

 X. Luo is with Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, China. Email: csxluo@comp.polyu.edu.hk.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

In this paper, we propose Recommending cOde
Snippets with multi-aspect Features (ROSF). Our
method combines both information retrieval and
supervised learning to improve the performance of
code snippets recommendation. In this method, we
explore two stages, i.e., coarse-grained searching and
fine-grained re-ranking, to recommend code snippets.
First, for a new free-form query, a candidate set is
generated by using an information retrieval method.
This stage tries to collect as many as possible relevant
code snippets in the candidate set. Then, we re-rank
the candidate set by a learned prediction model. This
stage tries to re-rank the relevant code snippets to the
top of the results by the supervised learning method.
Here, the problem of code snippets recommendation is
viewed as a multi-class classification. The prediction
model is learned on the instances of a training set by
utilizing multinomial logistic regression [6]. Each
instance refers to a candidate code snippet, and is
represented with a vector containing multi-feature
values and a label. These features reflect three aspects
of code snippets, i.e., text, topic, and structure. The
label reflects the relevance score between a code
snippet and the query.

To evaluate the effectiveness of our method, we
propose three Research Questions (RQs) and conduct
several experiments to answer them. As code reuse is
relatively common in mobile apps [32], our
experiments are based on a code snippet corpus with
more than 920,000 real-world code snippets from 1,538
open source app projects on the Android platform.
Moreover, we employ 35 queries and their candidate
set to create the training and the test set. Among them,
20 queries are randomly selected as testing queries, the
others are treated as training queries. We label each
candidate set for each query. Totally, 3,500 instances
related to 35 queries are labeled by assessors. The
results of experiments show that (1) ROSF can
optimize the ranking of the candidate set to achieve
better results. (2) ROSF is a better method for code
snippets recommendation than comparative methods,
which outperforms Portfolio [29] and VF [17] by 20% -
41% in Precision@10 and 13% - 33% in Normalized
Discounted Cumulative Gain (NDCG)@ 10.

This paper makes the following contributions:
1. We propose ROSF, a new hybrid code

recommendation method based on information
retrieval and supervised learning. Our method
considers full advantage of text, topic, and structure
aspects of code snippets.

2. We evaluate the performance of ROSF against
several comparative methods in terms of Precision and
NDCG.

3. We explore the impact of features on the
performance of ROSF, and present the influential
features for supervised learning method to
recommend code snippets.

4. We construct a code snippet corpus segmented
from open source app projects, and label a set with
3,500 instances for 35 real world free-form queries.

Next section outlines the architecture of our method
and a prototype. Section 3 elaborates on the data
processing. The steps of training and recommendation
are proposed in Section 4. Section 5 provides details
about the experimental design. Experimental results
are presented in Section 6. Section 7 states the threats
to validity. The related works are shown in Section 8.
In Section 9, we conclude this paper and introduce the
future work.

2 ARCHITECTURE AND PROTOTYPE

This section first introduces the overall architecture of
our framework, and then shows the whole process
using a prototype.

2.1 Architecture

Fig. 1 shows two phases of our framework: Data
Processing and recommendation (i.e., ROSF).

In the Data Processing phrase, we input the open
source app projects collected from the website F-droid
[1], and output a code snippet corpus. First, we extract
the Java files from app projects and store them in a
Repository. Then, Segmentation parses each of the Java
files to generate the code snippet corpus. Each method in
the Java file is segmented to a code snippet [17]. In the
phase of recommendation, the input contains the new
query and the collected code snippet corpus. The output
is a list with K ranked code snippets. As it is a time-
consuming work to label relevance scores for all code
snippets in the code snippet corpus, following Niu et
al. [36], we explore two stages to recommend code
snippets: coarse-grained searching and fine-grained re-
ranking [37].

Specifically, for a new query, we first identify a
candidate set that contains N code snippets using an
information retrieval method (e.g., BM25). Then, the
candidate code snippets are represented as instances
by Vector builder as a test set. Finally, by the learned
prediction model from a training set, we predict the
probability values belonging to different relevance
scores for each instance in the test set. According to the

Fig. 1. Code snippets recommendation framework. Two phases:

Data Processing and recommendation (ROSF). The blue arrows

indicate the process of training. The orange arrows indicate the

process of recommending for a new query.

 Code
Snippet Corpus

Top-K
Code Snippets

Probability

Values

ROSFData Processing

Training Set

Repository

Java Files

Vector
Builder

Training
Queries

Index and
Search

Prediction
Model

Ranker

Segmentation

Topic Model

New Query

Apps

Candidate
Set

Text

Topic

Structure

Test Set

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE3

probability values, we identify the predicted relevance
score, and recommend a list with K (K<N) code
snippets by the module of Ranker.

For learning a prediction model from the training
set, we first prepare several training queries and their
candidate sets following the steps above. Then, we
construct the instances for each training query to
generate the training set. One difference from the test
set is that the relevance score for each instance is
labelled manually by assessors. Finally, we employ
multinomial logistic regression [6] to train and
generate the prediction model. Recently, there are
more applications of IR in software engineering (e.g.,
for regression test prioritization [41]), it seems that the
proposed technique may also be possible to applied to
those new areas. It would be interesting to discuss
such potentials.

2.2 Prototype

To display our method in a more visually appealing
manner, we implement a prototype. As shown in Fig. 2,
there are two windows: the main user interface (a) and
the code snippet display window (b).

When a developer enters a free-form query in the
search bar of the main user interface, for
example, ”record audio sound”, ROSF returns a list with
10 code snippets below the search bar. Suppose the
code snippet on the second position is selected, by
clicking the “code” button on the right, the text content
of this code snippet will be displayed in the code snippet
display window. Then, the developer can check the
details about this code snippet and get inspiration
from it.

The purpose of our work is saving developers' time
for searching more relevant code snippets according to
their programming tasks. After achieving these code
snippets, developers still need to manually modify
these code snippets and further test. In other words,
we only provide relevant code snippets to developers
without considering integration with a code context.

3 DATA PROCESSING

In this section, we show the data and the process to
acquire them. Then, we present some techniques used
in the process, such as BM25, topic model. As
mentioned by Mei et al. [30], in the Internet computing
environment, mobile apps are possible entities in
Internetware systems [22], [53]. Code reuse is relatively
common in mobile apps [32], and mobile apps are
becoming more popular, we use the data on the
Android platform to evaluate our method.

3.1 Open Source App Projects

The code snippets recommended in our
experiments come from open source app projects.
These projects are collected from F-droid [1]. F-droid is

(a) (b)

Fig. 2. Prototype of ROSF. Two interfaces are contained: the main user interface (a), and the code snippet display interface (b).

Fig. 3. An example for code segmentation.

TABLE 1

THE FEATURES AND THEIR CATEGORIES

ID Categories Features

f1

Text

The textual similarity between a query and the
content of a candidate code snippet (i.e., code text
and comments).

f2
The textual similarity between a query and the full
title of a candidate code snippet (i.e., package name
of app, class name, and code snippet name).

f3
The textual similarity between a query and the
simple title (only contains code snippet name) of a
candidate code snippet.

f4
The textual similarity between a query and the
sibling method names contained in a same Java file
with a candidate code snippet.

f5
The textual similarity between a query and the
import statements of Android library in the Java
file that contains a candidate code snippet.

f6
The textual similarity between a query and the
import statements of the Java standard library in
the Java file that contains a candidate code snippet.

f7
The textual similarity between a query and the
import statements of other libraries in the Java file
that contains a candidate code snippet.

f8 Topic
The topic similarity between a query and the
content of a candidate code snippet.

f9 Structure The number of lines in a candidate code snippet.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

a Website with free and open source apps on the
Android platform. For each one of the app projects,
there are several versions. We only focus on the latest
version in our experiments. Until July 2015, we
collected all 1,538 Android app projects from F-droid.
Following the steps of [35], we extract 921,713 code
snippets from these app projects.

3.2 Feature Extraction

For each Java file in the app project, we parse it using
the module Segmentation, and extract three aspects of
code snippets: text, topic, and structure. These aspects
are used to calculate three types of feature values of
instances to train the prediction model, some of these
features are used in earlier studies [17], [34], [54].
Table 1 shows some details about these features.
Specifically, the text and topic aspects are used to
calculate the query-dependent textual similarity
features and topic similarity features [21], respectively.
A code snippet is considered as a textual document
describing one or more technical issues/topics. Each of
them is represented by certain words or terms.
Intuitively, the terms are textual, visible, while the
topics are semantic, latent. They can complement each
other to achieve better performance for text matching
tasks [24]. Moreover, the structure aspect is employed
as query-independent feature. Fig. 3 shows a Java file
that implements a programming task "record sound
audio". Next, we show how to segment Java files and
collect these aspects using this example.

(1) Text
Content: In Fig. 3, there are four methods in the Java

file "RecorderService". The tool Eclipse Abstract Syntax
Tree (AST) is exploited to parse each Java file [17].
Totally, we can segment four code snippets from this
Java file. Each method in the Java file can be
segmented as a code snippet, which contains the code
text and comments. Following the process, we can
generate a code snippet corpus. As shown in Table 2,
the first row provides the statistical information about
the number of code snippets in our code snippet
corpus. Here, “Max/Min” refers to the maximum and
minimum number of code snippets that an app project
contains. The max value reaches 22,234, which means
that project is quite large. The feature f1 in Table 1 is
the textual similarity between a query and the content
of a candidate code snippet.

The title of code snippet: We name each code snippet
using a fixed format. In this example, we set the title of
the method "localStartRecording" as "net.micode.
soundrecorder_1_src@RecorderService#localStartReco
rding.txt", where "net.micode.soundrecorder_1_src”
refers to the package name of the app, and
“RecorderService” is the name of the Java file. We
employ two types of titles to calculate the features f2
and f3 in Table 1. The differences are the usages of
package names and Java file names.

The names of sibling methods: Except for the title of the

candidate method, other sibling methods in this Java
file also show helpful information. The feature f4
provides the textual similarity between the queries and
the names of these sibling methods.

The import statements: Beside above information, we
also take into account the import statements of Java
files [7]. The import statements in Fig. 3 direct the Java
compiler to include the android and Java APIs in the
compilation. We divide these import statements into
three categories: Android, Java, and other libraries.
The features f5 - f7 are the textural similarity between a
query and the import statements.

(2) Topic
In Table 1, f8 is the topic feature. In our experiments,

except for the textual similarity above, we also
calculate the topic similarity between queries and code
snippets using Latent Dirichlet Allocation (LDA) [8].
Given a collection of code snippets and queries, we
first generate a term-by-document matrix M. A generic
entry 𝜔𝑖𝑗 of this matrix denotes a measure of the
weight (i.e., relevance) of the 𝑖𝑡ℎ term in the 𝑗𝑡ℎ
document. Then, LDA takes the term-by-document
matrix as an input to identify the latent variables
(topics) hidden in the data and generates as output a
matrix 𝜃 , denoted as topic-by-document matrix. A
generic entry 𝜃𝑖𝑗 of this matrix denotes the probability
of the 𝑗𝑡ℎ document to belong to the 𝑖𝑡ℎ topic. The
number of topics is usually much smaller than the
number of terms. Finally, the topic similarity between
queries and code snippets can be calculated based on
their topic-by-document matrix [38]. In this process,
we use the collapsed Gibbs sampling on Mallet [3].
Moreover, following [38], we set the topic number as
100, and the number of iterations as 100.

(3) Structure
The number of lines: In our preliminary experiments,

we observe that the number of lines in code snippets is
also an important type of information. Too much or
too little line numbers will unsuitable to implement
programming tasks. The second row of Table 2
provides the statistical information about the line
numbers of code snippets in our code snippet corpus.
Because the number of lines in code snippets is query-
independent, we use it as feature f9 directly.

3.3 Index and Search

By the module Index and Search on Lucene, we index
the text aspects (i.e., the content, the titles, the sibling
method names, and the import statements) of code
snippets. Meanwhile, the text features f1 - f7 can be
calculated when the query is entered. Lucene is a free
and open-source information retrieval engine [2]. We

TABLE 2

THE STATISTICAL INFORMATION FOR CODES AND LINES

 Total Max Min Mean StdDev

Codes 921,713 22,234 1 600 1623

Lines 11,445,768 2,222 1 12 22

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE5

employ Lucene as it can provide high quality and fast
services for indexing and searching. Moreover, in our
work, we also use Lucene to generate the candidate set
for a given query.

Before indexing the text aspects of a code snippet,
we need to preprocess each of them. The text pre-
processing is important in the text mining community
[47], [49], [51], which contains tokenization, stop words
removal, and stemming. Before tokenization, we split
the identifiers to terms by Camel-case. For example,
the identifier "MediaRecorder" can be split into
"Media" and "Recorder" [29]. After above steps, the text
aspects the code snippet are now represented as
several bags of terms. Then, we store them on Lucene
to generate a document. In other words, a document
corresponds to a code snippet and consists of a
number of fields. Each field stores the content of each
processed text aspects.

3.4 BM25

On Lucene, we generate the candidate set and
calculate the features against a query with the BM25
textual similarity by Lucene automatically. BM25 is a
bag-of-words ranking function implemented in Okapi
system [40], which has provided very effective
retrieval performance in previous TREC experiments
[52]. As the queries with several keywords are often
short, BM25 can facilitate the retrieval of documents
relevant to a short query [13].

Given a query q with terms 𝑡1, 𝑡2, ..., 𝑡𝑛 , the BM25
similarity between a document D and the query q is
[25], [44] :

𝑠𝑖𝑚(𝐷, 𝑞) = ∑ 𝐼𝐷𝐹(𝑡) ∙
𝑡𝑓(𝑡,𝐷)(𝑘1+1)

𝑡𝑓(𝑡,𝐷)+𝑘1(1−𝑏+𝑏
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)

𝑡∈𝑞∩𝐷 (1)

where, 𝑡𝑓(𝑡, 𝐷) is the term frequency of 𝑡 in the
document D, |𝐷| is the length of document D, and
𝑎𝑣𝑔𝑑𝑙 is the average of document lengths in the whole
corpus. The parameters 𝑘1 and b control the scale of
term frequency and document length, respectively. In
our experiments, the values of k1, b are 1.2 and 0.75,
respectively, which are the recommended values in
[40].

The Inverse Document Frequency (IDF) of term t in
the whole corpus is calculated as:

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔
1+(𝑁−𝑛(𝑡)+0.5)

𝑛(𝑡)+0.5
 (2)

where, 𝑁 is the total number of documents, 𝑛(𝑡) is the
number of documents that contain the term 𝑡. 0.5 is a
smoothing constant to deal with the situation that 𝑛(𝑡)
is set to 0.

4 TRAINING AND RECOMMENDATION

This section details our method. For a given query
from a developer, ROSF is responsible for
recommending a list of potential relevant code

snippets. There are two stages in this process: coarse-
grained searching and fine-grained re-ranking.
Specifically, the first stage is achieving Top-N code
snippets as the candidate set. The second stage is
optimizing the ranking of this set using a learned
prediction model and recommending Top-K code
snippets to the developers.

4.1 Achieving the Candidate Set

To collect Top-N code snippets as the candidate set, we
score each snippet in the corpus with a BM25
similarity for the given query by using formula (1) on
Lucene.

After scoring, the snippets are ranked based on their
values. Snippets with high scores are ranked in the top
of the final result, which means these snippets are
more relevant to the query. Finally, we can get the
candidate set with Top-N code snippets. It should be
noted that in the comparative method BM25, the Top-
K code snippets out of Top-N code snippets are
returned as the final result.

In the process, we employ two strategies to filter the
results. The first one, following [7], is to remove the
code snippets with less than five lines in the results of
our method. Another is the removal of potentially
duplicate code snippets in the results. Two code
snippets are considered potentially duplicated if they
have a same method name and a BM25 similarity.

4.2 Vector Builder

Vector Builder module is employed to construct the
instances of the training set or the test set in our
experiments. Each instance corresponds to a candidate
code snippet for a query. It is represented as a vector
with the form < q, Fc, L>, where q refers to the given
query; Fc contains different feature values of a
candidate code snippet c; L refers to the relevance
score between the query and the candidate code
snippet. In a real scenario, we only need to evaluate
the relevance score for each instance in the training set
manually. The labels for the instances in the test set are
predicted by the learned prediction model. However,
in our experiments, for generating the golden set, we
evaluate all instances in the candidate set for 35
queries. Totally, we label 3,500 instances.

4.3 Prediction model and Ranker

In this subsection, we show the re-ranking process
using the module Prediction model and Ranker in Fig. 1.
In our work, we view the problem of code snippets
recommendation as a multi-class classification. A
candidate code snippet may be labeled with four
possible scores. Meanwhile, multinomial logistic
regression is a classification method that generalizes
logistic regression to multiclass problems [6].
Therefore, multinomial logistic regression is a suitable
analytic approach to our problem.

Given a set of feature values of an instance, this

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

classification method constructs a linear predictor
function to predict the probabilities of several possible
labels for this instance. The linear predictor function is
represented with a linear combination of the features
and the weights of the features [6].

 𝑠𝑐𝑜𝑟𝑒 (𝐹𝑐, 𝐿) = 𝛽𝐿 ∙ 𝐹𝑐 (3)

where, 𝐹𝐶 is the feature vector of instance c, 𝛽𝐿 is a
vector of weights (or regression coefficients)
corresponding to relevance score L, and s𝑐𝑜𝑟𝑒 (𝐹𝑐, 𝐿) is
the probability belonging to relevance score L for the
instance c. The best values of the weights for our
problem are determined from the training set by using
stochastic gradient descent algorithm according to the
relevance scores labeled manually.

For each instance of the candidate set for a new
query, we employ the learned linear predictor function
to predict the probabilities of four possible relevance
scores. In other words, each instance has four
probability values corresponding to four relevance
scores. Then, the relevance score with the maximum
probability value is selected as the predicted relevance
score for the instance. Among the candidate set, we
first sort the subset containing the code snippets with
predicted score 4 according to the predicted probability
values in descending order. Then, we select Top-K
code snippets as the final results. If the size of this
subset is less than K, we consider the subset with score
3, until we collect K code snippets.

For example: In Table 3, there are five instances, i.e., a,
b, c, d, e, in a candidate set for a query. Assume we
need to recommend Top-3 code snippets. Using the
learned predictor model, first, we can generate the
probability values of four relevance scores for each
instance. Then, we identify the predicted score for each
instance by the probability values. For the instance a,
the maximum value is 0.9 which belongs to the score 3.

We set the predicted score as 3. Finally, we can achieve
four lists corresponding to four scores. We start to
select from the list with score 4, until we collect 3
instances. Finally, the result is: b, c, and a.

5 EXPERIMENTAL DESIGN

In this section, we evaluate the effectiveness of our proposed

method by three research questions based on a large-scale

real-world data set. Our experiments are conducted on a 3.60

GHz CPU (Intel i5) PC running windows 8.1 OS with 8G

memory. We implement our method using Java in Eclipse.

All data used in our experiments can be found on our

website for comparison [5].

5.1 Research Questions

We explore the following Research Questions (RQs). In
the section 6, we conduct several experiments to
answer three RQs.

RQ1: Will the performance of ROSF be affected by the
size of the candidate set?

As mentioned before, in ROSF, we use two stages to
recommend code snippets, i.e., coarse-grained
searching and fine-grained re-ranking. In coarse-

TABLE 4
QUERIES FOR TEST

ID Query Tag Viewed times

1 Record audio sound android 4783
2 Get screen dimensions in pixels android, layout, screen 720031
3 Take a screenshot on Android android, screenshot 107071
4 Get the memory used android, memory, memory-management 217026
5 Get the list of activities/applications installed android 180820
6 Import the system time android, operating-system 36113
7 Open a URL in Android's web browser android, url, android-intent, android-browser 342424
8 Use android Timer in Android activity android, multithreading, timer, scheduled-tasks 18998
9 Capture Image from Camera and Display in Activity android, image, camera, capture 157947
10 Handle right to left swipe gestures android, swipe, gesture-recognition 152674
11 Converting pixels to dp android 264672
12 Draw a line in android android 182837
13 Get cpu usage android, cpu-usage 72209
14 Detect network connection status android, networking, wifi, connectivity 69553
15 Check if an application is installed or not in Android android, apk 46174
16 Convert an image into Base64 string android, Base64 80049
17 Get the web page contents from a WebView android, android-webwiew 52124
18 Cancel an executing AsyncTask android, android-asynctask 85973
19 Detect if a Bluetooth device is connected android 39245
20 Retrieve incoming call's phone number android, telephonymanager, phone-state-listener 50134

TABLE 3
AN EXAMPLE FOR RE-RANKING THE CANDIDATE SET

 Relevance Scores

Instances 1 2 3 4 Predicted Score

a 0.1 0.0 0.9 0.0 3

b 0.0 0.2 0.1 0.7 4

c 0.4 0.1 0.0 0.5 4

d 0.0 0.0 0.6 0.4 3

e 0.8 0.0 0.1 0.1 1

Code snippet with predicted score 4: b (0.7), c (0.5);
Code snippet with predicted score 3: a (0.9), d (0.6);
Code snippet with predicted score 2: null;
Code snippet with predicted score 1: e (0.8);
Top-3 recommendation results: b, c, and a.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE7

grained searching, we identify a candidate set with N
code snippets. Here, we propose RQ1 to explore the
impact of the parameter N on the performance of our
method.

RQ2: Will the performance of ROSF be better than
comparative methods?

Different from previous methods mainly using
information retrieval method, we are trying to employ
both information retrieval and supervised learning to
recommend code snippets. In this research question,
we want to explore the performance of our method by
comparing with several state-of-the-art methods.

RQ3: How does each of the features affect the
performance of our method?
This research question is proposed to evaluate the
impact of each feature on the performance of our
method. Before that, we first explore the correlation
between these features.

5.2 Queries

A query refers to a programming task. In order to
simulate the real scenario, following the method in [23],
we collect real-world programming tasks from Stack
Overflow [4] as queries. We totally employ 35 queries
in our experiments. Among them, 20 queries are
randomly selected for test, the others are treated as
training queries. In other words, the instances of the
test set refer to the candidate sets of 20 test queries.
Meanwhile, the instances of the training set refer to the
candidate sets of 15 training queries. We use the same
test queries for all methods in the following
experiments.

Table 4 shows some details about the test queries.
All 35 queries can be found in our webpage [5]. The
column “Tag” shows the categories of the queries.
Note that these queries share the tag “android”, which
means that they are related with mobile apps
development. The column “Viewed times” indicates the
number of times a query has been viewed by visitors.
These values are all comparatively large, which means
that the visitors desire to achieve the solutions of these
programming tasks.

For collecting these programming tasks, we first
manually rank the posts with the “android” tag on
Stack Overflow. Then, we check the posts one by one
following some criteria until we collect 35 tasks.
Following [29], the criteria are that the tasks should
belong to Android app development and be viewed
many times. Meanwhile, there are solutions (i.e., the
accepted answers) along with these programming
tasks in the same webpages. These solutions can assist
in evaluating the relevance scores of code snippets.
Finally, we extract the titles of these tasks as queries.

5.3 Evaluation

For evaluating the relevance score between a code
snippet and a query, we conduct the following
evaluation process [55]. First, for each test query, we

obtain the Top-K code snippets from each comparative
method. Then, we merge all code snippets into a pool
which includes only unique code snippets. For each
code snippet in this pool, we recruit two assessors to
evaluate the relevance score between a code snippet
and the query. As regards the inconsistencies of
labeling, we recruit an expert to arbitrate the score.
Finally, we employ two metrics to measure the
performance of each method.

Two assessors are graduate students from Dalian
University of Technology, and the expert is a doctoral
student from the same school. Both the two assessors
and the expert have at least three years of Android app
development experience. Meanwhile, two assessors
have at least four years of Java development
experience, and the expert has more than nine years of
Java development experience. Before the evaluating,
we give them a 30-minutes training about labeling.

Following the method in [29], we label the relevance
scores with a Four-level Likert scale. Meanwhile, the
solutions together with the programming tasks in the
Stack Overflow are used to assist labeling. In other
words, the assessors can check the descriptions about
the programming tasks and their solutions in
evaluating. Here, we present the guidelines for
labeling as follows: Score 4: Highly relevant. The code
snippet is perfectly suitable for the programming task.
Score 3: Mostly relevant. The code snippet or the APIs
used in this snippet can be reused for the
programming task with some changes. Score 2: Mostly
irrelevant. The code snippet only contains a few

TABLE 5
RECOMMENDATION PERFORMANCE OF ROSF WHEN

N EQUALS TO DIFFERENT VALUES

Top-N Precision@10 NDCG@10

BM25 57.5% 0.7551
20 60.5% 0.7777
30 60% 0.8167
40 61.5% 0.8140
50 62.5% 0.7942
60 63% 0.8248
70 66.5% 0.8448

80 64% 0.8427
90 62% 0.8081
100 60.5% 0.8158

Fig. 4. The trends of Precision@10 and NDCG@10 when the size of

the candidate set equals to different values.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

54%

56%

58%

60%

62%

64%

66%

68%

N
D

C
G

@
1

0

P
re

ci
si

o
n

@
1

0
(1

0
0

%
)

Top-N code snippets

P@10

NDCG@10

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

relevant code lines, which is not enough to solve the
programming task. Score 1: Completely irrelevant. The
code snippet cannot solve the programming task. To
put it simply, if the relevance score of a code snippet is
equal to or greater than 3, i.e., 3 or 4, the code snippet
should contain useful code lines or APIs to solve the
programming task.

5.4 Metrics

An ideal recommendation method should hit more of
the relevant records and place them at the top of the
results. Following the previous methods[17], [29], we
evaluate the performance of each method using two
metrics, i.e., Precision@K and Normalized Discounted
Cumulative Gain (NDCG)@K. Because we know
nothing about the number of relevant code snippets
not retrieved for a given query, following the previous
method [29], it is impractical to calculate the metric
recall.

Specifically, the Precision@K is defined as the
proportion of the true positives (i.e., the code snippets
with score 3 or 4) in Top-K recommended results (both
true positives and false positives) [29].

The Precision@K is calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =
|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒|

|𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|
 (4)

where the numerator |Relevance| is the number of
relevant code snippets in the result. The denominator
|Retrieved|is the total number of results recommended
by a method, which equals to 10 in our study.

The metric NDCG is commonly used in information
retrieval to measure the ranking capability of a
recommendation method. A method is more useful
when there are more relevant results in higher
positions in the hit list than irrelevant results. We
calculate NDCG@K of each method for given queries.

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝐼𝐷𝐶𝐺@𝐾
 (5)

𝐷𝐶𝐺@𝐾 = 𝑅1 + ∑
𝑅𝑖

𝑙𝑜𝑔2𝑖

𝐾
𝑖=2 (6)

where 𝑁𝐷𝐶𝐺@𝐾 is the 𝐷𝐶𝐺@𝐾 normalized by
𝐼𝐷𝐶𝐺@𝐾 . 𝐼𝐷𝐶𝐺@𝐾 is the ideal 𝐷𝐶𝐺@𝐾 , where the
results are sorted by relevance scores. 𝑅1 is the
relevance score at the first position in the list. 𝑅𝑖 is the
relevance score at the ith position.

In the experiments, we observe that the value of
NDCG cannot show the real performance for
recommendation. For example, there are two results

from different methods for a given query. The result A
is 4, 1, 1, and 1. The result B is 2, 2, 2, and 2. We
recommend 4 code snippets in these results. The
values of NDCG for two results are all equal to 1.
However, we find that there are no relevant code
snippets in the result B (a snippet with score 3 or 4 was
considered to be relevant). To solve this problem, we
set the score 1 and score 2 to score 0 in the returned
results. Then, the NDCG value of the result B equals to
0. The NDCG value of the result A still equals to 1.

6 EXPERIMENTAL RESULTS

This section presents the results of several experiments
to answer the three RQs proposed in section 5.1.

6.1 Answer to RQ1

To answer RQ1, we explore the impact of the
parameter N for recommendation, i.e., the size of the
candidate set. In this experiment, we use the result
generated by BM25 as a baseline, which refers to the
result without the re-ranking process. Then, we
achieve several results when parameter N equals to
different values using our method. Finally, the metrics
based on these results are calculated and compared.

Table 5 summaries the numerical results of two
metrics. In the column Top-N, Lines 20 to 100 refer to
several results of ROSF when N equals to these values.
When N equals to these values, the performance of
ROSF is greater than BM25. We also find that, when N
equals 70, ROSF obtains the best performance, where
the value of Precision@10 is 66.5%, and the value of
NDCG@10 is 0.8448. ROSF improves BM25 by up to 16%
in Precision, and 12% in NDCG. The results show that
ROSF has the ability to improve the positions of the
relevant code snippets in the candidate set.

In a more intuitive way, Fig. 4 shows the trends of
two metrics. In the figure, we note that the values of
two metrics first all rise and then descend. They all
reach their peaks when N equals to 70. The possible
reason may be that more irrelevant code snippets will
be added in the candidate set than relevant ones, as the
N value gradually increases. Finally, we chose 70 as

Fig. 5. Comparisons for average ranking of five methods for

Friedman’s test

(a) (b)

Fig. 6. The statistical results of Precision@10 (a) and NDCG@10 (b)

for different methods. The x axes indicate five recommendation

methods. The y axes indicate the range for two metrics, respectively.

The red line represents the median. And the blue rhombus represents

the mean.

0

2

4

Precision NDCG

R
an

ki
n

g
o

f
M

et
h

o
d

s

Metrics

BM25F VF Potfolio BM25 ROSF

BM25F VF Potfolio BM25 ROSF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different Methods

P
re

c
is

io
n

@
1

0
(1

0
0

%
)

BM25F VF Potfolio BM25 ROSF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different Methods

N
D

C
G

@
1

0

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE9

the default value of the parameter N in the following
experiments. In this experiment, we only discuss the
situations when the values of parameter N are less
than 100. We still do not know the trends in other cases.
This will be a threat to our conclusions.

Answer to RQ1: The performance of ROSF varies
when the size of the candidate set takes different
values. When the N is less than 100, ROSF consistently
outperforms BM25 in terms of both Precision@10 and
NDCG@10. ROSF achieves the best performance when
the value equals to 70.

6.2 Answer to RQ2

RQ2 is examined in our second experiment, which was
designed to compare our proposed method ROSF with
the comparative methods. Four comparative methods
used are: BM25, BM25F, Portfolio [29], and VF [17].
The reason why these methods are selected is that they
take free-form queries as inputs and output code
snippets for the queries. Specifically, BM25F refers to
the strategy that searches multiple fields on Lucene
like SSI [7], where BM25 is used to calculate the
similarities. BM25F is employed to illustrate the
advantage of adjusting automatically for the weights
of various features in our method. VF refers to the
work of Keivanioo et al. [17], which employs VSM and
frequent item-set mining. We also compare our
method with Portfolio [29] that combines VSM,
PageRank, and SAN.

For drawing confident conclusions whether one
algorithm outperforms another, we conduct statistical
tests to compare the average results of two metrics for
ROSF and the comparative methods. Specifically, first,
Friedman’s test is employed to detect the potential
differences in the performance among the methods.
Then, to analyze both the strength and the weakness of

the method, we conduct the two-sided Wilcoxon’s
signed rank tests between ROSF and the other
methods. For two statistical tests, when comparing
each pair of methods, the primary null hypothesis is
that there is no statistical difference in the performance
between two methods. In this section, for both
Friedman’s test and Wilcoxon’s test, we adopt the 95%
confidence level, i.e., the p−values below 0.05 are
considered significant.

Fig. 5 shows the average ranking with respect to the
Friedman’s test [12] of Precision@10 and NDCG@10. In
the subfigures, each column represents the ranking of
the corresponding method (higher values indicate
better performance). In Fig. 5, we can observe that, for
both metrics, ROSF obtains all the best rankings. The
Friedman’s test detects significant differences in the
performance among the methods (with p-values = 0.001,
and 0.048 for the Precision and NDCG, respectively).

Table 6 presents the results of Wilcoxon’s tests
between ROSF and the comparative methods. Table 7
shows the details of extremal values, median, mean,
and standard deviation of Precision and NDCG. Fig. 6
shows the statistical summary of Precision or NDCG.

For Precision, among the pairwise comparisons in
Table 6, we can observe that the p-values are all less
than 0.05. We reject the null hypothesis and accept the
alternative hypothesis that there is a statistically
significant difference in the mean value of Precision
and NDCG between ROSF and the comparative
methods (BM25, Portfolio, VF, or BM25F). In Table 7
and Fig. 6, we can observe that ROSF consistently
outperforms the comparative methods in terms of
Precision. Specifically, the improvement of ROSF over
BM25 is 16%, BM25F is 80%, Portfolio is 20%, and VF is
41%. Considering the family-wise error rate [12], we
can deduce that ROSF performs the best among BM25,
BM25F, Portfolio, and VF with a p−value less than 1−
(1−0.012)×(1−0.0059)×(1−0.0147)×(1−0.0019) < 0.035.

For NDCG, we observe a similar phenomenon
except for ROSF vs BM25, where the p-value is 0.062.
Here, the confidence level is 90%, rather than 95%. In
the other pairwise comparisons, ROSF Specifically
outperforms the comparative methods with a p−value
less than 1 − (1 − 0.0486) × (1 − 0.0057) × (1 − 0.0333) <
0.09. Specifically, the improvement of ROSF over BM25

TABLE 6
RESULTS OF WILCOXON’S TESTS BETWEEN ROSF AND

OTHER COMPARATIVE METHODS FOR TWO METRICS

Metrics R vs B R vs P R vs VF R vs BF

Precision@10 0.0120 0.0059 0.0147 0.0019
NDCG@10 0.0620 0.0486 0.0057 0.0333

R refers to ROSF, B refers to BM25, P refers to Portfolio, and BF refers
to BM25F. The first column indicates the two metrics. In other columns,
the results of Wilcoxon’s tests are reported for each metric. The
comparison results consist of the p−value.

TABLE 7
THE STATISTICAL SUMMARY OF THE SECOND EXPERIMENT

 Approach Samples Min Max Median Mean StdDev

Precision@10

ROSF 20 20% 100% 70% 66.5% 0.2390
BM25 20 0% 100% 60% 57.5% 0.2552
Portfolio 20 0% 90% 60% 55.5% 0.2350
VF 20 0% 100% 50% 47% 0.3278
BM25F 20 0% 100% 30% 37% 0.2755

NDCG@10

ROSF 20 0.3082 1 0.9041 0.8448 0.1646
BM25 20 0 1 0.7772 0.7551 0.2407
Portfolio 20 0 1 0.7795 0.7445 0.2325
VF 20 0 0.9816 0.8220 0.6347 0.3526
BM25F 20 0 1 0.7316 0.6819 0.2922

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

on NDCG is 12%, BM25F is 24%, Portfolio is 13%, and
VF is 33%.

In summary, ROSF improves Portfolio and VF by
20%-41% in Precision@10 and 13%-33% in NDCG@10.
The reason may be due to the two stages in ROSF, i.e.,
coarse-grained searching and fine-grained re-ranking.
The first stage focuses on selecting as many as possible
relevant code snippets in the candidate set. The second
stage tries to rank the relevant code snippets to the top
of the recommendation result. Meanwhile, our method
also benefits from that the weights of nine features are
adjusted automatically by the prediction model.

Answer to RQ2: Based on the above observations, we
can argue that ROSF is a better method for code
snippets recommendation than the comparative
methods. This results clearly validate the ability of
ROSF for recommending more relevant code snippets
in the result, and putting the relevant snippets on
higher positions than the irrelevant ones.

6.3 Answer to RQ3

Following the previous work [36], we first analyze
the correlation between nine features using
Spearman's rank correlation coefficient (Spearman's
rho) to manage these features. It is appropriate to use
Spearman's rho when the relationship between the
variables is not linear. High correlation between
features makes it difficult to determine the effect of
each feature on performance [45]. It is beneficial to
minimize the correlated features for speeding up the

training process. The values of Spearman's rho range
from -1 and +1. Generally, the absolute value greater
than 0.6 is considered to be a high level of correlation.
If the value of two features is greater than 0.8, it is
necessary to remove one of them [9].

Table 8 shows the values of Spearman's rho between
nine features of 1050 instances in the training set. This
table shows that almost all correlation values between
two features are less than 0.6, which means that these
features are uncorrelated between them [9]. In this
table, we also find that the value between the features
f2 and f3 (The textual similarity between a query and
the full title and the simple title of a candidate code
snippet) is 0.718, which indicates there is a high level
of correlation (0.6 - 0.8) between them, but not a very
high level (over 0.8) [9]. Moreover, the following
experiment also shows that the impacts of the features
f2 and f3 on the performance are different. They can't
replace each other.

For determining the impact of each feature on the
performance of our method, we regard our method
with nine features as the baseline. Then, we construct
an alternative method for each of nine features by
removing that feature. Totally, we build nine
alternative methods for nine features. By comparing
the performance of the alternative methods against the
baseline, we can analyze the impact of each feature on
the performance.

Table 9 shows the comparison results between the
alternative methods and the baseline in terms of
Precision@10 and NDCG@10. We observe that two
features, the feature f9 (the number of lines in the code
snippets) and the feature f1 (the textual similarity
between a query and the content of a candidate code
snippet) decrease the performance in terms of
Precision@10 significantly. The feature f9 decreases the
performance in terms of NDCG@10 significantly.
However, other features have slight impacts on the
performance. Among them, the features f6 (the textual
similarity between a query and the import statements
of the Java standard library) and f8 (the topic similarity)
have more impacts than others.

Answer to RQ3: The impact on the performance is
different for nine features. The following features are
influential on the performance of ROSF: f9, f1, f6, f8, i.e.,
the number of lines (f9), the textual similarity between
queries and contents (f1), the textural similarity
between a query and the import statement of Java
library (f6), and the topic similarity between a query
and the content of a candidate code snippet (f8).

7 THREATS TO VALIDITY

This section discusses threats to validity of our work.
The query set: The first major factor that influences

the performance is the query set. Different methods
may have different performance for the same query. In
order to reduce bias in comparing these different

TABLE 9
THE IMPACT OF EACH FEATURE IN THE PERFORMANCE

OF OUR METHOD

Ranking Methods
Precision@10 NDCG@10

Avg. Impact Avg. Impact

ROSF 66.5% - 0.844821 -

ROSF(except f1) 59.0% -11.28% 0.833229 -1.37%

ROSF(except f2) 66.0% -0.75% 0.847242 +0.29%

ROSF(except f3) 66.0% -0.75% 0.848619 +0.45%

ROSF(except f4) 65.5% -1.50% 0.852132 +0.87%

ROSF(except f5) 66.0% -0.75% 0.848438 +0.43%

ROSF(except f6) 64.0% -3.76% 0.868522 +2.81%

ROSF(except f7) 65.5% -1.50% 0.845687 +0.10%

ROSF(except f8) 64.0% -3.76% 0.830116 -1.74%

ROSF(except f9) 57.0% -14.29% 0.757598 -10.32%

TABLE 8
THE VALUES OF SPEARMAN’S RHO BETWEEN NINE

FEATURES

 f1 f2 f3 f4 f5 f6 f7 f8 f9

f1 1 0.158 0.119 0.152 0.310 0.436 0.350 0.588 -0.041

f2 1 0.718 0.558 0.091 0.085 0.063 0.124 -0.151

f3 1 0.492 0.156 0.017 0.044 0.118 -0.132

f4 1 0.095 0.133 0.059 0.120 -0.113

f5 1 0.274 0.295 0.209 -0.008

f6 1 0.157 0.402 0.029

f7 1 0.274 0.016

f8 1 0.003

f9 1

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE11

methods, 20 same queries are used in our experiments.
This size is similar to previous work [17], [7], [10].
However, this may still threaten the validity of the
results. Moreover, the performance of a method also
relies on how good the keywords in the queries are. It
is also our further work for choosing adequate words
as queries.

Code snippet corpus: Our several experiments are all
conducted on a real-world code snippet corpus of open
source mobile app projects. Although this corpus has a
certain scale, in comparison to the millions of apps in
Google play, it is relatively small. Meanwhile, the
features used in our method can also be identified in
other desktop software. But we have not tested it by
ourselves. We plan to evaluate the effectiveness of our
method on different size of corpora for different
Internetware software. Moreover, in our future work,
we also plan to recommend different granularities of
code artifacts (e.g., Java files) for the same query.

Comparative methods: In the second experiment, we
reproduce several previous methods for comparison.
There are certain gaps in the performance between the
reproduced methods and the original ones. The
possible reason may be the difference in the code
snippet corpora. The corpora in previous studies were
collected from desktop software, and our corpus is
collected from Android app projects. The methods
may be unfit for our code snippet corpus. For example,
the traditional static control-flow analysis cannot be
directly applied to Android apps, because the apps are
framework-based and event-driven [43]. Moreover, the
effectiveness of the call graph [43] and the usage
similarity [7] for our method will be explored in our
next work.

8. RELATED WORK

In this section, we show the related studies with our
work. In recent years, several studies are presented to
support the automatic recommendation of code
examples for different types of inputs. Table 10
provides the comparisons between ROSF and other
methods from several different angles.

Free-form query: Similar to the following studies, our
work also uses the free-form queries as inputs.
However, these studies are mainly based on
information retrieval techniques, while our method
combines both information retrieval and supervised
learning to recommend code snippets. For example,
Bajracharya et al. [7] propose a structural Semantic
Indexing (SSI) to recommend source code entities
(classes, methods, etc.) based on the similarities of
APIs usage. This technique is implemented on Lucene,
where the boost values of index fields need to be set
manually before searching. In contrast to our method,
the weights of several features employed in our
experiments are adjusted automatically by the
prediction model. McMillan et al. [29] propose a code
search system called Portfolio, which can find relevant
functions that implement the given queries, and show
the visualizing dependencies of the retrieved functions.
This system combines NLP, PageRank, and SAN
algorithms. Keivanloo et al. [17] present a method for
spotting working code examples by combining p-
strings and VSM with frequent item-set mining. Lv et
al. [23] propose CodeHow, a code search technique by
considering both API understanding and textual
similarity matching. The evaluation results based on
C# projects show that CodeHow achieves a precision
score of 0.794. In this method, the online documents of

APIs are used to expand query. However, these

TABLE 10
COMPARISON OF ROSF WITH OTHER RELATED METHODS

Approach Year Input
Type

Output
Type

Information Search
Method

Tool Reference

SSI 2010 FQ C FCC, FQN, T, TU, J WM, MF L [7]
Portfolio 2013 FQ C, CC FCC, CG PR, SA, WM L [29]
VF 2014 FQ C FCC WM, FIM - [17]
MAPO 2009 N C, UP CS WM, FIM - [54]
Baker 2014 N C SC DL iAST [46]
MUSE 2015 N C SE,CS SS, CD, H - [33]
PARSEWeb 2007 OT C FCC, CS WM, Q AST [27]
Strathcona 2005 C C SC H - [14]
Xsnippet 2006 C C SC, CG T, W, PT - [42]
Ichi Tracker 2012 C C FCC, CH CD, CHT S, G, K, CCF [15]
ROSF - FQ C FCC, FQN, T, NSM, SC WM, TM, LR L, W -

Column Input specifies the input type for each method (Free-form query (FQ), API name (N), Code Snippet (C), or the object type of source and
Destination (OT)). Column Output specifies the output type for each method (Code Snippet (C), call chains (CC), or API Usage Patterns (UP)). Column
Information specifies the information used for each method (Full text of the Code and Comments (FCC), Fully Qualified Name (FQN), Javadoc (J), Title
of entities (T), Title of other entities that have similar Usage of API (TU), Names of Sibling Methods (NSM), Call Graph (CG), Structural
Characteristics (SC), API method call sequences (CS), similar examples (SE), or Code History (CH)). Column Search Method specifies the methods used
for each method (PageRank (PR), Spreading Activation Network (SA), Word Matching (WM), Parameter Type matching (PT), Query expansion
techniques (Q), Multiple Fields searching (MF), Frequent Item-set Mining (FIM), Heuristics(H), Deductive Linking(DL), Static Slicing(SS), Clone
Detection (CD), Code History Tracking(CHT), Topic Model(TM), Logistic Regression(LR)). Column Tool specifies the tool or platform used for each
method (Lucene (L), incomplete Abstract Syntax Tree (iAST), Abstract Syntax Tree (AST), SPARS/R (S), Google Code Search (G), Koders (K),
CCFinder (CCF), or WEKA (W)).

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

documents are not always available [16].
API name: Moreover, several studies focus on

solving API usage problem [46]. They take API
method names as inputs, and output code examples
[36], concise method usages [33], or API usage patterns
for special API methods [26], [54]. For example, In 2009,
Zhong et al. [54] present an API usage mining
framework called MAPO, which mines and
recommends API usage patterns and code snippets for
given requests from developers. In 2014, Subramanian
et al. [46] propose a method, Baker, to enhance
traditional API documentations with up-to-date code
examples. The purpose of recommendation is to
provide reusable code snippets for developers. For
showing how to use a specific method, Moreno et al.
[33] present a method named MUSE by combining
static slicing and clone detection technology to provide
concise examples for that method. Each example
contain the sequence of relevant steps to invoke the
method, and the less relevant code is pruned out. In
2016, Niu et al. [36] propose a code example search
approach applying a machine learning technique (i.e.,
learning to rank) to recommend code examples taking
method names and class names as inputs. Different
from these studies, our method takes free-form queries
as inputs and outputs the original code snippets to
developers.

Others: Moreover, some studies employ other forms
of queries as input to recommend code examples, such
as the pair of types [27], the code samples [42], and
test cases [19]. For example, Mandelin et al. [27]
provide a code search engine called PARSEWeb using
the query in the form "Source-Destination". Holmes et al.
[14] propose Strathcona Example Recommendation
Tool to assist developers. Strathcona can employ
structural characteristics of both the past projects and
the developers’ current context to automatically
recommend relevant examples. To decrease the
number of irrelevant results, Xsnippet [42] improve
Strathcona by employing the graph mining technique.
Meanwhile, a combination of popularity, size, and
context is employed to improve the ranking. In 2012,
Inoue et al. [15] propose a prototype named Ichi Tracker,
which takes a code fragment as its input, and returns
the code fragments. Except for the studies
recommending code examples, there also exists some
work to recommend the method call sequences and the
relevant APIs, such as Sourcerer [20], and Export [49].

Except the above studies for recommending code
snippets and APIs, our work is also related with
automatic patch generation [18], [48] and automated
program repair [39]. These studies all generate
promising results. For example, Kim et al. [18],
propose PAR, an automated patch generation
technique, by leveraging the fix patterns learned from
existing human-written patches. Tao et al. [48],
conduct a large-scale human study to investigate the
usefulness of automatically generated patches as

debugging aids. Different from the studies above,
which automatically generate patches or repair bugs
according to code context or bugs, our method only
provides relevant code snippets to developers for
reuse according to the free-form queries.

9. CONCLUSION AND FUTURE WORK

In this paper, we propose a method called ROSF based
on information retrieval and supervised learning to
recommend relevant code snippets for the given free-
form queries. We identify nine features to generate the
instances in the training set and the test set. To
evaluate the effectiveness of our method, several
experiments are conducted on a real-world code
snippet corpus. These code snippets come from 1,538
open source app projects. The results of these
experiments state that our method is effective for code
search, and outperforms the previous state-of-the-art
methods by 20%-41% in Precision@10 and 13%-33% in
NDCG@10.

We consider two aspects as our future work. The
first is providing more resources for app development.
In addition to code snippets, other entities (e.g.,
permissions, screenshots) and relations (e.g., call graph,
API usages) are also important for implementing the
programming tasks. The second is exploiting more
domain features. Our method employs nine features to
characterize code snippets. These features can also be
extracted in desktop software. In the future work, for
improving the performance of recommendation, we
plan to identify other special information in the field of
mobile apps, such as user reviews and the descriptions
of apps, and other features of Internetware software.

ACKNOWLEDGMENTS

This work is supported in part by the National Program on

Key Basic Research Project under Grant 2013CB035906,

the New Century Excellent Talents in University under

Grant NCET-13-0073, the National Natural Science

Foundation of China under Grants 61370144, 61403057,

and 61572097, the Fundamental Research Funds for the

Central Universities under Grant DUT14YQ203 and

DUT14RC(3)150.

REFERENCES

[1] Jun. 2016. F-droid. [Online]. Available: https://f-droid.org

[2] Jun. 2016. Lucene. [Online]. Available: http://lucene.apache.org

[3] Jun. 2016. Mallet. [Online]. Available: http://mallet.cs.umass.edu/

[4] Jun. 2016. Open Hub. [Online]. Available:

https://code.openhub.net/

[5] Jun. 2016. ROSF. [Online]. Available: http://oscar-

lab.org/people/~lnie/ROSF/

[6] D. Böhning, "Multinomial logistic regression algorithm," Annals of

the Institute of Statistical Mathematics, vol. 44, pp. 197-200, 1992.

[7] S. K. Bajracharya, J. Ossher, and C. V. Lopes, "Leveraging usage

similarity for effective retrieval of examples in code repositories,"

presented at the Proceedings of the eighteenth ACM SIGSOFT

http://lucene.apache.org/
http://mallet.cs.umass.edu/
http://oscar-lab.org/people/~lnie/ROSF/
http://oscar-lab.org/people/~lnie/ROSF/

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

HE JIANG ET AL.: ROSF: LEVERAGING INFORMATION RETRIEVAL AND SUPERVISED LEARNING FOR RECOMMENDING CODE SNIPPETS PAGE13

international symposium on Foundations of software engineering,

Santa Fe, New Mexico, USA, 2010.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet allocation,"

Journal of Machine Learning Research, vol. 3, pp. 993-1022, May

15 2003.

[9] M. J. Campbell and T. D. V. Swinscow, Statistics at square one:

John Wiley & Sons, 2011.

[10] S. Chatterjee, S. Juvekar, and K. Sen, "SNIFF: A Search Engine

for Java Using Free-Form Queries," Fundamental Approaches to

Software Engineering, Proceedings, vol. 5503, pp. 385-400, 2009.

[11] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, "AR-miner:

mining informative reviews for developers from mobile app

marketplace," presented at the Proceedings of the 36th

International Conference on Software Engineering, Hyderabad,

India, 2014.

[12] S. Garcia, D. Molina, M. Lozano, and F. Herrera, "A study on the

use of non-parametric tests for analyzing the evolutionary

algorithms' behaviour: a case study on the CEC'2005 Special

Session on Real Parameter Optimization," Journal of Heuristics,

vol. 15, pp. 617-644, Dec 2009.

[13] M. Ghafari and A. Heydarnoori, "Towards a visualized code

recommendation for APIs enriched with specification mining,"

presented at the Proceedings of the 4th International Workshop

on Recommendation Systems for Software Engineering,

Hyderabad, India, 2014.

[14] R. Holmes, R. J. Walker, and G. C. Murphy, "Strathcona example

recommendation tool," presented at the Proceedings of the 10th

European software engineering conference held jointly with 13th

ACM SIGSOFT international symposium on Foundations of

software engineering, Lisbon, Portugal, 2005.

[15] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, "Where Does This

Code Come from and Where Does It Go? - Integrated Code

History Tracker for Open Source Systems," 2012 34th

International Conference on Software Engineering (ICSE), pp.

331-341, 2012.

[16] H. Jiang, J. Zhang, X. Li, Z. Ren, and D. Lo, "a more accurate

model for finding tutorial segments explaining APIs," in Software

Analysis, Evolution and Reengineering (SANER), 2016 IEEE

23nd International Conference on, 2016, pp. 157-167.

[17] I. Keivanloo, J. Rilling, and Y. Zou, "Spotting working code

examples," presented at the Proceedings of the 36th International

Conference on Software Engineering (ICSE), Hyderabad, India,

2014.

[18] D. Kim, J. Nam, J. Song, and S. Kim, "Automatic patch

generation learned from human-written patches," presented at the

Proceedings of the 2013 International Conference on Software

Engineering, San Francisco, CA, USA, 2013.

[19] O. A. L. Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and C.

Lopes, "A test-driven approach to code search and its application

to the reuse of auxiliary functionality," Information and Software

Technology, vol. 53, pp. 294-306, Apr 2011.

[20] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P.

Baldi, "Sourcerer: mining and searching internet-scale software

repositories," Data Mining and Knowledge Discovery, vol. 18, pp.

300-336, 2009.

[21] T.-Y. Liu, "Learning to rank for information retrieval," Foundations

and Trends in Information Retrieval, vol. 3, pp. 225-331, 2009.

[22] Y. Liu, C. Xu, and S. C. Cheung, "Diagnosing Energy Efficiency

and Performance for Mobile Internetware Applications," IEEE

Software, vol. 32, pp. 67-75, 2015.

[23] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, J. Zhao, et al.,

"CodeHow: Effective Code Search Based on API Understanding

and Extended Boolean Model (E)," in 2015 30th IEEE/ACM

International Conference on Automated Software Engineering

(ASE), 2015, pp. 260-270.

[24] Y. Lv and C. Zhai, "When documents are very long, BM25 fails!,"

presented at the Proceedings of the 34th international ACM

SIGIR conference on Research and development in Information

Retrieval, Beijing, China, 2011.

[25] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun, "Active Semi-

supervised Approach for Checking App Behavior against Its

Description," in Computer Software and Applications Conference

(COMPSAC), 2015 IEEE 39th Annual, 2015, pp. 179-184.

[26] n. MA Yun, n. LU Xuan, n. LIU XuanZhe, n. WANG XuDong, and

n. BLAKE M.Brian, "Data-driven synthesis of multiple

recommendation patterns to create situational Web mashups,"

SCIENCE CHINA Information Sciences, vol. 56, p. 82109, 2013.

[27] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman, "Jungloid

mining: helping to navigate the API jungle," ACM SIGPLAN

Notices, vol. 40, pp. 48-61, 2005.

[28] M. R. Marri, S. Thummalapenta, and T. Xie, "Improving software

quality via code searching and mining," presented at the

Proceedings of the 2009 ICSE Workshop on Search-Driven

Development-Users, Infrastructure, Tools and Evaluation, 2009.

[29] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,

"Portfolio: Searching for relevant functions and their usages in

millions of lines of code," ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 22, p. 37, 2013.

[30] H. Mei, G. Huang, and T. Xie, "Internetware: A software

paradigm for internet computing," Computer, pp. 26-31, 2012.

[31] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of

machine learning: MIT press, 2012.

[32] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A.

E. Hassan, "A Large-Scale Empirical Study on Software Reuse in

Mobile Apps," IEEE Software, vol. 31, pp. 78-86, Mar-Apr 2014.

[33] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,

"How Can I Use This Method?," in Software Engineering (ICSE),

2015 IEEE/ACM 37th IEEE International Conference on, 2015, pp.

880-890.

[34] N. Nazar, H. Jiang, G. Gao, T. Zhang, X. Li, and Z. Ren, "Source

code fragment summarization with small-scale crowdsourcing

based features," Frontiers of Computer Science, vol. 10, pp. 504-

517, 2016.

[35] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, "Query Expansion

Based on Crowd Knowledge for Code Search," IEEE

Transactions on Services Computing, vol. PP, pp. 1-1, 2016.doi:

10.1109/TSC.2016.2560165.

[36] H. Niu, I. Keivanloo, and Y. Zou, "Learning to rank code

examples for code search engines," Empirical Software

Engineering, pp. 1-33, 2016.

[37] S. Niu, J. Guo, Y. Lan, and X. Cheng, "Top-k learning to rank:

labeling, ranking and evaluation," presented at the Proceedings of

the 35th international ACM SIGIR conference on Research and

development in information retrieval, Portland, Oregon, USA,

2012.

[38] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk,

and A. De Lucia, "How to Effectively Use Topic Models for

Software Engineering Tasks? An Approach Based on Genetic

Algorithms," Proceedings of the 35th International Conference on

Software Engineering (ICSE 2013), pp. 522-531, 2013.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2592909,
IEEE Transactions on Services Computing

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

[39] Y. Pei, C. A. Furia, M. Nordio, and B. Meyer, "Automated

program repair in an integrated development environment,"

presented at the Proceedings of the 37th International

Conference on Software Engineering - Volume 2, Florence, Italy,

2015.

[40] S. W. S. E. Robertson, S. Jones, M. Hancock-Beaulieu, and M.

Gatford., Okapi at trec-3: In TREC ’94, 1994.

[41] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, "An

information retrieval approach for regression test prioritization

based on program changes," in Proceedings of the 37th

International Conference on Software Engineering-Volume 1,

2015, pp. 268-279.

[42] N. Sahavechaphan and K. Claypool, "XSnippet: Mining for

sample code," Acm Sigplan Notices, vol. 41, pp. 413-430, Oct

2006.

[43] Y. Shengqian, Y. Dacong, W. Haowei, W. Yan, and A. Rountev,

"Static Control-Flow Analysis of User-Driven Callbacks in Android

Applications," in Software Engineering (ICSE), 2015 IEEE/ACM

37th IEEE International Conference on, 2015, pp. 89-99.

[44] Z. Shi, J. Keung, and Q. Song, "An empirical study of BM25 and

BM25F based feature location techniques," presented at the

Proceedings of the International Workshop on Innovative

Software Development Methodologies and Practices, Hong Kong,

China, 2014.

[45] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E.

Hassan, "Understanding the impact of code and process metrics

on post-release defects: a case study on the Eclipse project,"

presented at the Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and

Measurement, Bolzano-Bozen, Italy, 2010.

[46] S. Subramanian, L. Inozemtseva, and R. Holmes, "Live API

documentation," in Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 643-652.

[47] X. Sun, X. Liu, J. Hu, and J. Zhu, "Empirical studies on the NLP

techniques for source code data preprocessing," presented at the

Proceedings of the 2014 3rd International Workshop on Evidential

Assessment of Software Technologies, Nanjing, China, 2014.

[48] Y. Tao, J. Kim, S. Kim, and C. Xu, "Automatically generated

patches as debugging aids: a human study," presented at the

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, Hong Kong,

China, 2014.

[49] F. Thung, S. Wang, D. Lo, and J. Lawall, "Automatic

recommendation of api methods from feature requests," in

Automated Software Engineering (ASE), 2013 IEEE/ACM 28th

International Conference on, 2013, pp. 290-300.

[50] n. WANG Peng, n. XU BaoWen, n. WU YuRong, and n. ZHOU

XiaoYu, "Link prediction in social networks: the state-of-the-art,"

SCIENCE CHINA Information Sciences, vol. 58, p. 11101, 2015.

[51] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, et al., "Towards

Effective Bug Triage with Software Data Reduction Techniques,"

IEEE Transactions on Knowledge and Data Engineering, vol. 27,

pp. 264-280, 2015.

[52] Z. Ye, X. Huang, B. He, and H. Lin, "York University at TREC

2009: Relevance Feedback Track," presented at the Proceedings

of the 18th Text REtrieval Conference (TREC-18), Gaithersburg,

MD, USA, 2014.

[53] Z. Yu, G. Jidong, Z. Pengcheng, and W. Weigang, "Model based

verification of dynamically evolvable service oriented systems,"

SCIENCE CHINA Information Sciences, vol. 59, p. 032101, 2016.

[54] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, "MAPO: Mining

and Recommending API Usage Patterns," Ecoop 2009 - Object-

Oriented Programming, vol. 5653, pp. 318-343, 2009.

[55] H. Zhu, H. Xiong, Y. Ge, and E. Chen, "Mobile app

recommendations with security and privacy awareness,"

presented at the Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data

mining, New York, New York, USA, 2014.

He Jiang, received the Ph.D. degree in computer

science from the University of Science and

Technology of China, Hefei, China. He is currently a

Professor with the Dalian University of Technology,

Dalian, China. His current research interests include

search based software engineering and mining

software repositories. Dr. Jiang is also a member of the ACM and

the CCF.

Liming Nie, received the M.Sc. degree in Guangxi

University for Nationalities, Nanning, China, in 2009.

He is currently a Ph.D. candidate in Dalian University

of Technology. His current research interests include

code recommendation and data mining in software

engineering.

Zeyi Sun, received the B.Sc. degree in software

engineering from the Dalian University of Technology,

Dalian, China, in 2015. He is currently a Master of

Software Engineering candidate in Dalian University

of Technology. His current research interest is code

recommendation in software engineering.

Zhilei Ren, received the B.Sc. degree in software

engineering and the Ph.D. degree in computational

mathematics from the Dalian University of

Technology, Dalian, China, 2013, respectively. He is

currently a lecturer with the Dalian University of

Technology. His current research interests include

evolutionary computation and its applications in

software engineering. Dr. Ren is a member of the ACM and the CCF.

Weiqiang Kong, received the Ph.D. degree in

information science from Japan Advanced Institute of

Science and Technology, Japan. He is currently a

professor with the Dalian University of Technology,

Dalian, China. His research interests include formal

methods, in particular, formal verification with hybrid

model checking techniques for software analysis.

Tao Zhang, received the Ph.D. degree in Computer

Science from University of Seoul, South Korea in

Feb., 2013. He was a postdoctoral fellow at the

Department of Computing, Hong Kong Polytechnic

University from November 2014 to November 2015.

Currently, he is an assistant professor at the School

of Computer Science & Technology, Nanjing University of Posts and

Telecommunications. His research interest includes data mining,

software maintenance and natural language processing.

Xiapu Luo, received his Ph.D. degree in

Computer Science from the Hong Kong

Polytechnic University. After that, Dr. Luo spent

two years at the Georgia Institute of Technology as

a post-doctoral research fellow. Currently, he is a

research assistant professor at the Department of

Computing, Hong Kong Polytechnic University. His

research interests include Software Analysis, Android Security and

Privacy, Cloud Computing, and Mobile Networks.

