
Cross-Version Defect Prediction via Hybrid Active
Learning with Kernel Principal Component Analysis

Zhou Xu†‡, Jin Liu†∗, Xiapu Luo‡ and Tao Zhang§
†State Key Laboratory of Software Engineering, School of Computer, Wuhan University, China

‡Department of Computing, The Hong Kong Polytechnic University, China
§College of Computer Science and Technology, Harbin Engineering University, China

∗Corresponding author email: jinliu@whu.edu.cn

Abstract—As defects in software modules may cause product
failure and financial loss, it is critical to utilize defect prediction
methods to effectively identify the potentially defective modules
for a thorough inspection, especially in the early stage of software
development lifecycle. For an upcoming version of a software
project, it is practical to employ the historical labeled defect
data of the prior versions within the same project to conduct
defect prediction on the current version, i.e., Cross-Version
Defect Prediction (CVDP). However, software development is
a dynamic evolution process that may cause the data distri-
bution (such as defect characteristics) to vary across versions.
Furthermore, the raw features usually may not well reveal the
intrinsic structure information behind the data. Therefore, it
is challenging to perform effective CVDP. In this paper, we
propose a two-phase CVDP framework that combines Hybrid
Active Learning and Kernel PCA (HALKP) to address these two
issues. In the first stage, HALKP uses a hybrid active learning
method to select some informative and representative unlabeled
modules from the current version for querying their labels, then
merges them into the labeled modules of the prior version to
form an enhanced training set. In the second stage, HALKP
employs a non-linear mapping method, kernel PCA, to extract
representative features by embedding the original data of two
versions into a high-dimension space. We evaluate the HALKP
framework on 31 versions of 10 projects with three prevalent
performance indicators. The experimental results indicate that
HALKP achieves encouraging results with average F-measure,
g-mean and Balance of 0.480, 0.592 and 0.580, respectively and
significantly outperforms nearly all baseline methods.

I. INTRODUCTION

As software projects have increased in both size and com-
plexity, the defects in the software modules (i.e., the methods,
files or packages) are inevitable [1], [2]. Timely detecting and
repairing the defects before releasing the products are critical
for software quality assurance. Since defect prediction aims
to effectively identify the defect-prone modules by mining
software repositories, it empowers the software practitioner
or testers to give priority to the suspicious modules.

Traditional defect prediction builds supervised classification
model on the historical labeled modules, then predicts the
labels of the new unlabeled modules within the same soft-
ware project, i.e., Within-Project Defect Prediction (WPDP).
WPDP suffers from scarce labeled data for building an
effective and robust defect classifier. To relieve this issue,
researchers propose to employ transfer learning [3] by utilizing
the labeled data from other software projects to conduct defect
prediction on the current project, i.e., Cross-Project Defect

Prediction (CPDP). But the performance of CPDP is threaten
by the risk of data distribution difference across projects.

Previous studies proposed to train the classification model
on the labeled modules of the previous version of a project,
and then conduct defect prediction on the unlabeled ones
of its subsequent version [4], [5], i.e., Cross-Version Defect
Prediction (CVDP). The intuition behind CVDP is that, for
a software project with multiple versions, the distribution
difference between different versions is lower than that be-
tween different projects because new version usually carries
a large amount of information from the previous versions [6].
It is worth noting that as software is evolving, developers
would add new software modules, delete old modules, modify
or refactor existing modules during the process of version
upgrade. These operations may eliminate existing defects and
introduce new defects in the modules, leading to the changes
of defect distribution between successive versions [7]. In this
case, the classification model built on the labeled modules of
the prior version may not be very effective for the unlabeled
modules of the current version, because the model does not
take the distribution changes into consideration.

To address this issue, a recent work [7] utilized an active
learning method that iteratively selects the most valuable
samples for querying their labels. In particular, active learning
is used to select a small number of unlabeled modules from
the current version for labeling. These selected modules are
merged into the prior version, expecting that the mixed labeled
modules form an enhanced training set by incorporating some
additional structure information of the current version. Unfor-
tunately, this approach has several limitations (to be described
in the next subsection), which motivate our new framework.

A. Motivation

The key component of active learning is to design appropri-
ate measurement criteria for selecting the candidate samples
that are informative and representative [8]. The informative-
ness of a sample is measured by its prediction uncertainty
based on a classification model. The representativeness of a
sample is measured by whether it can well represent the space
distribution of the data. The uncertainty measure based active
learning method used in [7] has the limitation that the selected
candidate modules only rely on the classification model built
on the labeled modules from the prior version. This process
ignores the distribution information contained in the unlabeled

978-1-5386-4969-5/18/$31.00 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

209

modules of the current version. Thus, the candidate modules
are merely informative but not representative [8], [9]. As
a result, these candidate modules may not be very helpful
to form a powerful training set after being merged into the
prior version. In this paper, we employ a novel hybrid active
learning (HAL) framework to select the most valuable modules
for labeling. This framework combines two measurement
criteria, namely uncertainty measure and information density
measure. The first measure guarantees that the candidate
modules are informative, while the second measure insures
that the candidate modules are representative by considering
the distribution information of the current version.

Although the mixed labeled modules of the prior version
are more adaptive to the remaining unlabeled modules of
the current version, the classifier performance can also be
significantly affected by the feature representation of the data
of the two versions. Wang et al. [10] pointed out that learning
appropriate feature representation for the data is necessary for
defect prediction since the raw features may not properly un-
fold the essential property of the original data. Therefore, some
previous studies employed Principal Component Analysis
(PCA) to convert the raw module features to a low-dimension
space [11]–[13]. PCA performs well when the data are linearly
separable and follow a Gaussian distribution [14]. Unfortu-
nately, the features extracted by PCA may not be beneficial
to achieve satisfactory performance for defect prediction [15]
since the real data may not meet the above requirements [10],
[16]. Lu et al. [7] used a feature extraction method, named
Multi-Dimensionality Scaling (MDS), to reduce the feature
dimensionality before applying the active learning method.
The main limitation of MDS is that it requires all modules
of two versions as a whole input for the method, which limits
its scalability to new modules outside of both versions [17]. To
tackle this issue, in this paper, we exploit a non-linear feature
extraction method, named Kernel PCA (KPCA) [18], to map
the data of two versions into a high-dimension feature space, in
which the converted data can increase the probability of linear
separability and follow an approximate Gaussian distribution
[19], [20]. Different from MDS, the data of two versions are
converted by KPCA separately using the same mapping rules
without merging them together in advance.

To sum up, in this paper, we propose HALKP, a novel
CVDP framework that leverages the two mentioned-above
methods: Hybrid Active Learning and KPCA. Our framework
consists of two major stages: in the first stage, HALKP
exploits HAL to select some informative and representative
unlabeled modules from the current version of a given project
for querying their labels, and then incorporates them with
the labeled modules of its prior version to construct a mixed
training set; in the second stage, HALKP utilizes KPCA to
map the mixed training modules and the remaining unlabeled
modules into a high-dimension feature space. Finally, a logistic
regression model is built on the mapped training modules to
perform CVDP for the mapped unlabeled modules.

We conduct experiments on 31 versions of 10 software
projects from the MORPH dataset to evaluate the effectiveness
of HALKP for CVDP with three widely-used performance

indicators, including F-measure, g-mean, and Balance. Across
31 cross-version pairs, HALKP achieves average F-measure,
g-mean and Balance of 0.480, 0.592 and 0.580, respec-
tively. The experimental results demonstrate the superiority of
HALKP compared with 11 baseline methods in most cases.

B. Contribution

In summary, we make the following contributions:
(1) We propose a novel framework HALKP to address two

important issues in CVDP, including lessening the distri-
bution difference and extracting favorable feature presen-
tation. The former is caused by the evolution of software
development whereas the latter is due to the complex
structure hidden behind the data.

(2) The proposed framework first uses HAL to carefully
choose some informative and representative unlabeled
modules from the current version for labeling. These
selected modules can supplement part of structure in-
formation of current version into the prior version. The
framework further leverages KPCA to extract the essential
structure of the cross-version data.

(3) We evaluate HALKP on 31 versions of 10 projects with
three performance indicators. The extensive experiments
manifest that HALKP achieves encouraging results com-
pared with 11 baseline methods.

II. RELATED WORK

A. Software Defect Prediction

Within-Project Defect Prediction (WPDP): For a software
project with sufficient historical labeled data, supervised clas-
sifiers are built to conduct WPDP for the upcoming modules
within the same project. Recent studies have examined the
impact of different classification models [21], [22], feature
selection methods [15], sampling approaches [23], and model
validation techniques [24] on the performance of WPDP.
Cross-Project Defect Prediction (CPDP): For a project that
does not have sufficient labeled data, researchers proposed
transfer learning methods to conduct CPDP by transferring
the knowledge from other projects (a.k.a. target projects) to
facilitate the prediction of the defective modules in the current
project (a.k.a. source project) [25]. For example, Nam et al.
[26] applied an improved transfer component analysis method
to make the distributions between source and target project
data similar. Xia et al. [27] proposed a two-phase hybrid
model reconstruction method by combing genetic algorithm
and ensemble learning to create a massive compositional
model for CPDP. However, these traditional CPDP methods
hold an assumption that the source and target project data
share the same feature set.
Heterogeneous CPDP (HCPDP): For cross-project data that
have heterogeneous feature sets, researchers proposed hetero-
geneous learning methods for the HCPDP issue. For example,
Jing et al. [28] employed the canonical correlation analysis
method to map the source and target project data into a
common space by maximizing their similarity. Nam et al. [29]
employed similarity calculation methods to select feature pairs

210

that have the most similar distributions from the cross-project
data, and then used the matched features to conduct HCPDP.

Usually, CPDP and HCPDP do not perform better than
WPDP in most cases [30]–[33], because the performance of
traditional CPDP and HCPDP methods is affected by the data
distribution difference between the source and target data,
especially for HCPDP. In [28], the paper only reported the
results of 22 heterogeneous cross-project pairs among total
90 combinations, and thus its universality needs to be further
verified. In [29], the proposed method sometimes fails due
to no matched features being selected when all the matching
scores are lower than a given threshold.
Cross-Version Defect Prediction (CVDP): For a project with
multiple versions, researchers proposed to conduct CVDP
on the current version by utilizing the labeled modules of
its prior versions [7]. CVDP can be treated as a special
scenario between WPDP and CPDP. Although the software
development is a dynamical process that can lead to the
changes of the data structure characteristics during version
upgrade, new version usually conserves much information
from the old versions. Thus, the distribution difference across
versions will be smaller than that of across projects. From this
view, CVDP will provide more practical benefits for defect
prediction on the current version. Different from some prior
work [5], [34]–[36] that directly exploited all the labeled data
of the prior version to build prediction model for CVDP, in
this paper, we focus on leveraging active learning for CVDP.

B. Active Learning

The core component of active learning is the selection
strategies for the candidate samples. Two main strategies aim
at selecting the informative and representative samples [8].
To select the informative samples, uncertainty based active
learning [37], query-by-committee based active learning [38],
expected error reduction based active learning [39] are pro-
posed. To select the representative samples, clustering-based
active learning exploits the cluster structure of the unlabeled
samples to select such samples [40], [41].

Recently, active learning has been introduced into defect
prediction. Luo et al. [42] proposed a two-stage active learning
framework combining a clustering technique and support vec-
tor machine. Li et al. [43] proposed an active semi-supervised
learning method to select the most helpful modules. They
first randomly select 10% modules for labeling and then
used them to build an ensemble learning model for the rest
unlabeled modules. Lu et al. [44] proposed an adaptively
defect prediction framework combining supervised learning
and active learning. Different from conventional uncertainty
measure based active learning that selects the most uncertainty
modules, they selected the most certain ones. However, all
these methods are applied to WPDP and need a certain amount
of labeled modules to initiate the methods.

Lu et al. [7] were the first to introduce active learning
into CVDP to identify the most valuable modules from the
current version for labeling by querying the domain experts,
and then merged them into prior version to construct a hybrid
training set. Due to the limitation of their method as mentioned

in Section I-A, in this paper, we employ a hybrid active
learning framework to select the candidate modules that are
both informative and representative in the current version.

III. OUR METHOD

A. Overview
Figure 1 depicts the overview of our HALKP framework

that consists of two stages with multiple steps. In the first
stage, for each cycle of active learning, in step 1 , a hybrid
active learning method is used to select one unlabeled module
that is both informative and representative based on labeled
modules of the prior version; in step 2 , a domain expert
(such as software tester and verification engineer) is consulted
to thorough inspect the module and assigns its label in step
3 ; in step 4 , the selected module is merged into the prior

version to form a mixed labeled module pool. One cycle is
completed after the four steps. In the next cycle, the four steps
are conducted with the remaining unlabeled modules and the
mixed labeled modules to select the next candidate module for
labeling. The cycles stop until reaching a predefined threshold,
which denotes the number of selected candidate modules.
After this stage, we obtain two new module sets, i.e., the
remaining unlabeled modules of current version and the mixed
labeled modules of prior version. In the second stage, a non-
linear feature extraction method KPCA is used to convert the
data of two versions into a mapped space in step 5 . Finally,
a standard defect prediction process is performed by training
a classifier using the mapped mixed labeled modules of the
prior version in step 6 and then predicting the labels of the
remaining unlabeled modules of the current version in step 7 .

Fig. 1: Overview of our CVDP framework.

B. Active Learning with Uncertainty Measure
Uncertainty measure based active learning iteratively selects

the modules with most uncertainty. It first trains a probabilistic
classifier with the pool of the labeled modules of the prior
version, and then uses the resulting model to predict the
labels of the unlabeled modules of the current version. The
uncertainty measure f(xi) of module xi is defined as its
conditional entropy given the label variable y:

211

f(xi) = −
∑
y∈Y

P (y|xi, θL) logP (y|xi, θL), (1)

where Y ∈ {0, 1} denotes the label set (i.e., 1 denotes defec-
tive module and 0 denotes non-defective module), θL denotes
the classification model θ trained on the labeled module set L
of the prior version, and the conditional probability distribution
P (y|xi, θL) is calculated by this model. Uncertainty measure
based active learning selects the unlabeled module that has the
largest conditional entropy.

C. Active Learning with Information Density Measure
The shortcoming of uncertainty measure based active learn-

ing is that the selected module merely relates to the classifier
that built on the labeled modules of the prior version, which
may lead to a bias towards the candidate module [9]. Previous
work has shown that it is important to select representative
samples by considering the distribution information of unla-
beled samples [8]. The intuition here is that the module located
in the center of data cluster is representative. In this paper, we
use an informative density measure to select the representative
module. This measure is based on the mutual information
between a module and the remaining unlabeled modules since
the mutual information is a measurement of interdependence
among two variable sets. The information density measure
d(xi) of module xi is defined as

d(xi) = H(xi)−H(xi|U ′), (2)

where U ′ denotes the remaining unlabeled module set after
removing module xi from the unlabeled module set U , and
H() denotes the entropy function. We use the Gaussian
Process framework in [9] to compute this measure.
D. A Hybrid Active Learning Framework

As mentioned above, the uncertainty measure selects the
informative modules by relying on the labeled modules of
the prior version, whereas information density measure selects
the representative modules by considering the distribution
information of the unlabeled modules of the current version.
Since the two measures pick up candidate modules from
different views, in this work, we introduce a hybrid measure
framework that combines the advantages of the above two
measures following the work [9]. The hybrid measure h(xi)
of module xi is defined as

h(xi) = f(xi)
βd(xi)

1−β , (3)

where β (0 ≤ β ≤ 1) is a controlling parameter towards
the two measures. Higher β indicates that the hybrid measure
is more bias to the uncertainty measure, otherwise to the
information density measure.

The module x̂i with the maximum hybrid measure value is
selected as the candidate module, that is

x̂i = arg max
xi∈U

h(xi) (4)

The label of module x̂i is determined by the domain experts
by thoroughly inspecting the module and judge whether it
contains defects with their rich experience. After the active

learning, we obtain two new datasets, i.e., the mixture labeled
module set L′ and the remaining unlabeled module set U ′.
Algorithm 1 presents the process of the hybrid framework.

Algorithm 1 Framework of Hybrid Active Learning.

Input: The labeled module set of prior version, L; The unla-
beled module set of current version, U ; The probabilistic
classifier, θ.

Output: The mixed labeled module set of prior version, L′;
The rest of unlabeled module set of current version, U ′.

1: repeat
2: for xi ∈ U do
3: Calculate f(xi) according to Eq (1).
4: Calculate d(xi) according to Eq (2).
5: Calculate h(xi) according to Eq (3).
6: end for
7: Select x̂i that has the largest hybrid measure value

according to Eq (4).
8: Remove x̂i from U (U ′ = U − x̂i), U = U ′.
9: Query the label yx̂i

of x̂i.
10: Merge (x̂i, yx̂i

) into L (L′ = L+ (x̂i, yx̂i
)), L = L′.

11: until Meeting the stop criterion.
12: return L′ and U ′.

E. Feature Extraction Based on KPCA

Following the active learning, we further employ the non-
linear feature extraction method KPCA to map set L′ and
U ′ into a high-dimension feature space F in which the
standard PCA is performed. Assume one of the module set
(such as the set U ′) as x′i ∈ U ′, i = 1, 2, . . . , n, where
xi = [x′i1, x

′
i2, . . . , x

′
im]T ∈ <m denotes the feature set and n

denotes the number of modules in U ′.
First, we map each data point (i.e., a module) x′i into a new

point ϕ(xi′) with a non-linear function ϕ and centralize the
mapped data points. The covariance matrix C of the mapped
data is defined as

C = 1
n

∑n
i=1 ϕ(x

′
i)ϕ(x

′
i)

T (5)

To perform the linear PCA in F , we diagonalize the above
covariance matrix C by solving the eigenvalue problem

CV = λV, (6)

where λ and V denote the eigenvalues and eigenvectors of C,
respectively.

Since all solutions V lie in the span of the mapped data,
we multiply both sides of Eq (6) by ϕ(x′l)

T as

ϕ(x′l)
TCV = λϕ(x′l)

TV,∀l = 1, 2, . . . , n (7)

Meanwhile, the eigenvectors V can be linearly expressed
via ϕ(x′1), ϕ(x

′
2), . . . , ϕ(x

′
n) with coefficients α1, α2, . . . , αn:

V =
∑n
j=1 αjϕ(x

′
j) (8)

By substituting Eq (5) and Eq (8) into Eq (7), the equation
is rewritten as following formula:

1
nϕ(x

′
l)
T
∑n
i=1 ϕ(x

′
i)ϕ(x

′
i)

T
∑n
j=1 αjϕ(x

′
j)

= λϕ(x′l)
T
∑n
j=1 αjϕ(x

′
j)

(9)

212

Define the kernel function κ(x′i, x
′
j) as κ(x′i, x

′
j) =

ϕ(x′i)
Tϕ(x′j). Then Eq (9) is rewritten as

1
n

∑n
l=1,i=1 κ(x

′
l, x
′
i)
∑n
i=1,j=1 αjκ(x

′
i, x
′
j)

= λ
∑n
l=1,j=1 αjκ(x

′
l, x
′
j)

(10)

Define the kernel matrix K with size n × n as Ki,j =
κ(x′i, x

′
j). Then Eq (10) is rewritten as

K2α = nλKα, (11)

where α = [α1, α2, . . . , αn]
T.

The α in Eq (11) can be obtained by solving the following
eigenvalue problem

Kα = nλα (12)

for nonzero eigenvalues λ and corresponding eigenvectors α.
After obtaining α, the mapped data is calculated as Kα.

The module ϕ(x′L) in another module set (such as set L′)
is mapped as

V · ϕ(x′L) =
∑n
i=1 αϕ(x

′
i)

Tϕ(x′L)
=

∑n
i=1 ακ(x

′
i, x
′
L)

(13)

To eliminate the noise in the data, when performing PCA
in the space F , we maintain the most important principal
components that capture at least 95% of total variances of
the data according to their cumulative contribution rates [45].

After feature extraction, the data of two versions are trans-
formed into set Lmap and Umap, respectively.

IV. IMPLEMENTATION

In CVDP framework, there are some parameters needed to
be tuned. In the active learning phase, although querying the
labels comes at a cost, if the process can make the defect
prediction more effective and improve the software quality, the
cost is acceptable as long as we control the querying number
(i.e., the threshold) at a small amount, usually less than 20%
of the total number of unlabeled modules [7]. In this work, we
select four thresholds, i.e., 5%, 10%, 15%, 20%. In addition,
since β is a version-specific control parameter that varies
between different cross-version pairs, we could not assign a
constant value as the optimal parameter for all cases. In this
work, we set a relatively wide range as β= 0, 0.1, . . . , 0.9, 1,
and use the F-measure as the primary indicator to determine
the optimal β value for different cross-version pairs. β = 1
denotes the basic uncertainty measure based active learning
while β = 0 stands for the information density measure based
active learning. How to adaptively set the parameter values
remains an open issue in our future work. In practice, the labels
of the candidate unlabeled modules are assigned by the domain
experts. In this work, we simulate the process by endowing
the ground-truth labels to them following prior work [7], [43].

In the feature extraction phase, we choose the Gaussian RBF
kernel as the non-linear function for KPCA since it usually
exhibits promising performance in many applications [46]–
[48]. The RBF kernel is defined as

κ(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, (14)

where ‖ · ‖ denotes the l2 norm and 2σ2 = ω denotes the
width of the RBF function. In terms of the parameter σ, we
set σ = 10 through extensive experiences since it can achieve
satisfactory results on most cross-version pairs.

To imitate CVDP, we design two different cross-version
schemes. The first scheme is to conduct CVDP between two
successive versions. More specifically, for the ant project in
benchmark dataset (as mentioned in Section V-A), the modules
in version 1.3 are used to train a prediction model with some
selected modules from version 1.4. This model is then tested
on the remaining modules in version 1.4. The second scheme
is to conduct CVDP between the last version and all its prior
versions. More specifically, the modules in version 1.3, 1.4 and
1.5 are used to train a prediction model with some selected
modules from version 1.6. This model is then used to predict
the labels of the remaining unlabeled modules in version 1.6.

In terms of the classifier for uncertainty measure based
active learning and the cross-version prediction process, we
select the logistic regression classifier as the base learner. This
classifier is extensively used in defect prediction studies [21],
[49]–[54] and active learning applications [40], [55], [56].

V. EVALUATION

A. Benchmark Dataset

We conduct extensive experiments on 31 versions of 10
software projects taken from MORPH dataset [57], which has
been widely used in many previous defect prediction studies
[22], [58]–[60]. Each module in the project consists of 20
object-oriented features and a dependent variable, i.e., defect
number in each module. These features are collected at method
level by Jureczko, Madeyski and Spinellis with ckjm tool [61],
[62]. More detailed descriptions about these features can be
found in [61]. In this work, we label the module as 1 if it
contains one or more defects. Otherwise, we label it as 0.

The statistic of the projects is shown in Table I, including
the number of the modules (# M), the newly added modules (+
M) and the removed modules compared with the prior version
(- M), the defective modules (# D), the new defective modules
(+ D) and the eliminated defective modules (- D) compared
with the prior version, the percentage of defective modules
(% D). Note that the new defective modules include the
newly introduced defective modules and the modules without
defect in prior version but with defect in current version. The
eliminated defective modules include the removed defective
modules from prior version and the modules with defect in
prior version but without defect in current version. From the
table, we observe that, for most projects, the current versions
inherit many modules from the prior version, however, the
added (removed) modules and defective modules will lead to
the distribution difference across the versions.

B. Performance Indicators

We measure the performance of HALKP with three indi-
cators, namely F-measure, g-mean and Balance, which are
widely used in defect prediction [10], [26], [28], [33], [43],
[63]–[68]. The three indicators can be derived from some basic
indicators listed in Table II and defined as

213

F-measure =
2 ∗ recall ∗ precision
recall + precision

(15)

g-mean =

√
(

TN

TN+ FP
) ∗ (TP

TP + FN
) (16)

Balance = 1−
√

(0− pf)2 + (1− pd)2

2
(17)

For all research questions, we use a non-parametric test, the
Wilcoxon signed-rank test, to check whether the differences
between HALKP and the baseline methods are statistically
significant at a confidence level of 95%. This test is suitable
for tested objects that have unknown distribution [69], [70].
The difference is significant if the p value of the test is lower
than 0.05. Further, we use the effect size, Cliff’s Delta [71],
to qualify the amount of the difference. The difference is
substantial if the d value of the Cliff’s Delta is not lower
than 0.146 [27], [49], [72].

TABLE I: Statistic of the Benchmark Dataset
Project Version # M + M - M # D + D - D % D

ant

1.3 125 20 16.00%
1.4 178 53 0 40 34 14 22.47%
1.5 293 125 10 32 25 33 10.92%
1.6 351 59 1 92 87 15 26.21%

camel

1.2 608 216 35.53%
1.4 872 303 39 145 97 119 16.63%
1.6 965 108 15 188 154 63 19.48%

ivy

1.1 111 63 56.76%
1.4 241 132 2 16 9 55 6.64%
2.0 352 352 241 40 40 16 11.36%

jedit

3.2 272 90 33.09%
4.0 306 41 7 75 54 43 24.51%
4.1 312 21 15 79 61 26 25.32%

log4j

1.0 135 34 25.19%
1.1 109 11 37 37 27 12 33.94%
1.2 205 102 6 189 187 4 92.20%

poi

1.5 237 141 59.49%
2.0 314 90 13 37 19 122 11.78%
2.5 385 71 0 248 240 10 64.42%

synapse

1.0 157 16 10.19%
1.1 222 70 5 60 58 7 27.03%
1.2 256 37 3 86 71 30 33.59%

velocity

1.4 196 147 75.00%
1.5 214 59 41 142 115 68 66.36%
1.6 229 20 5 78 85 52 34.06%

xalan

2.4 723 110 15.21%
2.5 803 114 34 387 351 39 48.19%
2.6 885 119 37 411 287 116 46.44%

xerces

1.2 440 71 16.14%
1.3 453 20 7 69 65 54 15.23%
1.4 588 260 125 437 428 34 74.32%

C. Experimental Results

RQ1: How effective is HALKP compared with some
variations of its downgraded versions?
Method: As mentioned above, our CVDP framework HALKP
consists of two stages: active learning stage for picking up
informative and representative unlabeled modules from the
current version to form an enhanced training data and feature

TABLE II: Indicators for Defect Prediction
Predicted as defective Predicted as non-defective

Actual defective TP FN

Actual non-defective FP TN

pd (recall) TP
TP+FN

pf FP
FP+TN

precision TP
TP+FP

extraction stage for better presenting the data of two versions.
This question investigates whether the two-phase framework is
better than five baseline methods of its downgraded variations,
including the method that only uses the Original data of
two versions for CVDP (Ori), the method that Only applies
KPCA to the original data of two versions without active
learning stage (O-KPCA), the method that Only applies HAL
to the original data of two versions without feature extraction
stage (O-HAL). In addition, considering that KPCA is a non-
linear variation of PCA, we also explore whether the features
extracted by non-linear method KPCA are more effective than
that by linear method PCA for CVDP. We compare HALKP
with two extra variations: one method that Only performs PCA
on the original data of two versions (O-PCA) and one method
that combines HAL with PCA (HALPCA).
Results: Due to the space limit, we only report the detailed
results of the three indicators for each cross-version pair under
threshold 5% as shown in Table III. The best indicator values
are in bold. For the results of the three indicators under other
three thresholds, we report the corresponding box-plots as
depicted in Figures 2 to 4. All detailed results under each
thresholds can be found in our additional materials [73].

Table III shows that HALKP achieves the best average
performance across 31 cross-version pairs in terms of all three
indicators. More concretely, in terms of F-measure, HALKP is
better than the baseline methods on 23 out of 31 cross-version
pairs and the average F-measure by HALKP (0.480) gains
improvements between 15.8% and 53.9% over the baseline
methods; in terms of g-mean, HALKP is superior to the
baseline methods on 26 out of 31 cross-version pairs and
the average g-mean by HALKP (0.592) gains improvements
between 9.5% and 40.2% over the baseline methods; in terms
of Balance, HALKP outperforms the baseline methods on 25
out of 31 cross-version pairs and the average Balance by
HALKP (0.580) gains improvements between 8.6% and 30.1%
over the baseline methods. The p and d values indicate that the
performance differences between HALKP and the variations
are statistically significant and substantial.

Figures 2 to 4 depict the box-plots of the six methods on
three indicators across all cross-version pairs under threshold
10%, 15%, 20%, respectively. All figures show that the median
and minimum values of all three indicators by HALKP are
superior to that by the baseline methods. In addition, the
maximum values of g-mean and Balance by HALKP are
higher than that by all baseline methods.

In terms of the first three methods, they are the conventional
CVDP methods due to building classification model with all
modules of prior version and predict all modules of current

214

TABLE III: The Detailed Results for HALKP and Its Five Variations on Each Cross-Version Pair under Threshold 5%
Cross-Version Pair F-measure g-mean Balance

Project Prior Current Ori O-PCA O-KPCA O-HAL HALPCA HALKP Ori O-PCA O-KPCA O-HAL HALPCA HALKP Ori O-PCA O-KPCA O-HAL HALPCA HALKP

ant

1.3 1.4 0.215 0.151 0.354 0.237 0.240 0.359 0.390 0.306 0.535 0.410 0.392 0.538 0.409 0.362 0.523 0.421 0.406 0.527
1.4 1.5 0.273 0.338 0.252 0.414 0.364 0.316 0.504 0.561 0.590 0.621 0.568 0.674 0.487 0.532 0.587 0.583 0.535 0.671
1.5 1.6 0.286 0.293 0.336 0.336 0.333 0.383 0.414 0.424 0.478 0.456 0.456 0.530 0.416 0.423 0.466 0.443 0.442 0.510

1.3+1.4+1.5 1.6 0.298 0.234 0.347 0.330 0.263 0.422 0.426 0.372 0.493 0.453 0.397 0.565 0.423 0.393 0.480 0.441 0.406 0.542

camel
1.2 1.4 0.322 0.332 0.388 0.353 0.333 0.401 0.518 0.500 0.647 0.544 0.507 0.645 0.501 0.481 0.644 0.521 0.485 0.638
1.4 1.6 0.169 0.158 0.346 0.197 0.194 0.406 0.314 0.299 0.548 0.343 0.335 0.581 0.364 0.357 0.534 0.378 0.373 0.557

1.2+1.4 1.6 0.233 0.220 0.373 0.256 0.250 0.429 0.394 0.372 0.546 0.405 0.398 0.583 0.408 0.394 0.523 0.413 0.408 0.552

ivy
1.1 1.4 0.122 0.170 0.163 0.173 0.220 0.165 0.492 0.604 0.596 0.603 0.687 0.583 0.492 0.588 0.596 0.600 0.675 0.583
1.4 2.0 0.145 0.042 0.299 0.095 0.182 0.349 0.311 0.156 0.578 0.229 0.327 0.586 0.363 0.310 0.560 0.330 0.369 0.558

1.1+1.4 2.0 0.338 0.314 0.260 0.343 0.319 0.300 0.531 0.508 0.525 0.537 0.514 0.583 0.503 0.486 0.511 0.508 0.490 0.564

jedit
3.2 4.0 0.541 0.540 0.527 0.567 0.577 0.634 0.687 0.689 0.691 0.697 0.706 0.772 0.673 0.678 0.690 0.676 0.686 0.769
4.0 4.1 0.548 0.528 0.533 0.600 0.574 0.591 0.640 0.628 0.676 0.682 0.671 0.732 0.596 0.586 0.662 0.635 0.629 0.724

3.2+4.0 4.1 0.566 0.531 0.546 0.614 0.571 0.564 0.681 0.657 0.697 0.703 0.687 0.708 0.652 0.631 0.693 0.663 0.662 0.699

log4j
1.0 1.1 0.567 0.623 0.590 0.655 0.667 0.632 0.649 0.691 0.668 0.720 0.728 0.712 0.613 0.653 0.632 0.684 0.693 0.683
1.1 1.2 0.452 0.381 0.587 0.605 0.524 0.725 0.491 0.456 0.518 0.577 0.516 0.401 0.485 0.454 0.517 0.569 0.512 0.410

1.0+1.1 1.2 0.397 0.376 0.486 0.448 0.409 0.613 0.483 0.467 0.550 0.506 0.492 0.622 0.467 0.456 0.519 0.492 0.474 0.598

poi
1.5 2.0 0.183 0.173 0.170 0.207 0.187 0.259 0.452 0.417 0.452 0.494 0.445 0.585 0.454 0.423 0.452 0.494 0.449 0.584
2.0 2.5 0.077 0.055 0.297 0.103 0.073 0.604 0.200 0.167 0.401 0.232 0.194 0.616 0.321 0.313 0.417 0.332 0.320 0.606

1.5+2.0 2.5 0.132 0.112 0.594 0.196 0.171 0.675 0.262 0.242 0.618 0.325 0.303 0.683 0.343 0.335 0.601 0.371 0.360 0.667

synapse
1.0 1.1 0.062 0.219 0.384 0.286 0.254 0.426 0.181 0.359 0.547 0.426 0.391 0.574 0.316 0.387 0.540 0.428 0.404 0.559
1.1 1.2 0.406 0.413 0.444 0.417 0.435 0.479 0.523 0.523 0.564 0.533 0.542 0.591 0.502 0.497 0.551 0.510 0.512 0.584

1.0+1.1 1.2 0.389 0.372 0.397 0.396 0.404 0.458 0.498 0.485 0.523 0.504 0.510 0.568 0.473 0.465 0.510 0.478 0.482 0.544

velocity
1.4 1.5 0.718 0.731 0.698 0.739 0.743 0.751 0.239 0.322 0.311 0.252 0.351 0.493 0.330 0.370 0.361 0.337 0.386 0.488
1.5 1.6 0.552 0.541 0.541 0.602 0.577 0.596 0.560 0.535 0.562 0.631 0.592 0.657 0.542 0.519 0.548 0.610 0.574 0.647

1.4+1.5 1.6 0.534 0.535 0.524 0.563 0.561 0.527 0.383 0.368 0.504 0.402 0.393 0.494 0.400 0.391 0.494 0.410 0.405 0.485

xalan
2.4 2.5 0.153 0.112 0.298 0.168 0.134 0.345 0.288 0.244 0.417 0.303 0.268 0.454 0.353 0.336 0.426 0.359 0.345 0.452
2.5 2.6 0.512 0.539 0.595 0.528 0.559 0.639 0.559 0.584 0.612 0.572 0.610 0.671 0.557 0.582 0.612 0.570 0.603 0.668

2.4+2.5 2.6 0.263 0.263 0.505 0.292 0.289 0.610 0.390 0.390 0.560 0.414 0.411 0.636 0.404 0.403 0.557 0.418 0.415 0.636

xerces
1.2 1.3 0.154 0.110 0.204 0.184 0.119 0.294 0.294 0.241 0.418 0.322 0.254 0.469 0.354 0.334 0.428 0.367 0.339 0.457
1.3 1.4 0.215 0.172 0.407 0.248 0.264 0.536 0.346 0.306 0.465 0.372 0.390 0.584 0.379 0.359 0.466 0.394 0.400 0.555

1.2+1.3 1.4 0.096 0.092 0.396 0.119 0.120 0.402 0.224 0.219 0.461 0.251 0.253 0.468 0.328 0.327 0.462 0.338 0.338 0.466
AVG 0.320 0.312 0.414 0.364 0.352 0.480 0.430 0.422 0.540 0.468 0.461 0.592 0.449 0.446 0.534 0.477 0.470 0.580

p(10−4) 0.023 0.020 0.457 0.149 0.148 0.019 0.017 0.783 0.162 0.130 0.012 0.012 0.050 0.286 0.130
d 0.522 0.530 0.283 0.397 0.442 0.667 0.634 0.340 0.506 0.538 0.672 0.657 0.308 0.518 0.568

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.6

0.4

0.2

0.0

F-measure

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

g-mean

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.7

0.6

0.5

0.4

0.3

Balance

Fig. 2: Box-plots of HALKP and its five variations on three performance indicators under threshold 10%.

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.6

0.4

0.2

0.0

F-measure

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

g-mean

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.7

0.6

0.5

0.4

0.3

Balance

Fig. 3: Box-plots of HALKP and its five variations on three performance indicators under threshold 15%.

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.6

0.4

0.2

0.0

F-measure

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

g-mean

HALKPHALPCAO-HALO-KPCAO-PCAOri

0.8

0.7

0.6

0.5

0.4

0.3

Balance

Fig. 4: Box-plots of HALKP and its five variations on three performance indicators under threshold 20%.

215

TABLE IV: Optimal β for Three HAL Based Methods for Each Cross-Version Pair under Four Thresholds
Threshold Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

5%
O-HAL 0.0 0.4 0.1 0.1 0.7 0.3 0.1 0.6 0.4 0.4 0.0 0.3 0.0 1.0 1.0 0.0 0.4 0.2 0.7 0.6 0.3 0.7 0.1 0.1 0.9 0.0 0.4 0.1 0.4 0.3 0.2

HALPCA 0.0 0.4 0.1 0.3 1.0 0.6 0.0 0.6 0.5 0.0 0.0 0.3 0.3 0.4 0.9 0.0 0.8 1.0 0.4 0.3 0.0 0.9 1.0 0.7 0.8 0.6 0.8 0.1 1.0 0.6 0.0
HALKP 0.2 0.3 0.1 0.2 0.3 0.4 0.8 0.0 0.8 0.4 0.0 0.1 0.4 0.0 0.5 0.6 0.6 0.0 0.1 0.9 0.0 0.2 1.0 0.0 0.8 0.0 0.3 0.7 0.6 0.2 0.0

10%
O-HAL 0.0 0.4 0.1 0.1 0.1 0.0 0.2 1.0 0.4 0.5 0.0 0.0 0.0 0.9 1.0 1.0 0.2 0.0 0.3 0.7 0.0 0.4 0.6 0.1 0.7 0.3 0.3 0.3 0.4 0.3 0.0

HALPCA 0.0 0.4 0.1 0.4 0.4 0.4 0.8 0.3 0.5 0.5 0.0 0.3 0.2 0.0 1.0 0.7 0.6 0.3 0.4 0.1 0.1 0.4 0.1 0.7 0.7 0.5 0.3 0.1 0.1 0.2 0.3
HALKP 0.4 0.8 0.8 0.2 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.3 0.3 0.8 1.0 0.3 0.7 0.0 0.0 0.3 0.8 0.5 0.1 0.0 0.3 0.0 1.0 0.7 0.3 0.0 0.3

15%
O-HAL 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.6 0.9 0.5 0.0 0.3 0.5 0.2 1.0 0.2 0.2 0.0 0.3 0.5 0.3 0.4 0.1 0.1 0.6 0.2 1.0 0.1 0.7 0.0 0.0

HALPCA 0.0 1.0 0.1 0.2 0.0 0.3 0.2 0.6 0.9 0.5 0.2 0.3 0.0 0.1 1.0 0.2 0.7 0.5 0.3 0.1 0.8 0.4 0.2 0.4 0.3 0.7 1.0 0.0 0.0 0.5 0.3
HALKP 0.3 0.2 0.0 0.2 0.0 0.1 0.1 1.0 0.7 0.5 0.1 0.6 0.2 0.1 1.0 0.6 0.1 0.0 0.1 0.5 0.9 0.3 0.1 0.1 1.0 0.0 0.7 0.4 0.2 0.0 0.0

20%
O-HAL 0.1 0.5 0.1 0.1 0.0 0.0 0.4 0.1 0.3 0.5 0.0 0.3 0.3 0.1 1.0 0.6 0.2 0.0 0.3 0.6 0.6 0.4 0.1 0.1 0.6 0.2 1.0 0.2 0.4 0.0 0.0

HALPCA 0.0 0.3 0.4 0.2 0.6 0.2 0.4 0.6 0.5 0.8 0.2 0.0 0.2 0.1 1.0 0.6 0.7 0.1 0.4 0.4 1.0 0.4 0.8 0.6 0.3 0.1 1.0 0.4 0.0 0.4 0.3
HALKP 0.0 0.1 0.8 0.9 0.0 0.3 0.0 0.6 0.0 0.9 0.0 0.2 0.0 0.1 0.8 0.4 0.2 0.0 0.0 0.5 1.0 0.8 0.7 0.0 0.0 0.0 0.2 0.1 0.3 0.2 0.0

version. Among the three methods, O-KPCA obtains the
best median values of all indicators compared with Ori and
O-PCA. Since they differ in the preprocessing towards the
features, the observation implies that the features extracted by
non-linear method KPCA are beneficial to building a more
effective model than the original features and the features
extracted by linear method PCA. In addition, since all the
three methods are outperformed by HALKP in terms of the
three indicators under all four thresholds, it implies that the
active learning can further improve the CVDP performance
through supplementing useful structure information of current
version into the prior version.

For the last three methods, the median values of the three
indicators by HALKP are much higher than that by O-
HAL, HALPCA under all thresholds. Since they differ in
the preprocessing towards the features, the observation also
implies that the features extracted by KPCA are still effective
to improve CVDP performance after active learning.

In addition, we also report the optimal β values of O-HAL,
HALPCA and HALKP for each cross-version pair under the
four thresholds in Table IV. The index numbers in the first
row correspond to the sequence numbers of the cross-version
pairs in Table III from top to bottom. The table shows that the
optimal β values vary across different cross-version pairs. For
the same cross-version pair, the optimal β values also vary
among different methods. In addition, β = 1 manifests that
uncertainty measure based active learning achieves the best
CVDP performance. From the table, we observe that there are
only few cases in which the three methods with β = 1 achieve
the best results. In terms of HALKP, there is only 1, 2, 3, 1 case
under four thresholds, respectively. In most cases, HALKP
with β ∈ (0, 1) can achieve the best performance. These
observations show that the candidate modules selected by HAL
can provide more useful information into prior version to
promote an more effective model compared with the modules
selected by uncertainty measure based active learning.

RQ2: Is HALKP effective than other methods for CVDP?
Method: An simple method for selecting the candidate mod-
ules is random sampling from the current version. In this
question, we investigate whether the candidate modules se-
lected by HAL are more effective to enhance the data of
prior version for adapting the remaining unlabeled modules
compared with the modules selected by random sampling. For
the purpose, we design three baseline methods based on the
randomly selected candidate modules: the method that Only
uses Random Sampling (O-RS), the method that incorporates

Random Sampling with PCA (RSPCA), and the method that
combines Random Sampling with KPCA (RSKPCA).

Recently, Lu et al. [7] designed a state-of-the-art method
for CVDP. They used an uncertainty based Active Learning
method to select the candidate modules after performing a
dimensionality reduction with MDS. We name this method
as MDSAL. Since the authors did not point out the feature
dimensions they remained, we followed previous studies [74],
[75] to assign the feature dimension. In [74], the authors
suggested that selecting dlog2me features (where m denotes
the total number of original features) is appropriate for defect
prediction, while in [75], the authors pointed out that remain-
ing 15% of the total number of features can also achieve
satisfactory performance for defect prediction. Therefore, in
this work, we implement two versions of MDSAL method
according to the two selection strategies of feature dimen-
sion, and name the two baseline methods as MDSAL-1 and
MDSAL-2, respectively.
Results: Table V presents the results of various indicators
under threshold 5%. The table shows that HALKP achieves
the best average performance over all three indicators. More
concretely, in terms of F-measure, HALKP is superior to the
baseline methods on 19 out of 31 cross-version pairs and the
average F-measure by HALKP (0.480) gains improvements
between 14.8% and 33.7% over the baseline methods; in
terms of g-mean, HALKP outperforms the baseline methods
on 23 out of 31 cross-version pairs and the average g-
mean by HALKP (0.592) gains improvements between 9.7%
and 27.6% over the baseline methods; in terms of Balance,
HALKP is better than the baseline methods on 23 out of
31 cross-version pairs and the average Balance by HALKP
(0.580) gains improvements between 9.0% and 22.4% over
the baseline methods. Since the difference between RSKPCA
and HALKP is the strategy of selecting the candidate modules
of the current version, the experimental results indicate that
HAL selects more useful unlabeled modules for the enhanced
training data for CVDP compared with random sampling.

From the detailed results of the six methods on three indi-
cators under threshold 10%, 15% and 20% in our additional
materials [73], HALKP also achieves the best average results
in terms of three indicators compared with the five baseline
methods. The p and d values indicate that there exist statisti-
cally significant and substantial differences between HALKP
and the five baseline methods under all four thresholds.
RQ3: How does the sequence of active learning and feature
extraction impact the performance of CVDP?

216

TABLE V: The Detailed Results for HALKP and Five Baseline Methods on Each Cross-Version Pair under Threshold 5%
Cross-Version Pair F-measure g-mean Balance

Project Prior Current O-RS RS-PCA RS-KPCA MDSAL-1 MDSAL-2 HALKP O-RS RS-PCA RS-KPCA MDSAL-1 MDSAL-2 HALKP O-RS RS-PCA RS-KPCA MDSAL-1 MDSAL-2 HALKP

ant

1.3 1.4 0.187 0.162 0.286 0.098 0.328 0.359 0.340 0.315 0.473 0.235 0.496 0.538 0.386 0.369 0.472 0.333 0.483 0.527
1.4 1.5 0.294 0.333 0.230 0.182 0.298 0.316 0.522 0.550 0.563 0.358 0.466 0.674 0.504 0.523 0.562 0.387 0.452 0.671
1.5 1.6 0.286 0.282 0.369 0.198 0.198 0.383 0.416 0.412 0.509 0.339 0.336 0.530 0.418 0.417 0.491 0.375 0.373 0.510

1.3+1.4+1.5 1.6 0.290 0.242 0.368 0.299 0.255 0.422 0.419 0.379 0.512 0.430 0.388 0.565 0.421 0.397 0.495 0.427 0.401 0.542

camel
1.2 1.4 0.316 0.317 0.361 0.423 0.404 0.401 0.507 0.480 0.624 0.659 0.631 0.645 0.491 0.464 0.622 0.646 0.616 0.638
1.4 1.6 0.175 0.156 0.369 0.240 0.340 0.406 0.320 0.296 0.558 0.388 0.494 0.581 0.367 0.356 0.539 0.403 0.475 0.557

1.2+1.4 1.6 0.242 0.222 0.361 0.382 0.342 0.429 0.397 0.370 0.543 0.538 0.512 0.583 0.409 0.393 0.525 0.512 0.493 0.552

ivy
1.1 1.4 0.151 0.204 0.128 0.186 0.179 0.165 0.570 0.675 0.518 0.664 0.626 0.583 0.569 0.663 0.517 0.655 0.625 0.583
1.4 2.0 0.123 0.084 0.252 0.056 0.105 0.349 0.268 0.197 0.514 0.171 0.239 0.586 0.349 0.327 0.502 0.314 0.333 0.558

1.1+1.4 2.0 0.294 0.298 0.273 0.306 0.203 0.300 0.488 0.487 0.563 0.536 0.421 0.583 0.471 0.470 0.550 0.511 0.427 0.564

jedit
3.2 4.0 0.533 0.536 0.565 0.570 0.614 0.634 0.678 0.685 0.718 0.730 0.755 0.772 0.662 0.673 0.715 0.724 0.749 0.769
4.0 4.1 0.556 0.523 0.519 0.486 0.483 0.591 0.646 0.624 0.660 0.598 0.601 0.732 0.601 0.583 0.643 0.560 0.565 0.724

3.2+4.0 4.1 0.578 0.545 0.531 0.647 0.569 0.564 0.689 0.667 0.674 0.739 0.691 0.708 0.659 0.640 0.662 0.707 0.665 0.699

log4j
1.0 1.1 0.573 0.624 0.564 0.717 0.759 0.632 0.654 0.693 0.656 0.759 0.792 0.712 0.618 0.654 0.635 0.712 0.749 0.683
1.1 1.2 0.518 0.458 0.597 0.481 0.510 0.725 0.537 0.496 0.479 0.511 0.528 0.401 0.525 0.489 0.478 0.502 0.518 0.410

1.0+1.1 1.2 0.407 0.384 0.491 0.563 0.549 0.613 0.490 0.473 0.535 0.607 0.559 0.622 0.472 0.460 0.513 0.569 0.545 0.598

poi
1.5 2.0 0.172 0.163 0.193 0.222 0.235 0.259 0.449 0.418 0.489 0.556 0.554 0.585 0.451 0.421 0.490 0.553 0.552 0.584
2.0 2.5 0.096 0.061 0.347 0.127 0.163 0.604 0.223 0.176 0.434 0.259 0.296 0.616 0.329 0.315 0.443 0.341 0.356 0.606

1.5+2.0 2.5 0.145 0.133 0.498 0.562 0.567 0.675 0.276 0.264 0.544 0.604 0.603 0.683 0.349 0.344 0.536 0.579 0.582 0.667

synapse
1.0 1.1 0.083 0.192 0.342 0.250 0.182 0.426 0.207 0.330 0.507 0.392 0.329 0.574 0.325 0.373 0.504 0.405 0.372 0.559
1.1 1.2 0.408 0.412 0.422 0.424 0.504 0.479 0.525 0.523 0.546 0.534 0.587 0.591 0.504 0.498 0.534 0.508 0.543 0.584

1.0+1.1 1.2 0.391 0.359 0.383 0.427 0.407 0.458 0.501 0.475 0.510 0.526 0.521 0.568 0.477 0.458 0.498 0.492 0.496 0.544

velocity
1.4 1.5 0.719 0.733 0.697 0.781 0.806 0.751 0.264 0.310 0.369 0.317 0.402 0.493 0.341 0.364 0.396 0.368 0.413 0.488
1.5 1.6 0.562 0.546 0.532 0.560 0.597 0.596 0.587 0.549 0.569 0.578 0.650 0.657 0.570 0.533 0.559 0.562 0.636 0.647

1.4+1.5 1.6 0.534 0.535 0.507 0.577 0.578 0.527 0.392 0.375 0.488 0.588 0.601 0.494 0.405 0.395 0.485 0.565 0.578 0.485

xalan
2.4 2.5 0.161 0.119 0.320 0.191 0.250 0.345 0.295 0.252 0.435 0.326 0.379 0.454 0.356 0.339 0.438 0.370 0.398 0.452
2.5 2.6 0.520 0.540 0.602 0.638 0.678 0.639 0.571 0.595 0.612 0.664 0.694 0.671 0.568 0.589 0.611 0.663 0.694 0.668

2.4+2.5 2.6 0.276 0.276 0.522 0.635 0.590 0.610 0.401 0.400 0.584 0.685 0.648 0.636 0.411 0.409 0.574 0.657 0.625 0.636

xerces
1.2 1.3 0.152 0.116 0.203 0.177 0.124 0.294 0.291 0.248 0.414 0.341 0.299 0.469 0.354 0.337 0.426 0.378 0.359 0.457
1.3 1.4 0.243 0.210 0.445 0.275 0.269 0.536 0.371 0.342 0.500 0.397 0.394 0.584 0.391 0.376 0.488 0.406 0.403 0.555

1.2+1.3 1.4 0.092 0.095 0.399 0.171 0.194 0.402 0.219 0.223 0.464 0.302 0.326 0.468 0.327 0.328 0.458 0.360 0.369 0.466
AVG 0.325 0.318 0.409 0.382 0.396 0.480 0.436 0.428 0.534 0.495 0.510 0.592 0.454 0.450 0.528 0.501 0.511 0.580

p(10−4) 0.020 0.043 0.012 2.776 8.940 0.047 0.045 0.104 7.229 6.735 0.045 0.027 0.149 2.382 4.860
d 0.520 0.518 0.287 0.295 0.295 0.626 0.605 0.407 0.341 0.318 0.630 0.635 0.377 0.367 0.366

HALKPKPHALHALKPKPHALHALKPKPHAL

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5%
F-measure g-mean Balance

HALKPKPHALHALKPKPHALHALKPKPHAL

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10%
F-measure g-mean Balance

HALKPKPHALHALKPKPHALHALKPKPHAL

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

15%
F-measure g-mean Balance

HALKPKPHALHALKPKPHALHALKPKPHAL

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20%
F-measure g-mean Balance

Fig. 5: Box-plots of KPHAL and HALKP on three indicator values under four thresholds.

Method: As mentioned above, our two phased CVDP frame-
work consists of active learning stage and feature extraction
stage. Different from the CVDP method [7] that conducted
dimensionality reduction before active learning, we first apply
a hybrid active learning method on the original data of the
two versions, then employ a non-linear extraction method to
the new data of two versions. In this question, we investigate
whether the sequence of active learning and feature extraction
impacts our experimental results. For this purpose, we design
a baseline method that first uses feature extraction method
KPCA to map the original data of two versions, and then
apply the active learning method HAL to the mapped data.
We name this baseline method as KPHAL.

Result: Figure 5 depicts the box-plots of HALKP and KPHAL
on the three indicators under four thresholds. It shows that the
median F-measure by HALKP is higher than that by KPHAL,
while the median g-mean and Balance by two methods have
very small differences under threshold 5%; the median values
of all indicators by HALKP are superior to that by KPHAL
under threshold 10%, but the differences are not obvious; the
median g-mean and Balance by HALKP are better than that
by KPHAL, while the median F-measure by the two methods

are the same under threshold 15%; the median g-mean and
Balance by HALKP are much higher than that by KPHAL,
while the median F-measure by HALKP is slightly higher than
that by KPHAL under threshold 20%. In summary, HALKP
is better than KPHAL, especially under larger threshold.

20%15%10%5%

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

F-measure

20%15%10%5%

0.8

0.7

0.6

0.5

0.4

g-mean

20%15%10%5%

0.8

0.7

0.6

0.5

0.4

Balance

Fig. 6: Box-plots of HALKP for each indicator.

VI. DISCUSSION

A. How Many Candidate Modules Selected From Current
Version Are Sufficient?

Figure 6 depicts the box-plots of HALKP under the four
thresholds for each indicator. From the figure, we observe that
the median indicator value gradually increases as the threshold
increases except for the threshold 15%. In addition, we observe
that the median values of the three indicators under threshold

217

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

(a) data of current version

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

(b) uncertainty measure

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

(c) information density measure

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

(d) hybrid measure

Fig. 7: An synthetic example for presenting the selected samples by three active learning methods.

10% have no big differences compared with the corresponding
median values under threshold 20%. Since active learning
is expected to improve the CVDP performance with mini-
mum manual annotation, selecting 10% candidate modules for
labeling may be enough for HALKP to achieve acceptable
performance considering the labeling cost in practice.

B. Why Does Our Hybrid Active Learning Framework Work?
Since the differences between active learning methods lie

in the candidate samples selected, we perform an empirical
study on a synthetic dataset to manifest the importance of the
selected samples. Subfigure 7(a) is a synthetic dataset with
two-class samples. The samples of each class are represented
by different legends and colors. The dotted line denotes the
decision boundary. To simulate CVDP, we take the synthetic
dataset as the data of current version. Since plenty of infor-
mation of current version are derived from its prior version,
we make a perturbation on the coordinate values of the data
points to construct the data of prior version. We observe the
differences of the three active learning methods by sequentially
selecting 20 samples and show them on the plane.

Subfigure 7(b) presents the selected samples by uncertainty
measure based active learning method that favors informative
samples. We can see that most selected samples are close to
actual decision boundary but are not balanced in two classes,
leading to incorrect decision boundary. Subfigure 7(c) presents
the selected samples by information density measure based
active learning method that favors representative samples. It
shows that this method selects representative samples from
most data clusters. As the isolated sample can be treated
as a simple cluster, this method may select such sample as
the representative of the special cluster. These representative
samples could obtain the decision boundary that approaches
to the actual one. Subfigure 7(d) presents the selected samples
by our HAL method with β = 0.5 that favors both informative
and representative samples. We can see that the selected
samples have the potential to obtain the decision boundary
that is very close to the actual one.

VII. THREATS TO VALIDITY

External Validity. Although we conduct experiments on an
open source software defect dataset that has been extensively
used in previous studies, we still cannot claim that our
experimental findings can be generalized to all kinds of defect
datasets. Further investigations on other datasets are needed.
Internal Validity. Since the scholars in [7] did not provide
their experimental codes, we carefully replicate their method

according to the descriptions and implement the random
forest’s similarity based MDS with standard R package as
suggested by the scholars. For the parameter setting, such
as β in HAL, more cautious controlled experiments should
be performed. In addition, we just simply label the candidate
unlabeled modules with the actual labels instead of acquiring
their oracles from the experts. This may not well represent the
real application scenario.
Construct Validity. We use three extensively-used measure-
ment indicators to evaluate the performance of our HALKP
framework and baseline methods for CVDP. Other compre-
hensive indicators, such as AUC can also be considered. In
addition, we rigorously verify the superiority of our method
towards the baseline methods with statistical test and effect
size.

VIII. CONCLUSION AND FUTURE WORK

We propose a novel CVDP framework HALKP via a hybrid
active learning strategy HAL with a non-linear feature ex-
traction method KPCA. HAL selects some unlabeled modules
from current version, which are informative and representative
for the data of the current version, for querying the labels.
These selected modules and the modules of prior version
form an enhanced training set for the remaining unlabeled
modules of the current version. KPCA converts the data of
two versions into an embedding space where the mapped
features reveal the intrinsic structure of the original ones. We
evaluate the new framework on 31 versions of 10 projects
from a public defect dataset. The experimental results show
that HALKP outperforms the baseline methods, including five
variation methods, three random sampling based methods, and
two versions of a state-of-the-art method. The results also
indicate that active learning prior to feature extraction tends
to achieve relatively better CVDP performance.

Our future work involves applying the proposed framework
to other types of defect datasets and exploring how HALKP
can be extend to CPDP and HCPDP scenarios.

ACKNOWLEDGMENT

The authors acknowledge the support provided by the
grants of the National Natural Science Foundation of China
(61572374, 61472423, U1636220, 61602258), Academic
Team Building Plan for Young Scholars from Wuhan Univer-
sity (WHU2016012), China Postdoctoral Science Foundation
(No. 2017M621247), Hong Kong GRF (No. 152279/16E,
152223/17E), Hong Kong RGC Project (No. CityU C1008-
16G).

218

REFERENCES

[1] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
engineering, vol. 26, no. 8, pp. 797–814, 2000.

[2] J. C. Knight, “Safety critical systems: challenges and directions,” in Pro-
ceedings of the 24rd International Conference on Software Engineering.
IEEE, 2002, pp. 547–550.

[3] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[4] E. Arisholm and L. C. Briand, “Predicting fault-prone components in a
java legacy system,” in Proceedings of the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering. ACM, 2006, pp. 8–17.

[5] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software
defect prediction with a simplified metric set,” Information and Software
Technology, vol. 59, pp. 170–190, 2015.

[6] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint
arXiv:1708.02368, 2017.

[7] H. Lu, E. Kocaguneli, and B. Cukic, “Defect prediction between
software versions with active learning and dimensionality reduction,” in
Proceedings of the 25th International Symposium on Software Reliability
Engineering. IEEE, 2014, pp. 312–322.

[8] S. J. Huang, R. Jin, and Z. H. Zhou, “Active learning by querying
informative and representative examples.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 10, pp. 1936–1949, 2014.

[9] X. Li and Y. Guo, “Adaptive active learning for image classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 859–866.

[10] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel ensemble
learning for software defect prediction,” Automated Software Engineer-
ing, vol. 23, no. 4, pp. 569–590, 2016.

[11] F. Liu, X. Gao, B. Zhou, and J. Deng, “Software defect prediction model
based on pca-isvm,” Computer Simulation, 2014.

[12] H. Cao, Z. Qin, and T. Feng, “A novel pca-bp fuzzy neural network
model for software defect prediction,” Advanced Science Letters, vol. 9,
no. 1, pp. 423–428, 2012.

[13] C. Zhong, “Software quality prediction method with hybrid applying
principal components analysis and wavelet neural network and genetic
algorithm,” International Journal of Digital Content Technology and Its
Applications, vol. 5, no. 3, 2011.

[14] Y. Rathi, S. Dambreville, and A. R. Tannenbaum, “Statistical shape
analysis using kernel pca.” Georgia Institute of Technology, 2006.

[15] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of feature se-
lection on defect prediction performance: An empirical comparison,” in
Proceedings of the 27th International Symposium on Software Reliability
Engineering. IEEE, 2016, pp. 309–320.

[16] F. Zhang, I. Keivanloo, and Y. Zou, “Data transformation in cross-project
defect prediction,” Empirical Software Engineering, pp. 1–33, 2017.

[17] L. Shi, P. He, and E. Liu, “An incremental nonlinear dimensionality
reduction algorithm based on isomap,” AI 2005: Advances in Artificial
Intelligence, pp. 892–895, 2005.

[18] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component
analysis,” in Proceedings of the International Conference on Artificial
Neural Networks. Springer, 1997, pp. 583–588.

[19] C. Liu, “Gabor-based kernel pca with fractional power polynomial
models for face recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 5, pp. 572–581, 2004.

[20] S. W. Choi, C. Lee, J.-M. Lee, J. H. Park, and I.-B. Lee, “Fault
detection and identification of nonlinear processes based on kernel pca,”
Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 1, pp.
55–67, 2005.

[21] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[22] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction mod-
els,” in Proceedings of the 37th International Conference on Software
Engineering. IEEE Press, 2015, pp. 789–800.

[23] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
“Mahakil: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,” IEEE Transactions on
Software Engineering, 2017.

[24] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An empirical comparison of model validation techniques for defect
prediction models,” IEEE Transactions on Software Engineering, vol. 43,
no. 1, pp. 1–18, 2017.

[25] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study to
benchmark cross-project defect prediction approaches,” IEEE Transac-
tions on Software Engineering, 2017.

[26] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings
of the 35th International Conference on Software Engineering. IEEE
Press, 2013, pp. 382–391.

[27] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on Software Engineering, vol. 42, no. 10, pp. 977–998,
2016.

[28] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous cross-
company defect prediction by unified metric representation and cca-
based transfer learning,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 496–507.

[29] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect
prediction,” IEEE Transactions on Software Engineering, 2017.

[30] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicability of
fault-proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, vol. 28, no. 7, pp. 706–720, 2002.

[31] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[32] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. ACM, 2009,
pp. 91–100.

[33] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of
cross-project defect prediction,” in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineer-
ing. ACM, 2012, p. 61.

[34] C. Mao, “Software faults prediction based on grey system theory,” ACM
SIGSOFT Software Engineering Notes, vol. 34, no. 2, pp. 1–6, 2009.

[35] B. Caglayan, A. Bener, and S. Koch, “Merits of using repository metrics
in defect prediction for open source projects,” in Proceedings of the
2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development. IEEE Computer Society, 2009,
pp. 31–36.

[36] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, and
N. Ubayashi, “Empirical evaluation of cross-release effort-aware defect
prediction models,” in Proceedings of the International Conference
onSoftware Quality, Reliability and Security. IEEE, 2016, pp. 214–
221.

[37] S. Tong and D. Koller, “Support vector machine active learning with ap-
plications to text classification,” Journal of Machine Learning Research,
vol. 2, no. Nov, pp. 45–66, 2001.

[38] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling
using the query by committee algorithm,” Machine learning, vol. 28,
no. 2, pp. 133–168, 1997.

[39] N. Roy and A. McCallum, “Toward optimal active learning through
sampling estimation of error reduction,” pp. 441–448, 2001.

[40] S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,” in
Proceedings of the 25th International Conference on Machine Learning.
ACM, 2008, pp. 208–215.

[41] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,”
in Proceedings of the 21st International Conference on Machine Learn-
ing. ACM, 2004, p. 79.

[42] G. Luo, K. QIN et al., “Active learning for software defect prediction,”
IEICE Transactions on Information and Systems, vol. 95, no. 6, pp.
1680–1683, 2012.

[43] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based software
defect prediction with active and semi-supervised learning,” Automated
Software Engineering, vol. 19, no. 2, pp. 201–230, 2012.

[44] H. Lu and B. Cukic, “An adaptive approach with active learning
in software fault prediction,” in Proceedings of the 8th International
Conference on Predictive Models in Software Engineering. ACM, 2012,
pp. 79–88.

[45] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp.
433–459, 2010.

219

[46] J. Peng and D. R. Heisterkamp, “Kernel indexing for relevance feedback
image retrieval,” in Proceedings of the International Conference on
Image Processing, vol. 1. IEEE, 2003, pp. I–733.

[47] J.-B. Li, S.-C. Chu, and J.-S. Pan, “Kernel principal component analysis
(kpca)-based face recognition,” Kernel Learning Algorithms for Face
Recognition, pp. 71–99, 2014.

[48] Smola and Alexander, Learning with kernels. MIT Press, 2002.
[49] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-in-

time defect prediction,” in Proceedings of the International Conference
on Software Quality, Reliability and Security. IEEE, 2015, pp. 17–26.

[50] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung, and
Z. Zhang, “Are slice-based cohesion metrics actually useful in effort-
aware post-release fault-proneness prediction? an empirical study,” IEEE
Transactions on Software Engineering, vol. 41, no. 4, pp. 331–357, 2015.

[51] Y. Yang, M. Harman, J. Krinke, S. Islam, D. Binkley, Y. Zhou, and
B. Xu, “An empirical study on dependence clusters for effort-aware
fault-proneness prediction,” in Proceedings of the 31st International
Conference on Automated Software Engineering. IEEE, 2016, pp. 296–
307.

[52] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’union fait la force,” in Proceedings of the Software
Evolution Week-IEEE Conference on Software Maintenance, Reengi-
neering and Reverse Engineering. IEEE, 2014, pp. 164–173.

[53] A. Mockus, P. Zhang, and P. L. Li, “Predictors of customer perceived
software quality,” in Proceedings of the 27th International Conference
on Software Engineering. ACM, 2005, pp. 225–233.

[54] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimization
of software quality modeling with multiple repositories,” IEEE Trans-
actions on Software Engineering, vol. 36, no. 6, pp. 852–864, 2010.

[55] S. C. Hoi, R. Jin, and M. R. Lyu, “Large-scale text categorization by
batch mode active learning,” in Proceedings of the 15th International
Conference on World Wide Web. ACM, 2006, pp. 633–642.

[56] A. I. Schein and L. H. Ungar, “Active learning for logistic regression:
an evaluation,” Machine Learning, vol. 68, no. 3, pp. 235–265, 2007.

[57] “Morph dataset,” http://openscience.us/repo/defect/ck/.
[58] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction in

cross-company software defects prediction,” Information and Software
Technology, vol. 62, pp. 67–77, 2015.

[59] S. Herbold, “Training data selection for cross-project defect prediction,”
in Proceedings of the 9th International Conference on Predictive Models
in Software Engineering. ACM, 2013, p. 6.

[60] S. Amasaki, K. Kawata, and T. Yokogawa, “Improving cross-project
defect prediction methods with data simplification,” in Proceedings of
the 9th Euromicro Conference on Software Engineering and Advanced
Applications. IEEE, 2015, pp. 96–103.

[69] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–30, 2006.

[61] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering.
ACM, 2010, p. 9.

[62] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to
predict software defects,” Models and Methods of System Dependability.
Oficyna Wydawnicza Politechniki Wrocławskiej, pp. 69–81, 2010.

[63] Z. Xu, J. Xuan, J. Liu, and X. Cui, “Michac: Defect prediction via feature
selection based on maximal information coefficient with hierarchical
agglomerative clustering,” in Proceedings of the 23rd International
Conference on Software Analysis, Evolution, and Reengineering, vol. 1.
IEEE, 2016, pp. 370–381.

[64] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[65] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on
the feasibility of cross-project defect prediction,” Automated Software
Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[66] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
414–423.

[67] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 356–370, 2011.

[68] S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–
443, 2013.

[70] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd International Conference on Software Engineering. IEEE,
2011, pp. 1–10.

[71] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta
calculator: A non-parametric effect size program for two groups of
observations,” Universitas Psychologica, vol. 10, no. 2, pp. 545–555,
2011.

[72] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[73] “Supplementary material,” https://defect-prediction.github.io/halkp/.
[74] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-

ware metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience, vol. 41, no. 5, pp. 579–
606, 2011.

[75] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features
to improve code change-based bug prediction,” IEEE Transactions on
Software Engineering, vol. 39, no. 4, pp. 552–569, 2013.

220

