The Journal of Systems and Software 117 (2016) 166-184

The Journal of Systems and Software

Contents lists available at ScienceDirect

The Journalof
Systoms and Software

il

journal homepage: www.elsevier.com/locate/jss

Towards more accurate severity prediction and fixer recommendation

of software bugs™

@ CrossMark

Tao Zhang?P, Jiachi ChenP, Geunseok Yang¢, Byungjeong Lee¢, Xiapu LuoP*

aSchool of Software, Nanjing University of Posts and Telecommunications, Nanjing 210-023, China
b Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
¢ Department of Computer Science, University of Seoul, Seoul 130-743, South Korea

ARTICLE INFO

Article history:

Received 2 July 2015

Revised 20 February 2016
Accepted 23 February 2016
Available online 4 March 2016

Keywords:

Severity prediction
Fixer recommendation
Topic model

ABSTRACT

Due to the unavoidable bugs appearing in the most of the software systems, bug resolution has become
one of the most important activities in software maintenance. For large-scale software programs, devel-
opers usually depend on bug reports to fix the given bugs. When a new bug is reported, a triager has to
complete two important tasks that include severity identification and fixer assignment. The purpose of
severity identification is to decide how quickly the bug report should be addressed while fixer assignment
means that the new bug needs to be assigned to an appropriate developer for fixing. However, a large
number of bug reports submitted every day increase triagers’ workload, thus leading to the reduction
in the accuracy of severity identification and fixer assignment. Therefore it is necessary to develop an
automatic approach to perform severity prediction and fixer recommendation instead of manual work.
This article proposes a more accurate approach to accomplish the goal. We firstly utilize modified REP
algorithm (i.e., REPyp;c) and K-Nearest Neighbor (KNN) classification to search the historical bug reports
that are similar to a new bug. Next, we extract their features (e.g., assignees and similarity) to develop
the severity prediction and fixer recommendation algorithms. Finally, by adopting the proposed algo-
rithms, we achieve severity prediction and semi-automatic fixer recommendation on five popular open
source projects, including GNU Compiler Collection (GCC), OpenOffice, Eclipse, NetBeans, and Mozilla. The
results demonstrated that our method can improve the performance of severity prediction and fixer rec-
ommendation through comparison with the cutting-edge studies.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

record a large number of bug reports, which are written by users
or developers.

Bug resolution is an important activity in software maintenance
process. Recent years, due to the increased scale and complexity
of software projects, a large number of bugs appear in the devel-
opment process and hence bug resolution has become a difficult
and challenging work (Xia et al., 2013). To effectively track and
manage these bugs, open source software projects and many com-
mercial projects adopt bug tracking systems (e.g., Buzilla!, JIRAZ,
etc.) to maintain the huge information about the reported bugs. As
an important component of bug tracking systems, bug repositories

* A preliminary edition of this article was accepted by COMPSAC 2014 as a re-
search full paper. This article extends and provides further experimental evidence
of the proposed method.

* Corresponding author.

E-mail address: csxluo@comp.polyu.edu.hk (X. Luo).
! https://www.bugzilla.org/.
2 https://www.atlassian.com/software/jira.

http://dx.doi.org/10.1016/j.jss.2016.02.034
0164-1212/© 2016 Elsevier Inc. All rights reserved.

In software maintenance process, developers rely on bug re-
ports stored in bug repositories to fix the given bugs. Once a new
bug report is submitted, a triager who is responsible for man-
aging bug reports can read this report to understand the details
of the given bug, then verify whether the labelled severity level
is correct or not. This process is called “severity identification”.
Severity levels include high-severity (e.g., ‘blocker’, ‘critical’, ‘ma-
jor’) that represents critical errors and low-severity (e.g., ‘minor’,
‘trivial’) that denotes unimportant bugs (Lamkanfi et al., 2010). The
following task of the triager is to assign the reported bug to an
appropriate developer for executing bug resolution according to its
severity level. This process is called “fixer assignment” (Servant
and Jones, 2012) or bug assignment (Wu et al.,, 2011; Xia et al.,
2015a). Severity identification and fixer assignment are two major
tasks of triagers, whose success can affect the time of bug fixing
(Yang et al., 2014). Specifically, there are two important issues in
the execution process of these tasks as follows:

http://dx.doi.org/10.1016/j.jss.2016.02.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.02.034&domain=pdf
mailto:csxluo@comp.polyu.edu.hk
https://www.bugzilla.org/
https://www.atlassian.com/software/jira
http://dx.doi.org/10.1016/j.jss.2016.02.034

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 167

o Triagers’ workload: Everyday, a large number of bug reports
are submitted to bug repositories. For example, Mozilla bug
repository receives an average of 135 new bug reports each day
(Liu et al., 2013). Obviously, processing multitude of bug reports
places a heavy burden on triagers.

Inaccurate severity identification and fixer assignment: Man-
ual severity identification and fixer assignment may lead to er-
rors, especially on a vast number of bug reports. For example,
a critical bug is labelled as a ‘low-severity’ bug and therefore
the fixing time is extended (Menzies and Marcus, 2008). As an-
other example, the triager may assign the improper developer
to execute the task of bug fixing, thus leading to the bug re-
assignments. Jeong et al. (2009) has shown that the more the
number of reassignments is, the lower the success probability
of bug fixing is.

To resolve the above problems, existing studies tried to perform
severity prediction (Menzies and Marcus, 2008; Lamkanfi et al.,
2010, 2011; Tian et al., 2012; Yang et al., 2012) and semi-automatic
fixer recommendation (Cubrani¢ and Murphy, 2004; Anvik et al.,
2006; Matter et al., 2009; Wu et al., 2011; Xuan et al., 2012; Park
et al,, 2011; Xie et al., 2012; Zhang and Lee, 2013; Naguib et al.,
2013; Xuan et al.,, 2015; Xia et al., 2015b). Machine learning and
information retrieval techniques were utilized to realize the goal.
However, the major challenge is to find the close relationship be-
tween the new bug report (i.e., query) and historical bug reports.
In other words, the returned historical bug reports that are simi-
lar to the query and their features decide the accuracy of severity
prediction and semi-automatic fixer recommendation. Topic mod-
elling (Ramage et al., 2009) is a useful approach to cluster bug re-
ports into corresponding categories. The bug reports in the same
category share the same topic. By using topic model, we can find
the topic(s) that each bug report belongs to. We introduce these
topics as the additional feature of the REP algorithm, which is a
similarity function proposed by Tian et al. (2012) to calculate the
similarity between bug reports. Based on this enhanced REP (i.e.,
REP¢o;c), we utilize K-Nearest Neighbor (KNN) to search the histor-
ical bug reports similar to the new bug.

In this work, we investigate which features of the similar histor-
ical bug reports can affect the accuracy of the severity prediction
and fixer recommendation. Then, we use them, such as similarity
between bug reports and developers’ experience, to develop the
more accurate methods for implementing severity prediction and
semi-automatic fixer recommendation. To demonstrate the effec-
tiveness of the proposed approach, we conduct experiments on five
open source repositories, including GNU Compiler Collection (GCC),
OpenOffice, Eclipse, NetBeans, and Mozilla. The results show that
the proposed approach outperforms the cutting-edge approaches
on severity prediction and semi-automatic fixer recommendation.
Moreover, we also demonstrate that the proposed similarity mea-
sure REPy,p;c can improve the accuracy of our approach than other
similarity metrics such as REP and cosine similarity.

To help researchers reproduce our work, we open all source
code and datasets at https://github.com/ProgrammerCJC/SPFR.

We summarize the major contributions of our work as follows:

o By utilizing topic modelling, we find the topic(s) to which each
bug report belongs. Then, we introduce these topics to enhance
the similarity function REP, and adopt KNN to search the top-K
historical bug reports that are similar to the new bug.

o Based on the features (e.g., textural similarity and develop-
ers’ experience) extracted from top-K nearest neighbours of the
new bug report, we develop new algorithms to improve the ac-
curacy of severity prediction and fixer recommendation.

e We conduct the experiments on five large-scale open source
projects, including GCC, OpenOffice, Eclipse, NetBeans, and

Mozilla. The results demonstrate that the proposed approach
has better performance than the cutting-edge studies.

The remainder of the article is structured as follows: Section 2
introduces background knowledge and the motivations of our
work. Section 3 details how to utilize the proposed approach
to implement severity prediction and fixer recommendation. In
Section 4, we show how to organize the experiments and indicate
the experimental results. We discuss the performance of our ap-
proach and present some threats to validity in Section 5. Section 6
introduces the related works and shows the differences from our
work. In Section 7, we conclude this paper and introduce the fu-
ture work.

2. Background knowledge and motivation

In our work, we propose an approach to predict the severity
levels and recommend the appropriate fixers based on the similar
historical bug reports and their features. Thus, in this section, we
introduce some background knowledges concerning bug reporting,
two tasks in bug resolution, topic modelling, similarity function,
and social network-based developers’ relationship. Moreover, we
present the motivation of our study.

2.1. Bug reporting

Bug reports are software artifacts that track the defects of soft-
ware projects. Since they provide the detailed description informa-
tion about the reported bugs, developers utilized these defect de-
tails to fix the corresponding bugs.

For example, Fig. 1 shows an Eclipse bug report-Bug
463360 that contains all basic elements, such as summary,
description, comments, attachment, importance,
reporter, assignee (ie., fixer), and multiple features such
as component and product. Among them, summary is a brief
description of a bug; description shows the detailed infor-
mation of the bug; comments indicate the free discussion about
the reported bug; attachment includes one or more than one
supporting materials such as patch and test cases; importance
includes priority level (e.g., P3) and severity level (e.g., normal) of
the reported bug; reporter is a developer or user who reported
the bug; assignee is a developer who was assigned to fix the
given bug; component indicates which component was affected
by the bug; and product shows which product was influenced
by the bug.

In our work, we introduce summary, description,
component, product, and topics produced by topic mod-
elling to calculate the similarities between the bug reports so
that we can find the top-K nearest neighbours of the new bug
to execute the severity prediction and fixer recommendation
algorithms.

2.2. Two tasks in bug resolution

When a new bug is reported, the developers in the software
development program work together for resolving the given bug.
Fig. 2 shows its general life cycle in Bugzilla.

The initial state of the new bug report is “Unconfirmed”. When
the bug report is verified by a triager, the status is changed to
“New”. In this process, the triager verifies whether the labelled
severity level is correct or not (ie., severity identification). Then
the triager is responsible to assign the bug report to an appro-
priate assignee (i.e., fixer). At this time, the state of the bug re-
port is changed to “Assigned”. If the assignee completes the bug-
fixing task, the state is changed to “Resolved”; otherwise, the bug
is marked as “New” and the report is re-triaged. This process is

https://github.com/ProgrammerCJC/SPFR

168

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

‘ Bug 463360 - [override method][null] generating method override should not create redundant null annotations‘

Status: RESOLVED FIXED

Product: DT
Component: UI

Version: 4.5

Hardware: All All
[Importance: P3 normall (vote)

Target Milestone: 4.5 M7
Assigned To: [Stephan Herrmann| + CLA
QA Contact: Assignee

Summary

Multiple
features

Attachments

Reported: 2015-03-28 11:40 EDT by|Stephan Herrmann| < CLA
Modified: 2015-04-28 07:32 EDT (History)
CC List: 0 users

Reporter

See Also: '3z Gerrit Change
4 Git Commit

Add an attachment (proposed patch, testcase, etc.)[<——— Attachment

Stephan Herrmann < CLA| 2015-03-28 11:40:28 EDT
Follow-up from bug—353472 and

subtype.

To respect the purpose of @NNBD (reduce the number of annotations), we should consider

this and avoid generating redundant annotations.

: while it's great that annotations are copied,
this may create redundant annotations when a @NonNullByDefault is in effect at the

Description

Description

Eclipse Genie == CLA 2015-04-23 13:36:20 EDT

New Gerrit change created: https://git.eclipse.org/r/46372

Stephan Herrmann < CLA| 2015-04-23 13:46:14 EDT

(In reply to Eclipse Genie from comment #1)
> New Gerrit change created: https://git.eclipse.org/r/46372

This change only covers the simple changes, i.e., for declaration annotations.

I've file bug 465335 (targeted 4.6) for the case of type annotations

Comment 1

Comment 2

Comments

Fig. 1. An example of Eclipse bug report 463360.

Severity u

Identification

Reopened

Resolved

Fig. 2. The life cycle of bug resolution process in Bugzilla.

called bug reassignment. Once the bug report is fixed successfully,
the task is finished and the state becomes “Closed”. Afterwards, if
a developer finds that the bug is not fixed in its entirety, this bug
can be reopened. The bug-fixing task is re-executed in a step-wise
manner through a cycle-regulated process as described above.

Since the severity identification and fixer assignment are two
important tasks for triagers, in our work, we focus on developing
a new approach to perform severity prediction and semi-automatic
fixer recommendation.

2.3. Topic modelling

As the statistical models, topic models can discover the ‘topics’
from the collection of documents (Blei and Lafferty, 2007). Each
topic includes the topic terms which appear in the documents, and
each document may belong to one or more topics. For the bug re-
ports which share the same topic, their textual contents are sim-
ilar. Therefore, topics can be treated as a useful feature to verify
the similarity between bug reports (Xie et al., 2012). In our study,

we utilized Latent Dirichlet Allocation (LDA)(Chemudugunta and
Steyvers, 2007) to extract the topic distribution of bug reports.

LDA is a general topic model. In LDA, each document is viewed
as a mixture of various topics with different probabilities. Each
topic is characterized by a distribution of words that frequently co-
occur in the documents. Hence, LDA is able to find the bug reports
with the same topic(s) that describe the similar contents. In our
work, we use LDA to extract the topics with terms from historical
bug reports so that we can get the bug reports which are similar
to a coming bug.

The Stanford Topic Modelling Toolbox (TMT)? (Xie et al., 2012)
brings topic modelling tools to perform the analysis on provided
datasets. It can help us implement LDA so that we can get the
topic distributions of given bug reports. In TMT, there are four pa-
rameters (N, R, o, B) that need to be set. N stands for the num-
ber of topics; R denotes the number of iterations; o and S are

3 http://nlp.stanford.edu/software/tmt/tmt-0.4/.

http://nlp.stanford.edu/software/tmt/tmt-0.4/

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 169

association factors. The higher the value of «, the higher the prob-
ability of a bug report being associated with multiple topics; the
higher the value of §, the higher the probability of a topic be-
ing associated with multiple terms. We adopted TMT to extract the
topics of bug reports as one of the input features of the similarity
measure REP,;., which is described in Section 3.

2.4. Similarity function: BM25F and its extension BM25Fex;

BM25F is a similarity function which is suitable for performing
structured information retrieval, thus it can be used to measure
the similarity between two bug reports because each bug report
is a structured document which includes two textual fields such
as summary and description. Similar to Vector Space Model
(VSM) (Castells et al., 2007), BM25F is also represented as TF«xIDF
model, but it presents the different form. In detail, IDF is the in-
verse document frequency defined as follows:

IDF(t) = Iognﬁt (1)

where N is the total number of documents, and n; denotes the
number of documents containing the term t.

A field-dependent normalized term frequency TFp(t, d) of a
term t which is considered in each field of the document d is de-
fined by the following formula:

K
Thy(t,d) =y 2L X200 O(d[bfl’l 2 2)
= 1 —bf—i- fEd[f]
Here, wy is a field-dependent weight parameter. The large value
of w; means higher importance of the corresponding field; o(d[f],
t) denotes the number of occurrences of term ¢ in the field f of the
document d; lyq is the size of the fth field of the document d; E
means the average size of the fth field across all documents in D;
and b{0 < by < 1) is a parameter that determines the scaling by
field length (by = 1 corresponds to full length normalization while
by =0 corresponds to term weight not being normalized by the
length).
Based on TFxIDF model described above, given a query g, the
BM25F algorithm can be presented as follows:

BM25F(q.d) =) IDF(t) x ¢ THy(t. d)

T TR d) (3)

tegnd
where t is the shared term occurring in both ¢ and d, and
ki(k; > 0) is a parameter tuning the scale of TFp(t, d).

The above-mentioned BM25F algorithm can be utilized for short
queries. However, in our work, each query is a new bug report
with the long textual content (i.e., the summary and the de-
scription). Therefore, we need to consider the term frequencies in
queries. In this situation, we adopt another expression of BM25F,
i.e, BM25.y: described in formula (4), as the similarity measure be-
tween the new bug report and the historical bug reports.

Th(t,d) o (ks + 1)TFy(t, q)
kl + TFD(t, d) k3 + TFQ(t, q)

(4)

Here, for each common term t appearing in document d and
query gq, its contribution to the overall BM25F, contains two
components: one is the product of IDF and TFp inherited from
BM25F; and the other is the local importance of term t in the

query q, which is denoted as %W. TFy(t, q) is calculated by

Thy(t.q) = Zle wy x o(q[f]. t), where o(q[f], t) denotes the num-
ber of occurrences of term t in the field f of the query q. Note that
TFy(t, q) is different from TFp(t, d), and we do not normalize it be-
cause we rank the historical bug reports based on their similarities

BM25F.(q.d) = > IDF(t) x

tegnd

Developer A Developer B

3
B 2
A

|| ” ’

Bug
J 4
-%

4

Developer D Developer C

Fig. 3. An example of social network among developers participating bug fixing
process.

to a single given query. k3 is used to control the weight of the local
importance of term ¢t in q to the overall score. For example, if k3 is
set to 0, then the local importance of t in g contributes no weight
so that BM25F.y; becomes BM25F.

In our work, we adopt the results of BM25F¢; between bug re-
ports as the input features of our similarity algorithm REPp; de-
scribed in Section 3 to measure the similarity between the new
bug report and the historical bug reports.

2.5. Social network-based developers’ relationship

Social network reflects a social structure made up of a set of
social actors such as individuals and organizations (Kwak et al.,
2010). By analysing the social network, we can know the rela-
tionship between the actors in a special activity. Based on the
characteristics of social network, it can be adopted to analyse the
developers’ relationship in the bug fixing process. The analysis
result can help to develop an accurate semi-automatic fixer recom-
mendation algorithm. Fig. 3 shows an example of a social network
among four developers who participate in the bug fixing process.
In this figure, the lines represent the commenting activities while
the numbers on the lines denote the number of comments. Com-
ments are posted by commenters who participate the discussion
to resolve the given bug. For example, the line with the number
“2" from Developer A to Developer D means that Developer D
comments the bug report(s) assigned to Developer A two times.

By investigating the commenting activities between developers
in the bug fixing process, we can understand the developers’ ex-
perience on fixing the historical bugs. Thus, in our work, social
network-based developers’ relationship is adopted to design the
new method for recommending the appropriate bug fixers.

2.6. Motivation

In terms of the description in Section 1, we note that the large
number of submitted bug reports increase developers’ workload
and lengthen the fixing time.

As an evidence, Table 1 shows the statistical result of average
number of assigned bug reports per assignee and average fixing
time per bug in five projects. Note that each assignee needs to fix
a lot of bugs, especially for NetBeans, average number of assigned
bug reports reaches up to 72.6 for each assignee. We cannot di-
rectly know the triagers’ workload by parsing the XML files (i.e.,

170 T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

Table 1
Statistical result of average workload and fixing time in our data set.
Project # Bug reports # Assignees Average workload Average fixing time Period
Per assignee (number) Per bug (days)
Eclipse 39,669 771 51.5 4114 2001/10/10-
2014/12/29
NetBeans 19,249 265 72.6 4425 1999/02/11-
2014/12/31
Mozilla 15,501 1022 15.2 244.9 1999/03/17-
2014/12/31
OpenOffice 23,402 552 424 1129.0 2000/10/21-
2014/12/31
GCC 13,301 256 52.0 2921 1999/08/03-
2014/12/01

Table 2
Distribution of the bug reports as the fixing time.

Distribution Fixing time(year) per project
Ratio Eclipse NetBeans Mozilla ~ OpenOffice ~ GCC
<1% >8 >8 >6 >12 >5

bug reports) downloaded by Eclipse, NetBeans®, Mozilla®, OpenOf-
fice?, and GCC8, however, we can infer that the triagers’ work-
load is more than the assignees’ because generally the number of
triagers is much less than the number of assignees in open source
projects. As a special case, in the early stage, the Eclipse Platform
project only had a single bug triager to process all submitted bugs
(Anvik et al., 2006). In addition, the fixing time is too long. Even
for the shortest one, the average fixing time per bug still achieves
to 244.9 days in Mozilla project. To avoid data bias, we omit the
small-scale data (i.e., less than 1% of the bug reports) which have
the much longer fixing time (See Table 2) in the statistical pro-
cess of the fixing time. Inaccurate severity identification and bug
triage (i.e., severity and fixer reassignment) may lead to longer fix-
ing time. Xia et al. (2014) found that approximately 80% of bug
reports have their fields (including severity and fixer field) reas-
signed. They also demonstrated that these bug reports whose fields
get reassigned require more time to be fixed than those without
field reassignment. In order to resolve this problem, it is neces-
sary to develop automatic approaches to perform severity predic-
tion and semi-automatic fixer recommendation.

Even though existing studies (Menzies and Marcus, 2008;
Lamkanfi et al., 2010, 2011; Tian et al., 2012; Yang et al., 2012;
Cubrani¢ and Murphy, 2004; Anvik et al., 2006; Matter et al., 2009;
Wu et al, 2011; Xuan et al.,, 2012; Park et al., 2011; Xie et al,,
2012; Zhang and Lee, 2013; Naguib et al., 2013) proposed some ap-
proaches to perform severity prediction and semi-automatic fixer
recommendation, it is still necessary to improve the accuracy of
two tasks. Topic modelling can find the common topics between
bug reports, thus using these topics can enhance the previous sim-
ilarity algorithm-REP so that it can perfect the results of KNN clas-
sification. We believe that utilizing these bug reports can improve
the performance of severity prediction and semi-automatic fixer
recommendation. The experimental results shown in Section 4
demonstrate this conclusion.

This article is an extended version of our previous conference
paper (Yang et al.,, 2014) published in COMPSAC 2014. Comparing

4 https://bugs.eclipse.org/bugs/.
5 https://netbeans.org/bugzilla/.
6 https://bugzilla.mozilla.org/.
7 https://bz.apache.org/ooo/.

8 https://gcc.gnu.org/bugzillal.

with the previous study, we extend the contents from the follow-
ing several aspects:

We investigate and collect more evidences such as the average
workload to enhance the motivation of our work.

We propose a new similarity metric, i.e., modified REP named
as REPy,pic, to compute the similarity between a new bug report
and the historical bug reports.

We propose new methods to conduct the severity prediction
and fixer recommendation for improving the results.

We add two new data sets, i.e.,, GCC and OpenOffice, in our
experiments. Thus, five open source projects are adopted to
demonstrate the effectiveness of the proposed approach.

We implement more previous studies such as (Tian et al., 2012;
Xia et al., 2015b) as the baselines for demonstrating the effec-
tiveness of the proposed approach.

3. Methodology for severity prediction and semi-automatic
fixer recommendation

In this section, we present the details of our methodology for
predicting the severity level of a new bug report and recommend-
ing the most appropriate developer to fix the given bug. We first
provide a framework of the proposed method, and then we detail
each step of the proposed approach.

3.1. Overview

To reduce the developers’ workload and overcome the draw-
backs of manual severity identification and fixer assignment, we
propose an automated approach to perform these two tasks. Fig. 4
shows the framework of the proposed approach.

For our approach, we first conduct the pre-process, mainly in-
cludes tokenization, stop word removal, and stemming, to the bug
reports collected from the open-source projects. Second, we com-
pute the similarities between a new bug report and the historical
bug reports by using the similarity measure REP;y,;, which com-
bines topics produced by topic modelling, product, component, the
textual similarities (only consider the summary and description)
between the bug reports by adopting BM25F,;. Next, according to
the similarities, we can find the top-K nearest neighbours of the
new bug report. Finally, for severity prediction, we extract the sim-
ilarities between the given bug report and these K nearest neigh-
bours to develop the prediction algorithm for recommending the
severity level to the new bug. For semi-automatic fixer recommen-
dation, we extract the developers including assignees and com-
menters from the K nearest neighbours; then we develop a rank-
ing algorithm by analysing the developers’ behaviour on bug fix-
ing and commenting activities to recommend the most appropriate
bug fixer who has the highest ranking score.

In the following subsections, we introduce the details of each
step described in the framework.

https://bugs.eclipse.org/bugs/
https://netbeans.org/bugzilla/
https://bugzilla.mozilla.org/
https://bz.apache.org/ooo/
https://gcc.gnu.org/bugzilla/

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 171

Table 3
A topic model for NetBeans bug reports when N is set to 30.
Term@1 Term@2 Term@3 Term@4 Term@5

Topic@1 Line 0.0285 Type 0.0135 Editor 0.0134 Comment 0.0120 Enter 0.0114
Topic@2 Module 0.0318 Cluster 0.0186 Web 0.0165 Plugin 0.0147 Install 0.0140
Topic@3 System 0.0618 Product 0.0604 Running 0.0598 Client 0.0334 Windows 0.0318
Topic@4 css 0.0270 Tag 0.0210 Error 0.0194 Color 0.0181 Value 0.0143
Topic@5 Module 0.0233 Classpath 0.0214 api 0.0199 Source 0.0185 David 0.0158
Topic@6 Folder 0.0257 Directory 0.0180 Root 0.0164 Path 0.0146 html5 0.0121
Topic@7 Report 0.0325 Exception 0.0314 Duplicates 0.0149 Reporter 0.0123 Exceptions 0.0104
Topic@8 Guest 0.0322 Server 0.0294 64-bit 0.0279 Windows 0.0207 Client 0.0202
Topic@9 Method 0.0277 Completion 0.0227 Public 0.0224 String 0.0156 Return 0.0152
Topic@10 Test 0.0335 Fix 0.0230 Patch 0.0175 Changes 0.0154 Trunk 0.0149

Historical (New) Bug Reports

F Pre-processing

Similarity Measure (REP 4p;c)

Topic Model
Topic@1 Features BM25F,,,;
...... Product Summary
Topic@N Component Description

R 2

K-Nearest Neighbors

n

Extract potential fixers Extract similarities

"

Rank potential fixers Predict severity

g

Block
Critical
Major
Minor

Bug Report

Trivial

Fig. 4. Framework of severity prediction and semi-automatic bug triage.
3.2. Pre-processing

Once we get the collected bug reports, a pre-processing pro-
cess is started. This process is implemented by utilizing Natural
Language Processing (NLP) techniques, including tokenization, stop
word removal, and stemming. For tokenization, each bug report is
divided into a series of tokens. As a special case, the variables de-
fined in a program are also split into a concatenation of words. For
example, “fillColor” is divided into two words: “fill” and “Color”.
Next, a set of extraneous terms identified in a list of stop words
(e.g., “to”, “as”, “are”, etc.) are filtered out to guarantee the effec-
tiveness of textual similarity measure. Finally, stemming reduces a
word to its root form. For example, the words such as “carrying”,
“carried”, and “carries” are changed to “carry”.

In our work, we utilize a leading platform called Natural Lan-
guage Toolkit (NLTK)? for executing NLP techniques. This tool pro-

9 http://www.nltk.org/.

vides a lot of useful interfaces with a series of text processing li-
braries so that it can implement all needed NLP techniques such
as tokenization, stop words removal, and stemming.

3.3. Topic modelling

In our work, we adopt TMT (Xie et al., 2012) introduced in
Section 2.1 to implement LDA for clustering historical and new bug
reports. To utilize TMT, four parameters including N, R, «, § need
to be adjusted. We adopt the default values (i.e., 1500, 0.01, and
0.01) for R, , and B, respectively, and adjust N from 10 to 100 for
building the different topic models to perform severity prediction
and semi-automatic bug triage. Table 3 lists the top-10 topics for
NetBeans bug reports when setting the value of N to 30.

In this table, each topic is represented as topic terms with the
probabilities that the terms belong to the corresponding topic. We
just list top-5 terms with the highest probabilities in each topic
due to the limited space. According to these terms appearing in
the bug reports and their probabilities in each topic, we can get
the distribution of each bug report in all produced topics by sum
all terms’ probabilities in each topic. In other words, we can know
which topic(s) each bug report belongs to. In our approach, these
topics are treated as one of the input features of the similarity
measure REP;qp;c.

3.4. Retrieval for similar historical bug reports

To retrieve the historical bug reports which are similar to a
new bug report, we need to compute the similarities between
them. Tian et al. (2012) proposed REP algorithm combining the
features, including the component, the product, the textual simi-
larity of two bug reports based on summary an description which
are represented by bags of unigrams and bigrams. In our work, we
introduce the topics as the additional feature of REP to produce a
enhanced version, i.e., REP;;, to search the similar historical bug
reports with the given bug.

We present all features in the similarity measure REPp;c as fol-
lows:

featureq(q, br) = BM25F.(q, br) //of unigrams (5)
feature,(q, br) = BM25F.x(q. br) //of bigrams (6)
features 0. = 3 uoro-onprc o
Jeature) = [come-becoms ®
features(q, br) = é i)ftg::vsiigzbr.topic //of any topic)

http://www.nltk.org/

172 T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

As a special case, a bug report belongs to only one product and
only one component, but may belong to more than one topics. In
formula (9), we define that the value of features(g, br) is equal to
1, as long as one of the topics that the historical bug report br
belongs to is the same as one of the query’s topics.

The similarity measure REPy;. is a linear combination of five
features, with the following formula where w; is the weight for
the ith feature feature; defined by formula (5-9). We describe how
to tune all parameters in REPy,p; in Section 4.

5
REP,opic(q. br) = > " w; x feature; (10)
i=1

By using REP,;. to compute the similarities between the new
bug report and the historical bug reports, we can rank these histor-
ical reports so that the top-K nearest neighbours of the given bug
report can be found. Then we utilize them to develop the severity
prediction and semi-automatic fixer recommendation algorithms,
which are presented as following subsections.

3.5. Severity prediction

When we get the top-K nearest neighbours of a new bug re-
port by using REP,., we leverage the similarities between the K
neighbours and the given bug report to predict the severity level
of the new bug. Given a new bug report brpew, the probability of
its severity level being I is presented as follows:

&+ , :."=1 sim(bryey, br)
K K sim(bryew. bry)

where k; is the number of the bryey’s nearest neighbours whose
severity level is [while K is the total number of nearest neighbours
of brypew. In addition, sim(brypew, br;) is the similarity between bryew
and the nearest neighbor br;; y1, ¥, € [0, 1] represent the differ-
ent contribution weights of the two parts to the overall prediction
score.

We present our severity prediction approach in Algorithm 1.
The parameter adjustment, experimental process and results are
described in Section 4.

P(bryew|l) = 1 (11)

Algorithm 1 Severity prediction.
Input:
A new bug report brpew;
The set of top-K nearest neighbours brj;
Output:
The most likely severity level of bryew;
1: Search the number of bryey’s neighbours whose severity level
is assigned to I; (j=Block, Critical, Major, Minor, or Trivial).
2: Extract the similarities between brpe, and its nearest neigh-
bours;
3: Set the weight vectors y; and y;, to compute the probability of
brnew’s severity level being [;: formula (11);
4: Continue to execute the process until the probabilities of all
severity levels are computed.
5: return Severity level of brjey

3.6. Semi-automatic fixer recommendation

To realize the goal of semi-automatic fixer recommendation, we
extract the developers including assignees and commenters from
the top-K nearest neighbours of the new bug report as the can-
didates. In order to capture the candidates’ behavior on their pre-
vious bug fixing activities, we build a social network described in

Section 2.5 to collect the records on commenting activities so that
we can quantize each candidate’s behavior as following formula:

nc x od
MAX]SigM(nCi X Od,‘)

SocialScore(d) = (12)
where nc stands for the number of comments that the developer
d posts while od (out-degree) represents the number of comments
that the other developers post to the bug reports assigned to d.
MAX; - ; < m(nc¢; x od;) is used to normalize the social score via a
maximum value among M candidate developers.

Moreover, we consider the number of fixed bug reports and
that of reopened bug reports as factors to capture the candidates’
experiences in previous bug fixing activities. We get the experience
score of the candidate developer d as follows:

nfix/nreopen
MAX; <i<m (M fix, /Mreopen;)

ExperienceScore(d) = (13)

In formula (13), ng, represents the number of bugs fixed by
the developer d successfully while nrepen stands for the number
of bugs which have the reopened records among all historical bugs
assigned to d. MAX]gigM(nfixi/nreopeni) is used to normalize the ex-
perience score via a maximum value among M candidate develop-
ers.

In SocialScore(d) and ExperienceScore(d), we introduce several
factors including nc, od, ngy, and nyepen. Hooimeijer and Weimer
(2007) demonstrated that the number of comments is a positive
coefficient, which means the assigned bug received more develop-
ers’ attention. More suggestions let it get the high probability of
being fixed. Thus we select nc and od as the positive factors in So-
cialScore(d). For the strength of empirical analysis, the more the
number of bugs fixed successfully, the more experience the de-
veloper has; by contrast, the increasing number of reopened bugs
has a negative impact to the developer who was assigned to fix
these bugs (Shihab et al., 2010). Thus, we assign dg,, as the posi-
tive factor and dreqpen as the negative factor in ExperienceScore(d).
We combine SocialScore(d) and ExperienceScore(d) to compute the
ranking score for each candidate bug fixer as follows:

FRScore(d) = 81 x SocialScore(d) + &, x ExperienceScore(d) (14)

where §;, 6, € [0, 1] stand for the different contribution
weights of SocialScore(d) and ExperienceScore(d) to the candidate’s
ranking score.

We summarize the semi-automatic fixer recommendation algo-
rithm via Algorithm 2. In Section 4, we show the parameter tuning
process and experimental results.

Algorithm 2 Semi-automatic fixer recommendation.

Input:
A new bug report brpew;
The set of top-K nearest neighbours brj;

Output:
A list of developers ranked by ranking score, dq, d;, ...dy;
Extracting the assignees and commenters from br;.x as a set of
candidate developers D;

2: Extracting the number of
SocialScore(d; € D): formula (12)
Extracting the number of bugs fixed successfully and the
number of reopened bugs assigned to djeD to compute
ExperienceScore(d; € D): formula (13)

4: Set the weight vectors §; and 8, to compute FRScore(d; € D):
formula (14)
return dq,d,,..d;, based on descending order of ranking
scores;

comments to compute

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 173

3.7. Research questions

Based on the top-K nearest neighbours of a new bug report
via REPyp;c and KNN, we implement severity prediction and semi-
automatic fixer recommendation. To evaluate whether the pro-
posed approach can effectively achieve the tasks, we answer the
following research questions:

o RQ1: How effective is our approach to perform severity pre-

diction and semi-automatic fixer recommendation when we
choosing the different number of nearest neighbours of the
new bug report?
By utilizing the proposed approach, we want to know its effec-
tiveness for predicting the bug severity and recommending the
bug fixer when changing the number of top-K nearest neigh-
bours of the new bug report.

e RQ2: How much improvement could the new prediction algo-

rithm gain over the cutting-edge studies such as INSPect (Tian
et al., 2012) and Naive Bayes (NB) Multinomial (Lamkanfi et al.,
2010, 2011)?
Tian et al. proposed INSPect, which utilized REP to search top-K
nearest neighbours of the new bug report and used their devel-
oped algorithm to predict the severity level (Tian et al., 2012).
Lamkanfi et al. demonstrated that NB Multinomial performed
better than the other three well-known machine learning algo-
rithms, including NB, KNN, and Support Vector Machines (SVM)
(Lamkanfi et al,, 2011). To address this research question, we
select INSPect and NB Multinomial as the baselines to measure
the performance improvement of our approach. Answer to this
research question would shed light to whether our approach
can produce the better performance than existing state-of-the-
art severity prediction algorithms.

o RQ3: How much improvement could the proposed fixer recom-

mendation algorithm gain over the previous studies, including
DRETOM (Xie et al., 2012), DREX (Wu et al., 2011), and DevRec
(Xia et al.,, 2015b)?
Xie et al. proposed DRETOM which utilized topic modelling to
recommend the bug fixers while DREX adopted social network
metrics (e.g., out-degree) to implement the same task. DevRec
introduced topics, component, and product to develop a fixer
recommendation algorithm. In this research question, we want
to evaluate the extent to which our approach outperforms these
cutting-edge studies. To answer this question, we compare the
performance of our approach with those of these algorithms to
verify the performance improvement using our approach.

* RQ4: What is the performance of the REP,;.? In our work, we
develop an enhanced version of REP;y,;. by adding an additional
feature, ie., topics. By using REPy,;., we find the top-K nearest
neighbours of the new bug report to implement the severity
prediction and fixer recommendation. We believe that REPp
is an important part to improve the performance of the pro-
posed approaches. Thus, answer to this research question can
help us verify whether REPy;. can affect the performance of
severity prediction and fixer recommendation.

4. Experiment and result evaluation

In this section, we introduce the experimental process and
show the experimental results. Moreover, we compare the perfor-
mance of our approaches and that of other previous studies.

4.1. Experiment setup

4.1.1. Data set
In order to demonstrate the effectiveness of the proposed ap-
proach, we carry out a series of experiments on five large-scale

open source bug repositories, including GCC, OpenOffice, Eclipse,
NetBeans, and Mozilla. We only collect the fixed bug reports which
were denoted by “resolved” or “closed” before December 31, 2014
due to their strong stability and reliability. Note that we do not
consider the reports whose severity label is enhancement be-
cause they technically do not represent real bug reports (Lamkanfi
et al., 2010). The overview of our data sets is described in Table 1.
We open all data sets at https://github.com/ProgrammerCJC/SPFR.

To expediently evaluate the results, we use the same method
described in Xia et al. (2015b) for training-test set validation. First,
the bug reports extracted from each bug repository are sorted in
chronological order of creation time, and then divided into 11 non-
overlapping frames of equal sizes. Table 4 shows the details of
our data set. Second, we conduct the training using bug reports in
frame 0, and test the bug reports in frame 1. Then, we train using
bug reports in frame O and 1, and use the similar way to test the
bug reports in frame 2. We continue this process until frame 10. In
the final round, we train using bug reports in frame 0-9, and test
using bug reports in frame 10. Finally, we use the average accuracy
across the 10 round validation as the final result.

4.1.2. Evaluation methods
In order to measure the accuracy of our approach and compare
the performance with other cutting-edge techniques, we adopt

.. P TP PrecisionxRecall
Precision (rppp), Recall (rppy), F-measure (2 x pegaii=eccan)
Mp 1

(Goutte and Gaussier, 2005), and MRR (Miq i R7) (Zhou et al.,
2012) to perform the evaluation, where TP (i.e., True Positive in-
stances) denotes the number of instances such as severity levels or
bug fixers predicted correctly; FP (i.e., False Positive instances) is
the number of instances predicted incorrectly; FN (i.e., False Neg-
ative instances) stands for the number of actual instances which
are not predicted by our approach; Mg is the total number of
queries(i.e., the bug reports in our test set); and R; represents the
rank of the correct result in the recommended list. Note that MRR
is unfit for severity prediction because it is useful only for the eval-
uation on the ranked lists, thus, we only use Precision, Recall, and
F-measure to evaluate the performance of severity prediction while
we adopt all above-mentioned metrics to evaluate the results of
semi-automatic fixer recommendation.

4.1.3. Exclusion criteria

Before we perform the proposed approach and other cutting-
edge studies on the data sets describe in Tables 1-4, we select the
effective and useful data to conduct the approaches.

For severity prediction, we focus on predicting five severity la-
bels of the bug reports, namely blocker, critical, major,
minor, and trivial. Following the previous work (Lamkanfi
et al., 2010; 2011; Tian et al., 2012), we do not consider the sever-
ity label normal. Because the label normal is the default op-
tion for selecting the severity when reporting a bug and a lot of
developers did not consciously assess the bug severity (Lamkanfi
et al., 2010; 2011). In addition, the data imbalance may impact
the prediction results. We show the distribution ratio of the bug
reports with each severity label to all non-normal bug reports in
Table 5. We find that the distributions of bug reports as per label
in NetBeans and OpenOffice present higher imbalance than other
three data sets. Specifically, in NetBeans, the bug reports labelled
by blocker occupy 99.07% of total bug reports; in OpenOffice, the
bug reports labelled by trivial possess 96.62% of total. The im-
balanced data may affect the reliability of the results, and thus we
do not perform the severity prediction in NetBeans and OpenOffice.
Processing the imbalanced data is out of the scope of our work, but
it will be examined in the future work.

For semi-automatic fixer recommendation, in each of the five
data sets, we remove developers who appear less than 10 times,

https://github.com/ProgrammerCJC/SPFR

174 T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

Table 4

Details of our data set.
Project # Bug reports Average size of each frame # Products = # Component Period
Eclipse 39,669 3606 7 114 2001/10/10-2014/12/29
NetBeans 19,249 1750 33 148 1999/02/11-2014/12/31
Mozilla 15,501 1409 12 167 1999/03/17-2014/12/31
OpenOffice 23,402 2127 36 116 2000/10/21-2014/12/31
GCC 13,301 1209 2 27 1999/08/03-2014/12/01

Table 5

Distribution of the non-normal bug reports as the different severity labels.

Project Distribution ratio as each non-normal severity label
Blocker Critical Major Minor Trivial
Eclipse 682(9.40%) 1,412(19.45%) 2,934(40.42%) 1,389(19.14%) 841(11.59%)
NetBeans 13,812(99.07%) 13(0.09%) 70(0.50%) 35(0.25%) 12(0.09%)
Mozilla 270(10.67%) 437(17.26%) 672(26.54%) 696(27.49%) 457(18.05%)
OpenOffice 51(0.23%) 158(0.70%) 518(2.30%) 33(0.15%) 21,730(96.62%)
GCC 221(8.21%) 1,656(61.52%) 257(9.55%) 479(17.79%) 79(2.93%)
Table 6
Parameters in REPqpic.
Parameter Description Init. Selected parameter values per project
Eclipse NetBeans Mozilla OpenOffice =~ GCC
N The number of topics 10 30 30 30 30 30
w1 Weight of feature; (unigram) 0.9 1.264 1.226 1.159 1.163 1.175
wy Weight of feature, (bigram) 0.2 0.413 0.313 0.034 0.013 0.124
w3 Weight of features; (product) 2 2.285 2.775 2.198 2.285 2322
Wy Weight of feature, (component) 0 0.232 0.535 0.041 0.032 0.039
ws Weight of features (topics) 0 1.001 1.031 0.988 1.013 1.074
unigram Weight of summary in feature, 3 3.128 3.814 3.014 2.980 2.994
w“é’ifmm Weight of description in feature; 1 1.287 1.481 0.764 0.287 0.233
bgeram b of summary in feature; 0.5 0.516 0.537 0.499 0.501 0.499
zgsiﬁ’“’" b of description in feature; 1 1.178 1.069 1.003 1.012 1.004
k'l‘"'gm'" ky in feature; 2 2.000 2.000 2.000 2.000 2.000
kg’"'gmm ks in feature; 0 0.331 0.523 0.031 0.003 0.023
whgam Weight of summary in feature, 3 3.157 3.357 2.971 3.001 2.887
a)gs‘src"m Weight of description in feature, 1 1.194 1.084 1.003 1.004 1.212
bfﬂg;,‘ﬁ,'," b of summary in feature, 0.5 0.524 0.613 0.503 0.499 0.484
’é“gf“ b of description in feature, 1 1.015 1122 0.969 0.998 1.021
kl'g”"" ky in feature, 2 2.000 2.000 2.000 2.000 2.000
Seram ks in feature, 0 0.015 0.103 0.154 0.001 0.058

because they are not active and recommending these candidate
fixers does not help much in bug resolution. Moreover, we delete
the terms that appear less than 20 times according to the similar
data filtering method described in Xia et al. (2015b).

4.2. Parameter tuning

Our approach involves parameter tuning. As the description
in Section 3, our approach includes two phases: searching the
historical bug reports that are similar to the new bug, and im-
plementing two bug resolution tasks (namely severity prediction
and semi-automatic fixer recommendation). In the first phase, we
should adjust the parameters in the similarity measure REP,;. and
KNN; in the second phase, we should tune the parameters used
in the severity prediction and semi-automatic fixer recommenda-
tion algorithms. We describe how to adjust these parameters as
following paragraphs.

In the first phase of our approach, we add the new feature top-
ics to enhance the original REP (Tian et al., 2012) using topic mod-
elling. Thus we should first adjust the parameters used in TMT,
which is a topic modelling tool introduced in Section 3.3. We set
the parameters, including R, «, and g, to their default values (i.e.,
1500, 0.01, 0.01) respectively, and adjust the number of topics N
from 10 to 100, with an interval of 10.

The similar measure REPy,; defined in formula (10) has 17
free parameters in total. For feature; and feature,, we compute
textual similarities of q and br over two fields: summary and
description by using BM25F. Computing each of two features
needs (2 + 2 x 2) = 6 free parameters. In addition, in formula (10),
there are 5 weight factors for the corresponding 5 features. Thus,
REPy,pic requires (2 x 6 4 5) = 17 parameters to be set.

Table 6 shows the parameters of REP;,,c in column 1 and 2. We
follow the same parameter tuning method (i.e., gradient descent)
used in Sun et al. (2011); Tian et al. (2012) to verify the values in
REPy,pic. Specifically, when the number of topics is initialized (e.g.,
N=10), we start to adjust all 17 parameters in REPp; using gra-
dient descent. Given each of these parameters x, we initialize it
with a default value recommended by Sun et al. (2011), which is
described in the third column of Table 6. Then we run the itera-
tive adjustment of the value of x so that the value of the RankNet
cost function RNC (Taylor et al., 2006; Burges et al., 2005) reaches
the minimum. RNC is defined by RNC(I) = log(1 +e¥) where I de-
notes a training instance, and Y is presented as Y = sim(brj., q) —
sim(br,, q). Here, bry, is an irrelevant bug report with a query q
(ie., a new bug report) while br,,; means a relevant bug report
with g. In Tian et al. (2012), Tian et al. regard br,, as the duplicate
bug reports of the new bug report and br;, as the non-duplicate
bug reports. We also adopt the same way to compute RNC. For the

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 175

Table 7
Parameters in the severity prediction algorithm.

Severity label Parameter Selected parameter values per project
Eclipse Mozilla GCC
Blocker Y1 0.36 0.31 0.40
V2 0.82 0.31 0.02
Critical Y1 0.46 0.90 0.04
V2 0.48 0.90 0.58
Major Y1 0.61 0.71 0.72
Y2 0.17 0.72 0.74
Minor Y1 0.63 0.69 0.19
Va2 0.13 0.67 0.59
Trivial Y1 0.33 0.70 0.91
V2 0.29 0.71 0.81

Table 8
Parameters in the semi-automatic fixer recommendation algorithm.

Parameter Selected parameter values per project

Eclipse ~ NetBeans Mozilla OpenOffice ~ GCC
84 0.12 0.32 0.11 0.78 0.54
8 0.74 0.39 0.81 0.09 0.61

details of the iterative adjustment using gradient descent, please
refer to (Sun et al., 2011). We list the parameter values selected for
performing REP,. in the columns 4-8 of Table 6.

In the second phase of our approach, we adjust the parame-
ters appearing in the severity prediction and semi-automatic fixer
recommendation algorithms. In each of the two algorithms, there
are a pair of weight vectors need to be adjusted. For severity pre-
diction algorithm described in formula (11) and Algorithm 1, the
parameters y; and y, are used to adjust the weights of the dif-
ferent parts in formula (11); for semi-automatic fixer recommen-
dation described in formula (14) and Algorithm 2, the parameters
81 and §, are introduced to present the different weights of So-
cialScore and ExperienceScore, respectively, to the candidate’s rank-
ing score.

We adopt the similar adjustment method proposed by Xia et al.
(2015b) because we also adopt the similar way to introduce the
different weight factors to control the contributions of the various
partial scores to the overall score. This method is a sample-based
greedy method. Due to the large size of the bug reports in data
sets, we randomly sample a small subset (10%) of the number of
bug reports to produce the good parameter values. Then we use
the small-scale data to compute each partial score of the severity
prediction and semi-automatic fixer recommendation algorithms.
We iterate the process of choosing the good values for all weight
factors. For each iteration, we first randomly assign a value be-
tween 0 to 1 to a weight factor y (e.g, y1 or &1). Next we fix
the value of another weight factor (e.g,, ¥, or §,) in the algorithm,
and we increase y incrementally by 0.01 at a time and compute
the F-measure values. Based on the F-measure values, we can get
the best parameter values. For the details of the iterative adjust-
ment using sample-based greedy method, please refer to (Xia et al.,
2015b). We list the weight factor values selected for performing
the severity prediction and semi-automatic fixer recommendation
algorithms in Tables 7 and8, respectively.

The above-mentioned parameter values are used to perform the
proposed approach, we show the experimental results as following
subsections in order to give the answers of the research questions
RQ1-RQ4.

—&— Blocker|
0.9+ —— Critical
—A&— Major
0.8 1 —w— Minor
—<— Trivial
0.7
0.6 1 ‘/"‘—/‘/_/‘
£ 0.5+
Z v v——V
< —
Y 0.4
=
~ 0.3+ - = —a
0.2+
0.1+
0.0 T T T T T
5 10 15 20 25
Number of Nearest Neighbors K
Fig. 5. Eclipse: varying K and its effectiveness on F-measure.
—&— Blocker|
0.9 1 —e— Critical
—A— Major
0.8 1 —w— Minor
—<4— Trivial
0.7+
0.6
3 = - B " "
5 0.5 1 E ¥ _
o 0.4
=
=~ 0.34 ‘—’_‘\1\‘\4
0.2+
0.1+
0.0 T T T T T
5 10 15 20 25

Number of Nearest Neighbors K

Fig. 6. Mozilla: varying K and its effectiveness on F-measure.

4.3. Answer to RQI: effectiveness evaluation

To answer the research question RQ1, we perform the proposed
approach when choosing the different number of top-K neighbours
(K =5, 10, 15, 20, 25) of each query (i.e., new bug report).

First, we show the evaluation results of severity prediction for
Eclipse, Mozilla, and GCC datasets in Figs. 5-7, respectively. When
we increase K, we consider more nearest neighbours. We find an
interesting result: the F-measure values do not always increase
when increasing the more nearest neighbours.

From the figures, for Eclipse, the F-measure values of major
and minor increase as we increase K. However, the F-measure
value of critical decreases as we increase K. In addition, the
F-measure values of blocker and trivial decrease when they
reach up to the peak values as we increase K. For Mozilla, the
F-measure value of major slightly increases as we increase K.
However, the F-measure value of critical decreases as we in-
crease K. Moreover, the F-measure values of blocker, minor,
and trivial achieve to the peak values, then decrease as we in-
crease K. For GCC, the F-measure values of critical and major
slightly increase to a peak value, then slightly decrease as we in-
crease K. The F-measure values of other three severity labels, in-
cluding blocker, minor, and trivial, decrease as we increase
K. The evaluation results of severity prediction indicate that the

176

Table 9

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

Effectiveness of semi-automatic fixer recommendation when varying K.

K # Recommended

F-measure per project

fixers Eclipse (%) NetBeans (%) Mozilla (%) OpenOffice (%) GCC (%)
K=5 5 35.01 34.48 36.22 317 37.24
10 35.42 33.78 36.93 3147 35.42
K =10 5 28.54 31.77 30.08 25.14 32.66
10 29.80 28 30.59 26.58 30.31
K=15 5 24.57 30.51 26.65 21.03 2794
10 26.1 25.57 27.05 23.52 28.78
K =20 5 20.56 29.27 24.7 18.68 25.34
10 23.85 24.64 23.76 2139 27.74
K=25 5 19.07 28.31 23.71 17.25 23.57
10 21.17 23.61 21.99 19.59 26.55

Table 10
Performance comparison among severity prediction
F(F-measure).

algorithms when

K=5 on P(Precision), R(Recall), and

Project Severity ~ Our approach INSpect NB Multinomial
P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)
Eclipse Blocker 3063 2480 2741 184 3337 350 2376 17.10 19.89
Critical 2835 3010 2919 2745 2679 2712 11.62 2231 15.28
Major 59.51 47.97 5312 6271 4595 53.04 4616 4290 44.47
Minor 4323 4488 44.04 4628 3964 4271 3281 2321 27.19
Trivial 18.93 41.87 26.08 427 4751 7.83 2842 17.03 21.30
Mozilla Blocker 48.15 6419 55.02 46,67 6655 54.86 39.01 2391 29.65
Critical 4727 5284 4990 4582 4472 4526 2409 3152 2731
Major 46.51 4021 4313 4190 3786 39.77 5857 3143 4091
Minor 5016 4420 46.99 5484 41.01 4692 2710 26.04 26.56
Trivial 2725 4170 3296 1400 4993 21.87 325 1527 5.36
GCC Blocker 8.00 5467 1396 1041 3845 1639 1267 13.07 12.87
Critical 83.72 7707 8025 8622 6794 7600 61.04 6756 64.14
Major 42.08 2595 3210 3787 1520 21.70 5.75 5.80 5.78
Minor 29.77 4753 36.61 11.72 5098 19.06 30.11 17.31 21.98
Trivial 25.71 16.53 2012 0.56 10.00 1.05 1.25 0.28 0.45

—&— Blocker|
0.9 1 —@— Critical
—&— Major
0.8+ ¢ e ——@——9 v \Minor
—<4— Trivial
0.7 1
0.6 1
£ 0.5
£
S 044
=
= 03 b‘%:
0.2 1
e — S
0.0 T

T T
5 10 15 20
Number of Nearest Neighbors K

25

Fig. 7. GCC: varying K and its effectiveness on F-measure.

additional neighbours are not always similar to the target bug re-
port. Thus, adding the irrelevant bug reports as the neighbours can
reduce the accuracy of severity prediction in our work.

Next, we show the evaluation results of semi-automatic fixer
recommendation for all five datasets in Table 9. In this table, the
F-measure values decrease when we increase K. For example of
Eclipse, when varying K from 5 to 25, the F-measure values de-
crease from 35.01% to 19.07% when recommending top-5 fixers,
and decrease from 35.42% to 21.17% when recommending top-10
fixers. The phenomenon indicates that extracting the candidate
fixers from irrelevant bug reports can affect the accuracy of the

fixer recommendation. Therefore, we think that adding additional
neighbours of the new bug report cannot give more help to the
performance of semi-automatic fixer recommendation.

According to the evaluation results of severity prediction and

semi-automatic fixer recommendation, we can answer RQ1 as
follows:
Answer to RQ1: For severity prediction, adding the number of
nearest neighbours of the new bug report can improve the pre-
diction effectiveness of partial severity labels; for semi-automatic
fixer recommendation, adding the number of nearest neighbours
cannot improve the effectiveness of the recommendation.

4.4. Answer to RQ2: performance comparison among severity
prediction methods

To answer the research questions RQ2, we compare the perfor-
mance of our approach with previous cutting-edge studies. We se-
lect INSpect (Tian et al., 2012) and NB Multinomial (Lamkanfi et al.,
2010; 2011) as the baselines to conduct the performance compar-
ison. Table 10 shows the results of performance comparison when
using the top-5 nearest neighbours.

We now analyse the comparison results shown in Table 10 as
follows:

(1) For Eclipse, we can predict the blocker, critical,
major, minor, and trivial severity labels by F-measure values
of 27.41%, 29.19%, 53.12%, 44.04%, and 26.08%, respectively. The F-
measure value is very good for major severity label but is poorest
for trivial severity label.

By comparing with the F-measure values of INSPect, we find
that the performance of our approach is much better than it when
predicting the severity labels blocker and trivial. When
predicting the severity labels critical and minor, our approach

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 177

can improve the F-measure values of 2.07% and 1.33%, respectively.
Our approach presents the very close performance with INSPect
when predicting major.

By comparing with the F-measure values of NB Multinomial, on
the one hand, we note that our approach performs better than it
when predicting all severity labels.

Thus for Eclipse, our approach performs better than INSPect and
NB Multinomial.

(2) For Mozilla, we can predict the blocker, critical,
major, minor, and trivial severity labels by F-measure val-
ues of 55.02%, 49.90%, 43.13%, 46.99%, and 32.96%, respectively. The
F-measure value is very good for blocker severity label but is
poorest for trivial severity label.

By comparing with the F-measure values of INSPect, we note
that our approach performs better than it when predicting the
severity labels blocker, critical, major, and trivial. Our
approach presents the very close performance with INSPect when
predicting minor.

By comparing with the F-measure values of NB Multinomial,
our approach performs much better than it when predicting
the severity labels blocker, critical, minor, and trivial.
When predicting ma jor, our approach presents slightly better per-
formance than NB Multinomial.

Therefore, for Mozilla, our severity prediction method performs
better than INSPect and NB Multinomial.

(3) For GCC, we can predict the blocker, critical, major,
minor, and trivial severity labels by F-measure values of
13.96%, 80.25%, 32.10%, 36.61%, and 20.12%, respectively. The F-
measure value is very good for critical severity label but is
poorest for blocker severity label.

By comparing with the F-measure values of INSPect, we note
that our approach performs better than it when predicting the
severity labels critical, major, minor, and trivial. For the
blocker label, our approach loses out to INSPect by 2.43%.

By comparing with the F-measure values of NB Multinomial,
our approach performs much better than it when predicting the
severity labels critical, major, minor, and trivial. When
predicting blocker, our approach shows slightly better perfor-
mance than NB Multinomial.

In general, for GCC, our severity prediction method performs
better than INSPect except blocker label, and shows better per-
formance than NB Multinomial.

In order to further evaluate the performance of INSPect, NB
Multinomial, and our approach, we adopt the arithmetic mean of
the F-measure values for all five severity labels to conduct the per-
formance comparison. The method of arithmetic mean considers
the different number of bug reports as each severity label, and
thus it can help us get the convincing results. We show the com-
parison results of severity prediction for Eclipse, Mozilla, and GCC
datasets in Figs. 8-10, respectively.

In these figures, the arithmetic mean F-measure values of our
approach and INSpect change as we increase K, but NB Multino-
mial does not change because it does not adopt KNN to implement
severity prediction. According to the comparison results, we can
clearly know that our approach performs better than INSPect and
NB Multinomial.

To further verify whether our approach performs significantly
better than INSpect and NB Multinomial, we carry out a statistical
test in the R environment (Team, 2014). First, we define the two
null hypotheses as follows:

e H1y: Our approach shows no noteworthy difference against IN-
Spect;

e H2,: Our approach shows no noteworthy difference against NB
Multinomial

0.60
—a— Qur approach
0.55 1 —e— INSpect
—a— NB Multinomial
0.50
L
2 0.45-
<
Q ./'\l———l/'
& 0.40-
3
() .//.—.\.———.
oh 0.35 +
)
E 0.30 A A A A A
0.25 +
0.20 T T T T T
5 10 15 20 25

Number of Nearest Neighbors K

Fig. 8. Eclipse: Performance Comparison among severity prediction algorithms on
different K neighbours.

0.60

—a— Our approach
0.55 1 —e— [N Spect

—4— NB Multinomial

k/"\._’_.—.
o\.—.\.—.

Average F-measure
O N
o o B S (O
(e (%] (e} W (e}

1 1 1 1 1

0.20 T T T T T
5 10 15 20 25

Number of Nearest Neighbors K

Fig. 9. Mozilla: Performance Comparison among severity prediction algorithms on
different K neighbours.

0.70
—a— Qur approach
0.65 —e— INSpect
—a— NB Multinomial
0.60
8 .%I\.\.\.
§ 0.55
£ .\0‘0\.\.
& 0.50-
a8
(0]
oh 0.45 7 e N
o
Z 0401
0.35 1
0.30 T T T T T

5 10 15 20 25
Number of Nearest Neighbors K

Fig. 10. GCC: Performance Comparison among severity prediction algorithms on
different K neighbours.

178

Table 11

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

Results of the statistical tests for severity prediction.

Project Null hypothesis ~ Normality value Test type p-value Inverse hypothesis
Eclipse H1p 0.3663 t-test 1.668e-05 H1g4: Accept
H2, 0.1039 t-test 3.629e-06 H2,: Accept
Mozilla Hl, 0.8602 t-test 0.0005 H1g4: Accept
H2g 0.4617 t-test 6.14e-07 H2,: Accept
GCC H1, 0.1378 t-test 5.528e-05 H1,: Accept
H2, 0.3221 t-test 2.317e-05 H2,: Accept
Table 12

Eclipse: performance comparison among semi-automatic fixer recommendation algorithms when K=5 on

Precision, Recall, and F-measure.

Evaluation metrics

Recommended

Semi-automatic fixer recommendation methods

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%)
Precision 5 25.63 16.04 10.09 25.21

10 23.74 12.58 12.89 15.73
Recall 5 55.21 26.62 19.87 45.8

10 69.71 39.44 39.37 56.67
F-measure 5 35.01 20.02 13.38 32.51

10 35.42 19.07 19.42 24.62

Table 13

NetBeans: performance comparison among semi-automatic fixer recommendation algorithms when K=5 on

Precision, Recall, and F-measure.

Evaluation metrics ~ # Recommended

Semi-automatic fixer recommendation methods

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%)
Precision 5 25.21 22.57 9.51 27.97

10 22.76 15.55 12.83 17.03
Recall 5 54.54 32.77 16.6 41.71

10 65.47 45.42 37.43 50.24
F-measure 5 3448 26.73 12.09 33.49

10 33.78 23.16 19.11 2543

Table 14

Mozilla: Performance comparison among semi-automatic fixer recommendation algorithms when K=5 on

Precision, Recall, and F-measure

Evaluation metrics # Recommended

Semi-automatic fixer recommendation methods

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%)
Precision 5 26.42 16.05 9.18 27.8

10 25.02 12.58 10.20 18.23
Recall 5 57.58 26.62 12.84 40.71

10 70.46 39.43 22.26 39.43
F-measure 5 36.22 20.02 10.71 33.03

10 36.93 19.07 13.99 2118

Furthermore, we present the corresponding inverse hypotheses
as follows:

e H1,: Our approach presents a significant difference with IN-
Spect;

e H2,: Our approach presents a significant difference with NB
Multinomial

Then we adopt the arithmetic mean F-Measure values of the
proposed approach and of the other two baselines as the input
data when performing the statistical test. Specifically, if the nor-
mality value of the statistical test is smaller than 0.05, we use
the Wilcoxon signed-rank test (W-test) (Wilcoxon, 1945) due to
the non-normal distribution of the data; otherwise, we utilize the
t-test (Boneau, 1960) due to the normal distribution of the data.
Table 11 shows the results of the statistical tests.

We note that all normality values are more than 0.05, thus, we
adopt t-test for all data. For the result, if the p-value is more than
the significance level 0.05, we accept the corresponding null hy-
pothesis. Otherwise, we accept the inverse hypothesis. This table

shows that all p-values are less than 0.05, thus we accept all in-
verse hypotheses. In other words, our approach has a significant
difference with INSpect and NB Multinomial.

According to the above-mentioned results of the performance
comparison and statistical significance analysis, we can provide the
answer to RQ2 as follows:

Answer to RQ2: Our approach on severity prediction outperforms
INSPect and NB Multinomial.

4.5. Answer to RQ3: performance comparison among semi-automatic
fixer recommendation methods

In order to answer RQ3, we select the cutting-edge studies, in-
cluding DRETOM (Xie et al., 2012), DREX (Wu et al., 2011), and
DevRec (Xia et al., 2015b), as the baselines to compare with the
performance of our approach. Tables 12-16 show the comparison
results among four semi-automatic fixer recommendation meth-
ods when using the top-5 nearest neighbours on Eclipse, NetBeans,
Mozilla, OpenOffice, and GCC, respectively.

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 179

Table 15

OpenOffice: Performance comparison among semi-automatic fixer recommendation algorithms when K=5 on

Precision, Recall, and F-measure.

Evaluation metrics # Recommended

Semi-automatic fixer recommendation methods

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%)
Precision 5 23.77 19.02 9.08 25.65

10 21.02 13.23 11.47 17.47
Recall 5 47.55 36.68 16.92 38.71

10 62.54 50.59 34.34 52.45
F-measure 5 31.7 25.06 11.82 30.86

10 31.47 20.97 17.2 26.21

Table 16

GCC: Performance comparison among semi-automatic fixer recommendation algorithms when K=5 on Preci-

sion, Recall, and F-measure.

Evaluation metrics # Recommended

Semi-automatic fixer recommendation methods

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%)
Precision 5 30.76 29.04 12.56 30.79
10 25 183 15.15 18.63
Recall 5 4718 45.16 16.29 43.82
10 60.76 56.97 30.96 52.24
F-measure 5 37.24 35.35 14.18 33.04
10 35.42 27.7 20.34 2747
0.50 - —a— Our approach 0.50 - —a— Our approach
—e— DRETOM —e— DRETOM
0.45 1 _a_ DREX 0.45 _ 4o DREX
0.40 1 —w— DevRec 0.40 —w— DevRec
0.35 1 0.354
0.30 1 0.304 v v v v v
~ 0.25 0.254
~ e e e e e &5 -~ e e e 4
= 0.20- = 0.20-
0.15 1 0.154
0.10 1 0.104
0.05 1 A\‘\A\.\‘ 0.05- A\A\.\‘
000 T T T T 000 T T T T

T
5 10 15 20 25
Number of Nearest Neighbors K

Fig. 11. Eclipse: Performance Comparison among semi-automatic fixer recommen-
dation algorithms on MRR when varying K.

We now analyse the comparison results shown in these tables.
For Eclipse, NetBeans, Mozilla, and OpenOffice datasets, our ap-
proach performs much better than DRETOM and DREX when rec-
ommending top-5 or top-10 fixers. In addition, when recommend-
ing top-5 fixers, the F-measure value of our approach is slightly
better than DevRec. However, the improvement of the performance
for DevRec increases when we recommend top-10 fixers. For GCC
dataset, the F-measure value of our approach is better than DREX
when recommending top-5 or top-10 fixers. Moreover, when rec-
ommending top-5 fixers, our approach performs slightly better
than DRETOM and DevRec. However, the improvements of the per-
formance for DREX and DevRec increase when we recommend
top-10 fixers.

To further evaluate the performance of DRETOM, DREX, DevRec,
and our approach, we utilize MRR to conduct the performance
comparison. We show the results of the performance comparison
for Eclipse, NetBeans, Mozilla, OpenOffice, and GCC in Figs. 11-15,
respectively.

T
5 10 15 20 25
Number of Nearest Neighbors K

Fig. 12. NetBeans: Performance Comparison among semi-automatic fixer recom-
mendation algorithms on MRR when varying K.

From these figures, the MRR values of DREX and our approach
change as we increase K while the MRR values of DRETOM and
DevRec do not change. Because DRETOM and DevRec do not adopt
KNN to search the bug reports that are similar to the new bug re-
port. For Eclipse, our approach performs better than DRETOM and
DREX when varying K from 5 to 25. When K is set to 5 or 10,
our approach presents the better performance than DevRec. How-
ever, if we continually increase K, DevRec performs better than our
approach. For NetBeans and Mozilla, our approach performs bet-
ter than DRETOM, DREX,and DevRec when varying K from 5 to 25.
For OpenOffice, our approach presents the better performance than
DREX when changing K from 5 to 25. When K is set to 5 or 10,
our approach performs better than DRETOM and DevRec. If we in-
crease K from 15 to 25, the MRR values of our approach are not
better than them of DRETOM and DevRec. In this project, the MRR
value (28.74%) of DRETOM is very close to the value (28.56%) of
DevRec. For GCC, our approach performs better than DRETOM and
DREX when varying K from 5 to 25. When we change K from 5

180 T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

0.60 - —a— Our approach
0.5 —e— DRETOM
—a— DREX

0-507 —v— DevRec
0.45 '\'\-__
0.40
0.35 1

Ei 0.30 - v v v v v
0.20 4
0.15 1
0.10 1
0.05 4 ‘\.\‘\‘\‘
0.00 T T T T T

5 10 15 20 25
Number of Nearest Neighbors K

Fig. 13. Mozilla: Performance Comparison among semi-automatic fixer recommen-
dation algorithms on MRR when varying K.

0.50 - —a— Our approach
4 —e— DRETOM

0.451 —a DREX
0.40 —w— DevRec
0.35 1
0.30

~ (.25

~ 0.25

= 0.20
0.15 1
0.10 1
0.05 1 A\‘\A\‘\‘
0.00 r T T T T

5 10 15 20 25
Number of Nearest Neighbors K

Fig. 14. OpenOffice: Performance Comparison among semi-automatic fixer recom-
mendation algorithms on MRR when varying K.

0.50 - —a— Our approach
—e—DRETOM

0.45 1 DREX
0.40 4 —v—DevRec
0.35+
0.30 1

g 0.254

[

= 0.20- o o o o
0.15+
0.10 +
0.05
0.00 T T T T T

5 10 15 20 25
Number of Nearest Neighbors K

Fig. 15. GCC: Performance Comparison among semi-automatic fixer recommenda-
tion algorithms on MRR when varying K.

Table 17
Results of the statistical tests for semi-automatic fixer recommendation.
Project Null Normality — Test p-value Inverse
hypothesis value type hypothesis
Eclipse H1j 0.1889 t-test 0.0258 H1}: Accept
H2; 0.3643 t-test 0.0203 H2{: Accept
H3; 0.9012 t-test 0.0188 H3;: Accept
NetBeans H1j 0.2636 t-test 0.0230 H1,: Accept
H2; 0.6366 t-test 0.0334 H2;: Accept
H3j 0.2468 t-test 0.0188 H3: Accept
Mozilla H1j 0.9258 t-test 0.0130 H1;: Accept
H2; 0.6798 t-test 0.0260 H2;: Accept
H3j 0.1517 t-test 0.0119 H3;: Accept
OpenOffice H1j 0.7552 t-test 0.0156 H1): Accept
H2; 0.7230 t-test 0.0212 H2;: Accept
H3j 0.1736 t-test 0.0293 H3[: Accept
GCC H1; 0.3788 t-test 0.0476 H1,: Accept
H2; 0.8786 t-test 0.0214 H2;: Accept
H3j 0.8701 t-test 0.0028 H3;: Accept

to 15, our approach present the better performance than DevRec.
However, if we increase K from 20 to 25, DevRec performs better
than our approach.

Thus, if we choose the appropriate value of K, our approach per-
forms better than DRETOM, DREX, and DevRec. Particularly, when
the value of K is set to 5, our approach has the most signifi-
cant improvement for the performance of fixer recommendation.
To demonstrate it, we conduct a statistical test using R language.
First, we define the three hypotheses as follows:

e H1j: Our approach shows no noteworthy difference against
DRETOM;

e H2{: Our approach shows no noteworthy difference against
DREX;

e H3{: Our approach shows no noteworthy difference against De-
vRec;

Furthermore, we present the corresponding inverse hypotheses
as follows:

e H1): Our approach shows no noteworthy difference against
DRETOM;

e H2/: Our approach shows no noteworthy difference against
DREX;

e H3j: Our approach shows no noteworthy difference against De-
VRec;

Then we adopt Precision, Recall, F-measure, and MRR values of
the proposed approach and of the other three baselines when K is
set to 5 as the input data to perform the statistical test. Table 17
shows the statistical results. All normality values are more than
0.05, therefore, we adopt t-test for all data. For the results, we note
that all p-values are less than 0.05, thus we accept all inverse hy-
potheses. In other words, our approach has a significant difference
with DRETOM, DREX, and DevRec when we choose the top-5 near-
est neighbours to perform semi-automatic fixer recommendation.

According to the results of the performance comparison, we can

give an answer to RQ3 as follows:
Answer to RQ3: Our approach for semi-automatic fixer recommen-
dation outperforms the cutting-edge approaches such as DRETOM,
DREX, and DevRec when we consider the appropriate number of
the nearest neighbours of the new bug report.

4.6. Answer to RQ4: performance analysis

To answer the research question RQ4, we compare the perfor-
mance using the different similarity metrics, including REPy,p;c, REP,
and cosine similarity (Lazar et al., 2014), in our approach. Tables 18

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 181

Table 18
Performance comparison using the different similar metrics for severity
prediction when K = 5.

Similarity metrics Arithmetic mean values of F-measure per project

Eclipse (%) Mozilla (%) GCC (%)
REPygpic 41.14 45.78 60.17
REP 38.35 37.71 57.57
(2.79) (8.07) (2.6)
Cosine 34.54 35.46 51.86
Similarity (6.6) (10.32) (8.31)
Table 19

Performance comparison using the different similar metrics for semi-
automatic fixer recommendation when recommending top-10 fixers and

K=5.

Similarity ~ F-measure per project

metrics Eclipse NetBeans Mozilla ~ OpenOffice ~ GCC
(%) (%) (%) (%) (%)

REP¢gpic 35.42 33.78 36.93 3147 35.42

REP 332 29.87 34.67 29.08 34.52
(2.22) (3.91) (2.26) (2.39) (0.9)

cosine 28.04 24.98 18.89 22.04 29.82

similarity (7.38) (8.8) (18.04) (9.43) (5.6)

and 19 shows the comparison results when K =5 for the sever-
ity prediction algorithm and the semi-automatic fixer recommen-
dation algorithm, respectively.

In Tables 18 and 19, the F-measure values in the parentheses
mean the improvement for REP or cosinesimilarity. We note that
using the enhanced version REP;,,; can improve the performance
of severity prediction and semi-automatic fixer recommendation
using REP and cosine similarity in our approach. The major reason
is that adding the feature topics can help us search the more accu-
rate nearest neighbours of the new bug report so that it can im-
prove the results of two tasks. Thus, we can give an answer to RQ4
as follows:

Answer to RQ4: Using REP;y,. can improve the performance of
severity prediction and semi-automatic fixer recommendation in
our approach.

In addition to REPy,, we propose the new severity predic-
tion and semi-automatic algorithms. For severity prediction, the
novel method considers the number of bug reports as the predict-
ing severity label and the textual similarities between the nearest
neighbours labelled by the severity label and the new bug report;
for semi-automatic fixer recommendation, the proposed algorithm
considers the candidate fixers’ behaviours in the social network
and their experience on fixing the historical bug reports. These in-
troduced features can improve the accuracy of our approach for
predicting the severity labels and recommending the appropriate
fixers.

5. Threats to validity

In this section, we introduce some possible threats of our study.
These threats include external threats and internal threats, which
are presented as follows:

o External threats: We collect the fixed bug reports from five
open source bug repositories for performing the experiments.
However, we are not sure that the proposed approaches are
also effective in other open source projects and commercial
projects. Because we extract a lot of bug reports from the
five lager-scale projects, the threat may be slight. For other
projects, because the internal rules (e.g., variations in develop-
ment process) may be different from the five projects used in

our experiments, we should extract the different features to de-
velop a new approach to perform severity prediction and semi-
automatic fixer recommendation.

Internal threats: In our approach, we spent much effort in tun-
ing a lot of parameters to achieve the best performance. Even
though we adopt the parameter adjustment methods proposed
in Sun et al. (2011) and Xia et al. (2015b) for REPy;. and our
developed algorithms, respectively. However, a more effective
tuning method needs to be developed. We will do it in the fu-
ture.

When analysing the distribution of the bug reports as each
severity label, we find the imbalanced data appearing in Net-
Beans and OpenOffice. They can impact the results of the sever-
ity prediction, we will process these data in the future so that
we can predict the severity labels in the projects which contain
the imbalanced data.

6. Related work

In this section, we introduce some previous studies related
to severity prediction and semi-automatic fixer recommendation.
Moreover, we show some other tasks such as bug summarization,
bug localization, and priority prediction.

6.1. Severity prediction

Previous studies usually tend to use machine learning algo-
rithms to predict the severity level of a new submitted bug. As an
early work, Menzies and Marcus (2008) proposed SEVERIS to assist
triagers to assign severity levels to given bug reports. SEVERIS
adopted text mining and rule-learning techniques to predict the
severity levels. Lamkanfi et al. (2010) utilized text mining tech-
nique and NB classifier to predict whether the given bug is “Non-
severe” or “Severe”. In their follow-up work, Lamkanfi and his col-
leagues (Lamkanfi et al., 2011) compared four machine learning al-
gorithms including NB, NB Multinomial, KNN, and SVM on coarse-
grained severity prediction (i.e.,, “Non-severe” or “Severe”). The
experimental results showed that NB Multinomial performed best
than others in Eclipse and GNOME. Tian et al. (2012) used infor-
mation retrieval technique, in particular BM25-based textual simi-
larity algorithm (i.e., REP), and KNN to predict the severity levels of
each new bug report. This fine-grained severity prediction method
showed the better performance than SEVERIS (Menzies and Mar-
cus, 2008). Yang et al. (2012) adopted feature selection schemas
such as information gain, chi-square, and correlation coefficient to
select the best features as the input of Naive Bayes Multinomial.
The evaluation results showed that the feature selection schemes
can further improve the performance of severity prediction.

Our work is different from these previous studies. First, we pro-
pose an enhanced version of REP, ie., REPp, to extract the top-
K nearest neighbours of a new bug report. Second, we develop a
new prediction algorithm based on the textual similarities between
these neighbours and the given bug report.

6.2. Semi-automatic fixer recommendation

As a premier work, Cubrani¢ and Murphy (Cubrani¢ and Mur-
phy, 2004) utilized NB classifier to predict whether a candidate
developer is able to fix a new bug. Anvik et al. (2006) adopted
NB, SVM, and C4.5 to perform semi-automatic bug triage. The ex-
perimental results showed that SVM performed better than others
in Firefox and Eclipse, and it also presented higher precision than
NB in GCC open bug repository. Matter et al. (2009) modelled de-
velopers’ expertises by comparing the vocabularies in source code
and bug reports which are assigned to them.

182 T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

Recent years, a series new techniques such as social network
and topic model are also adopted for helping to improve the per-
formance of semi-automatic bug triage. Wu et al. (2011) proposed
DREX, which utilized KNN to search the historical bug reports that
similar to the new bug and introduced social network metrics such
as Out-Degree to rank the candidate developers for recommend-
ing the best one for fixing the given bug. Xuan et al. (2012) pro-
posed a method to prioritize the developers via social network.
Based on the prioritization result, they utilized NB and SVM to pre-
dict whether the candidate developer is the most appropriate fixer.
Park et al. (2011) modelled “developer profiles” to indicate devel-
opers’ estimated costs for fixing different types of bugs, which are
extracted by apply LDA. The evaluation results showed that this
cost-aware triage algorithm can optimize for both accuracy and
cost for semi-automatic bug triage. Tamrawi et al. (2011) proposed
Bugzie, which combines the fuzzy sets corresponding to the terms
extracted from the new bug report and ranks the developers to
find the most capable fixers. Xie et al. (2012) proposed DRETOM
to model the topics for bug reports and calculate the probability
of a developer being interested in and expertise on resolving the
bugs so that the candidate developers were ranked according the
probabilities. Experimental results on Eclipse JDT and Mozilla Fire-
fox open bug repositories showed that DRETOM can achieve higher
performance. As one of our previous work (Zhang and Lee, 2013),
we proposed a hybrid bug triage algorithm to recommend the
most appropriate bug fixer. The proposed approach combines expe-
rience model and probability model to implement semi-automatic
bug triage. In detail, experience model captures the developers’
experience on resolving historical bugs by extracting the features
such as the number of fixed bug reports while probability model
is built by analysing the social network between the candidate de-
velopers. Naguib et al. (2013) introduced activity profiles to rank
all candidate developers. An activity profile captures each devel-
oper’s activities (i.e., review, assign, and resolve the correspond-
ing bugs) in the bug fixing process so that it can influence and
contribute to the ranking of suitable candidates. The evaluation
result showed that the proposed method performed better than
LDA-SVM-based developer recommendation technique. Xia et al.
(2015b) proposed DevRec algorithm to fix the bug fixers, it per-
formed two kinds of analysis, including bug reports based analysis
and developer based analysis. DevRec extracted topics, component,
product, developers, summary, and description as the features to
perform semi-automatic fixer recommendation on five open source
projects which are same as our datasets. The experimental results
showed that DevRec performed better than DREX (Wu et al., 2011)
and Bugzie (Tamrawi et al., 2011). Xuan et al. (2015) reduced the
size of the data set to improve the quality of the bug reports, thus
they can increase the accuracy of bug triage using machine learn-
ing techniques.

Different from these described previous studies, we utilized the
similarity measure REP;,,; and KNN to find the most similar bug
reports (i.e., top-K nearest neighbours) of a new bug report. More-
over, the new developed ranking algorithm combines the social
network-based analysis and the experience-based analysis to im-
prove the accuracy of semi-automatic fixer recommendation.

6.3. Other tasks in bug resolution process

Except for severity prediction and semi-automatic fixer recom-
mendation, there are other tasks such as bug report summariza-
tion, bug localization, and priority prediction in bug resolution
process.

The goal of bug report summarization is to automatically gen-
erate the summary of a given bug report. Rastkar et al. (2010)
utilized three supervised classifiers including Email Classifier (EC),
Email & Meeting Classifier (EMC), and Bug Report Classifier (BRC)

to verify whether a sentence is a part of the extractive summary.
Mani et al. (2012) adopted four unsupervised approaches, includ-
ing Centroid, Maximum Marginal Relevance (MMR), Grasshopper
and Diverse Rank (DivRank), to implement bug report summariza-
tion. The results showed that MMR, DivRank, and Grasshopper can
achieve the same performance with the best of the supervised ap-
proach but reduced the running cost. Jiang et al. (2016) utilized
byte-level N-grams to model the authorship characteristics of de-
velopers. Then, they employed the authorship characteristics to ex-
tract similar bug reports to facilitate the task of bug report summa-
rization. Experiments validated the effectiveness of this new tech-
nique. Najam et al. (2016) used small-scale crowdsourcing based
features to summarize the source code fragment. The experimen-
tal results showed that the proposed approach performed better
than existing code fragment classifiers.

Bug localization aims to find the location of a new bug report
so that it can reduce the fixers’ workload. Lukins et al. (2008) uti-
lized LDA to search the correct source code file where the new
bug appears. In this work, the bug report is treated as a query
and then the approach performs LDA to retrieve the correspond-
ing source code file where the bug is. Rao and Kak (2011) com-
pared the performance of different IR-models, including Unigram
Model, Vector Space Model, Latent Semantic Analysis Model, LDA,
and Cluster Based Document Model when performing the task of
bug localization. Kim et al. (2013) proposed a two-phase recom-
mendation model. In this model, they adopted Naive Bayes to filter
out the uninformative bug reports and predict the buggy file for
each submitted bug report. Saha et al. (2013) built AST to extract
the program constructs of each source code file, and utilized Okapi
BM25 to calculate the similarity between the given bug report and
the constructs of each candidate buggy file. Zhou et al. (2012) pro-
posed BugLocator to rank all files based on textual similarity be-
tween the new bug report and the source code using a revised
Vector Space Model. Moreover, they also rank the relevant files by
analysing the historical bug reports that similar to the given bug.
Finally, by combining two ranks, BugLocator can return the correct
source file to locate the given bug. Sisman and Kak (2012) used
time decay in weighting the files in a probabilistic IR model to
perform bug localization. Zamani et al. (2014) proposed a feature
location approach using a new term-weighting technique that con-
siders how recently a term has been used in the repositories. The
empirical evaluation of the approach shows that it performs better
than Vector Space Model-based approach.

Similar to severity, priority is an important feature of bug re-
port. It indicates which bug should be fixed preferentially. Sharma
et al. (2012) used SVM, NB, KNN, and Neural Network to predict
the priority level of a new bug report. Tian et al. (2013) extracted
multiple factors to train a discriminative model to verity which pri-
ority level that the given bug report belongs to.

7. Conclusion

In this paper, we propose a new approach to implement sever-
ity prediction and semi-automatic fixer recommendation instead of
developers’ manual work. Our approach extracts the top-K nearest
neighbours of the new bug report by utilizing a similarity measure
REPy,pic, which is an enhanced version of REP. Next we adopt the
K neighbours’ features such as the participated developers and the
textual similarities with the given bug report to implement sever-
ity prediction and semi-automatic fixer recommendation.

To demonstrate the effectiveness of our approach, we ap-
ply our approach to five popular open bug repositories, includ-
ing GCC, OpenOffice, Eclipse, NetBeans, and Mozilla. The results
show that the proposed approach outperforms the cutting-edge
approaches. For severity prediction, our approach performs bet-
ter than INSpect and NB multinomial; for semi-automatic fixer

T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184 183

recommendation, our approach presents the better performance
than DRETOM, DREX, and DevRec. The evaluation results demon-
strate that the similarity measure REP,; can help to improve the
performance of the two bug resolution tasks.

In the future, we will evaluate our approach on more bug re-
ports extracted from other open and commercial software repos-
itories. Moreover, we plan to develop a more accurate developer
ranking algorithm by capturing other features such as the attach-
ment to further improve the performance of semi-automatic fixer
recommendation. At the same time, we also want to introduce new
machine learning techniques such as deep learning to implement
severity prediction.

Acknowledgement

This work is supported in part by the Hong Kong GRF (No.
PolyU5389/13E), the Hong Kong ITF(No. UIM/285), the National
Natural Science Foundation of China (No. 61202396), the HKPolyU
Research Grant (G-UA3X), and Shenzhen City Science and Technol-
ogy R&D Fund (No. JCY]J20150630115257892).

References

Anvik,]., Hiew, L., Murphy, G.C., 2006. Who should fix this bug? In: Proceed-
ings of the 28th International Conference on Software Engineering, ICSE’'06,
pp. 361-370.

Blei, D.M., Lafferty, J.D., 2007. A correlated topic model of science. Ann. Appl. Stat.
17-35.

Boneau, C.A., 1960. The effects of violations of assumptions underlying the T test.
Psychological Bull. 57 (1), 49-64.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.,
2005. Learning to rank using gradient descent. In: Proceedings of the 22nd In-
ternational Conference on Machine Learning, ICML'05, pp. 89-96.

Castells, P, Fernandez, M., Vallet, D., 2007. An adaptation of the vector-space model
for ontology-based information retrieval. IEEE Trans. Knowl. Data Eng. 19 (2),
261-272.

Chemudugunta, C., Steyvers, P.S.M., 2007. Modeling general and specific aspects of
documents with a probabilistic topic model. In: Proceedings of the 20th Annual
Conference on Neural Information Processing Systems, NIPS'06, Vol. 19, p. 241.

Cubrani¢, D., Murphy, G.C., 2004. Automatic bug triage using text categorization. In:
Proceedings of the 16th International Conference on Software Engineering and
Knowledge Engineering, SEKE'04, pp. 92-97.

Goutte, C., Gaussier, E., 2005. A probabilistic interpretation of precision, recall and
f-score, with implication for evaluation. In: Proceedings of the 27th European
Conference on IR Research, ECIR'05, pp. 345-359.

Hooimeijer, P., Weimer, W., 2007. Modeling bug report quality. In: Proceedings of
the 22nd IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE'07, pp. 34-43.

Kim, D., Tao, Y., Kim, S., Zeller, A., 2013. Where should we fix this bug? A two-phase
recommendation model. IEEE Trans. Softw. Eng. 39 (11), 1597-1610.

Kwak, H., Lee, C., Park, H., Moon, S., 2010. What is twitter, a social network or a
news media? In: Proceedings of the 19th International Conference on World
Wide Web, WWW’10, pp. 591-600.

Jeong, G.G., Kim, S., Zimmermann, T., 2009. Improving bug triage with bug tossing
graphs. In: Proceedings of the 7th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE’09, pp. 111-120.

Jiang, H., Zhang, J., Ma, H., Nazar, N., Ren, Z., 2016. Mining authorship characteristics
in bug repositories, SCIENCE CHINA Information Sciences, accepted.

Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B., 2010. Predicting the severity of a
reported bug. In: Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories, MSR'10, pp. 1-10.

Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonck, T., 2011. Comparing mining algo-
rithms for predicting the severity of a reported bug. In: Proceedings of the 15th
European Conference on Software Maintenance and Reengineering, CSMR'11,
pp. 249-258.

Lazar, A., Ritchey, S., Sharif, B., 2014. Improving the accuracy of duplicate bug report
detection using textual similarity measures. In: Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR'14, pp. 308-311.

Liu, C, Yang,], Tan, L., Hafiz, M., 2013. R2fix: Automatically generating bug fixes
from bug reports. In: Proceedings of the 6th IEEE International Conference on
Software Testing, Verification and Validation, ICST'13, pp. 282-291.

Lukins, S., Kraft, N., Etzkorn, L., 2008. Source code retrieval for bug localization using
latent Dirichlet allocation. In: Proceedings of the 15th Working Conference on
Reverse Engineering, WCRE'08, pp. 155-164.

Mani, S., Catherine, R., Sinha, V.S., Dubey, A., 2012. Ausum: Approach for unsu-
pervised bug report summarization. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE'12,
pp. 1-11.

Matter, D., Kuhn, A. Nierstrasz, 0., 2009. Assigning bug reports using a vocab-
ulary-based expertise model of developers. In: Proceedings of the 6th IEEE
International Working Conference on Mining Software Repositories, MSR’09,
pp. 131-140.

Menzies, T., Marcus, A., 2008. Automated severity assessment of software defect re-
ports. In: Proceedings of the 24th IEEE International Conference on Software
Maintenance, ICSM’08, pp. 346-355.

Naguib, H., Narayan, N., Brugge, B., Helal, D., 2013. Bug report assignee recommen-
dation using activity profiles. In: Proceedings of the 10th IEEE Working Confer-
ence on Mining Software Repositories, MSR'13, pp. 22-30.

Najam, N., Jiang, H., Gao, G., Zhang, T, Li, X, Ren, Z., 2016. Source code frag-
ment summarization with small-scale crowdsourcing based features, Online
http://link.springer.com/article/10.1007/s11704-015-4409-2.

Park, J.-W., Lee, M.-W., Kim,]., won Hwang, S., Kim, S., 2011. Costriage: A cost-aware
triage algorithm for bug reporting systems. In: Proceedings of the 25th AAAI
Conference on Artificial Intelligence, AAAI'11, pp. 139-144.

Ramage, D., Hall, D., Nallapati, R., Manning, C.D., 2009. Labeled Ida: a supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing,
EMNLP’09, pp. 248-256.

Rao, S., Kak, A., 2011. Retrieval from software libraries for bug localization: a com-
parative study of generic and composite text models. In: Proceedings of the 8th
Working Conference on Mining Software Repositories, MSR'11, pp. 43-52.

Rastkar, S., Murphy, G.C., Murray, G., 2010. Summarizing software artifacts: A case
study of bug reports. In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1. New York, NY, USA, pp. 505-514.

Saha, R., Lease, M., Khurshid, S., Perry, D., 2013. Improving bug localization using
structured information retrieval. In: Proceedings of the IEEE/ACM 28th Interna-
tional Conference on Automated Software Engineering, ASE'13, pp. 345-355.

Servant, F, Jones, J.A., 2012. Whosefault: automatic developer-to-fault assignment
through fault localization. In: Proceedings of the 34th International Conference
on Software Engineering, ICSE’12, pp. 36-46.

Sharma, M., Bedi, P, Chaturvedi, K., Singh, V., 2012. Predicting the priority of a re-
ported bug using machine learning techniques and cross project validation. In:
Proceedings of the 12th International Conference on Intelligent Systems Design
and Applications, ISDA'12, pp. 539-545.

Shihab, E., Thara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams, B., Hassan, A.E.,
Matsumoto, K.I, 2010. Predicting re-opened bugs: a case study on the eclipse
project. In: Proceedings of the 17th Working Conference on Reverse Engineer-
ing, WCRE'10, pp. 249-258x.

Sisman, B., Kak, A.C., 2012. Incorporating version histories in information retrieval
based bug localization. In: Proceedings of IEEE Working Conference on Mining
Software Repositories, MSR'12, pp. 50-59.

Sun, C, Lo, D., Khoo, S.-C., Jiang,]., 2011. Towards more accurate retrieval of dupli-
cate bug reports. In: Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE'11, pp. 253-262.

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, TN., 2011. Fuzzy set and
cache-based approach for bug triaging. In: Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Soft-
ware Engineering, ESEC/FSE'11, pp. 365-375.

Taylor, M., Zaragoza, H., Craswell, N., Robertson, S., Burges, C., 2006. Optimisation
methods for ranking functions with multiple parameters. In: Proceedings of
the 15th ACM International Conference on Information and Knowledge Man-
agement, CIKM’'06, pp. 585-593.

Team, R. C,, 2014. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, vienna, austria.

Tian, Y., Lo, D., Sun, C., 2012. Information retrieval based nearest neighbor classifica-
tion for fine-grained bug severity prediction. In: Proceedings of the 19th Work-
ing Conference on Reverse Engineering, WCRE'12, pp. 215-224.

Tian, Y., Lo, D., Sun, C.,, 2013. Drone: Predicting priority of reported bugs by mul-
ti-factor analysis. In: Proceedings of the 29th IEEE International Conference on
Software Maintenance, ICSM'13, pp. 200-209.

Wilcoxon, F, 1945. Individual comparisons by ranking methods. Biom. Bull. 80-83.

Wu, W, Zhang, W., Yang, Y., Wang, Q., 2011. Drex: Developer recommendation with
k-nearest-neighbor search and expertise ranking. In: Proceedings of the 18th
Asia Pacific Software Engineering Conference, APSEC'11, pp. 389-396.

Xia, X., Lo, D., Shihab, E., Wang, X., 2015a. Automated bug report field reassignment
and refinement prediction. [EEE Trans. Reliab. 1-20.

Xia, X., Lo, D., Wang, X., Zhou, B., 2013. Accurate developer recommendation for
bug resolution. In: Proceedings of the 20th Working Conference on Reverse En-
gineering, WCRE'12, pp. 72-81.

Xia, X., Lo, D., Wang, X., Zhou, B., 2015b. Dual analysis for recommending developers
to resolve bugs. J. Softw. Evol. Process 27 (3), 195220.

Xia, X., Lo, D., Wen, M., Shihab, E., Zhou, B., 2014. An empirical study of bug report
field reassignment. In: Proceedings of the 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Reengineering and Reverse Engineering,
CSMR-WCRE'14, pp. 174-183.

Xie, X., Zhang, W., Yang, Y., Wang, Q., 2012. Dretom: Developer recommendation
based on topic models for bug resolution. In: Proceedings of the 8th Interna-
tional Conference on Predictive Models in Software Engineering, PROMISE'12,
pp. 19-28.

Xuan, J., Jiang, H., Ren, Z., Zou, W., 2012. Developer prioritization in bug repositories.
In: Proceedings of the 34th International Conference on Software Engineering,
ICSE'12, pp. 25-35.

Xuan, J., Jiang, H., Hu, Y., Ren, Z., Zou, W., Luo, Z., Wu, X., 2015. Towards effective bug
triage with software data reduction techniques. IEEE Trans. Knowl. Data Eng. 27
(1), 264-280.

http://dx.doi.org/10.13039/100001641
http://dx.doi.org/10.13039/501100003452
http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0020
http://link.springer.com/article/10.1007/s11704-015-4409-2
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0043
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0052

184 T. Zhang et al./The Journal of Systems and Software 117 (2016) 166-184

Yang, C.-Z., Hou, C.-C., Kao, W.-C., Chen, 1.-X., 2012. An empirical study on improving
severity prediction of defect reports using feature selection. In: Proceedings of
the 19th Asia-Pacific Software Engineering Conference, APSEC'12, pp. 240-249.

Yang, G., Zhang, T, Lee, B., 2014. Towards semi-automatic bug triage and severity
prediction based on topic model and multi-feature of bug reports. In: Proceed-
ings of the IEEE 38th Annual Computer Software and Applications Conference,
COMPSAC'14, pp. 97-106.

Zamani, S., Lee, S.P, Shokripour, R., Anvik, ., 2014. A noun-based approach to feature
location using time-aware term-weighting. Inf. Softw. Technol. 56 (8), 991-1011.

Zhang, T, Lee, B., 2013. A hybrid bug triage algorithm for developer recommenda-
tion. In: Proceedings of the 28th Annual ACM Symposium on Applied Comput-
ing, SAC'13, pp. 1088-1094.

Zhou, J., Zhang, H., Lo, D., 2012. Where should the bugs be fixed? - more accu-
rate information retrieval-based bug localization based on bug reports. In: Pro-
ceedings of the 34th International Conference on Software Engineering, ICSE'12,
pp. 14-24.

Tao Zhang, received the B.S. and M.E. degrees in Automation and Software Engi-
neering from Northeastern University, China, in 2005 and 2008, respectively. He
got the Ph.D. degree in Computer Science from University of Seoul, South Korea
in Feb., 2013. He was a postdoctoral fellow at the Department of Computing, Hong
Kong Polytechnic University from November 2014 to November 2015. Currently, he
is an assistant professor at the School of Software, Nanjing University of Posts and
Telecommunications. His research interest includes data mining, software mainte-
nance and natural language processing. Dr. Zhang is a member of IEEE, ACM, and
[EICE.

Jiachi Chen, received the B.S. degree in Institute of Service Engineering, HangZhou
Normal University, China in 2016. Currently, he is a master student in Department
of Computing, Hong Kong Polytechnic University. He got Sliver Award in 12th Zhe-
jiang Undergraduate ACM Program Design Competition. His research interest in-
cludes data mining and program analysis.

Geunseok Yang, received the B.S. degree in Computer Science from Korea Univer-
sity of Technology and Education, South Korea in 2013. Currently, he is a master
student at the Department of Computer Science, University of Seoul, South Korea.
His research interest includes mining software repositories and big data.

Byungjeong Lee, received the B.S., M.S., Ph.D. degrees in Computer Science from
Seoul National University in 1990, 1998, and 2002, respectively. He was a researcher
of Hyundai Electronics, Corp. from 1990 to 1998. Currently, he is a professor of the
Department of Computer Science at the University of Seoul, South Korea. His re-
search areas include software engineering and web science.

Xiapu Luo, received his B.S. in Communication Engineering and M.S. in Communi-
cations and Information Systems from Wuhan University. He obtained his Ph.D. de-
gree in Computer Science from the Hong Kong Polytechnic University, under the su-
pervision of Prof. Rocky K.C. Chang. After that, Daniel spent two years at the Georgia
Institute of Technology as a post-doctoral research fellow advised by Prof. Wenke
Lee. Currently, he is a research assistant professor at the Department of Computing,
Hong Kong Polytechnic University. His research interests include Software Analysis,
Android Security and Privacy, Network and System Security, Information Privacy, In-
ternet Measurement, Cloud Computing, and Mobile Networks.

http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0044
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0046
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0047
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0047
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0047
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00076-5/sbref0048

	Towards more accurate severity prediction and fixer recommendation of software bugs
	1 Introduction
	2 Background knowledge and motivation
	2.1 Bug reporting
	2.2 Two tasks in bug resolution
	2.3 Topic modelling
	2.4 Similarity function: BM25F and its extension BM25Fext
	2.5 Social network-based developers’ relationship
	2.6 Motivation

	3 Methodology for severity prediction and semi-automatic fixer recommendation
	3.1 Overview
	3.2 Pre-processing
	3.3 Topic modelling
	3.4 Retrieval for similar historical bug reports
	3.5 Severity prediction
	3.6 Semi-automatic fixer recommendation
	3.7 Research questions

	4 Experiment and result evaluation
	4.1 Experiment setup
	4.1.1 Data set
	4.1.2 Evaluation methods
	4.1.3 Exclusion criteria

	4.2 Parameter tuning
	4.3 Answer to RQ1: effectiveness evaluation
	4.4 Answer to RQ2: performance comparison among severity prediction methods
	4.5 Answer to RQ3: performance comparison among semi-automatic fixer recommendation methods
	4.6 Answer to RQ4: performance analysis

	5 Threats to validity
	6 Related work
	6.1 Severity prediction
	6.2 Semi-automatic fixer recommendation
	6.3 Other tasks in bug resolution process

	7 Conclusion
	 Acknowledgement
	 References

