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a b s t r a c t 

Due to the unavoidable bugs appearing in the most of the software systems, bug resolution has become 

one of the most important activities in software maintenance. For large-scale software programs, devel- 

opers usually depend on bug reports to fix the given bugs. When a new bug is reported, a triager has to 

complete two important tasks that include severity identification and fixer assignment. The purpose of 

severity identification is to decide how quickly the bug report should be addressed while fixer assignment 

means that the new bug needs to be assigned to an appropriate developer for fixing. However, a large 

number of bug reports submitted every day increase triagers’ workload, thus leading to the reduction 

in the accuracy of severity identification and fixer assignment. Therefore it is necessary to develop an 

automatic approach to perform severity prediction and fixer recommendation instead of manual work. 

This article proposes a more accurate approach to accomplish the goal. We firstly utilize modified REP 

algorithm ( i.e., REP topic ) and K-Nearest Neighbor (KNN) classification to search the historical bug reports 

that are similar to a new bug. Next, we extract their features ( e.g. , assignees and similarity) to develop 

the severity prediction and fixer recommendation algorithms. Finally, by adopting the proposed algo- 

rithms, we achieve severity prediction and semi-automatic fixer recommendation on five popular open 

source projects, including GNU Compiler Collection (GCC), OpenOffice, Eclipse, NetBeans, and Mozilla. The 

results demonstrated that our method can improve the performance of severity prediction and fixer rec- 

ommendation through comparison with the cutting-edge studies. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Bug resolution is an important activity in software maintenance

process. Recent years, due to the increased scale and complexity

of software projects, a large number of bugs appear in the devel-

opment process and hence bug resolution has become a difficult

and challenging work ( Xia et al., 2013 ). To effectively track and

manage these bugs, open source software projects and many com-

mercial projects adopt bug tracking systems ( e.g. , Buzilla 1 , JIRA 

2 ,

etc.) to maintain the huge information about the reported bugs. As

an important component of bug tracking systems, bug repositories
� A preliminary edition of this article was accepted by COMPSAC 2014 as a re- 

search full paper . This article extends and provides further experimental evidence 

of the proposed method. 
∗ Corresponding author. 

E-mail address: csxluo@comp.polyu.edu.hk (X. Luo). 
1 https://www.bugzilla.org/ . 
2 https://www.atlassian.com/software/jira . 
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ecord a large number of bug reports, which are written by users

r developers. 

In software maintenance process, developers rely on bug re-

orts stored in bug repositories to fix the given bugs. Once a new

ug report is submitted, a triager who is responsible for man-

ging bug reports can read this report to understand the details

f the given bug, then verify whether the labelled severity level

s correct or not. This process is called “severity identification ”.

everity levels include high-severity ( e.g. , ‘blocker’, ‘critical’, ‘ma-

or’) that represents critical errors and low-severity ( e.g. , ‘minor’,

trivial’) that denotes unimportant bugs ( Lamkanfi et al., 2010 ). The

ollowing task of the triager is to assign the reported bug to an

ppropriate developer for executing bug resolution according to its

everity level. This process is called “fixer assignment ” ( Servant

nd Jones, 2012 ) or bug assignment ( Wu et al., 2011; Xia et al.,

015a ). Severity identification and fixer assignment are two major

asks of triagers, whose success can affect the time of bug fixing

 Yang et al., 2014 ). Specifically, there are two important issues in

he execution process of these tasks as follows: 

http://dx.doi.org/10.1016/j.jss.2016.02.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.02.034&domain=pdf
mailto:csxluo@comp.polyu.edu.hk
https://www.bugzilla.org/
https://www.atlassian.com/software/jira
http://dx.doi.org/10.1016/j.jss.2016.02.034
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• Triagers’ workload : Everyday, a large number of bug reports

are submitted to bug repositories. For example, Mozilla bug

repository receives an average of 135 new bug reports each day

( Liu et al., 2013 ). Obviously, processing multitude of bug reports

places a heavy burden on triagers. 
• Inaccurate severity identification and fixer assignment : Man-

ual severity identification and fixer assignment may lead to er-

rors, especially on a vast number of bug reports. For example,

a critical bug is labelled as a ‘low-severity’ bug and therefore

the fixing time is extended ( Menzies and Marcus, 2008 ). As an-

other example, the triager may assign the improper developer

to execute the task of bug fixing, thus leading to the bug re-

assignments. Jeong et al. (2009) has shown that the more the

number of reassignments is, the lower the success probability

of bug fixing is. 

To resolve the above problems, existing studies tried to perform

everity prediction ( Menzies and Marcus, 2008; Lamkanfi et al.,

010, 2011; Tian et al., 2012; Yang et al., 2012 ) and semi-automatic

xer recommendation ( ̌Cubrani ́c and Murphy, 2004; Anvik et al.,

0 06; Matter et al., 20 09; Wu et al., 2011; Xuan et al., 2012; Park

t al., 2011; Xie et al., 2012; Zhang and Lee, 2013; Naguib et al.,

013; Xuan et al., 2015; Xia et al., 2015b ). Machine learning and

nformation retrieval techniques were utilized to realize the goal.

owever, the major challenge is to find the close relationship be-

ween the new bug report ( i.e. , query) and historical bug reports.

n other words, the returned historical bug reports that are simi-

ar to the query and their features decide the accuracy of severity

rediction and semi-automatic fixer recommendation. Topic mod-

lling ( Ramage et al., 2009 ) is a useful approach to cluster bug re-

orts into corresponding categories. The bug reports in the same

ategory share the same topic. By using topic model, we can find

he topic(s) that each bug report belongs to. We introduce these

opics as the additional feature of the REP algorithm, which is a

imilarity function proposed by Tian et al. (2012) to calculate the

imilarity between bug reports. Based on this enhanced REP ( i.e.,

EP topic ), we utilize K-Nearest Neighbor (KNN) to search the histor-

cal bug reports similar to the new bug. 

In this work, we investigate which features of the similar histor-

cal bug reports can affect the accuracy of the severity prediction

nd fixer recommendation. Then, we use them, such as similarity

etween bug reports and developers’ experience, to develop the

ore accurate methods for implementing severity prediction and

emi-automatic fixer recommendation. To demonstrate the effec-

iveness of the proposed approach, we conduct experiments on five

pen source repositories, including GNU Compiler Collection (GCC),

penOffice, Eclipse, NetBeans, and Mozilla. The results show that

he proposed approach outperforms the cutting-edge approaches

n severity prediction and semi-automatic fixer recommendation.

oreover, we also demonstrate that the proposed similarity mea-

ure REP topic can improve the accuracy of our approach than other

imilarity metrics such as REP and cosine similarity . 

To help researchers reproduce our work, we open all source

ode and datasets at https://github.com/ProgrammerCJC/SPFR . 

We summarize the major contributions of our work as follows: 

• By utilizing topic modelling, we find the topic(s) to which each

bug report belongs. Then, we introduce these topics to enhance

the similarity function REP , and adopt KNN to search the top-K

historical bug reports that are similar to the new bug. 
• Based on the features ( e.g. , textural similarity and develop-

ers’ experience) extracted from top-K nearest neighbours of the

new bug report, we develop new algorithms to improve the ac-

curacy of severity prediction and fixer recommendation. 
• We conduct the experiments on five large-scale open source

projects, including GCC, OpenOffice, Eclipse, NetBeans, and
Mozilla. The results demonstrate that the proposed approach

has better performance than the cutting-edge studies. 

The remainder of the article is structured as follows: Section 2

ntroduces background knowledge and the motivations of our

ork. Section 3 details how to utilize the proposed approach

o implement severity prediction and fixer recommendation. In

ection 4 , we show how to organize the experiments and indicate

he experimental results. We discuss the performance of our ap-

roach and present some threats to validity in Section 5 . Section 6

ntroduces the related works and shows the differences from our

ork. In Section 7 , we conclude this paper and introduce the fu-

ure work. 

. Background knowledge and motivation 

In our work, we propose an approach to predict the severity

evels and recommend the appropriate fixers based on the similar

istorical bug reports and their features. Thus, in this section, we

ntroduce some background knowledges concerning bug reporting,

wo tasks in bug resolution, topic modelling, similarity function,

nd social network-based developers’ relationship. Moreover, we

resent the motivation of our study. 

.1. Bug reporting 

Bug reports are software artifacts that track the defects of soft-

are projects. Since they provide the detailed description informa-

ion about the reported bugs, developers utilized these defect de-

ails to fix the corresponding bugs. 

For example, Fig. 1 shows an Eclipse bug report- Bug

63360 that contains all basic elements, such as summary ,
escription , comments , attachment , importance ,
eporter , assignee ( i.e. , fixer), and multiple features such

s component and product . Among them, summary is a brief

escription of a bug; description shows the detailed infor-

ation of the bug; comments indicate the free discussion about

he reported bug; attachment includes one or more than one

upporting materials such as patch and test cases; importance
ncludes priority level ( e.g. , P3) and severity level ( e.g. , normal) of

he reported bug; reporter is a developer or user who reported

he bug; assignee is a developer who was assigned to fix the

iven bug; component indicates which component was affected

y the bug; and product shows which product was influenced

y the bug. 

In our work, we introduce summary , description ,
omponent , product , and topics produced by topic mod-

lling to calculate the similarities between the bug reports so

hat we can find the top-K nearest neighbours of the new bug

o execute the severity prediction and fixer recommendation

lgorithms. 

.2. Two tasks in bug resolution 

When a new bug is reported, the developers in the software

evelopment program work together for resolving the given bug.

ig. 2 shows its general life cycle in Bugzilla. 

The initial state of the new bug report is “Unconfirmed”. When

he bug report is verified by a triager, the status is changed to

New”. In this process, the triager verifies whether the labelled

everity level is correct or not ( i.e. , severity identification). Then

he triager is responsible to assign the bug report to an appro-

riate assignee ( i.e. , fixer). At this time, the state of the bug re-

ort is changed to “Assigned”. If the assignee completes the bug-

xing task, the state is changed to “Resolved”; otherwise, the bug

s marked as “New” and the report is re-triaged. This process is

https://github.com/ProgrammerCJC/SPFR
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Fig. 1. An example of Eclipse bug report 463360. 

Fig. 2. The life cycle of bug resolution process in Bugzilla. 
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3 http://nlp.stanford.edu/software/tmt/tmt-0.4/ . 
called bug reassignment. Once the bug report is fixed successfully,

the task is finished and the state becomes “Closed”. Afterwards, if

a developer finds that the bug is not fixed in its entirety, this bug

can be reopened. The bug-fixing task is re-executed in a step-wise

manner through a cycle-regulated process as described above. 

Since the severity identification and fixer assignment are two

important tasks for triagers, in our work, we focus on developing

a new approach to perform severity prediction and semi-automatic

fixer recommendation. 

2.3. Topic modelling 

As the statistical models, topic models can discover the ‘topics’

from the collection of documents ( Blei and Lafferty, 2007 ). Each

topic includes the topic terms which appear in the documents, and

each document may belong to one or more topics. For the bug re-

ports which share the same topic, their textual contents are sim-

ilar. Therefore, topics can be treated as a useful feature to verify

the similarity between bug reports ( Xie et al., 2012 ). In our study,
e utilized Latent Dirichlet Allocation (LDA)( Chemudugunta and

teyvers, 2007 ) to extract the topic distribution of bug reports. 

LDA is a general topic model. In LDA, each document is viewed

s a mixture of various topics with different probabilities. Each

opic is characterized by a distribution of words that frequently co-

ccur in the documents. Hence, LDA is able to find the bug reports

ith the same topic(s) that describe the similar contents. In our

ork, we use LDA to extract the topics with terms from historical

ug reports so that we can get the bug reports which are similar

o a coming bug. 

The Stanford Topic Modelling Toolbox (TMT) 3 ( Xie et al., 2012 )

rings topic modelling tools to perform the analysis on provided

atasets. It can help us implement LDA so that we can get the

opic distributions of given bug reports. In TMT, there are four pa-

ameters ( N, R, α, β) that need to be set. N stands for the num-

er of topics; R denotes the number of iterations; α and β are

http://nlp.stanford.edu/software/tmt/tmt-0.4/
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Fig. 3. An example of social network among developers participating bug fixing 

process. 
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ssociation factors. The higher the value of α, the higher the prob-

bility of a bug report being associated with multiple topics; the

igher the value of β , the higher the probability of a topic be-

ng associated with multiple terms. We adopted TMT to extract the

opics of bug reports as one of the input features of the similarity

easure REP topic , which is described in Section 3 . 

.4. Similarity function: BM25F and its extension BM 25 F ext 

BM 25 F is a similarity function which is suitable for performing

tructured information retrieval, thus it can be used to measure

he similarity between two bug reports because each bug report

s a structured document which includes two textual fields such

s summary and description . Similar to Vector Space Model

VSM) ( Castells et al., 2007 ), BM25F is also represented as TF ∗IDF

odel, but it presents the different form. In detail, IDF is the in-

erse document frequency defined as follows: 

DF (t) = log 
N 

n t 
(1) 

here N is the total number of documents, and n t denotes the

umber of documents containing the term t . 

A field-dependent normalized term frequency TF D ( t, d ) of a

erm t which is considered in each field of the document d is de-

ned by the following formula: 

 F D (t, d) = 

K ∑ 

f=1 

ω f × o(d[ f ] , t) 

1 − b f + 

b f ×l d[ f ] 

l f 

(2)

Here, ω f is a field-dependent weight parameter. The large value

f ω f means higher importance of the corresponding field; o ( d [ f ],

 ) denotes the number of occurrences of term t in the field f of the

ocument d; l d [ f ] is the size of the f th field of the document d ; l f 
eans the average size of the f th field across all documents in D ;

nd b f (0 ≤ b f ≤ 1) is a parameter that determines the scaling by

eld length ( b f = 1 corresponds to full length normalization while

 f = 0 corresponds to term weight not being normalized by the

ength). 

Based on TF ∗IDF model described above, given a query q , the

M 25 F algorithm can be presented as follows: 

M25 F (q, d) = 

∑ 

t∈ q ∩ d 
IDF (t) × T F D (t, d) 

k 1 + T F D (t, d) 
(3)

here t is the shared term occurring in both q and d , and

 1 ( k 1 ≥ 0) is a parameter tuning the scale of TF D ( t, d ). 

The above-mentioned BM 25 F algorithm can be utilized for short

ueries. However, in our work, each query is a new bug report

ith the long textual content ( i.e. , the summary and the de-

cription). Therefore, we need to consider the term frequencies in

ueries. In this situation, we adopt another expression of BM 25 F,

.e., BM 25 ext described in formula (4) , as the similarity measure be-

ween the new bug report and the historical bug reports. 

M25 F ext (q, d) = 

∑ 

t∈ q ∩ d 
IDF (t ) × T F D (t , d) 

k 1 + T F D (t , d) 
× (k 3 + 1) T F Q (t , q )

k 3 + T F Q (t , q ) 

(4) 

Here, for each common term t appearing in document d and

uery q , its contribution to the overall BM 25 F ext contains two

omponents: one is the product of IDF and TF D inherited from

M 25 F ; and the other is the local importance of term t in the

uery q , which is denoted as 
(k 3 +1) T F Q (t,q ) 

k 3 + T F Q (t,q ) 
. TF Q ( t, q ) is calculated by

 F Q (t, q ) = 

∑ K 
f=1 ω f × o(q [ f ] , t) , where o ( q [ f ], t ) denotes the num-

er of occurrences of term t in the field f of the query q . Note that

F Q ( t, q ) is different from TF D ( t, d ), and we do not normalize it be-

ause we rank the historical bug reports based on their similarities
o a single given query. k 3 is used to control the weight of the local

mportance of term t in q to the overall score. For example, if k 3 is

et to 0, then the local importance of t in q contributes no weight

o that BM 25 F ext becomes BM 25 F . 

In our work, we adopt the results of BM 25 F ext between bug re-

orts as the input features of our similarity algorithm REP topic de-

cribed in Section 3 to measure the similarity between the new

ug report and the historical bug reports. 

.5. Social network-based developers’ relationship 

Social network reflects a social structure made up of a set of

ocial actors such as individuals and organizations ( Kwak et al.,

010 ). By analysing the social network, we can know the rela-

ionship between the actors in a special activity. Based on the

haracteristics of social network, it can be adopted to analyse the

evelopers’ relationship in the bug fixing process. The analysis

esult can help to develop an accurate semi-automatic fixer recom-

endation algorithm. Fig. 3 shows an example of a social network

mong four developers who participate in the bug fixing process.

n this figure, the lines represent the commenting activities while

he numbers on the lines denote the number of comments. Com-

ents are posted by commenters who participate the discussion

o resolve the given bug. For example, the line with the number

2” from Developer A to Developer D means that Developer D

omments the bug report(s) assigned to Developer A two times. 

By investigating the commenting activities between developers

n the bug fixing process, we can understand the developers’ ex-

erience on fixing the historical bugs. Thus, in our work, social

etwork-based developers’ relationship is adopted to design the

ew method for recommending the appropriate bug fixers. 

.6. Motivation 

In terms of the description in Section 1 , we note that the large

umber of submitted bug reports increase developers’ workload

nd lengthen the fixing time. 

As an evidence, Table 1 shows the statistical result of average

umber of assigned bug reports per assignee and average fixing

ime per bug in five projects. Note that each assignee needs to fix

 lot of bugs, especially for NetBeans, average number of assigned

ug reports reaches up to 72.6 for each assignee. We cannot di-

ectly know the triagers’ workload by parsing the XML files ( i.e. ,
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Table 1 

Statistical result of average workload and fixing time in our data set. 

Project # Bug reports # Assignees Average workload Average fixing time Period 

Per assignee (number) Per bug (days) 

Eclipse 39,669 771 51 .5 411 .4 2001/10/10- 

2014/12/29 

NetBeans 19,249 265 72 .6 442 .5 1999/02/11- 

2014/12/31 

Mozilla 15,501 1022 15 .2 244 .9 1999/03/17- 

2014/12/31 

OpenOffice 23,402 552 42 .4 1129 .0 20 0 0/10/21- 

2014/12/31 

GCC 13,301 256 52 .0 292 .1 1999/08/03- 

2014/12/01 

Table 2 

Distribution of the bug reports as the fixing time. 

Distribution Fixing time(year) per project 

Ratio Eclipse NetBeans Mozilla OpenOffice GCC 

< 1% ≥8 ≥8 ≥6 ≥12 ≥5 
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bug reports) downloaded by Eclipse 4 , NetBeans 5 , Mozilla 6 , OpenOf-

fice 7 , and GCC 

8 , however, we can infer that the triagers’ work-

load is more than the assignees’ because generally the number of

triagers is much less than the number of assignees in open source

projects. As a special case, in the early stage, the Eclipse Platform

project only had a single bug triager to process all submitted bugs

( Anvik et al., 2006 ). In addition, the fixing time is too long. Even

for the shortest one, the average fixing time per bug still achieves

to 244.9 days in Mozilla project. To avoid data bias, we omit the

small-scale data ( i.e. , less than 1% of the bug reports) which have

the much longer fixing time (See Table 2 ) in the statistical pro-

cess of the fixing time. Inaccurate severity identification and bug

triage ( i.e. , severity and fixer reassignment) may lead to longer fix-

ing time. Xia et al. (2014) found that approximately 80% of bug

reports have their fields (including severity and fixer field) reas-

signed. They also demonstrated that these bug reports whose fields

get reassigned require more time to be fixed than those without

field reassignment. In order to resolve this problem, it is neces-

sary to develop automatic approaches to perform severity predic-

tion and semi-automatic fixer recommendation. 

Even though existing studies ( Menzies and Marcus, 2008;

Lamkanfi et al., 2010, 2011; Tian et al., 2012; Yang et al., 2012;

Čubrani ́c and Murphy, 2004; Anvik et al., 2006; Matter et al., 2009;

Wu et al., 2011; Xuan et al., 2012; Park et al., 2011; Xie et al.,

2012; Zhang and Lee, 2013; Naguib et al., 2013 ) proposed some ap-

proaches to perform severity prediction and semi-automatic fixer

recommendation, it is still necessary to improve the accuracy of

two tasks. Topic modelling can find the common topics between

bug reports, thus using these topics can enhance the previous sim-

ilarity algorithm- REP so that it can perfect the results of KNN clas-

sification. We believe that utilizing these bug reports can improve

the performance of severity prediction and semi-automatic fixer

recommendation. The experimental results shown in Section 4

demonstrate this conclusion. 

This article is an extended version of our previous conference

paper ( Yang et al., 2014 ) published in COMPSAC 2014. Comparing
4 https://bugs.eclipse.org/bugs/ . 
5 https://netbeans.org/bugzilla/ . 
6 https://bugzilla.mozilla.org/ . 
7 https://bz.apache.org/ooo/ . 
8 https://gcc.gnu.org/bugzilla/ . 
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s

ith the previous study, we extend the contents from the follow-

ng several aspects: 

• We investigate and collect more evidences such as the average

workload to enhance the motivation of our work. 
• We propose a new similarity metric, i.e. , modified REP named

as REP topic , to compute the similarity between a new bug report

and the historical bug reports. 
• We propose new methods to conduct the severity prediction

and fixer recommendation for improving the results. 
• We add two new data sets, i.e. , GCC and OpenOffice, in our

experiments. Thus, five open source projects are adopted to

demonstrate the effectiveness of the proposed approach. 
• We implement more previous studies such as ( Tian et al., 2012;

Xia et al., 2015b ) as the baselines for demonstrating the effec-

tiveness of the proposed approach. 

. Methodology for severity prediction and semi-automatic 

xer recommendation 

In this section, we present the details of our methodology for

redicting the severity level of a new bug report and recommend-

ng the most appropriate developer to fix the given bug. We first

rovide a framework of the proposed method, and then we detail

ach step of the proposed approach. 

.1. Overview 

To reduce the developers’ workload and overcome the draw-

acks of manual severity identification and fixer assignment, we

ropose an automated approach to perform these two tasks. Fig. 4

hows the framework of the proposed approach. 

For our approach, we first conduct the pre-process, mainly in-

ludes tokenization, stop word removal, and stemming, to the bug

eports collected from the open-source projects. Second, we com-

ute the similarities between a new bug report and the historical

ug reports by using the similarity measure REP topic , which com-

ines topics produced by topic modelling, product, component, the

extual similarities (only consider the summary and description)

etween the bug reports by adopting BM 25 F ext . Next, according to

he similarities, we can find the top-K nearest neighbours of the

ew bug report. Finally, for severity prediction, we extract the sim-

larities between the given bug report and these K nearest neigh-

ours to develop the prediction algorithm for recommending the

everity level to the new bug. For semi-automatic fixer recommen-

ation, we extract the developers including assignees and com-

enters from the K nearest neighbours; then we develop a rank-

ng algorithm by analysing the developers’ behaviour on bug fix-

ng and commenting activities to recommend the most appropriate

ug fixer who has the highest ranking score. 

In the following subsections, we introduce the details of each

tep described in the framework. 

https://bugs.eclipse.org/bugs/
https://netbeans.org/bugzilla/
https://bugzilla.mozilla.org/
https://bz.apache.org/ooo/
https://gcc.gnu.org/bugzilla/
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Table 3 

A topic model for NetBeans bug reports when N is set to 30. 

Term@1 Term@2 Term@3 Term@4 Term@5 

Topic@1 Line 0.0285 Type 0.0135 Editor 0.0134 Comment 0.0120 Enter 0.0114 

Topic@2 Module 0.0318 Cluster 0.0186 Web 0.0165 Plugin 0.0147 Install 0.0140 

Topic@3 System 0.0618 Product 0.0604 Running 0.0598 Client 0.0334 Windows 0.0318 

Topic@4 css 0.0270 Tag 0.0210 Error 0.0194 Color 0.0181 Value 0.0143 

Topic@5 Module 0.0233 Classpath 0.0214 api 0.0199 Source 0.0185 David 0.0158 

Topic@6 Folder 0.0257 Directory 0.0180 Root 0.0164 Path 0.0146 html5 0.0121 

Topic@7 Report 0.0325 Exception 0.0314 Duplicates 0.0149 Reporter 0.0123 Exceptions 0.0104 

Topic@8 Guest 0.0322 Server 0.0294 64-bit 0.0279 Windows 0.0207 Client 0.0202 

Topic@9 Method 0.0277 Completion 0.0227 Public 0.0224 String 0.0156 Return 0.0152 

Topic@10 Test 0.0335 Fix 0.0230 Patch 0.0175 Changes 0.0154 Trunk 0.0149 

Fig. 4. Framework of severity prediction and semi-automatic bug triage. 
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.2. Pre-processing 

Once we get the collected bug reports, a pre-processing pro-

ess is started. This process is implemented by utilizing Natural

anguage Processing (NLP) techniques, including tokenization, stop

ord removal, and stemming. For tokenization, each bug report is

ivided into a series of tokens. As a special case, the variables de-

ned in a program are also split into a concatenation of words. For

xample, “fillColor” is divided into two words: “fill” and “Color”.

ext, a set of extraneous terms identified in a list of stop words

 e.g. , “to”, “as”, “are”, etc.) are filtered out to guarantee the effec-

iveness of textual similarity measure. Finally, stemming reduces a

ord to its root form. For example, the words such as “carrying”,

carried”, and “carries” are changed to “carry”. 

In our work, we utilize a leading platform called Natural Lan-

uage Toolkit (NLTK) 9 for executing NLP techniques. This tool pro-
9 http://www.nltk.org/ . 
ides a lot of useful interfaces with a series of text processing li-

raries so that it can implement all needed NLP techniques such

s tokenization, stop words removal, and stemming. 

.3. Topic modelling 

In our work, we adopt TMT ( Xie et al., 2012 ) introduced in

ection 2.1 to implement LDA for clustering historical and new bug

eports. To utilize TMT, four parameters including N, R, α, β need

o be adjusted. We adopt the default values ( i.e. , 1500, 0.01, and

.01) for R, α, and β , respectively, and adjust N from 10 to 100 for

uilding the different topic models to perform severity prediction

nd semi-automatic bug triage. Table 3 lists the top-10 topics for

etBeans bug reports when setting the value of N to 30. 

In this table, each topic is represented as topic terms with the

robabilities that the terms belong to the corresponding topic. We

ust list top-5 terms with the highest probabilities in each topic

ue to the limited space. According to these terms appearing in

he bug reports and their probabilities in each topic, we can get

he distribution of each bug report in all produced topics by sum

ll terms’ probabilities in each topic. In other words, we can know

hich topic(s) each bug report belongs to. In our approach, these

opics are treated as one of the input features of the similarity

easure REP topic . 

.4. Retrieval for similar historical bug reports 

To retrieve the historical bug reports which are similar to a

ew bug report, we need to compute the similarities between

hem. Tian et al. (2012) proposed REP algorithm combining the

eatures, including the component, the product, the textual simi-

arity of two bug reports based on summary an description which

re represented by bags of unigrams and bigrams. In our work, we

ntroduce the topics as the additional feature of REP to produce a

nhanced version, i.e., REP topic , to search the similar historical bug

eports with the given bug. 

We present all features in the similarity measure REP topic as fol-

ows: 

f eature 1 (q, br) = BM25 F ext (q, br) //of unigrams (5)

f eature 2 (q, br) = BM25 F ext (q, br) //of bigrams (6)

f eature 3 (q, br) = 

{
1 if q.prod=br.prod 

0 otherwise 
(7) 

f eature 4 (q, br) = 

{
1 if q.comp=br.comp 

0 otherwise 
(8) 

f eature 5 (q, br) = 

{
1 if q.topic=br.topic //of any topic 
0 otherwise 

(9) 

http://www.nltk.org/
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As a special case, a bug report belongs to only one product and

only one component, but may belong to more than one topics. In

formula (9) , we define that the value of feature 5 ( q, br ) is equal to

1, as long as one of the topics that the historical bug report br

belongs to is the same as one of the query’s topics. 

The similarity measure REP topic is a linear combination of five

features, with the following formula where ω i is the weight for

the i th feature feature i defined by formula ( 5 –9 ). We describe how

to tune all parameters in REP topic in Section 4 . 

REP topic (q, br) = 

5 ∑ 

i =1 

ω i × f eature i (10)

By using REP topic to compute the similarities between the new

bug report and the historical bug reports, we can rank these histor-

ical reports so that the top-K nearest neighbours of the given bug

report can be found. Then we utilize them to develop the severity

prediction and semi-automatic fixer recommendation algorithms,

which are presented as following subsections. 

3.5. Severity prediction 

When we get the top-K nearest neighbours of a new bug re-

port by using REP topic , we leverage the similarities between the K

neighbours and the given bug report to predict the severity level

of the new bug. Given a new bug report br new 

, the probability of

its severity level being l is presented as follows: 

P (br new 

| l) = γ1 
k l 
K 

+ γ2 

∑ k l 
i =1 

sim (br new 

, br i ) ∑ K 
i =1 sim (br new 

, br i ) 
(11)

where k l is the number of the br new 

’s nearest neighbours whose

severity level is l while K is the total number of nearest neighbours

of br new 

. In addition, sim ( br new 

, br i ) is the similarity between br new

and the nearest neighbor br i ; γ 1 , γ 2 ∈ [0, 1] represent the differ-

ent contribution weights of the two parts to the overall prediction

score. 

We present our severity prediction approach in Algorithm 1 .

The parameter adjustment, experimental process and results are

described in Section 4 . 

Algorithm 1 Severity prediction. 

Input: 

A new bug report br new 

; 

The set of top-K nearest neighbours br i ∈ K ; 
Output: 

The most likely severity level of br new 

; 

1: Search the number of br new 

’s neighbours whose severity level

is assigned to l j (j = Block, Critical, Major, Minor, or Trivial). 

2: Extract the similarities between br new 

and its nearest neigh-

bours; 

3: Set the weight vectors γ1 and γ2 to compute the probability of

br new 

’s severity level being l j : formula (11); 

4: Continue to execute the process until the probabilities of all

severity levels are computed. 

5: return Severity level of br new 

3.6. Semi-automatic fixer recommendation 

To realize the goal of semi-automatic fixer recommendation, we

extract the developers including assignees and commenters from

the top-K nearest neighbours of the new bug report as the can-

didates. In order to capture the candidates’ behavior on their pre-

vious bug fixing activities, we build a social network described in
ection 2.5 to collect the records on commenting activities so that

e can quantize each candidate’s behavior as following formula: 

ocialScore (d) = 

nc × od 

MAX 1 ≤i ≤M 

(nc i × od i ) 
(12)

here nc stands for the number of comments that the developer

 posts while od (out-degree) represents the number of comments

hat the other developers post to the bug reports assigned to d.

AX 1 ≤ i ≤ M 

( nc i × od i ) is used to normalize the social score via a

aximum value among M candidate developers. 

Moreover, we consider the number of fixed bug reports and

hat of reopened bug reports as factors to capture the candidates’

xperiences in previous bug fixing activities. We get the experience

core of the candidate developer d as follows: 

xperienceScore (d) = 

n f ix /n reopen 

MAX 1 ≤i ≤M 

(n f ix i 
/n reopen i ) 

(13)

In formula (13) , n fix represents the number of bugs fixed by

he developer d successfully while n reopen stands for the number

f bugs which have the reopened records among all historical bugs

ssigned to d . MAX 1 ≤i ≤M 

(n f ix i 
/n reopen i ) is used to normalize the ex-

erience score via a maximum value among M candidate develop-

rs. 

In SocialScore ( d ) and ExperienceScore ( d ), we introduce several

actors including nc, od, n fix , and n reopen . Hooimeijer and Weimer

2007) demonstrated that the number of comments is a positive

oefficient, which means the assigned bug received more develop-

rs’ attention. More suggestions let it get the high probability of

eing fixed. Thus we select nc and od as the positive factors in So-

ialScore ( d ). For the strength of empirical analysis, the more the

umber of bugs fixed successfully, the more experience the de-

eloper has; by contrast, the increasing number of reopened bugs

as a negative impact to the developer who was assigned to fix

hese bugs ( Shihab et al., 2010 ). Thus, we assign d fix , as the posi-

ive factor and d reopen as the negative factor in ExperienceScore ( d ).

e combine SocialScore ( d ) and ExperienceScore ( d ) to compute the

anking score for each candidate bug fixer as follows: 

 RScore (d) = δ1 × SocialScore (d) + δ2 × ExperienceScore (d) (14)

where δ1 , δ2 ∈ [0, 1] stand for the different contribution

eights of SocialScore ( d ) and ExperienceScore ( d ) to the candidate’s

anking score. 

We summarize the semi-automatic fixer recommendation algo-

ithm via Algorithm 2 . In Section 4 , we show the parameter tuning

rocess and experimental results. 

lgorithm 2 Semi-automatic fixer recommendation. 

nput: 

A new bug report br new 

; 

The set of top-K nearest neighbours br i ∈ K ; 
utput: 

A list of developers ranked by ranking score, d 1 , d 2 , ...d n ; 

Extracting the assignees and commenters from br i ∈ K as a set of

candidate developers D ; 

2: Extracting the number of comments to compute

SocialScore (d j ∈ D ) : formula (12) 

Extracting the number of bugs fixed successfully and the

number of reopened bugs assigned to d j ∈ D to compute

ExperienceScore (d j ∈ D ) : formula (13) 

4: Set the weight vectors δ1 and δ2 to compute F RScore (d j ∈ D ) :

formula (14) 

return d 1 , d 2 , ...d n based on descending order of ranking

scores; 
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.7. Research questions 

Based on the top-K nearest neighbours of a new bug report

ia REP topic and KNN, we implement severity prediction and semi-

utomatic fixer recommendation. To evaluate whether the pro-

osed approach can effectively achieve the tasks, we answer the

ollowing research questions: 

• RQ1: How effective is our approach to perform severity pre-

diction and semi-automatic fixer recommendation when we

choosing the different number of nearest neighbours of the

new bug report? 

By utilizing the proposed approach, we want to know its effec-

tiveness for predicting the bug severity and recommending the

bug fixer when changing the number of top-K nearest neigh-

bours of the new bug report. 
• RQ2: How much improvement could the new prediction algo-

rithm gain over the cutting-edge studies such as INSPect ( Tian

et al., 2012 ) and Naive Bayes (NB) Multinomial ( Lamkanfi et al.,

2010, 2011 ) ? 

Tian et al. proposed INSPect, which utilized REP to search top-K

nearest neighbours of the new bug report and used their devel-

oped algorithm to predict the severity level ( Tian et al., 2012 ).

Lamkanfi et al. demonstrated that NB Multinomial performed

better than the other three well-known machine learning algo-

rithms, including NB, KNN, and Support Vector Machines (SVM)

( Lamkanfi et al., 2011 ). To address this research question, we

select INSPect and NB Multinomial as the baselines to measure

the performance improvement of our approach. Answer to this

research question would shed light to whether our approach

can produce the better performance than existing state-of-the-

art severity prediction algorithms. 
• RQ3: How much improvement could the proposed fixer recom-

mendation algorithm gain over the previous studies, including

DRETOM ( Xie et al., 2012 ) , DREX ( Wu et al., 2011 ) , and DevRec

( Xia et al., 2015b ) ? 

Xie et al. proposed DRETOM which utilized topic modelling to

recommend the bug fixers while DREX adopted social network

metrics ( e.g. , out-degree) to implement the same task. DevRec

introduced topics, component, and product to develop a fixer

recommendation algorithm. In this research question, we want

to evaluate the extent to which our approach outperforms these

cutting-edge studies. To answer this question, we compare the

performance of our approach with those of these algorithms to

verify the performance improvement using our approach. 
• RQ4: What is the performance of the REP topic ? In our work, we

develop an enhanced version of REP topic by adding an additional

feature, i.e. , topics. By using REP topic , we find the top-K nearest

neighbours of the new bug report to implement the severity

prediction and fixer recommendation. We believe that REP topic 

is an important part to improve the performance of the pro-

posed approaches. Thus, answer to this research question can

help us verify whether REP topic can affect the performance of

severity prediction and fixer recommendation. 

. Experiment and result evaluation 

In this section, we introduce the experimental process and

how the experimental results. Moreover, we compare the perfor-

ance of our approaches and that of other previous studies. 

.1. Experiment setup 

.1.1. Data set 

In order to demonstrate the effectiveness of the proposed ap-

roach, we carry out a series of experiments on five large-scale
pen source bug repositories, including GCC, OpenOffice, Eclipse,

etBeans, and Mozilla. We only collect the fixed bug reports which

ere denoted by “resolved” or “closed” before December 31, 2014

ue to their strong stability and reliability. Note that we do not

onsider the reports whose severity label is enhancement be-

ause they technically do not represent real bug reports ( Lamkanfi

t al., 2010 ). The overview of our data sets is described in Table 1 .

e open all data sets at https://github.com/ProgrammerCJC/SPFR . 

To expediently evaluate the results, we use the same method

escribed in Xia et al. (2015b ) for training-test set validation. First,

he bug reports extracted from each bug repository are sorted in

hronological order of creation time, and then divided into 11 non-

verlapping frames of equal sizes. Table 4 shows the details of

ur data set. Second, we conduct the training using bug reports in

rame 0, and test the bug reports in frame 1. Then, we train using

ug reports in frame 0 and 1, and use the similar way to test the

ug reports in frame 2. We continue this process until frame 10. In

he final round, we train using bug reports in frame 0-9, and test

sing bug reports in frame 10. Finally, we use the average accuracy

cross the 10 round validation as the final result. 

.1.2. Evaluation methods 

In order to measure the accuracy of our approach and compare

he performance with other cutting-edge techniques, we adopt

recision ( T P 
T P+ F P ), Recall ( T P 

T P+ F N ), F-measure ( 2 × Precision ×Recall 
Precision + Recall 

)

 Goutte and Gaussier, 2005 ), and MRR ( 1 
M q 

∑ M p 

i =1 
1 
R i 

) ( Zhou et al.,

012 ) to perform the evaluation, where TP ( i.e ., True Positive in-

tances) denotes the number of instances such as severity levels or

ug fixers predicted correctly; FP ( i.e ., False Positive instances) is

he number of instances predicted incorrectly; FN ( i.e ., False Neg-

tive instances) stands for the number of actual instances which

re not predicted by our approach; M q is the total number of

ueries(i.e., the bug reports in our test set); and R i represents the

ank of the correct result in the recommended list. Note that MRR

s unfit for severity prediction because it is useful only for the eval-

ation on the ranked lists, thus, we only use Precision, Recall, and

-measure to evaluate the performance of severity prediction while

e adopt all above-mentioned metrics to evaluate the results of

emi-automatic fixer recommendation. 

.1.3. Exclusion criteria 

Before we perform the proposed approach and other cutting-

dge studies on the data sets describe in Tables 1–4 , we select the

ffective and useful data to conduct the approaches. 

For severity prediction, we focus on predicting five severity la-

els of the bug reports, namely blocker , critical , major ,
inor , and trivial . Following the previous work ( Lamkanfi

t al., 2010; 2011; Tian et al., 2012 ), we do not consider the sever-

ty label normal . Because the label normal is the default op-

ion for selecting the severity when reporting a bug and a lot of

evelopers did not consciously assess the bug severity ( Lamkanfi

t al., 2010; 2011 ). In addition, the data imbalance may impact

he prediction results. We show the distribution ratio of the bug

eports with each severity label to all non-normal bug reports in

able 5 . We find that the distributions of bug reports as per label

n NetBeans and OpenOffice present higher imbalance than other

hree data sets. Specifically, in NetBeans, the bug reports labelled

y blocker occupy 99.07% of total bug reports; in OpenOffice, the

ug reports labelled by trivial possess 96.62% of total. The im-

alanced data may affect the reliability of the results, and thus we

o not perform the severity prediction in NetBeans and OpenOffice.

rocessing the imbalanced data is out of the scope of our work, but

t will be examined in the future work. 

For semi-automatic fixer recommendation, in each of the five

ata sets, we remove developers who appear less than 10 times,

https://github.com/ProgrammerCJC/SPFR
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Table 4 

Details of our data set. 

Project # Bug reports Average size of each frame # Products # Component Period 

Eclipse 39,669 3606 7 114 2001/10/10-2014/12/29 

NetBeans 19,249 1750 33 148 1999/02/11-2014/12/31 

Mozilla 15,501 1409 12 167 1999/03/17-2014/12/31 

OpenOffice 23,402 2127 36 116 20 0 0/10/21-2014/12/31 

GCC 13,301 1209 2 27 1999/08/03-2014/12/01 

Table 5 

Distribution of the non-normal bug reports as the different severity labels. 

Project Distribution ratio as each non-normal severity label 

Blocker Critical Major Minor Trivial 

Eclipse 682(9.40%) 1,412(19.45%) 2,934(40.42%) 1,389(19.14%) 841(11.59%) 

NetBeans 13,812(99.07%) 13(0.09%) 70(0.50%) 35(0.25%) 12(0.09%) 

Mozilla 270(10.67%) 437(17.26%) 672(26.54%) 696(27.49%) 457(18.05%) 

OpenOffice 51(0.23%) 158(0.70%) 518(2.30%) 33(0.15%) 21,730(96.62%) 

GCC 221(8.21%) 1,656(61.52%) 257(9.55%) 479(17.79%) 79(2.93%) 

Table 6 

Parameters in REP topic . 

Parameter Description Init. Selected parameter values per project 

Eclipse NetBeans Mozilla OpenOffice GCC 

N The number of topics 10 30 30 30 30 30 

ω 1 Weight of feature 1 (unigram) 0 .9 1 .264 1 .226 1 .159 1 .163 1 .175 

ω 2 Weight of feature 2 (bigram) 0 .2 0 .413 0 .313 0 .034 0 .013 0 .124 

ω 3 Weight of feature 3 (product) 2 2 .285 2 .775 2 .198 2 .285 2 .322 

ω 4 Weight of feature 4 (component) 0 0 .232 0 .535 0 .041 0 .032 0 .039 

ω 5 Weight of feature 5 (topics) 0 1 .001 1 .031 0 .988 1 .013 1 .074 

ω 

unigram 
summ Weight of summary in feature 1 3 3 .128 3 .814 3 .014 2 .980 2 .994 

ω 

unigram 

desc 
Weight of description in feature 1 1 1 .287 1 .481 0 .764 0 .287 0 .233 

b unigram 
summ b of summary in feature 1 0 .5 0 .516 0 .537 0 .499 0 .501 0 .499 

b unigram 

desc 
b of description in feature 1 1 1 .178 1 .069 1 .003 1 .012 1 .004 

k unigram 
1 

k 1 in feature 1 2 2 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 

k unigram 
3 

k 3 in feature 1 0 0 .331 0 .523 0 .031 0 .003 0 .023 

ω 

bigram 
summ Weight of summary in feature 2 3 3 .157 3 .357 2 .971 3 .001 2 .887 

ω 

bigram 

desc 
Weight of description in feature 2 1 1 .194 1 .084 1 .003 1 .004 1 .212 

b bigram 
summ b of summary in feature 2 0 .5 0 .524 0 .613 0 .503 0 .499 0 .484 

b bigram 

desc 
b of description in feature 2 1 1 .015 1 .122 0 .969 0 .998 1 .021 

k bigram 
1 

k 1 in feature 2 2 2 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 

k bigram 
3 

k 3 in feature 2 0 0 .015 0 .103 0 .154 0 .001 0 .058 
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because they are not active and recommending these candidate

fixers does not help much in bug resolution. Moreover, we delete

the terms that appear less than 20 times according to the similar

data filtering method described in Xia et al. (2015b ). 

4.2. Parameter tuning 

Our approach involves parameter tuning. As the description

in Section 3 , our approach includes two phases: searching the

historical bug reports that are similar to the new bug, and im-

plementing two bug resolution tasks (namely severity prediction

and semi-automatic fixer recommendation). In the first phase, we

should adjust the parameters in the similarity measure REP topic and

KNN; in the second phase, we should tune the parameters used

in the severity prediction and semi-automatic fixer recommenda-

tion algorithms. We describe how to adjust these parameters as

following paragraphs. 

In the first phase of our approach, we add the new feature top-

ics to enhance the original REP ( Tian et al., 2012 ) using topic mod-

elling. Thus we should first adjust the parameters used in TMT,

which is a topic modelling tool introduced in Section 3.3 . We set

the parameters, including R, α, and β , to their default values ( i.e. ,

1500, 0.01, 0.01) respectively, and adjust the number of topics N

from 10 to 100, with an interval of 10. 
The similar measure REP topic defined in formula (10) has 17

ree parameters in total. For feature 1 and feature 2 , we compute

extual similarities of q and br over two fields: summary and

escription by using BM25F . Computing each of two features

eeds (2 + 2 × 2) = 6 free parameters. In addition, in formula (10) ,

here are 5 weight factors for the corresponding 5 features. Thus,

EP topic requires (2 × 6 + 5) = 17 parameters to be set. 

Table 6 shows the parameters of REP topic in column 1 and 2. We

ollow the same parameter tuning method ( i.e. , gradient descent)

sed in Sun et al. (2011) ; Tian et al. (2012) to verify the values in

EP topic . Specifically, when the number of topics is initialized ( e.g. ,

 = 10), we start to adjust all 17 parameters in REP topic using gra-

ient descent. Given each of these parameters x , we initialize it

ith a default value recommended by Sun et al. (2011) , which is

escribed in the third column of Table 6 . Then we run the itera-

ive adjustment of the value of x so that the value of the RankNet

ost function RNC ( Taylor et al., 2006; Burges et al., 2005 ) reaches

he minimum. RNC is defined by RNC(I) = log(1 + e Y ) where I de-

otes a training instance, and Y is presented as Y = sim (br irr , q ) −
im (br rel , q ) . Here, br irr is an irrelevant bug report with a query q

 i.e. , a new bug report) while br rel means a relevant bug report

ith q . In Tian et al. (2012) , Tian et al. regard br rel as the duplicate

ug reports of the new bug report and br irr as the non-duplicate

ug reports. We also adopt the same way to compute RNC . For the
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Table 7 

Parameters in the severity prediction algorithm. 

Severity label Parameter Selected parameter values per project 

Eclipse Mozilla GCC 

Blocker γ 1 0.36 0.31 0.40 

γ 2 0.82 0.31 0.02 

Critical γ 1 0.46 0.90 0.04 

γ 2 0.48 0.90 0.58 

Major γ 1 0.61 0.71 0.72 

γ 2 0.17 0.72 0.74 

Minor γ 1 0.63 0.69 0.19 

γ 2 0.13 0.67 0.59 

Trivial γ 1 0.33 0.70 0.91 

γ 2 0.29 0.71 0.81 

Table 8 

Parameters in the semi-automatic fixer recommendation algorithm. 

Parameter Selected parameter values per project 

Eclipse NetBeans Mozilla OpenOffice GCC 

δ1 0.12 0.32 0.11 0.78 0.54 

δ2 0.74 0.39 0.81 0.09 0.61 
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Fig. 5. Eclipse: varying K and its effectiveness on F-measure. 
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Fig. 6. Mozilla: varying K and its effectiveness on F-measure. 
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etails of the iterative adjustment using gradient descent, please

efer to ( Sun et al., 2011 ). We list the parameter values selected for

erforming REP topic in the columns 4–8 of Table 6 . 

In the second phase of our approach, we adjust the parame-

ers appearing in the severity prediction and semi-automatic fixer

ecommendation algorithms. In each of the two algorithms, there

re a pair of weight vectors need to be adjusted. For severity pre-

iction algorithm described in formula (11) and Algorithm 1 , the

arameters γ 1 and γ 2 are used to adjust the weights of the dif-

erent parts in formula (11) ; for semi-automatic fixer recommen-

ation described in formula (14) and Algorithm 2 , the parameters

1 and δ2 are introduced to present the different weights of So-

ialScore and ExperienceScore , respectively, to the candidate’s rank-

ng score. 

We adopt the similar adjustment method proposed by Xia et al.

2015b ) because we also adopt the similar way to introduce the

ifferent weight factors to control the contributions of the various

artial scores to the overall score. This method is a sample-based

reedy method. Due to the large size of the bug reports in data

ets, we randomly sample a small subset (10%) of the number of

ug reports to produce the good parameter values. Then we use

he small-scale data to compute each partial score of the severity

rediction and semi-automatic fixer recommendation algorithms.

e iterate the process of choosing the good values for all weight

actors. For each iteration, we first randomly assign a value be-

ween 0 to 1 to a weight factor y ( e.g., γ 1 or δ1 ). Next we fix

he value of another weight factor ( e.g., γ 2 or δ2 ) in the algorithm,

nd we increase y incrementally by 0.01 at a time and compute

he F-measure values. Based on the F-measure values, we can get

he best parameter values. For the details of the iterative adjust-

ent using sample-based greedy method, please refer to ( Xia et al.,

015b ). We list the weight factor values selected for performing

he severity prediction and semi-automatic fixer recommendation

lgorithms in Tables 7 and 8 , respectively. 

The above-mentioned parameter values are used to perform the

roposed approach, we show the experimental results as following

ubsections in order to give the answers of the research questions

Q1-RQ4. 
.3. Answer to RQ1: effectiveness evaluation 

To answer the research question RQ1, we perform the proposed

pproach when choosing the different number of top-K neighbours

 K = 5 , 10 , 15 , 20 , 25 ) of each query ( i.e. , new bug report). 

First, we show the evaluation results of severity prediction for

clipse, Mozilla, and GCC datasets in Figs. 5 –7 , respectively. When

e increase K , we consider more nearest neighbours. We find an

nteresting result: the F-measure values do not always increase

hen increasing the more nearest neighbours. 

From the figures, for Eclipse, the F-measure values of major
nd minor increase as we increase K . However, the F-measure

alue of critical decreases as we increase K . In addition, the

-measure values of blocker and trivial decrease when they

each up to the peak values as we increase K . For Mozilla, the

-measure value of major slightly increases as we increase K .

owever, the F-measure value of critical decreases as we in-

rease K . Moreover, the F-measure values of blocker , minor ,
nd trivial achieve to the peak values, then decrease as we in-

rease K . For GCC, the F-measure values of critical and major
lightly increase to a peak value, then slightly decrease as we in-

rease K . The F-measure values of other three severity labels, in-

luding blocker , minor , and trivial , decrease as we increase

 . The evaluation results of severity prediction indicate that the
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Table 9 

Effectiveness of semi-automatic fixer recommendation when varying K. 

K # Recommended F-measure per project 

fixers Eclipse (%) NetBeans (%) Mozilla (%) OpenOffice (%) GCC (%) 

K = 5 5 35.01 34.48 36.22 31.7 37.24 

10 35.42 33.78 36.93 31.47 35.42 

K = 10 5 28.54 31.77 30.08 25.14 32.66 

10 29.80 28 30.59 26.58 30.31 

K = 15 5 24.57 30.51 26.65 21.03 27.94 

10 26.1 25.57 27.05 23.52 28.78 

K = 20 5 20.56 29.27 24.7 18.68 25.34 

10 23.85 24.64 23.76 21.39 27.74 

K = 25 5 19.07 28.31 23.71 17.25 23.57 

10 21.17 23.61 21.99 19.59 26.55 

Table 10 

Performance comparison among severity prediction algorithms when K = 5 on P(Precision), R(Recall), and 

F(F-measure). 

Project Severity Our approach INSpect NB Multinomial 

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) 

Eclipse Blocker 30 .63 24 .80 27 .41 1 .84 33 .37 3 .50 23 .76 17 .10 19 .89 

Critical 28 .35 30 .10 29 .19 27 .45 26 .79 27 .12 11 .62 22 .31 15 .28 

Major 59 .51 47 .97 53 .12 62 .71 45 .95 53 .04 46 .16 42 .90 44 .47 

Minor 43 .23 44 .88 44 .04 46 .28 39 .64 42 .71 32 .81 23 .21 27 .19 

Trivial 18 .93 41 .87 26 .08 4 .27 47 .51 7 .83 28 .42 17 .03 21 .30 

Mozilla Blocker 48 .15 64 .19 55 .02 46 .67 66 .55 54 .86 39 .01 23 .91 29 .65 

Critical 47 .27 52 .84 49 .90 45 .82 44 .72 45 .26 24 .09 31 .52 27 .31 

Major 46 .51 40 .21 43 .13 41 .90 37 .86 39 .77 58 .57 31 .43 40 .91 

Minor 50 .16 44 .20 46 .99 54 .84 41 .01 46 .92 27 .10 26 .04 26 .56 

Trivial 27 .25 41 .70 32 .96 14 .00 49 .93 21 .87 3 .25 15 .27 5 .36 

GCC Blocker 8 .00 54 .67 13 .96 10 .41 38 .45 16 .39 12 .67 13 .07 12 .87 

Critical 83 .72 77 .07 80 .25 86 .22 67 .94 76 .00 61 .04 67 .56 64 .14 

Major 42 .08 25 .95 32 .10 37 .87 15 .20 21 .70 5 .75 5 .80 5 .78 

Minor 29 .77 47 .53 36 .61 11 .72 50 .98 19 .06 30 .11 17 .31 21 .98 

Trivial 25 .71 16 .53 20 .12 0 .56 10 .00 1 .05 1 .25 0 .28 0 .45 
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Fig. 7. GCC: varying K and its effectiveness on F-measure. 
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additional neighbours are not always similar to the target bug re-

port. Thus, adding the irrelevant bug reports as the neighbours can

reduce the accuracy of severity prediction in our work. 

Next, we show the evaluation results of semi-automatic fixer

recommendation for all five datasets in Table 9 . In this table, the

F-measure values decrease when we increase K . For example of

Eclipse, when varying K from 5 to 25, the F-measure values de-

crease from 35.01% to 19.07% when recommending top-5 fixers,

and decrease from 35.42% to 21.17% when recommending top-10

fixers. The phenomenon indicates that extracting the candidate

fixers from irrelevant bug reports can affect the accuracy of the
xer recommendation. Therefore, we think that adding additional

eighbours of the new bug report cannot give more help to the

erformance of semi-automatic fixer recommendation. 

According to the evaluation results of severity prediction and

emi-automatic fixer recommendation, we can answer RQ1 as

ollows: 

nswer to RQ1 : For severity prediction, adding the number of

earest neighbours of the new bug report can improve the pre-

iction effectiveness of partial severity labels; for semi-automatic

xer recommendation, adding the number of nearest neighbours

annot improve the effectiveness of the recommendation. 

.4. Answer to RQ2: performance comparison among severity 

rediction methods 

To answer the research questions RQ2, we compare the perfor-

ance of our approach with previous cutting-edge studies. We se-

ect INSpect ( Tian et al., 2012 ) and NB Multinomial ( Lamkanfi et al.,

010; 2011 ) as the baselines to conduct the performance compar-

son. Table 10 shows the results of performance comparison when

sing the top-5 nearest neighbours. 

We now analyse the comparison results shown in Table 10 as

ollows: 

(1) For Eclipse, we can predict the blocker , critical ,
ajor , minor , and trivial severity labels by F-measure values

f 27.41%, 29.19%, 53.12%, 44.04%, and 26.08%, respectively. The F-

easure value is very good for major severity label but is poorest

or trivial severity label. 

By comparing with the F-measure values of INSPect, we find

hat the performance of our approach is much better than it when

redicting the severity labels blocker and trivial . When

redicting the severity labels critical and minor , our approach
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Fig. 8. Eclipse: Performance Comparison among severity prediction algorithms on 

different K neighbours. 
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Fig. 9. Mozilla: Performance Comparison among severity prediction algorithms on 

different K neighbours. 
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Fig. 10. GCC: Performance Comparison among severity prediction algorithms on 

different K neighbours. 
an improve the F-measure values of 2.07% and 1.33%, respectively.

ur approach presents the very close performance with INSPect

hen predicting major . 
By comparing with the F-measure values of NB Multinomial, on

he one hand, we note that our approach performs better than it

hen predicting all severity labels. 

Thus for Eclipse, our approach performs better than INSPect and

B Multinomial. 

(2) For Mozilla, we can predict the blocker , critical ,
ajor , minor , and trivial severity labels by F-measure val-

es of 55.02%, 49.90%, 43.13%, 46.99%, and 32.96%, respectively. The

-measure value is very good for blocker severity label but is

oorest for trivial severity label. 

By comparing with the F-measure values of INSPect, we note

hat our approach performs better than it when predicting the

everity labels blocker , critical , major , and trivial . Our

pproach presents the very close performance with INSPect when

redicting minor . 
By comparing with the F-measure values of NB Multinomial,

ur approach performs much better than it when predicting

he severity labels blocker , critical , minor , and trivial .
hen predicting major , our approach presents slightly better per-

ormance than NB Multinomial. 

Therefore, for Mozilla, our severity prediction method performs

etter than INSPect and NB Multinomial. 

(3) For GCC, we can predict the blocker , critical , major ,
inor , and trivial severity labels by F-measure values of

3.96%, 80.25%, 32.10%, 36.61%, and 20.12%, respectively. The F-

easure value is very good for critical severity label but is

oorest for blocker severity label. 

By comparing with the F-measure values of INSPect, we note

hat our approach performs better than it when predicting the

everity labels critical , major , minor , and trivial . For the

locker label, our approach loses out to INSPect by 2.43%. 

By comparing with the F-measure values of NB Multinomial,

ur approach performs much better than it when predicting the

everity labels critical , major , minor , and trivial . When

redicting blocker , our approach shows slightly better perfor-

ance than NB Multinomial. 

In general, for GCC, our severity prediction method performs

etter than INSPect except blocker label, and shows better per-

ormance than NB Multinomial. 

In order to further evaluate the performance of INSPect, NB

ultinomial, and our approach, we adopt the arithmetic mean of

he F-measure values for all five severity labels to conduct the per-

ormance comparison. The method of arithmetic mean considers

he different number of bug reports as each severity label, and

hus it can help us get the convincing results. We show the com-

arison results of severity prediction for Eclipse, Mozilla, and GCC

atasets in Figs. 8 –10 , respectively. 

In these figures, the arithmetic mean F-measure values of our

pproach and INSpect change as we increase K, but NB Multino-

ial does not change because it does not adopt KNN to implement

everity prediction. According to the comparison results, we can

learly know that our approach performs better than INSPect and

B Multinomial. 

To further verify whether our approach performs significantly

etter than INSpect and NB Multinomial, we carry out a statistical

est in the R environment ( Team, 2014 ). First, we define the two

ull hypotheses as follows: 

• H 1 0 : Our approach shows no noteworthy difference against IN-

Spect; 
• H 2 0 : Our approach shows no noteworthy difference against NB
Multinomial 
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Table 11 

Results of the statistical tests for severity prediction. 

Project Null hypothesis Normality value Test type p-value Inverse hypothesis 

Eclipse H 1 0 0.3663 t-test 1.668e-05 H 1 a : Accept 

H 2 0 0.1039 t-test 3.629e-06 H 2 a : Accept 

Mozilla H 1 0 0.8602 t-test 0.0 0 05 H 1 a : Accept 

H 2 0 0.4617 t-test 6.14e-07 H 2 a : Accept 

GCC H 1 0 0.1378 t-test 5.528e-05 H 1 a : Accept 

H 2 0 0.3221 t-test 2.317e-05 H 2 a : Accept 

Table 12 

Eclipse: performance comparison among semi-automatic fixer recommendation algorithms when K = 5 on 

Precision, Recall, and F-measure. 

Evaluation metrics # Recommended Semi-automatic fixer recommendation methods 

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%) 

Precision 5 25.63 16.04 10.09 25.21 

10 23.74 12.58 12.89 15.73 

Recall 5 55.21 26.62 19.87 45.8 

10 69.71 39.44 39.37 56.67 

F-measure 5 35.01 20.02 13.38 32.51 

10 35.42 19.07 19.42 24.62 

Table 13 

NetBeans: performance comparison among semi-automatic fixer recommendation algorithms when K = 5 on 

Precision, Recall, and F-measure. 

Evaluation metrics # Recommended Semi-automatic fixer recommendation methods 

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%) 

Precision 5 25.21 22.57 9.51 27.97 

10 22.76 15.55 12.83 17.03 

Recall 5 54.54 32.77 16.6 41.71 

10 65.47 45.42 37.43 50.24 

F-measure 5 34.48 26.73 12.09 33.49 

10 33.78 23.16 19.11 25.43 

Table 14 

Mozilla: Performance comparison among semi-automatic fixer recommendation algorithms when K = 5 on 

Precision, Recall, and F-measure 

Evaluation metrics # Recommended Semi-automatic fixer recommendation methods 

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%) 

Precision 5 26.42 16.05 9 .18 27.8 

10 25.02 12.58 10 .20 18.23 

Recall 5 57.58 26.62 12 .84 40.71 

10 70.46 39.43 22 .26 39.43 

F-measure 5 36.22 20.02 10 .71 33.03 

10 36.93 19.07 13 .99 21.18 
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Furthermore, we present the corresponding inverse hypotheses

as follows: 

• H 1 a : Our approach presents a significant difference with IN-

Spect; 
• H 2 a : Our approach presents a significant difference with NB

Multinomial 

Then we adopt the arithmetic mean F-Measure values of the

proposed approach and of the other two baselines as the input

data when performing the statistical test. Specifically, if the nor-

mality value of the statistical test is smaller than 0.05, we use

the Wilcoxon signed-rank test (W-test) ( Wilcoxon, 1945 ) due to

the non-normal distribution of the data; otherwise, we utilize the

t-test ( Boneau, 1960 ) due to the normal distribution of the data.

Table 11 shows the results of the statistical tests. 

We note that all normality values are more than 0.05, thus, we

adopt t-test for all data. For the result, if the p -value is more than

the significance level 0.05, we accept the corresponding null hy-

pothesis. Otherwise, we accept the inverse hypothesis. This table
hows that all p-values are less than 0.05, thus we accept all in-

erse hypotheses. In other words, our approach has a significant

ifference with INSpect and NB Multinomial. 

According to the above-mentioned results of the performance

omparison and statistical significance analysis, we can provide the

nswer to RQ2 as follows: 

nswer to RQ2 : Our approach on severity prediction outperforms

NSPect and NB Multinomial. 

.5. Answer to RQ3: performance comparison among semi-automatic 

xer recommendation methods 

In order to answer RQ3, we select the cutting-edge studies, in-

luding DRETOM ( Xie et al., 2012 ), DREX ( Wu et al., 2011 ), and

evRec ( Xia et al., 2015b ), as the baselines to compare with the

erformance of our approach. Tables 12 –16 show the comparison

esults among four semi-automatic fixer recommendation meth-

ds when using the top-5 nearest neighbours on Eclipse, NetBeans,

ozilla, OpenOffice, and GCC, respectively. 
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Table 15 

OpenOffice: Performance comparison among semi-automatic fixer recommendation algorithms when K = 5 on 

Precision, Recall, and F-measure. 

Evaluation metrics # Recommended Semi-automatic fixer recommendation methods 

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%) 

Precision 5 23.77 19.02 9 .08 25.65 

10 21.02 13.23 11 .47 17.47 

Recall 5 47.55 36.68 16 .92 38.71 

10 62.54 50.59 34 .34 52.45 

F-measure 5 31.7 25.06 11 .82 30.86 

10 31.47 20.97 17 .2 26.21 

Table 16 

GCC: Performance comparison among semi-automatic fixer recommendation algorithms when K = 5 on Preci- 

sion, Recall, and F-measure. 

Evaluation metrics # Recommended Semi-automatic fixer recommendation methods 

fixers Our approach (%) DRETOM (%) DREX (%) DevRec (%) 

Precision 5 30.76 29.04 12.56 30.79 

10 25 18.3 15.15 18.63 

Recall 5 47.18 45.16 16.29 43.82 

10 60.76 56.97 30.96 52.24 

F-measure 5 37.24 35.35 14.18 33.04 

10 35.42 27.7 20.34 27.47 
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Fig. 11. Eclipse: Performance Comparison among semi-automatic fixer recommen- 

dation algorithms on MRR when varying K. 
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Fig. 12. NetBeans: Performance Comparison among semi-automatic fixer recom- 

mendation algorithms on MRR when varying K. 
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We now analyse the comparison results shown in these tables.

or Eclipse, NetBeans, Mozilla, and OpenOffice datasets, our ap-

roach performs much better than DRETOM and DREX when rec-

mmending top-5 or top-10 fixers. In addition, when recommend-

ng top-5 fixers, the F-measure value of our approach is slightly

etter than DevRec. However, the improvement of the performance

or DevRec increases when we recommend top-10 fixers. For GCC

ataset, the F-measure value of our approach is better than DREX

hen recommending top-5 or top-10 fixers. Moreover, when rec-

mmending top-5 fixers, our approach performs slightly better

han DRETOM and DevRec. However, the improvements of the per-

ormance for DREX and DevRec increase when we recommend

op-10 fixers. 

To further evaluate the performance of DRETOM, DREX, DevRec,

nd our approach, we utilize MRR to conduct the performance

omparison. We show the results of the performance comparison

or Eclipse, NetBeans, Mozilla, OpenOffice, and GCC in Figs. 11 –15 ,

espectively. 
From these figures, the MRR values of DREX and our approach

hange as we increase K while the MRR values of DRETOM and

evRec do not change. Because DRETOM and DevRec do not adopt

NN to search the bug reports that are similar to the new bug re-

ort. For Eclipse, our approach performs better than DRETOM and

REX when varying K from 5 to 25. When K is set to 5 or 10,

ur approach presents the better performance than DevRec. How-

ver, if we continually increase K, DevRec performs better than our

pproach. For NetBeans and Mozilla, our approach performs bet-

er than DRETOM, DREX,and DevRec when varying K from 5 to 25.

or OpenOffice, our approach presents the better performance than

REX when changing K from 5 to 25. When K is set to 5 or 10,

ur approach performs better than DRETOM and DevRec. If we in-

rease K from 15 to 25, the MRR values of our approach are not

etter than them of DRETOM and DevRec. In this project, the MRR

alue (28.74%) of DRETOM is very close to the value (28.56%) of

evRec. For GCC, our approach performs better than DRETOM and

REX when varying K from 5 to 25. When we change K from 5
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Fig. 13. Mozilla: Performance Comparison among semi-automatic fixer recommen- 

dation algorithms on MRR when varying K. 
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Fig. 14. OpenOffice: Performance Comparison among semi-automatic fixer recom- 

mendation algorithms on MRR when varying K. 
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Fig. 15. GCC: Performance Comparison among semi-automatic fixer recommenda- 

tion algorithms on MRR when varying K. 

Table 17 

Results of the statistical tests for semi-automatic fixer recommendation. 

Project Null Normality Test p -value Inverse 

hypothesis value type hypothesis 

Eclipse H1 ′ 0 0.1889 t-test 0.0258 H1 ′ a : Accept 

H2 ′ 0 0.3643 t-test 0.0203 H2 ′ a : Accept 

H3 ′ 0 0.9012 t-test 0.0188 H3 ′ a : Accept 

NetBeans H1 ′ 0 0.2636 t-test 0.0230 H1 ′ a : Accept 

H2 ′ 0 0.6366 t-test 0.0334 H2 ′ a : Accept 

H3 ′ 0 0.2468 t-test 0.0188 H3 ′ a : Accept 

Mozilla H1 ′ 0 0.9258 t-test 0.0130 H1 ′ a : Accept 

H2 ′ 0 0.6798 t-test 0.0260 H2 ′ a : Accept 

H3 ′ 0 0.1517 t-test 0.0119 H3 ′ a : Accept 

OpenOffice H1 ′ 0 0.7552 t-test 0.0156 H1 ′ a : Accept 

H2 ′ 0 0.7230 t-test 0.0212 H2 ′ a : Accept 

H3 ′ 0 0.1736 t-test 0.0293 H3 ′ a : Accept 

GCC H1 ′ 0 0.3788 t-test 0.0476 H1 ′ a : Accept 

H2 ′ 0 0.8786 t-test 0.0214 H2 ′ a : Accept 

H3 ′ 0 0.8701 t-test 0.0028 H3 ′ a : Accept 
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o 15, our approach present the better performance than DevRec.

owever, if we increase K from 20 to 25, DevRec performs better

han our approach. 

Thus, if we choose the appropriate value of K, our approach per-

orms better than DRETOM, DREX, and DevRec. Particularly, when

he value of K is set to 5, our approach has the most signifi-

ant improvement for the performance of fixer recommendation.

o demonstrate it, we conduct a statistical test using R language.

irst, we define the three hypotheses as follows: 

• H1 ′ 
0 
: Our approach shows no noteworthy difference against

DRETOM; 
• H2 ′ 0 : Our approach shows no noteworthy difference against

DREX; 
• H3 ′ 

0 
: Our approach shows no noteworthy difference against De-

vRec; 

Furthermore, we present the corresponding inverse hypotheses

s follows: 

• H1 ′ a : Our approach shows no noteworthy difference against

DRETOM; 
• H2 ′ a : Our approach shows no noteworthy difference against

DREX; 
• H3 ′ a : Our approach shows no noteworthy difference against De-

vRec; 

Then we adopt Precision, Recall, F-measure, and MRR values of

he proposed approach and of the other three baselines when K is

et to 5 as the input data to perform the statistical test. Table 17

hows the statistical results. All normality values are more than

.05, therefore, we adopt t-test for all data. For the results, we note

hat all p-values are less than 0.05, thus we accept all inverse hy-

otheses. In other words, our approach has a significant difference

ith DRETOM, DREX, and DevRec when we choose the top-5 near-

st neighbours to perform semi-automatic fixer recommendation. 

According to the results of the performance comparison, we can

ive an answer to RQ3 as follows: 

nswer to RQ3 : Our approach for semi-automatic fixer recommen-

ation outperforms the cutting-edge approaches such as DRETOM,

REX, and DevRec when we consider the appropriate number of

he nearest neighbours of the new bug report. 

.6. Answer to RQ4: performance analysis 

To answer the research question RQ4, we compare the perfor-

ance using the different similarity metrics, including REP topic , REP ,

nd cosine similarity ( Lazar et al., 2014 ), in our approach. Tables 18
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Table 18 

Performance comparison using the different similar metrics for severity 

prediction when K = 5. 

Similarity metrics Arithmetic mean values of F-measure per project 

Eclipse (%) Mozilla (%) GCC (%) 

REP topic 41.14 45.78 60.17 

REP 38.35 37.71 57.57 

(2.79) (8.07) (2.6) 

C osine 34.54 35.46 51.86 

S imilarity (6.6) (10.32) (8.31) 

Table 19 

Performance comparison using the different similar metrics for semi- 

automatic fixer recommendation when recommending top-10 fixers and 

K = 5. 

Similarity F-measure per project 

metrics Eclipse NetBeans Mozilla OpenOffice GCC 

(%) (%) (%) (%) (%) 

REP topic 35.42 33.78 36.93 31.47 35.42 

REP 33.2 29.87 34.67 29.08 34.52 

(2.22) (3.91) (2.26) (2.39) (0.9) 

cosine 28.04 24.98 18.89 22.04 29.82 

similarity (7.38) (8.8) (18.04) (9.43) (5.6) 
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nd 19 shows the comparison results when K = 5 for the sever-

ty prediction algorithm and the semi-automatic fixer recommen-

ation algorithm, respectively. 

In Tables 18 and 19 , the F-measure values in the parentheses

ean the improvement for REP or cosine similarity . We note that

sing the enhanced version REP topic can improve the performance

f severity prediction and semi-automatic fixer recommendation

sing REP and cosine similarity in our approach. The major reason

s that adding the feature topics can help us search the more accu-

ate nearest neighbours of the new bug report so that it can im-

rove the results of two tasks. Thus, we can give an answer to RQ4

s follows: 

nswer to RQ4 : Using REP topic can improve the performance of

everity prediction and semi-automatic fixer recommendation in

ur approach. 

In addition to REP topic , we propose the new severity predic-

ion and semi-automatic algorithms. For severity prediction, the

ovel method considers the number of bug reports as the predict-

ng severity label and the textual similarities between the nearest

eighbours labelled by the severity label and the new bug report;

or semi-automatic fixer recommendation, the proposed algorithm

onsiders the candidate fixers’ behaviours in the social network

nd their experience on fixing the historical bug reports. These in-

roduced features can improve the accuracy of our approach for

redicting the severity labels and recommending the appropriate

xers. 

. Threats to validity 

In this section, we introduce some possible threats of our study.

hese threats include external threats and internal threats, which

re presented as follows: 

• External threats: We collect the fixed bug reports from five

open source bug repositories for performing the experiments.

However, we are not sure that the proposed approaches are

also effective in other open source projects and commercial

projects. Because we extract a lot of bug reports from the

five lager-scale projects, the threat may be slight. For other

projects, because the internal rules ( e.g. , variations in develop-

ment process) may be different from the five projects used in
our experiments, we should extract the different features to de-

velop a new approach to perform severity prediction and semi-

automatic fixer recommendation. 
• Internal threats: In our approach, we spent much effort in tun-

ing a lot of parameters to achieve the best performance. Even

though we adopt the parameter adjustment methods proposed

in Sun et al. (2011) and Xia et al. (2015b ) for REP topic and our

developed algorithms, respectively. However, a more effective

tuning method needs to be developed. We will do it in the fu-

ture. 

When analysing the distribution of the bug reports as each

severity label, we find the imbalanced data appearing in Net-

Beans and OpenOffice. They can impact the results of the sever-

ity prediction, we will process these data in the future so that

we can predict the severity labels in the projects which contain

the imbalanced data. 

. Related work 

In this section, we introduce some previous studies related

o severity prediction and semi-automatic fixer recommendation.

oreover, we show some other tasks such as bug summarization,

ug localization, and priority prediction. 

.1. Severity prediction 

Previous studies usually tend to use machine learning algo-

ithms to predict the severity level of a new submitted bug. As an

arly work, Menzies and Marcus (2008) proposed SEVERIS to assist

riagers to assign severity levels to given bug reports. SEVERIS

dopted text mining and rule-learning techniques to predict the

everity levels. Lamkanfi et al. (2010) utilized text mining tech- 

ique and NB classifier to predict whether the given bug is “Non-

evere” or “Severe”. In their follow-up work, Lamkanfi and his col-

eagues ( Lamkanfi et al., 2011 ) compared four machine learning al-

orithms including NB, NB Multinomial, KNN, and SVM on coarse-

rained severity prediction ( i.e. , “Non-severe” or “Severe”). The

xperimental results showed that NB Multinomial performed best

han others in Eclipse and GNOME. Tian et al. (2012) used infor-

ation retrieval technique, in particular BM25-based textual simi-

arity algorithm ( i.e., REP ), and KNN to predict the severity levels of

ach new bug report. This fine-grained severity prediction method

howed the better performance than SEVERIS ( Menzies and Mar-

us, 2008 ). Yang et al. (2012) adopted feature selection schemas

uch as information gain, chi-square, and correlation coefficient to

elect the best features as the input of Naive Bayes Multinomial.

he evaluation results showed that the feature selection schemes

an further improve the performance of severity prediction. 

Our work is different from these previous studies. First, we pro-

ose an enhanced version of REP, i.e., REP topic , to extract the top-

 nearest neighbours of a new bug report. Second, we develop a

ew prediction algorithm based on the textual similarities between

hese neighbours and the given bug report. 

.2. Semi-automatic fixer recommendation 

As a premier work, Čubrani ́c and Murphy ( ̌Cubrani ́c and Mur-

hy, 2004 ) utilized NB classifier to predict whether a candidate

eveloper is able to fix a new bug. Anvik et al. (2006) adopted

B, SVM, and C4.5 to perform semi-automatic bug triage. The ex-

erimental results showed that SVM performed better than others

n Firefox and Eclipse, and it also presented higher precision than

B in GCC open bug repository. Matter et al. (2009) modelled de-

elopers’ expertises by comparing the vocabularies in source code

nd bug reports which are assigned to them. 
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Recent years, a series new techniques such as social network

and topic model are also adopted for helping to improve the per-

formance of semi-automatic bug triage. Wu et al. (2011) proposed

DREX, which utilized KNN to search the historical bug reports that

similar to the new bug and introduced social network metrics such

as Out-Degree to rank the candidate developers for recommend-

ing the best one for fixing the given bug. Xuan et al. (2012) pro-

posed a method to prioritize the developers via social network.

Based on the prioritization result, they utilized NB and SVM to pre-

dict whether the candidate developer is the most appropriate fixer.

Park et al. (2011) modelled “developer profiles” to indicate devel-

opers’ estimated costs for fixing different types of bugs, which are

extracted by apply LDA. The evaluation results showed that this

cost-aware triage algorithm can optimize for both accuracy and

cost for semi-automatic bug triage. Tamrawi et al. (2011) proposed

Bugzie, which combines the fuzzy sets corresponding to the terms

extracted from the new bug report and ranks the developers to

find the most capable fixers. Xie et al. (2012) proposed DRETOM

to model the topics for bug reports and calculate the probability

of a developer being interested in and expertise on resolving the

bugs so that the candidate developers were ranked according the

probabilities. Experimental results on Eclipse JDT and Mozilla Fire-

fox open bug repositories showed that DRETOM can achieve higher

performance. As one of our previous work ( Zhang and Lee, 2013 ),

we proposed a hybrid bug triage algorithm to recommend the

most appropriate bug fixer. The proposed approach combines expe-

rience model and probability model to implement semi-automatic

bug triage. In detail, experience model captures the developers’

experience on resolving historical bugs by extracting the features

such as the number of fixed bug reports while probability model

is built by analysing the social network between the candidate de-

velopers. Naguib et al. (2013) introduced activity profiles to rank

all candidate developers. An activity profile captures each devel-

oper’s activities ( i.e. , review, assign, and resolve the correspond-

ing bugs) in the bug fixing process so that it can influence and

contribute to the ranking of suitable candidates. The evaluation

result showed that the proposed method performed better than

LDA-SVM-based developer recommendation technique. Xia et al.

(2015b ) proposed DevRec algorithm to fix the bug fixers, it per-

formed two kinds of analysis, including bug reports based analysis

and developer based analysis. DevRec extracted topics, component,

product, developers, summary, and description as the features to

perform semi-automatic fixer recommendation on five open source

projects which are same as our datasets. The experimental results

showed that DevRec performed better than DREX ( Wu et al., 2011 )

and Bugzie ( Tamrawi et al., 2011 ). Xuan et al. (2015) reduced the

size of the data set to improve the quality of the bug reports, thus

they can increase the accuracy of bug triage using machine learn-

ing techniques. 

Different from these described previous studies, we utilized the

similarity measure REP topic and KNN to find the most similar bug

reports ( i.e. , top-K nearest neighbours) of a new bug report. More-

over, the new developed ranking algorithm combines the social

network-based analysis and the experience-based analysis to im-

prove the accuracy of semi-automatic fixer recommendation. 

6.3. Other tasks in bug resolution process 

Except for severity prediction and semi-automatic fixer recom-

mendation, there are other tasks such as bug report summariza-

tion, bug localization, and priority prediction in bug resolution

process. 

The goal of bug report summarization is to automatically gen-

erate the summary of a given bug report. Rastkar et al. (2010)

utilized three supervised classifiers including Email Classifier (EC),

Email & Meeting Classifier (EMC), and Bug Report Classifier (BRC)
o verify whether a sentence is a part of the extractive summary.

ani et al. (2012) adopted four unsupervised approaches, includ-

ng Centroid, Maximum Marginal Relevance (MMR), Grasshopper

nd Diverse Rank (DivRank), to implement bug report summariza-

ion. The results showed that MMR, DivRank, and Grasshopper can

chieve the same performance with the best of the supervised ap-

roach but reduced the running cost. Jiang et al. (2016) utilized

yte-level N-grams to model the authorship characteristics of de-

elopers. Then, they employed the authorship characteristics to ex-

ract similar bug reports to facilitate the task of bug report summa-

ization. Experiments validated the effectiveness of this new tech-

ique. Najam et al. (2016) used small-scale crowdsourcing based

eatures to summarize the source code fragment. The experimen-

al results showed that the proposed approach performed better

han existing code fragment classifiers. 

Bug localization aims to find the location of a new bug report

o that it can reduce the fixers’ workload. Lukins et al. (2008) uti-

ized LDA to search the correct source code file where the new

ug appears. In this work, the bug report is treated as a query

nd then the approach performs LDA to retrieve the correspond-

ng source code file where the bug is. Rao and Kak (2011) com-

ared the performance of different IR-models, including Unigram

odel, Vector Space Model, Latent Semantic Analysis Model, LDA,

nd Cluster Based Document Model when performing the task of

ug localization. Kim et al. (2013) proposed a two-phase recom-

endation model. In this model, they adopted Naive Bayes to filter

ut the uninformative bug reports and predict the buggy file for

ach submitted bug report. Saha et al. (2013) built AST to extract

he program constructs of each source code file, and utilized Okapi

M25 to calculate the similarity between the given bug report and

he constructs of each candidate buggy file. Zhou et al. (2012) pro-

osed BugLocator to rank all files based on textual similarity be-

ween the new bug report and the source code using a revised

ector Space Model. Moreover, they also rank the relevant files by

nalysing the historical bug reports that similar to the given bug.

inally, by combining two ranks, BugLocator can return the correct

ource file to locate the given bug. Sisman and Kak (2012) used

ime decay in weighting the files in a probabilistic IR model to

erform bug localization. Zamani et al. (2014) proposed a feature

ocation approach using a new term-weighting technique that con-

iders how recently a term has been used in the repositories. The

mpirical evaluation of the approach shows that it performs better

han Vector Space Model-based approach. 

Similar to severity, priority is an important feature of bug re-

ort. It indicates which bug should be fixed preferentially. Sharma

t al. (2012) used SVM, NB, KNN, and Neural Network to predict

he priority level of a new bug report. Tian et al. (2013) extracted

ultiple factors to train a discriminative model to verity which pri-

rity level that the given bug report belongs to. 

. Conclusion 

In this paper, we propose a new approach to implement sever-

ty prediction and semi-automatic fixer recommendation instead of

evelopers’ manual work. Our approach extracts the top-K nearest

eighbours of the new bug report by utilizing a similarity measure

EP topic , which is an enhanced version of REP . Next we adopt the

 neighbours’ features such as the participated developers and the

extual similarities with the given bug report to implement sever-

ty prediction and semi-automatic fixer recommendation. 

To demonstrate the effectiveness of our approach, we ap-

ly our approach to five popular open bug repositories, includ-

ng GCC, OpenOffice, Eclipse, NetBeans, and Mozilla. The results

how that the proposed approach outperforms the cutting-edge

pproaches. For severity prediction, our approach performs bet-

er than INSpect and NB multinomial; for semi-automatic fixer
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ecommendation, our approach presents the better performance

han DRETOM, DREX, and DevRec. The evaluation results demon-

trate that the similarity measure REP topic can help to improve the

erformance of the two bug resolution tasks. 

In the future, we will evaluate our approach on more bug re-

orts extracted from other open and commercial software repos-

tories. Moreover, we plan to develop a more accurate developer

anking algorithm by capturing other features such as the attach-

ent to further improve the performance of semi-automatic fixer

ecommendation. At the same time, we also want to introduce new

achine learning techniques such as deep learning to implement

everity prediction. 
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