
1

Measuring the Sky: On Computing Data Cubes
via Skylining the Measures

Man Lung Yiu, Eric Lo, and Duncan Yung

Abstract—Data cube is a key element in supporting fast OLAP. Traditionally, an aggregate function is used to compute the values
in data cubes. In this paper, we extend the notion of data cubes with a new perspective. Instead of using an aggregate function, we
propose to build data cubes using the skyline operation as the “aggregate function”. Data cubes built in this way are called “group-by
skyline cubes” and can support a variety of analytical tasks. Nevertheless, there are several challenges in implementing group-by
skyline cubes in data warehouses: (i) the skyline operation is computational intensive, (ii) the skyline operation is holistic, and (iii) a
group-by skyline cube contains both grouping and skyline dimensions, rendering it infeasible to pre-compute all cuboids in advance.
This paper gives details on how to store, materialize, and query such cubes.

Index Terms—H.2.4.h Query processing; H.2.7.b Data warehouse and repository

F

1 INTRODUCTION

In the data warehousing environment, OLAP tools have been
extensively used for a wide range of decision support applica-
tions such as sales analysis, customer analysis, marketing, and
services planning. These OLAP tools are built upon a multidi-
mensional data model, in which data tuples are partitioned into
different cells based on the values of their dimension attributes.
For each cell of tuples, an aggregate function (e.g., SUM()) is
applied to their measure attributes (e.g., sales) and the resulting
aggregated value contributes to the value of that cell. A data
cuboid is then formed by constituting cells that are created
from the same set of dimension attributes. Each data cuboid
represents a unique view of the underlying data. The collection
of data cuboids, which are based on different combinations of
dimension attributes, forms a data cube.

In traditional data cubes, an aggregate function takes as
input a set of measure values and returns a single numeric
value. In this paper, we extend the notion of data cube with a
new perspective. Specifically, we study the issues of building
data cubes that exploit the skyline operator [4] as the post-
operation instead of the traditional aggregate functions. We
name this type of data cubes as group-by skyline cubes. The
skyline operator has been well recognized as a very important
decision-support operator in recent literature and has started to
be implemented in commercial query engines [7]. Given a set
S of skyline attributes, a tuple t is said to dominate another
tuple t′, denoted by t �S t

′, if

(∃ Ai ∈ S, t[Ai] < t′[Ai]) ∧ (∀ Ai ∈ S, t[Ai] ≤ t′[Ai]) (1)

assuming that smaller values are preferable over larger ones.
Here, we use t[Ai] to represent the value of the attribute Ai

of the tuple t. Given a set D of tuples, the skyline operation

The research was supported by grant PolyU 525009E from Hong Kong RGC.

• M. L. Yiu, E. Lo and D. Yung are with the Department of Computing, Hong
Kong Polytechnic University, Hong Kong.
E-mail: {csmlyiu, ericlo, cskwyung}@comp.polyu.edu.hk

Ψ on D is defined as:

Ψ(D, S) = {t ∈ D | @t′ ∈ D, t′ �S t} (2)

In other words, a tuple t belongs to the skyline result set if
no other tuple dominates it.

We observe that a group-by skyline cube has two distin-
guished features when compared to a traditional data cube.
First, a cell of a group-by skyline cube stores a set of
skyline tuples rather than a single numeric aggregate value.
Second, since the skyline operation can be applied to multiple
measure attributes, a group-by skyline cube includes not only
a set of usual grouping dimensions, but also a set of skyline
dimensions, in which the latter is defined on the measure
attributes.

Name Region Position Mentality Attitude Flexibility
a Asia Admin 5 5 6
b Asia Admin 4 8 7
c Asia Technical 3 3 4
d Asia Technical 6 6 6
e Europe Technical 2 4 8
f Europe Technical 4 4 3
g Europe Technical 7 7 4

Fig. 1. Employee Database D

We illustrate the concept of group-by skyline cube by the
example in Figure 1, which is a table D of employee records.
Each tuple represents an employee, with the employee’s
‘Region’ and ‘Position’, as well as his/her evaluated scores
‘Mentality’, ‘Attitude’, and ‘Flexibility’. Suppose that lower
scores are preferable over higher ones. If we want to find the
outstanding employees of each position, the table in Figure 2a
can be used to answer the query directly. That table is called
a group-by skyline cuboid with grouping dimension set G =
{‘Position’} and skyline dimension set S = {‘Mentality’,
‘Attitude’, ‘Flexibility’}. That essentially means that the em-
ployee in D are first grouped based on their positions and
then the skyline operation is applied to each group to find
those who are not dominated by the others on all three scores.

2

G={Position}, S={Mentality, Attitude, Flexibility}
Position Name Mentality Attitude Flexibility
Admin a 5 5 6

b 4 8 7
Technical c 3 3 4

e 2 4 8
f 4 4 3

(a) Group-by skyline cuboid C1

G={Region, Position}, S={Mentality, Attitude}
Region Position Name Mentality Attitude

Asia Admin a 5 5
b 4 8

Asia Technical c 3 3
Europe Technical e 2 4

(b) Group-by skyline cuboid C2

G={Region, Position}, S={Mentality}
Region Position Name Attitude

Asia Admin a 5
Asia Technical c 3

Europe Technical e 4
f 4

(c) Group-by skyline cuboid C3

Fig. 2. Group-by skyline cuboids

Figures 2b and 2c show two more examples of group-by
skyline cuboids for the employee dataset. Cuboid C2 groups
the employees based on their regions and positions and the
skyline operation is applied to their ‘Mentality’ and ‘Attitude’
attributes. Cuboid C3 essentially partitions the employees in
the same way as C2 but the skyline operation is applied
to only the attribute ‘Attitude’. Hence, for the dataset D
in Figure 1, its corresponding group-by skyline cube is a
collection of all cuboids, whereas each such cuboid Ci(Gi, Si)
has its grouping dimension set Gi as a non-empty subset of
{‘Region’, ‘Position’} and its skyline dimension set Si as a
non-empty subset of {‘Mentality’, ‘Attitude’, ‘Flexibility’}.

We find group-by skyline cube useful for other data analysis
applications as well. One can extend a supermarket’s trans-
actional data warehouse with group-by skyline cube so that
attributes like ‘Location’, ‘Time’ and ‘Product’ still serve as
the grouping dimensions and the set of measure attributes
like ‘Sales’ and ‘Number of visitors’ serve as the skyline
dimensions. For hotel analysis, we can build a group-by
skyline cube with respect to all dimensions such as ‘Star’ (e.g.,
5-star, 4-star) and ‘City’ and all measure attributes such as
‘Room price’, ‘Room quality’, ‘Transportation convenience’
and ‘Entertainment quality’.

Using the skyline operation as an “aggregate function” in
data cubes and the notion of group-by skyline cubes is a
completely new concept. First, while the skyline operator and
its variants have been extensively studied (e.g., [23], [10]),
none of them has ever discussed the incorporation of the
skyline operation into traditional data warehouses as a post-
operation. Second, although the concept of skycubes [36], [26]
exists, that is fundamentally different from our concept of
group-by skyline cube. Skycubes are designed for the efficient
evaluation of skyline queries in any non-empty subspaces.
In other words, that does not consider any grouping at all.
In practice, however, skyline analysis is often to be more
meaningful if the data tuples are first grouped based on
their dimensions before finding their skylines. Let’s take the
employee dataset in Figure 1 as an example. Without grouping,
finding the skyline of all employee, no matter whether it is
in the full space (i.e., all three measure attributes) or in any
sub-space (e.g., ‘Mentality’ and ‘Attitude’), may not be that
meaningful because it is unfair to compare an Admin staff
with a Technical staff. In contrast, building a group-by skyline
cube for that dataset allows the management to find out the
outstanding employee of each region and/or position. Consider
the NBA player statistics as another example. Obviously,
finding the skyline, despite that is full-space skyline or sub-
space skyline, of all NBA players is not that meaningful

because it is unfair to compare Michael Jordon with Wilt
Chamberlain, which were active in NBA in different periods
and played different positions. In contrast, we can analyze
the NBA data using a group-by skyline cube, treating all
dimensions such as ‘Year’, ‘Team’ and ‘Position’ as the set
of all possible grouping dimensions and treating all measure
attributes such as ‘Points’, ‘Assists’ and ‘Rebounds’ as the set
of all possible skyline dimensions.

Implementing the concept of group-by skyline cube in
today’s data warehouses poses several technical challenges.
First, the skyline operation is much more computational in-
tensive [4], [7] when compared to simple aggregations such
as COUNT(), SUM() and AVG(). Consequently, building or
querying group-by skyline cubes needs to consider not only
the I/O cost, but also the computation (CPU) cost. Second, the
skyline operation is holistic in nature as the skyline of a cuboid
is not necessarily derivable from another cuboid. For example,
consider cuboids C2 and C3 in Figure 2, although they share the
same set of grouping dimensions and the skyline dimension
set of C3 is a subset of that of C2, their skyline results are
not derivable from each other. Specifically, we can see that
C2 is not derivable from C3 because the skyline employee
b in C2 does not exist in C3. Moreover, C3 is not derivable
from C2 because the skyline employee f in C3 does not exist
in C2 as well. Third, the dimensions that define a group-by
skyline cube include not only the usual grouping dimensions
but also the measure attributes. For a group-by skyline cube
that is built on a dataset with |G| grouping dimensions and
|S| measure attributes, there would be (2|G| − 1)(2|S| − 1)
possible cuboids. That explosive number of possible cuboids
makes materialization of group-by skyline cubes for efficient
query evaluation becomes especially challenging.

To the best of our knowledge, the building of group-by
skyline cube, or the implementation of the skyline operation
as a post-operation in data warehouses, has not been addressed
previously in the research literature or in commercial products.
This paper studies this issue in detail. Our contributions can
be summarized as follows:

1) The concept of group-by skyline cube is presented. That
includes the discussion of what a ‘group-by skyline
cuboid’ is, the relationships between different group-
by skyline cuboids, and how these cuboids constitute
a group-by skyline cube.

2) The technical details of supporting group-by skyline
cube are presented. Specifically, we propose to mate-
rialize a group-by skyline cube as an extended group-by
skyline cube (ES-cube). In an ES-cube, skyline results
across cuboids are derivable from each other. We further

3

develop construction and query processing algorithms
for ES-cube. We also develop a budget-based partial
materialization algorithm that is able to select and mate-
rialize a good subset of cuboids in ES-cube that yields
the highest query improvement in terms of both CPU
and I/O costs.

3) An extensive set of experiments has been carried out on
both real and synthetic data. Experimental results show
that queries can be answered efficiently

The rest of the paper is organized as follows. Section 2 gives
the background and the related work of this paper. Section 3
elaborates the concept of group-by skyline cube in more
detail. Section 4 presents the issues related to implementation
of group-by skyline cube. Section 5 reports experimental
results. Section 6 concludes the paper with future research
directions. The symbols to be used in subsequent discussion
are summarized in Table 1.

TABLE 1
Summary of Symbols

Symbol Meaning
G a set of grouping attributes
S a set of skyline attributes
D a set of tuples (with attributes on G and S)
D(g) a set of tuples in D belonging to the group g
t �S t

′ a tuple t dominates a tuple t′ with respect to S
t �+

S t′ a tuple t strictly dominates a tuple t′ with respect to S
Ψ(D(g), S) a skyline set on D(g) with respect to S

Ψ+(D(g), S) an extended skyline set on D(g) with respect to SbΨ(D(g), S) Ψ+(D(g), S)−Ψ(D(g), S)
Q(GQ, SQ) a group-by skyline query
C+(GC , SC) an ES-cuboid
PS(t) a parent skyline set of t with respect to S
t.γ the bounding region of a OSP tree node
t.γ− the lower corner of t.γ
t.γ+ the upper corner of t.γ
Rt the region of points that causes visiting a tree node t

HQ(R) the prob. density of a region R in the histogram HQ

β # distinct values per dimension of G
θ # distinct values per dimension of S (if discrete)
N the number of data points

Bitem the number of items/attributes that fit in a disk page
ω the number of distinct groups

PAQ(C+) # disk page access of query Q on cuboid C+

CPQ(C+) # dominance comparisons of query Q on cuboid C+

2 BACKGROUND AND RELATED WORK

2.1 Data cubes
A data cube [13] can be viewed as a collection of cuboids, in
which each cuboid stores the group-by aggregate result with
respect to a particular set of attributes called dimensions. For
a data cube with non-holistic aggregate functions, cuboids can
be organized as a lattice. Figure 3 shows a lattice of 23 cuboids
of a dataset with three dimension attributes A1, A2, and A3.
There exists a path from a cuboid Ci to a cuboid Cj if the
attributes of Ci contain those of Cj , meaning that Ci can be
used to derive Cj . For example, any cuboid in Figure 3 can
be derived from the top cuboid C1.

To meet the performance demands imposed by OLAP
operations, the cube materialization approach [14] which pre-
computes some cuboids in advance, is extensively applied
to speed up the evaluation of various OLAP queries. Full

A A A (90)C1 A1A2A3 (90)1

C2 C3 C4

A1A3 (60)A1A2 (80) A2A3 (50)
C5 C6 C7

A1 (20) A2 (30) A3 (10)
6

None (1)C8

Fig. 3. A lattice of cuboids with attributes A1, A2 and A3.
The number of tuples in each cuboid is in the bracket.

materialization refers to the precomputation of all cuboids
(i.e., the full cube) and is impractical because the number of
cuboids is exponential to the number of dimensions. On the
other hand, partial materialization refers to the precomputation
of a subset of cuboids (i.e., the subcube) and is generally
more frequently used. The cost of processing a query using a
cuboid Ci is described by a linear cost model [15], i.e., the
query time is assumed to solely depend on the I/O time of
scanning Ci, which is linear to the size of Ci. During query
evaluation, if a cuboid Ci requested by an OLAP query has
already been materialized, it can serve as the query result right
away. Even if Ci has not been materialized, it can still be
efficiently derived from the smallest materialized cuboid Cj in
which the dimensions of Ci are a subset of those of Cj .

Given a space budget, the materialization algorithm in
[15] selects cuboids to be materialized based on the greedy
heuristics, aiming at improving the overall query cost. Initially,
it materializes the top cuboid, i.e., the cuboid with all dimen-
sions, and puts it into a materialized set MT because other
cuboids can always be derived from the top cuboid directly.
Afterwards, it iteratively materializes a cuboid Ci /∈ MT
that is expected to bring the maximum benefit to the overall
query cost and adds it to MT . Based on the linear cost
model, the benefit of materializing a cuboid Ci is defined as
the improvement in I/O, with respect to the set of already
materialized cuboids. For example, Figure 3 shows the number
of tuples of each cuboid in a bracket. The top cuboid C1, with
90 tuples, is the first to be materialized. Next, the benefit of
materializing cuboid C4 is calculated as (90−50)×4 because
answering queries related to C4, C6, C7, or C8 can now exploit
C4 (which requires scanning only 50 tuples) instead of the
top cuboid C1 (which requires scanning 90 tuples). Since the
benefit of C4 is the highest among all the cuboids that have
not been materialized, it is next selected to be materialized
and added to MT . The iteration continues until the selected
cuboids exceed the space budget.

Owning to its importance to data-warehousing technology,
research related to data cube has continuously attracted the
attentions of many researchers. Some focus on the efficient
computation of cubes (e.g., [3], [27]), some focus on the
compression and summarization of cubes (e.g., [29]), and
some focus on the variations of cubes (e.g., [35]).

2.2 Skyline Problems

Skyline computation algorithms.
The skyline operator, introduced in [4], retrieves each tuple

4

t from the dataset D such that it is not dominated by any
other tuple t′ of D. Existing skyline computation methods can
be divided into two categories: (i) index-based solutions [30],
[17], [23], and (ii) non-indexed solutions [4], [8], [12], [2],
[37].

Early index-based solutions [30] operate on bitmap and B+-
tree indices on the skyline attributes, whereas the others [17],
[23] operate on an R-tree that indexes the dataset by skyline
attributes. The Branch-and Bound Skyline (BBS) algorithm
[23] is the state-of-the-art indexed approach for skyline com-
putation, and its I/O cost is proven to be optimal with respect
to the R-tree instance.

The state-of-the-art skyline computation algorithm for non-
indexed data is OSP [37]. It will be adopted as the sky-
line computation method in our proposed solution (see Sec-
tion 4.3). Thus, we describe this method in detail below. Like
the SFS algorithm [8], the OSP algorithm first sorts the dataset
by a monotone score function F (on skyline attributes). F
is simply the SUM function in [37]. The main difference is
that OSP employs a (main-memory) OSP tree for indexing the
skyline points found-so-far, rendering it efficient to process the
remaining data points. Figure 4 illustrates how OSP works on
a set of points (in the space defined by two skyline attributes
S1 and S2). Each contour (in dotted line) depicts all possible
locations with the same SUM score. The sorted points follow
the order: t2, t4, t7, t5, t1, t6, t3.

When a point t is retrieved (by the sorted order), we check
whether the OSP tree contains any point t′ that dominates t.
This is implemented by a depth-first traversal of the OSP tree
branches that potentially contain some point dominating t. If
there is no such point t′, then we report t as a skyline point
and insert it into the OSP tree. Each node of the OSP tree
stores exactly one skyline point, and its maximum number of
children is 2|S|−2, where S is the set of skyline attributes. In
the example, when the first point t2 is retrieved, it is inserted
as the tree root, which decomposes the domain space into
22 = 4 regions. Since t2 is a skyline point, its bottom-left
region is guaranteed to contain no points. Also, its top-right
region is dominated by t2 so the region cannot contain any
skyline points. Those two regions do not need to be maintained
by the OSP tree. The next retrieved point t4 is a skyline as it is
not dominated by any point in the OSP tree. Since t4 falls into
the top-left region of t2, it is inserted into the left subtree of t2.
Then, the next point t7 is again a skyline point; it falls into the
bottom-right region of t2 so it becomes the right child of t2.
The next point t5 is also a skyline point, so it is inserted into
the left subtree of t7. The algorithm proceeds in this fashion
until all the remaining points have been examined.

Variants of skyline queries.
Since the introduction of the skyline query in [4], numerous
skyline variants have been proposed, for example, skyband
[23], spatial skyline [28], reverse skyline [10], subspace sky-
line [32], [31], [16], dominance-based analysis [20], relaxation
of the skyline conditions [6], [5], k most representative sky-
line points [21], as well as skyline processing using parallel
execution [9] and skylining from distributed data sources [1].

In the OLTP environment, [23], [22] have studied the eval-

S2 t2OSP tree

1 t4
t2

t

OSP tree

t2 t5
t4 t7

t1
2

t
t5

t3

t6 t1
3

t7
t6

0 1
S1

t7
t30 1

Fig. 4. Example of an OSP tree

uation of skyline queries with group-by attributes. Papadias
et al. [23] proposed an efficient R-tree based algorithm for
processing skyline queries with group-by attributes. Unfortu-
nately, their solution relies on the availability of an R-tree
(with both group-by attributes and skyline attributes) so it
is not suitable for handling ad-hoc queries. Luk et al. [22]
focused on the relational engine and investigated how to
find an efficient query plan for skyline queries with group-
by attributes. Their solution, however, does not study the
materialization of skyline cuboids in the OLAP environment.

Subspace skyline analysis.
Building data cubes using the skyline operation as the “aggre-
gate function”, to the best of our knowledge, have not been
addressed before. Work in [24], [36], [25], [26], [31], [34] is
developed for subspace skyline analysis. In the example of
Figure 2, the cuboids in our group-by skyline cube contain
both group-by attributes and skyline attributes. In contrast,
the skycube [24], [36], [25] of a dataset D is defined as the
collection of skyline result set Ψ(D, S) for each non-empty
subset S of S∗ but without any grouping attributes. A com-
pressed skycube (CSC) [34], [26] is a compressed structure
for storing a skycube; it still does not involve any grouping
attributes. Those works do not consider any grouping operation
and partial materialization, and thus they are different from
our work here. Another related work is P-cube [35]. P-cube
is designed to facilitate the processing of selection skyline
queries, i.e., finding the skyline from tuples that satisfy the
WHERE clause in SQL. P-cube is orthogonal to us because
it does not consider partial materialization and it is designed
for selection queries that access a small portion of data. In
contrast, group-by skyline cube is designed for OLAP-style
queries that access a significant portion of data for report
generation.

Skyline cardinality and cost estimation.
In this paper, we adopt a budget-based partial materialization
approach for selecting group-by skyline cuboids to be materi-
alized such that they yield the highest improvement in query
cost. Recall that each cell of a cuboid corresponds to a set of
skyline tuples (with respect to particular group-by attributes).
Thus, it is important to study existing work on estimating
skyline cardinality and its computation cost [11], [7], [12],
[38].

Godfrey et al. [11], [12] propose a mathematical model
of the skyline cardinality for a uniformly-distributed dataset,
and the asymptotic cost of several skyline algorithms in the
average-case and the worst-case. Chaudhuri et al. [7] apply

5

the log sampling technique for estimating the skyline cardi-
nality and the skyline computation cost of the BNL and SFS
algorithms, with respect to arbitrary data distribution. Zhang
et al. [38] propose a kernel-based model for a more accurate
estimation of the skyline cardinality of arbitrary datasets;
however, it does not study the computation cost of any skyline
algorithm.

3 CONCEPT OF GROUP-BY SKYLINE CUBE

In this section, we first introduce the concept of group-by
skyline cube whose measure is defined by a skyline opera-
tion, and then show that some nice properties of traditional
datacubes are not longer valid in this context. We will discuss
how those invalidated properties can be re-enabled again by
using a skyline variant definition in Section 4.

Definition of group-by skyline cube.
Group-by skyline cube is intended for the efficient evaluation
of various group-by skyline queries. Let D be a relational
table instance, with the schema A = (A1, A2, . . . , Ak). For
simplicity, suppose that every attribute Ai is numeric. Given a
set G ⊂ A of grouping attributes and a group instance g of G,
we define the set D(g) as the set of tuples of D belonging to
the group instance g. Accordingly, a group-by skyline query
is defined as follows:

Definition 1: Group-by skyline query.
Given the sets G and S of attributes, a group-by skyline query
Q = (G,S) computes a skyline result set Ψ(D(g), S) for each
group instance g defined on G.1

Considering the dataset D in Figure 1, the result of a group-
by skyline query Q with its grouping dimension set G =
{‘Region’, ‘Position’} and its skyline dimension set S =
{‘Mentality’, ‘Attitude’} is shown in Figure 2b. An example
of a group instance g is (‘Asia’, ‘Admin’).

In order to evaluate various group-by skyline queries effi-
ciently, we introduce the concepts of group-by skyline cuboid
and group-by skyline cube.

Definition 2: Group-by skyline cube
Let G∗ be the set of all possible grouping dimensions and
S∗ be the set of all possible skyline dimensions. Given a
subset G ⊆ G∗ and a subset S ⊆ S∗, a group-by skyline
cuboid C(G,S) is defined as a collection of cells, each cell g
(corresponding to a group of G) stores the set of skyline result
set Ψ(D(g), S). The group-by skyline cube is defined as the
collection of C(G,S), for any subset G ⊆ G∗ and non-empty
S ⊆ S∗.

Consider the relational table D in the left part of Figure 5.
In this example, G∗ = {G1, G2, G3} and S∗ = {S1, S2}. The
group-by skyline cube for D thus contains (2|G

∗|−1)(2|S
∗|−

1), i.e., 7 × 3 = 21 cuboids, in total. The right part of
Figure 5 depicts the contents of six cuboids. For instance,
cuboid A contains 3 cells, indicating the distinct combinations
(c1, d1), (c1, d2), (c2, d2) on the grouping attributes (G2, G3),

1. Note that when S contains only one attribute, the skyline operation
becomes a simple aggregate function MAX or MIN. Nonetheless, our definition
includes such case for generality.

for tuples in the table D. For the cell (c1, d1) of cuboid A,
the skyline of this group are tuples t1 and t2.

Conditions for sharing computations of cubes.
Most data cube algorithms, regardless of whether they are
used to compute data cubes or to answer queries, also rely
heavily on the sharing of computations to achieve higher
efficiency. For example, in a sales application, if a cuboid
(year, department: COUNT(sales)) that stores the sales of each
department in every year has been computed, it can be used
to compute the cuboid (year : COUNT(sales)) that stores the
sales of all departments in every year, without accessing the
base data. However, it is unclear whether such sharing is still
valid in the context of group-by skyline cube.

In the following, we show that group-by skyline cubes can
share some but not all computational effort. Specifically, for
group-by skyline cuboids that share the same set of skyline
dimensions S, the computational effort can be shared:

Lemma 1: Union of skyline.
Given any subset D′ ⊆ D, Ψ(D, S) ⊆ Ψ(D′, S) ∪ Ψ(D −
D′, S).

Through Lemma 1 [19], we arrive at the following lemma
that shows that one group-by skyline cuboid can be derived
from another if they share the same set of skyline dimensions:

Lemma 2: Group-by skyline cuboid hierarchy.
Given two group-by skyline cuboids C(G,S) and C(G′, S)

such that G′ ⊆ G, the group-by skyline cuboid C(G′, S) can
be derived from C(G,S).

Proof: By the definition of group-by skyline cuboid, each
cell g′ in C(G′, S) corresponds to a subset V of cells in C(G),
i.e., D(g′) =

⋃
g∈V D(g) and different D(g) are disjoint. By

applying Lemma 1, the result of g′ can be derived from the
results of the set V of cells in C(G,S). Thus, this lemma is
proved.

Figure 6 shows the lattice of group-by skyline cubiods (i.e.,
group-by skyline cube) for the dataset in Figure 5. We organize
the group-by skyline cuboids in a way such that each edge
represents a parent-child relationship between two group-by
skyline cuboids, meaning that the result of a child cuboid
can be derived from its parent cuboid through Lemma 2. For
instance, there is an edge from cuboid A to cuboid D, showing
that cuboid D can be derived from cuboid A. To illustrate,
cell c1 of cuboid D in Figure 5 can be obtained by finding
the skylines among the cells (c1, d1) and (c1, d2) of cuboid
A.

Unfortunately, we remark that computational efforts be-
tween cuboids that share different sets of skyline dimensions
cannot be shared unless the distinct value condition (no two
tuples share the same value on any subset of skyline attributes)
[36] holds. For instance, in Figure 6, although cuboid C shares
the same set of grouping dimensions as cuboid A and the sky-
line dimension of cuboid C is a subset of cuboid A, C cannot
be derived from A, unless the tuples have distinct values on the
skyline attributes. To illustrate, in Figure 5, the cell (c2, d2) of
cuboid C includes a tuple t6 that does not exist in cuboid A. As
we have mentioned, the efficiency of the state-of-the-art data
cube construction/query algorithms rely heavily on the fact
that many computational efforts can be shared. However, in a

6

Example D
Possible Possible

Grouping Attributes Skyline Attributes
TID G1 G2 G3 S1 S2

t1 b1 c1 d1 0.5 0.5
t2 b1 c1 d1 0.1 0.8
t3 b1 c1 d2 0.3 0.3
t4 b2 c1 d2 0.6 0.6
t5 b2 c2 d2 0.2 0.4
t6 b2 c2 d2 0.4 0.4
t7 b2 c2 d2 0.7 0.7

A: Cuboid C(G2G3, S1S2)
G2 G3 TID S1 S2

c1 d1 t1 0.5 0.5
t2 0.1 0.8

c1 d2 t3 0.3 0.3
c2 d2 t5 0.2 0.4

B: Cuboid C(G2G3, S1)
G2 G3 TID S1

c1 d1 t2 0.1
c1 d2 t3 0.3
c2 d2 t5 0.2

C: Cuboid C(G2G3, S2)
G2 G3 TID S2

c1 d1 t1 0.5
c1 d2 t3 0.3
c2 d2 t5 0.4

t6 0.4

D: Cuboid C(G2, S1S2)
G2 TID S1 S2

c1 t2 0.1 0.8
t3 0.3 0.3

c2 t5 0.2 0.4

E: Cuboid C(G2, S1)
G2 TID S1

c1 t2 0.1
c2 t5 0.2

F : Cuboid C(G2, S2)
G2 TID S2

c1 t3 0.3
c2 t5 0.4

t6 0.4

Fig. 5. An example dataset (on the left) and some of its group-by skyline cuboids (on the right)

group-by skyline cube, the sharing of computation is limited
by the distinct value condition, which almost never holds in
real datasets. Therefore the group-by skyline cuboids in Figure
6 are separated into 3 disjoint clusters in which computational
efforts are not sharable across the clusters. Fortunately, there
are ways to remove such barriers and we will discuss them in
the next section.

G1G2G3S1S2 G1G2G3S1 G1G2G3S2

A B Ctio
n

io
n

G1G2S1S2 G1G3S1S2 G2G3S1S2 G1G2S1 G1G3S1 G2G3S1 G1G2S2 G1G3S2 G2G3S2

A B C

D Eva
lu

e
co

nd
it

va
lu

e
co

nd
iti

F
G1S1S2 G2S1S2 G3S1S2

S1S2

G1S1 G2S1 G3S1

S

G1S2 G2S2 G3S2

S

E

Cluster of Cluster of Cluster of

di
st

in
ct

 v

di
st

in
ct

 v F

S1S2 S1 S2
f

cuboids S1S2 cuboids S1 cuboids S2

Fig. 6. Group-by skyline cube

4 IMPLEMENTATION
In this section, we address the issues related to the implemen-
tation of group-by skyline cube. Specifically, we attempt to
answer the following research questions:
• (RQ1) Given the poor connections between group-by

skyline cuboids, how can we enable the sharing of
computational efforts between cuboids? (Section 4.1)

• (RQ2) Given a materialized cuboid, how can a query Q
be answered efficiently? (Section 4.2)

• (RQ3) Given a limited storage space budget, how shall
we select a subset of cuboids that offers the best improve-
ment in query performance? (Section 4.3)

• (RQ4) After selecting the cuboids, how can we construct
them in an efficient manner? (Section 4.4)

4.1 Materialization: extended group-by skyline cube
In order to maximize the sharing of computation of group-by
skyline cuboids, especially the sharing of computation across
the set of cuboids separated by the distinct value condition,
we materialize a group-by skyline cuboid using an extended
definition of skyline. We show that group-by skyline cubes
materialized in this way can enable sharing across various
cuboids.

Definition 3: Extended group-by skyline.
The extended group-by skyline of the tuple set D(g) with
respect to the skyline attribute set S is defined as:

Ψ+(D(g), S) = {t ∈ D(g) | @t′ ∈ D(g), t′ �+
S t}

where a tuple t is said to strictly dominate another tuple t′

with respect to the attribute set S, denoted by t �+
S t′, if:

(∀ Ai ∈ S, t[Ai] < t′[Ai])

The notion of extended skyline [33] was originally proposed
for skyline evaluation in P2P network. We borrow that concept
and propose to materialize a group-by skyline cube as an
extended group-by skyline cube.

Definition 4: Extended group-by skyline cube (ES-cube).
Given a set G of grouping attributes and a set S of skyline
attributes, we define an extended group-by skyline cuboid
C+(G,S) as a collection of cells, where each cell g (corre-
sponding to a group of G) stores the set of extended skyline
Ψ+(D(g), S). The extended group-by skyline cube is defined
as the collection of C+(G,S), for any subset G ⊆ G∗ and
S ⊆ S∗.

Lemma 3: Extended group-by skyline cuboid hierarchy.
Given two extended group-by skyline cuboids C+(G,S) and
C+(G′, S′) such that G′ ⊆ G and S′ ⊆ S, the cuboid
C+(G′, S′) can be derived from C+(G,S).

Proof: Each cell g′ in the cuboid C+(G′, S′) corresponds
to a subset V of cells in the cuboid C+(G,S), i.e., D(g′) =⋃

g∈V D(g) and different D(g) are disjoint. Thus, the result
of g′ can be derived from the results of the set V of cells in
C+(G,S).

+G1G2G3S11 2 3 1

+G1G2S1
+G1G3S1

+G2G3S1

B +

+G1G2G3S1S2

A+
+G1S1

E +

+G2S1
+G3S1

Cl f

top-cuboid

+G1G2S1S2
+G1G3S1S2

+G2G3S1S2

+G S S +G S S +G S S

+S1

+G1G2G3S2

Cluster of
cuboids S1

D +

+G1S1S2

+S1S2

+G2S1S2
+G3S1S2

1 2 3 2

+G1G2S2
+G1G3S2

+G2G3S2

C +
Cluster of
cuboids S1S2

+G1S2

F +

+G2S2
+G3S2

Cl t f
+S2

Cluster of
cuboids S2

Fig. 7. Extended group-by skyline cube

Lemma 3 is powerful. It allows us to maximize the possi-
bility of sharing computations among the ES-cuboids. Figure
7 shows the lattice of ES-cuboids (i.e., ES-cube) for the
dataset in Figure 5. Note that, through Lemma 3, the 3
disjoint clusters of cuboids in Figure 6 are now connected.

7

For instance, cuboids B and C cannot be derived from any
cuboid in the cluster of cuboids S1S2 (the left cluster in Figure
6) but now they can be derived from extended cuboid A+.
To illustrate, Figure 8 depicts the extended group-by skyline
version of the six cuboids we illustrated in Figure 5. Note
that, now cuboid A+ contains tuple t6 because t5 cannot
strictly dominate t6 on every skyline attribute. Consequently,
cell (c2, d2) of group-by skyline cuboid C can now be obtained
by computing the skyline of cell (c2, d2) of cuboid A+ on
dimension S2. Similarly, group-by skyline cuboids E and F
cannot be derived from any group-by skyline cuboid in the
cluster of cuboids S1S2 but now they can be derived from
extended group-by skyline cuboid D+. For brevity, we do not
show all parent-child relationships in Figure 7, but every ES-
cuboid on the right hand side of Figure 7 (and every group-
by skyline cuboid) indeed can be derived from a cuboid on
the left hand side. Furthermore, every ES cuboid (and every
group-by skyline cuboid) can be derived from the top cuboid
C+(G1G2G3, S1S2).

Fig. 8. Example of extended group-by skyline cuboids
A+: Cuboid C+(G2G3, S1S2)
G2 G3 TID S1 S2

c1 d1 t1 0.5 0.5
t2 0.1 0.8

c1 d2 t3 0.3 0.3
c2 d2 t5 0.2 0.4

t6 0.4 0.4

D+: Cuboid C+(G2, S1S2)
G2 TID S1 S2

c1 t2 0.1 0.8
t3 0.3 0.3

c2 t5 0.2 0.4
t6 0.4 0.4

B+: Cuboid C+(G2G3, S1)
G2 G3 TID S1

c1 d1 t2 0.1
c1 d2 t3 0.3
c2 d2 t5 0.2

E+: Cuboid C+(G2, S1)
G2 TID S1

c1 t2 0.1
c2 t5 0.2

C+: Cuboid C+(G2G3, S2)
G2 G3 TID S2

c1 d1 t1 0.5
c1 d2 t3 0.3
c2 d2 t5 0.4

t6 0.4

F+: Cuboid C+(G2, S2)
G2 TID S2

c1 t3 0.3
c2 t5 0.4

t6 0.4

4.2 Storage and Query Processing
Now, we discuss how to answer a group-by skyline query Q =
(GQ, SQ) using a materialized ES-cuboid C+(G,S), where
GQ ⊆ G and SQ ⊆ S. We first concentrate on the case that
GQ = G and SQ ⊆ S. A simple method in this case is to
project the points in each cell g ∈ C+ to the query skyline
subspace SQ, and then find the skyline. Figure 9 shows a set
of extended skyline points in a cell. If SQ = {S1}, this method
projects all four points to the S1 and then finds the skyline
among those points. Note that if the skyline dimensions are
low-cardinalities, the performance gain brought by ES-cubes
may significantly decrease because the number of extended
skylines increases. However, we are going to show that, by
carefully storing the extended skyline points, ES-cubes can
still provide certain improvement when the skyline dimensions
are low-cardinalities. First, from the example above, we can
see that t3 is at most as good as t1 in sub-space S2, but t3 gets
dominated by t1 in the full space and sub-space S1. In other

words, if t1 is not a skyline in the query subspace, then it is
not necessary to examine t3 at all. Therefore, we decompose a
set of extended skyline points Ψ+ into two disjoint subsets: (i)
the skyline set Ψ and (ii) the child set Ψ̂, where Ψ̂ = Ψ+−Ψ.
Given a point t in the child set Ψ̂, we define the parent skyline
set of t as follows:

PS(t) = {t′ ∈ Ψ | (t′ �S t) ∧ (t′ 6�+
S t)}

Figure 9b illustrates the decomposition of Ψ+ in terms of
Ψ and Ψ̂, with respect to the example in Figure 9a. The
parent skyline set of each tuple in Ψ̂ is also shown in the
figure. For instance, the parent set of t3 contains t1 because
t1 dominates t3 but t1 does not strictly dominates t3. Note that
we only store the parent skyline set as a set of IDs. To avoid
random page accesses (during query processing), each tuple t
of Ψ̂ is stored with its parent skyline set sequentially in the
disk. By decomposing and storing the extended skyline this
way, we apply Lemma 4 to exploit parent skyline for pruning
unqualified tuples in the child set effectively, thereby reducing
the query CPU cost (i.e., number of dominance comparisons).

0 1

1

t
1

t
2

S
2

S
1

t
4

t
3

Ψ tuples
t1〈0.2, 0.5〉
t2〈0.6, 0.1〉

bΨ tuples Parent P
t3〈0.5, 0.5〉 t1
t4〈0.7, 0.1〉 t2

(a) A set of extended skyline tuples (b) Storing extended skyline

Fig. 9. Extended skyline of a group

Lemma 4: Parent-based pruning.
Given a sub-dataset D′ ⊆ D and a skyline attribute set S.

Let SQ be any skyline attribute set that satisfies SQ ⊆ S.
Given a tuple t ∈ Ψ̂, if ∃ t′ ∈ PS(t), t′ /∈ Ψ(D′, SQ), then
t /∈ Ψ(D′, SQ).

Proof: It is given that t′ ∈ PS(t), so we have: t′ �S t.
By imposing the condition SQ ⊆ S on the above, we obtain:
∀ Ai ∈ SQ, t

′[Ai] ≤ t[Ai].
It is also given that t′ /∈ Ψ(D′, SQ). Thus, there exists a

tuple t′′ ∈ Ψ(D′, SQ) such that t′′ �SQ
t′. By combining

both t′′ �SQ
t′ and ∀ Ai ∈ SQ, t

′[Ai] ≤ t[Ai], we derive:
t′′ �SQ

t. This implies that t does not belong to the result set
Ψ(D′, SQ).

Therefore, the idea of the query algorithm is as follows. For
a cell g, we first compute the projected skyline Ψ+

SQ
on the

skyline set Ψ+ along the query sub-space SQ. These tuples
are part of the final skyline for that cell. Then, we examine the
child set Ψ̂ and a tuple t ∈ Ψ̂ is pruned when P(t) /∈ Ψ+

SQ
.

Finally, we compare the remaining tuples with the projected
skyline Ψ+

SQ
on the query sub-space SQ and those still remain

as skyline are also added as the final skyline for that cell.

Query processing algorithm.
In the above discussion, we require the cuboid C+(G,S) and

8

the query Q(GQ, SQ) to have the same group-by attributes,
i.e., GQ = G.

We now present the query processing method in Algo-
rithm 1, which handles the general case where GQ ⊆ G.
It assumes that a particular cuboid C+ has been chosen for
processing the query. The issues on choosing a cuboid and
quantifying its ‘goodness’ will be studied in Section 4.3.

For the general case GQ ⊆ G, a group instance gQ of GQ

corresponds to a subset Vc of cells of C+ (see Line 3). At Lines
4–7, we extract the skyline set Ψ(gc) of each cell gc ∈ Vc as
the set Tfirst, and then compute its skyline (along SQ) as the
candidate set Rfirst. At Lines 9–12, we examine the child
set Ψ̂(gc) of each cell gc ∈ Vc. A tuple t from a child set is
inserted into the candidate set Tsecond if all parents of t exist
in the set Rfirst. Finally, we merge the sets Rfirst and Tsecond

together, and compute the skyline of the merged tuple set. The
specific skyline computation algorithm used at Line 13 will be
clarified in Section 4.3.

Algorithm 1 Query Processing with an ES-cuboid
Input: Cuboid C+(G,S), Query Q(GQ, SQ)
Precondition: GQ ⊆ G and SQ ⊆ S

1: apply a grouping algorithm on the cells of C+ according to GQ;
2: for each non-empty group instance gQ of GQ do
3: let Vc be the set of cells of C+ that are grouped as gQ;
4: Tfirst:=∅;
5: for each cell gc in VC do
6: Tfirst:=Tfirst ∪Ψ(gc);
7: Rfirst:=compute the skyline of Tfirst;
8: Tsecond:=∅;
9: for each cell gc in Vc do

10: for each tuple t in bΨ(gc) do
11: if ∀ t′ ∈ PS(t), t′ ∈ Tfirst then
12: Tsecond:=Tsecond ∪ {t};
13: Rfinal:=compute the skyline of Rfirst ∪ Tsecond;

4.3 Partial Materialization

In order to ensure fast on-line group-by skyline query pro-
cessing, it is often desirable to pre-compute/materialize the
extended skyline cuboids in the ES-cube. Since it is not a
practical option to materialize all ES-cuboids, we focus on
partial materialization [15], which is one of the most popular
adopted methods in commercial products. Given a specific
space budget, we greedily choose to materialize a subset of
ES-cuboids that can bring the maximum query processing
improvement.

In traditional data cube, the selection of a cuboid for
materialization is based on a linear cost model, i.e., that the
cost of evaluating a query using a cuboid C is linear to the size
of C, i.e., the I/O cost of scanning C once (or at most twice).
Recent work in skyline [7], [38] has mentioned that the CPU
cost contributes a significant portion of the overall skyline
query processing cost. However, does that argument also hold
in group-by skyline processing? If yes, we shall really consider
the CPU cost in selecting which ES-cuboid to be materialized.
To answer the question, we have carried out an investigation
experiment. Here, we use the default parameter setting as in
the experimental section and we measure the wall clock time

of answering 100 random valid group-by skyline queries from
a set of materialized ES-cuboids. In this paper and in the
experiment, we adopt OSP [37], the best skyline algorithm
to-date, for computing skyline. Our findings are: “only 26.9%
of the execution time is spent on the I/O cost (of reading an ES-
cuboid from disk), whereas skyline computation shares 55.7%
of the time. The remaining 17.4% of time contributes to the
grouping operation and the other overhead.”

Therefore, it is important to capture the CPU cost in select-
ing a cuboid to be materialized. Now, we define the benefit
B of including an ES-cuboid C+(G,S) into MT (which
represents the set of ES-cuboids that should be materialized)
as follows. Let PAQ(C+) and CPQ(C+) be the I/O cost
(page accesses) and CPU cost (number of comparisons) of
evaluating any group-by skyline query Q(GQ, SQ) using an
ES-cuboid C+(G,S) (where GQ ⊆ G,SQ ⊆ S). The benefit
B of including ES-cuboid C+(G,S) intoMT is based on how
much gain in terms of I/O accesses and tuple comparisons if
C+(G,S) is materialized:

P
GQ⊆G,SQ⊆S max{0,minC+i (G′,S′)∈MT ,GQ⊆G′,SQ⊆S′ (3)

TIO(PAQ(C+
i)− PAQ(C+)) + TCP (CPQ(C+

i)− CPQ(C+))}

where TIO denotes the time of accessing a disk page, TCP

denotes the time of performing a dominance comparison, and
C+

i (G′, S′) is any ES-cuboid in MT that could be used
to answer Q. TIO and TCP are machine-specific system
parameters. They are usually stored in the system catalog or
can be derived, for example, by measuring the number of page
accesses and the number of dominance comparisons that can
be done in one second.

Regarding the cuboid selection problem, we apply the
greedy approach (as described in Section 2.1) for picking
cuboids to be included into the set MT . The only difference
is that, Equation 3 is used to compute the benefit of each
cuboid. Next, we elaborate the I/O and CPU component costs
of Equation 3.

4.3.1 Derivation of PAQ(C+)
We proceed to discuss the first component of benefit, i.e., the
I/O cost PAQ(C+) of evaluating a query Q(GQ, SQ) by using
an ES-cuboid C+(G,S) (where GQ ⊆ G,SQ ⊆ S).

We assume that the main memory is large enough to hold
the ES-cuboid C+. It suffices to read C+ from the disk once.
Both the grouping and skyline operations are performed solely
in main memory, so they do not incur additional I/O cost. Thus,
PAQ(C+) can be derived as the I/O cost of scanning C+ once.
Hence, the I/O cost PAQ(C+) depends on the size (i.e., the
number of tuples and the number of attributes) of C+ but it is
independent of Q.

If the domain of the attributes are real-values (i.e., very few
tuples share duplicate values), the size of an ES-cuboid is close
to the size of a group-by skyline cuboid. In that case, the size
of an ES-cuboid can be estimated by summing the estimated
skyline size of each cell of tuples in the cuboid through the
skyline cardinality estimation functions developed in [7], [38].
However, when the domain of an attribute is finite (e.g., an

9

integer domain of (say) [0,99k] for number of rebounds in the
NBA dataset), then the size of an ES-cuboid would be larger
than the size of a group-by skyline cuboid. Consequently, in
order to compute PAQ(C+), we first devise techniques to
estimate the size of an ES-cuboid, or essentially, the size of
an extended skyline, on a finite domain. After that, we will
come back to the derivation of PAQ(C+).

Estimating extended skyline size.
Figure 9a illustrates a set of tuples with two skyline dimen-
sions S1 and S2. The skyline set contains t1, t2, which collec-
tively form a (dotted) “contour” in the figure and the extended
skyline set contains all tuples on the contour: t1, t2, t3, t4.
Suppose that each skyline attribute has an integer domain
[0, θ], i.e., the number of possible values is θ + 1. A tuple t
belongs to the extended skyline if there exists no tuple t′ ∈ D
that strictly dominates it.

We now generalize the above observation to a dataset with
a set S of skyline dimensions and N tuples. Let Ξ(S) be the
space of all possible points t, satisfying t[Ai] ∈ [0, θ], ∀Ai ∈
S. Clearly, there are (θ + 1)|S| possible distinct points in
the space domain. Given a point t ∈ Ξ(S), we define its
probability density as:

p(t, S) =
|{t′ ∈ D | t′[Ai] = t[Ai], ∀Ai ∈ S}|

N
(4)

and its cumulative strict dominated density as:

P (t, S) =
∑

t′∈Ξ(S), ∀Ai∈S,t′[Ai]<t[Ai]

p(t′, S)

Each possible point has a probability of p(t, S) being an ac-
tual tuple in the dataset D, which contains N tuples. The prob-
ability of t being a extended skyline tuple is: (1− P (t, S))N .
Thus, we obtain the size of an extended skyline of N data
tuples as:

ΦES(N) =
∑

t∈Ξ(S)

p(t, S) (1− P (t, S))N (5)

The above equations (containing (θ + 1)|S| terms) can be
efficiently computed by using a numerical technique called
midpoint approximation [18].

Derivation of PAQ(C+), re-visit.
Now, we can derive PAQ(C+) by using Equation 5. Recall
that PAQ(C+) can be simply derived as the I/O cost of
scanning C+ once, let ω be the number of distinct groups
in C+ and each group gi has |D(gi)| tuples, we have:

PAQ(C+) =
1 + |G|+ |S|

Bitem
·

ω∑
i=1

ΦES(|D(gi)|) (6)

whereas the factor (1 + |G| + |S|) accounts for the size of
a tuple in C (a tuple ID takes 1 unit of storage), and Bitem

represents the number of items/attributes that fit in a disk page.
Given a dataset D and a group by skyline query Q =

(GQ, SQ), the number of distinct groups ω and the number of
tuples of each group |D(gi)| can be easily derived from the
data distribution using some basic text-book formulae. Please
refer to [22] for details.

4.3.2 Derivation of CPQ(C+)

We now discuss the second component of benefit (Equation
3), i.e., the CPU cost CPQ(C+) (i.e., number of dominance
comparisons) of evaluating the query Q(GQ, SQ) by using an
ES-cuboid C+(G,S) (where GQ ⊆ G,SQ ⊆ S) for arbitrary
data distribution. The model is derived based on OSP [37], the
algorithm that we adopted in query processing, which is the
most efficient index-free skyline algorithm to-date.

Suppose that we have a multi-dimensional histogram HC

that models the distribution of tuples of C+ in the space of
S with values in histogram buckets are normalized to have
a sum of 1. The CPU cost of OSP can be estimated by (i)
construct a histogram HQ (for the data distribution of C+

in the subspace SQ); (ii) apply HQ to estimate the skyline
locations in the space SQ; and (iii) build an OSP tree with
the estimated skyline and estimate the query CPU cost. Step
(i) can be efficiently done by projecting the dimensions of SQ

from the original histogram HC . Step (ii) can be implemented
by the approximate skyline location estimation technique in
[23]. Thus, our main focus is on Step (iii).

Histogram-based CPU cost estimation of OSP.
It remains to discuss how we utilize the histogram HC for
estimating the CPU cost of OSP. We suppose that the readers
are already familiar with how OSP works, as described in
Section 2.2. The subsequent example follows the setting of
the OSP example described in Figure 4.

We shall use the terms ‘point’ and ‘OSP tree node’ inter-
changeably in the discussion below. Assume, after estimating
the skyline locations (i.e., after Steps (i) and (ii) we mentioned
above), the points of a cell on a sub-space SQ = {S1, S2} are
shown in the left hand side of Figure 10 and those points form
an OSP tree on the right hand side of the figure.

Let t be a tree node (with the point t). We use tp to represent
the parent of t; it is null if t is the root. The bounding region
t.γ of t is a hyper-rectangle formed by its lower corner t.γ−

and upper corner t.γ+, which are in turn defined as:

t.γ−[Si], t.γ+[Si] =

0, 1 if (tp =null)
tp.γ−[Si], tp[Si] if (t[Si] < tp[Si])
tp[Si], tp.γ+[Si] if (t[Si] ≥ tp[Si])

For instance, in Figure 10, node t1 has no parent, so we
have t1.γ = [0, 1) × [0, 1). Node t2 is the ‘top-left’ child of
t1 so we have t2.γ = [0, 0.3)× [0.4, 1).

Let v be the next (arbitrary) point in the space to be visited
by OSP, t be a node in the OSP tree, and Υ(t) be the set
of ancestor tree nodes of t. In OSP, we need to perform a
dominance comparison between v and t iff t gets visited.
This happens when (i) the lower corner of t dominates v,
i.e., t.γ− � v, and (ii) none of the ancestor nodes of t
dominates v, i.e.,

∧
t′∈Υ(t) t

′ 6� v. To capture all the possible
points that cause a node t to be visited, we define a region
Rt for t so that points in Rt satisfy conditions (i) and (ii).
Consequently, Rt can be written as Rt = Rt

dom − Rt
anc,

where Rt
dom is the region dominated by t.γ− (condition

(i)), and Rt
anc is the (union of) region dominated by t′.γ−

for any ancestor t′ ∈ Υ(t) (condition (ii)). For example,

10

for node t2, its lower corner t2.γ
− dominates the region

Rt2
dom = [0, 1)× [0.4, 1) and its parent t1 dominates the region

Rt2
anc = [0.3, 1) × [0.4, 1). Thus, any points that fall into the

region Rt2
dom −Rt2

anc = [0, 0.3)× [0.4, 1) cause node t2 to be
visited.

1

S
2

t
2

t

t
1

t

OSP tree

(0.1,0.8)

γ: [0,1)×[0,1)

γ: [0,0.3)×[0.4,1) γ: [0.3,1)×[0,0.4)

R
anc

R
dom

t
2
.γ+

(0.3,0.4)t
1

t
2

t
2

U+

0 1
S

1

t
3

t
2 t

3

… … … …

(0.6,0.2)

t
2
.γ–

(0.3,0.4)t
1

Fig. 10. Estimation of the comparisons on the OSP tree

Given the histogram HQ, we use HQ(R) and HQ(v1, v2)
to denote the probability density of a region R and the region
formed by the corners v1 and v2, respectively. Therefore, the
number of dominance comparisons of OSP is estimated as:

CPQ(C+) = ω ·
X
t∈Γ

N

ω
·HQ(Rt)

= N ·
X
t∈Γ

0@HQ(t.γ−,U+
Q)−

X
t′∈Υ(t)

HQ(t′, t′.γ+)

1A
where Γ denotes the set of OSP tree nodes and U+

Q denotes
the upper corner of the (skyline) space domain in HQ.

Note that the above equation is a pessimistic estimate of
the CPU cost because it does not capture the pruning effect of
Lemma 4. Nevertheless, this cost model is adequate to provide
good estimates — our experiments show that this cost model
yields query improvement close to that offered by an optimal
cost model.

4.4 Construction

In this section, we develop an efficient method for constructing
the cuboids of MT , which denotes the set of chosen ES-
cuboids according to Section 4.3. For the running example
here, suppose that we use the dataset shown in Figure 5 and the
set MT contains the following ES-cuboids (see their tuples
in Figure 8):
• A+ : C+(G2G3, S1S2)
• C+ : C+(G2G3, S2)
• D+ : C+(G2, S1S2)
• F+ : C+(G2, S2)
A simple method for constructing a cuboid C+(G,S) ∈

MT is to take the dataset D as input, apply the group-by
operator on D with the group-by attribute set G, and then
apply the skyline operator (e.g., OSP) as the “aggregation
function” on each group with the skyline attribute set S.
However, this method is slow as it does not exploit the sharing
of computations among cuboids.

We then discuss how to construct these ES-cuboids in an
efficient manner. Let AMT be the set of constructed cuboids,
which is empty in the beginning. According to Lemma 3, a
cuboid C+(G′, S′) can be derived from an ancestor cuboid
C+(G,S), i.e., G′ ⊆ G and S′ ⊆ S (provided that such
a cuboid C+(G,S) has been constructed, i.e., it exists in
AMT).

In order to utilize this sharing effect, we propose to sort
the (chosen) ES-cuboids of MT in the topological order
of their attributes, such that a cuboid appears after all its
(possible) ancestors. For instance, the ES-cuboids are sorted
in the order: C+(G2G3, S1S2), C+(G2G3, S2), C+(G2, S1S2),
and C+(G2, S2).

Continuing with the example, we first build
C+(G2G3, S1S2) and insert it into AMT . For the next
two cuboids C+(G2G3, S2) and C+(G2, S1S2) , we build
them from their ancestors C+(G2G3, S1S2) (according to
Lemma 3). These two cuboids are then inserted into AMT .
Finally, we attempt to construct the cuboid C+(G2, S2)
and find that it has multiple ancestors: C+(G2G3, S1S2),
C+(G2G3, S2), C+(G2, S1S2). These three cuboids contain
5, 4, and 4 tuples, respectively, as shown in Figure 8.

Regarding the cuboid used for constructing C+(G2, S2), a
sensible choice would be to use its smallest ancestor cuboid
C+(G2G3, S2) (having 4 tuples), which incurs low construc-
tion cost.

Algorithm 2 is the pseudo-code for constructing ES-cuboids
efficiently. It takes the set MT of chosen cuboids as input.
Let AMT be the set of constructed cuboids, initialized to the
empty set. First, we sort the cuboids ofMT by the topological
order. For each cuboid C+(G′, S′) in the sortedMT , we find
its set Ω of ancestor cuboids that have been constructed (i.e.,
found in AMT). Then, we pick the smallest ancestor cuboid
C∗ from Ω, for constructing C+(G′, S′). After that, we insert
C+(G′, S′) into AMT for subsequent use.

Algorithm 2 Cuboid Construction Algorithm
Input: Set of chosen ES-cuboids MT

1: AMT :=∅; . the set of materialized cuboids
2: sort the ES-cuboids of MT by the topological order;
3: for each cuboid C+(G′, S′) ∈MT do
4: Ω:={C+(G,S) ∈ AMT | G′ ⊆ G,S′ ⊆ S};
5: C∗:=the smallest cuboid in Ω;
6: use C∗ to construct C+(G′, S′);
7: insert C+(G′, S′) into AMT :

5 EXPERIMENTS

In this section, we experimentally evaluate the efficiency and
effectiveness of the proposed technique (we name it as ES).
The objective is to evaluate the query I/O cost (i.e., disk
page accesses), CPU cost (i.e., dominance comparisons), and
cube construction time (if applicable) of using the proposed
technique with respect to a workload of 100 randomly gen-
erated group-by skyline queries, each of which has a random
number of 1–5 group-by attributes and 1–5 skyline attributes.
All the experiments were conducted on an Intel Core 2 Quad
2.83 GHz PC with 4GB of memory. All the algorithms were

11

implemented using C++. The page size is set to 4K Bytes.
We use the term ‘budget-to-data ratio’ to represent the ratio
of the datacube budget space (in disk pages) to the dataset
storage size (in disk pages). The default budget-to-data ratio
(for datacube construction) is set to 10:1.

5.1 Description of Datasets and Methods

We have carried out experiments on synthetic datasets and
three real datasets (NBA, Baseball, and Forest Cover).

• NBA.
It stores the NBA players’ statistics2 from 1946 to now.
It contains 20,788 tuples, where each tuple stores the
statistics of a player in a season. We identify attributes
‘Year’ and ‘Team’ as grouping dimensions and attributes
‘Games played’, ‘Points’, ‘Rebounds’, ‘Assists’, ‘Steals’,
‘Blocks’, ‘Free throws’, and ‘3-point shots’ as the mea-
sures (i.e., skyline dimensions).

• Baseball (BB).
It stores the baseball batters’ statistics3 from 1871 to now.
It contains 88,686 tuples, where each tuple stores the
statistics of a batter in a season. We identify attributes
‘Year’, ‘Team’, and ‘League’ as grouping dimensions and
attributes ‘Games’, ‘At bats’, ‘Runs’, ‘Hits’, ‘Doubles’,
and ‘Runs batted in’ as the measures (i.e., skyline dimen-
sions).

• Forest Cover (FC).
It is obtained from UCI Machine Learning Repository4. It
stores 581,012 tuples, each representing a 30× 30 forest
land cell. We identify attributes ‘Soil type A’, ‘Soil type
B’, ‘Slope’, and ‘Cover type’ as grouping dimensions
and attributes ‘Roadway distance’, ‘Vertical hydrology’,
‘Horizontal hydrology’ ’Hill-shade at am’, ‘Hill-shade at
noon’, and ’Hill-shade at pm’ as skyline dimensions.

• Synthetic datasets.
Our synthetic datasets are generated similar to the bench-
mark setting described in [7]. Unless stated otherwise,
each dataset contains N = 1, 000, 000 tuples, with a
total of 14 attributes (a1, a2, . . ., a14): 5 attributes
a1 . . . a5 are for grouping, and 9 attributes a6 . . . a14 are
for skyline. Specifically, a6 . . . a8 are generated indepen-
dently, a9 . . . a11 are correlated, and a12 . . . a14 are anti-
correlated. By default, the domain size β of each group-
by attribute is 5 and the domain size θ of each skyline
attribute is 1000.

In our study, we mainly compare our approach (ES-cube)
with two baseline approaches.

• Relational (REL).
This method evaluates a query using a relational engine
that supports group-by skyline queries [22]. It does not
exploit any materialized cuboids.

2. http://basketballreference.com/stats download.htm
3. http://baseball1.com/statistics/
4. http://archive.ics.uci.edu/ml/

• Projection data cube (PROJ).
This method does not distinguish between grouping di-
mensions and skyline dimensions and follows the method
in [15] to select the cuboids. The cuboid selection
algorithm strictly follows the linear cost model. As a
result, it considers only the I/O costs by setting TCP of
Equation 3 to zero. Also, in order to find skyline, each cell
materializes the set of tuples belong to that cell (only the
projected values of the selected dimensions are stored),
instead of an aggregated value.

5.2 Experimental Results on Real Data

Comparison with baseline approaches.
We first compare the performance of ES with the baseline
methods REL and PROJ on real datasets. Figure 11 shows
the query I/O cost, CPU cost, and construction time of the
methods on the real datasets under different budget-to-data
ratio. Observe that the query cost of REL remains constant
as it does not materialize any cuboids. The query I/O costs
offered by PROJ and ES gradually reduce when the budget-
to-data ratio increases. This is consistent with the behavior
of the greedy materialization on traditional datacubes [15] —
the early selected cuboids provide more significant query cost
savings. Given the same budget, ES is able to materialize
more cuboids than PROJ, thus ES offers better query I/O
cost saving than PROJ. In addition to the reduction of I/O,
ES can dramatically reduce the CPU cost when compared
with PROJ and REL, even for cases with tight space budget.
Note that PROJ does not reduce any comparisons because the
cuboid materialized by PROJ contains all the tuples (but with
fewer attributes). The construction time rises slowly when the
budget-to-data ratio increases.

Comparison with other cost models.
In order to evaluate the proposed cost model, we compare the
performance of ES with two alternate cost models:

• ES-cube with optimal cost model (OPT).
This method is a variant of ES. It differs from ES in the
following: (1) instead of estimating the cuboid size, it
really materializes every cuboid ahead in order to know
their actual sizes, and (2) it utilizes the actual values
obtained from the materialized cuboids to construct an
optimal model for cost estimation. Note that this method
is impractical due to its very high construction time
and tremendous storage space for storing all cuboids. It
merely serves as an indicator of the lowest query cost
that can be achieved with a perfect cost model.

• ES-cube with random strategy (RAN).
This method is a variant of ES, except that each time a
random cuboid is chosen to be materialized.

Figure 12 shows the query I/O cost, CPU cost, and construc-
tion time of these methods on real datasets, as a function of the
budget-to-data ratio. We can see that the query performance
offered by ES is much better than RAN and it stays very
close to OPT. Furthermore, the construction time of ES is

12

6.0 e1

8.0 e1

1.0 e2

1.2 e2

1.4 e2

1.6 e2

1.8 e2

2.0 e2

2.2 e2

2.4 e2

 1 2 3 4 5 6 7 8 9 10

Q
u
e

ry
 I

/O
 c

o
s
t

(p
a

g
e

s
)

Budget-to-data ratio

REL
PROJ

ES

0.0 e0

1.0 e2

2.0 e2

3.0 e2

4.0 e2

5.0 e2

6.0 e2

7.0 e2

8.0 e2

9.0 e2

 1 2 3 4 5 6 7 8 9 10

Q
u
e

ry
 I

/O
 c

o
s
t

(p
a

g
e

s
)

Budget-to-data ratio

REL
PROJ

ES

0.0 e0

1.0 e3

2.0 e3

3.0 e3

4.0 e3

5.0 e3

6.0 e3

7.0 e3

 1 2 3 4 5 6 7 8 9 10

Q
u
e

ry
 I

/O
 c

o
s
t

(p
a

g
e

s
)

Budget-to-data ratio

REL
PROJ

ES

1.0 e4

1.2 e4

1.4 e4

1.6 e4

1.8 e4

2.0 e4

2.2 e4

2.4 e4

2.6 e4

2.8 e4

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 C
P

U
 c

o
s
t

(d
o

m
.

c
o
m

p
a

ri
s
o

n
s
)

Budget-to-data ratio

REL
PROJ

ES

0.0 e0

1.0 e4

2.0 e4

3.0 e4

4.0 e4

5.0 e4

6.0 e4

7.0 e4

8.0 e4

9.0 e4

1.0 e5

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 C
P

U
 c

o
s
t

(d
o

m
.

c
o
m

p
a

ri
s
o

n
s
)

Budget-to-data ratio

REL
PROJ

ES

1.2 e6

1.4 e6

1.6 e6

1.8 e6

2.0 e6

2.2 e6

2.4 e6

2.6 e6

2.8 e6

3.0 e6

3.2 e6

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 C
P

U
 c

o
s
t

(d
o

m
.

c
o
m

p
a

ri
s
o

n
s
)

Budget-to-data ratio

REL
PROJ

ES

1.0 e-1

1.0 e0

1.0 e1

 1 2 3 4 5 6 7 8 9 10

C
o

n
s
tr

u
c
ti
o

n
 t
im

e
 (

s
)

Budget-to-data ratio

PROJ
ES

1.0 e-1

1.0 e0

1.0 e1

 1 2 3 4 5 6 7 8 9 10

C
o
n

s
tr

u
c
ti
o
n

 T
im

e
 (

s
)

budget to data ratio

PROJ
ES

1.0 e0

1.0 e1

1.0 e2

1.0 e3

 1 2 3 4 5 6 7 8 9 10

C
o
n

s
tr

u
c
ti
o
n

 T
im

e
 (

s
)

Budget-to-data ratio

PROJ
ES

(a) NBA (b) BB (c) FC

Fig. 11. Performance vs. budget-to-data ratio, on real datasets

significantly lower than that of OPT. Because of that, we will
simply ignore RAN and OPT in the remaining experiments.

5.3 Experimental Results on Synthetic Data
In the following, we study the effects of various parameters
on the performance of the methods.

Varying the group-by attribute domain size β.
Figure 13a investigates the impact of the group-by attribute
domain size β on the construction time and query costs of
the three methods. Each square-bracketed number (along the
x-axis) represents the average number of measured groups per
query in the workload. When β is small, the size of an ES-
cuboid becomes small. Thus, more ES-cuboids could be con-
structed from the fixed space budget. During query processing,
small ES-cuboids are accessed for answering queries, so ES
has small query I/O cost. Since the size of a PROJ-cuboid is
independent of β, it has constant construction time and query
I/O cost. At a small β value, the number of tuples per group in
a PROJ-cuboid is high, causing PROJ to have high query CPU
time. However, the CPU cost trend of ES is slightly different
from that of PROJ. Even at a small β value, the number of
tuples per group in an ES-cuboid remains small, and thus the
CPU cost of ES is not high.

Varying the skyline attribute domain size θ.
We then study the effect of the skyline attribute domain size
θ on the construction time and query cost of all methods (see
Figure 13b). When θ is small, a tuple t has high probability of
belonging to the extended skyline of its group. As a result, the
size of each materialized cuboid is large, so ES materializes
few cuboids within the given budget. Therefore, ES incurs
more query I/O cost at a low θ value. On the other hand, all

methods have lower CPU cost at a low θ value, as it becomes
easier to obtain a tuple with low values in skyline attributes,
which helps pruning other unqualified tuples effectively.

0.0 e0

2.0 e3

4.0 e3

6.0 e3

8.0 e3

1.0 e4

1.2 e4

1.4 e4

1.6 e4

3[71] 4[263] 5[747] 6[1770] 7[3698]

Q
u
e
ry

 I
/O

 c
o
s
t
(p

a
g
e
s
)

beta [groups]

REL
PROJ

ES

2.0 e3

4.0 e3

6.0 e3

8.0 e3

1.0 e4

1.2 e4

1.4 e4

1.6 e4

 10 100 1000 10000 100000

Q
u
e
ry

 I
/O

 c
o
s
t
(p

a
g
e
s
)

theta

REL
PROJ

ES

2.5 e6

3.0 e6

3.5 e6

4.0 e6

4.5 e6

5.0 e6

5.5 e6

6.0 e6

6.5 e6

7.0 e6

3[71] 4[263] 5[747] 6[1770] 7[3698]

Q
u
e
ry

 C
P

U
 c

o
s
t
(d

o
m

.
c
o
m

p
a
ri
s
o
n
s
)

beta [groups]

REL
PROJ

ES

1.0 e6

1.5 e6

2.0 e6

2.5 e6

3.0 e6

3.5 e6

4.0 e6

4.5 e6

5.0 e6

5.5 e6

6.0 e6

 10 100 1000 10000 100000

Q
u
e
ry

 C
P

U
 c

o
s
t
(d

o
m

.
c
o
m

p
a
ri
s
o
n
s
)

theta

REL
PROJ

ES

1.0 e1

1.0 e2

1.0 e3

1.0 e4

3[71] 4[263] 5[747] 6[1770] 7[3698]

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

beta [groups]

PROJ
ES

1.0 e1

1.0 e2

1.0 e3

1.0 e4

 10 100 1000 10000 100000

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

theta

PROJ
ES

(a) vs. group-by domain β (b) vs. skyline domain size θ

Fig. 13. Effect of attribute domain size

Varying the data size N .
Figure 14 shows the construction time and query costs of REL,
PROJ and ES with respect to the data size. When N rises,
the extended skyline size of a group increases sub-linearly
with N . Thus, the query cost of ES grows sub-linearly. The
performance gap between ES and the baseline methods widens

13

6.0 e1

7.0 e1

8.0 e1

9.0 e1

1.0 e2

1.1 e2

1.2 e2

1.3 e2

1.4 e2

 1 2 3 4 5 6 7 8 9 10

Q
u
e

ry
 I

/O
 c

o
s
t

(p
a

g
e

s
)

Budget-to-data ratio

ES
RAN
OPT

2.5 e1

3.0 e1

3.5 e1

4.0 e1

4.5 e1

5.0 e1

 1 2 3 4 5 6 7 8 9 10

Q
u
e

ry
 I

/O
 c

o
s
t

(p
a

g
e

s
)

Budget-to-data ratio

ES
RAN
OPT

8.0 e2

1.0 e3

1.2 e3

1.4 e3

1.6 e3

1.8 e3

2.0 e3

2.2 e3

2.4 e3

2.6 e3

2.8 e3

3.0 e3

 1 2 3 4 5 6 7 8 9 10

Q
u
e

ry
 I

/O
 c

o
s
t

(p
a

g
e

s
)

Budget-to-data ratio

ES
RAN
OPT

1.0 e4

1.1 e4

1.2 e4

1.3 e4

1.4 e4

1.5 e4

1.6 e4

1.7 e4

1.8 e4

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 C
P

U
 c

o
s
t

(d
o

m
.

c
o
m

p
a

ri
s
o

n
s
)

Budget-to-data ratio

ES
RAN
OPT

3.5 e3

4.0 e3

4.5 e3

5.0 e3

5.5 e3

6.0 e3

6.5 e3

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 C
P

U
 c

o
s
t

(d
o

m
.

c
o
m

p
a

ri
s
o

n
s
)

Budget-to-data ratio

ES
RAN
OPT

1.2 e6

1.3 e6

1.4 e6

1.5 e6

1.6 e6

1.7 e6

1.8 e6

1.9 e6

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 C
P

U
 c

o
s
t

(d
o

m
.

c
o
m

p
a

ri
s
o

n
s
)

Budget-to-data ratio

ES
RAN
OPT

1.0 e-1

1.0 e0

1.0 e1

1.0 e2

 1 2 3 4 5 6 7 8 9 10

C
o
n

s
tr

u
c
ti
o
n

 T
im

e
 (

s
)

Budget-to-data ratio

ES
RAN
OPT

1.0 e-1

1.0 e0

1.0 e1

1.0 e2

 1 2 3 4 5 6 7 8 9 10

C
o
n

s
tr

u
c
ti
o
n

 T
im

e
 (

s
)

Budget-to-data ratio

ES
RAN
OPT

1.0 e1

1.0 e2

1.0 e3

1.0 e4

 1 2 3 4 5 6 7 8 9 10

C
o
n

s
tr

u
c
ti
o
n

 T
im

e
 (

s
)

Budget-to-data ratio

ES
RAN
OPT

(a) NBA (b) BB (c) FC

Fig. 12. Comparison of cost models, on real datasets

0.0 e0

1.0 e4

2.0 e4

3.0 e4

4.0 e4

5.0 e4

6.0 e4

7.0 e4

8.0 e4

1.0 e6 2.0 e6 3.0 e6 4.0 e6 5.0 e6

Q
u
e
ry

 I
/O

 c
o
s
t
(p

a
g
e
s
)

Datasize (tuples)

REL
PROJ

ES

0.0 e0

5.0 e6

1.0 e7

1.5 e7

2.0 e7

2.5 e7

3.0 e7

3.5 e7

4.0 e7

1.0 e6 2.0 e6 3.0 e6 4.0 e6 5.0 e6

Q
u
e
ry

 C
P

U
 c

o
s
t
(d

o
m

.
c
o
m

p
a
ri
s
o
n
s
)

Datasize (tuples)

REL
PROJ

ES

1.0 e1

1.0 e2

1.0 e3

1.0 e4

1.0 e5

1.0 e6 2.0 e6 3.0 e6 4.0 e6 5.0 e6

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

Datasize (tuples)

PROJ
ES

Fig. 14. Effect of the data size

when N increases.

Varying the number of query attributes.
Our default workload contains queries with random 1–5 group-
by attributes and 1–5 skyline attributes. We now study the
effect of group-by and skyline attributes on the query cost. ES
outperforms REL and PROJ in all cases. Figure 15a shows the
query cost when we control the number of group-by attributes
in queries. Observe that ES saves significant I/O cost and
CPU cost over REL and PROJ in all cases. When a query
has a higher number of group-by attributes, ES answers it
with a larger cuboid, thus incurring higher I/O cost. However,
when there are more group-by attributes, the number of groups
increases and thus there are fewer tuples (and also skyline
tuples) per group, so the CPU cost decreases.

Figure 15b shows the query cost when we control the

number of skyline attributes in queries. ES also outperforms
REL and PROJ in all cases. When a query contains more
skyline attributes, ES answers it with a larger cuboid, thus
incurring higher I/O cost and CPU cost. Since the size of
skyline is O((lnn)d−1/(d−1)!) (on a uniform dataset with n
tuples and d attributes) [11], it explains the increasing trend
of the query costs of all methods.

0.0 e0

2.0 e3

4.0 e3

6.0 e3

8.0 e3

1.0 e4

1.2 e4

1.4 e4

1.6 e4

 1 2 3 4 5

Q
u
e
ry

 I
/O

 c
o
s
t
(p

a
g
e
s
)

Number of groupby attr.

REL
PROJ

ES

0.0 e0

2.0 e3

4.0 e3

6.0 e3

8.0 e3

1.0 e4

1.2 e4

1.4 e4

1.6 e4

 1 2 3 4 5

Q
u
e
ry

 I
/O

 c
o
s
t
(p

a
g
e
s
)

Number of skyline attr.

REL
PROJ

ES

1.0 e6

2.0 e6

3.0 e6

4.0 e6

5.0 e6

6.0 e6

7.0 e6

8.0 e6

9.0 e6

1.0 e7

1.1 e7

 1 2 3 4 5

Q
u
e
ry

 C
P

U
 c

o
s
t
(d

o
m

.
c
o
m

p
a
ri
s
o
n
s
)

Number of groupby attr.

REL
PROJ

ES

0.0 e0

2.0 e6

4.0 e6

6.0 e6

8.0 e6

1.0 e7

1.2 e7

 1 2 3 4 5

Q
u
e
ry

 C
P

U
 c

o
s
t
(d

o
m

.
c
o
m

p
a
ri
s
o
n
s
)

Number of skyline attr.

REL
PROJ

ES

(a) vs. group-by attributes (b) vs. skyline attributes

Fig. 15. Effect of the number of query attributes

6 CONCLUSIONS AND FUTURE WORK
This paper studies the support of group-by skyline queries
in data warehouses by proposing the concept of group-by
skyline cube. To implement this concept, we have developed
techniques for addressing the following important issues: (i)
the concept of ES-cuboids for re-enabling the sharing of

14

computational efforts between cuboids, (ii) an algorithm for
answering a query from a materialized cuboid efficiently, (iii)
cost models for facilitating the selection of cuboids to be
materialized for the the best query performance improvement,
and (iv) an efficient algorithm for constructing cuboids. Exper-
imental results show that the proposal techniques significantly
reduce the query costs in terms of both CPU time and I/O
time.

Our future work includes incremental maintenance of sky-
line cube. We also plan to study the integration of other useful
decision-making operators such as top-k into data-warehouses
as “aggregate functions”. Furthermore, throughout this paper,
we assume that smaller values are preferable over larger ones,
for skyline attributes. We plan to remove this limitation by
defining the concept of generic ES-cuboid, which consists of
the union of ES-cuboids obtained from different combinations
of preferences on skyline attributes. Such a generic ES-
cuboid can then be used to answer a query irrespective of
its preferences on attributes. An important issue would be to
study an efficient method for estimating the size of a generic
ES-cuboid, without having to enumerate all combinations of
preferences.

REFERENCES

[1] W. T. Balke, U. Güntzer, and J. X. Zheng. Efficient Distributed Skylining
for Web Information Systems. In EDBT, 2004.

[2] I. Bartolini, P. Ciaccia, and M. Patella. Efficient Sort-Based Skyline
Evaluation. ACM TODS, 33(4), 2008.

[3] K. S. Beyer et al. Bottom-Up Computation of Sparse and Iceberg
CUBEs. In SIGMOD, 1999.

[4] S. Börzsönyi et al. The Skyline Operator. In ICDE, 2001.
[5] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. Finding

k-Dominant Skylines in High Dimensional Space. In SIGMOD, 2006.
[6] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. On High

Dimensional Skylines. In EDBT, 2006.
[7] S. Chaudhuri et al. Robust Cardinality and Cost Estimation for Skyline

Operator. In ICDE, 2006.
[8] J. Chomicki et al. Skyline with Presorting. In ICDE, 2003.
[9] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Distributed

Processing of Constrained Skyline Queries by Filtering. In ICDE, 2008.
[10] E. Dellis et al. Efficient Computation of Reverse Skyline Queries. In

VLDB, 2007.
[11] P. Godfrey. Skyline Cardinality for Relational Processing. In FoIKS,

2004.
[12] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and Analysis for

Maximal Vector Computation. VLDB J., 16(1):5–28, 2007.
[13] J. Gray et al. Data Cube: A Relational Aggregation Operator General-

izing Group-By, Cross-Tab, and Sub-Total. In ICDE, 1996.
[14] A. Gupta and I. S. Mumick. Materialized views: techniques, implemen-

tations, and applications. MIT Press, 1999.
[15] V. Harinarayan et al. Implementing Data Cubes Efficiently. In SIGMOD,

1996.
[16] W. Jin, A. K. H. Tung, M. Ester, and J. Han. On Efficient Processing

of Subspace Skyline Queries on High Dimensional Data. In SSDBM,
2007.

[17] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In VLDB, 2002.

[18] A. R. Krommer and C. W. Ueberhuber. Numerical Integration on
Advanced Computer Systems, volume 848 of Lecture Notes in Computer
Science. Springer, 1994.

[19] H. T. Kung et al. On Finding the Maxima of a Set of Vectors. J. ACM,
22(4):469–476, 1975.

[20] C. Li, B. C. Ooi, A. Tung, and S. Wang. DADA: A Data Cube for
Dominant Relationship Analysis. In SIGMOD, 2006.

[21] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars: The k Most
Representative Skyline Operator. In ICDE, 2007.

[22] M.-H. Luk et al. Group-by skyline query processing in relational
engines. In CIKM, 2009.

[23] D. Papadias et al. Progressive Skyline Computation in Database
Systems. TODS, 30(1):41–82, 2005.

[24] J. Pei et al. Catching the Best Views of Skyline: A Semantic Approach
Based on Decisive Subspaces. In VLDB, 2005.

[25] J. Pei et al. Towards Multidimensional Subspace Skyline Analysis.
TODS, 31(4):1335–1381, 2006.

[26] J. Pei et al. Computing Compressed Multidimensional Skyline Cubes
Efficiently. In ICDE, 2007.

[27] K. A. Ross et al. Fast Computation of Sparse Datacubes. In VLDB,
1997.

[28] M. Sharifzadeh and C. Shahabi. The Spatial Skyline Queries. In VLDB,
2006.

[29] Y. Sismanis et al. Dwarf: Shrinking the PetaCube. In SIGMOD, 2002.
[30] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline

Computation. In VLDB, 2001.
[31] Y. Tao et al. Efficient Skyline and Top-k Retrieval in Subspaces. IEEE

Trans. Knowl. Data Eng., 19(8):1072–1088, 2007.
[32] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient Computation of Skylines

in Subspaces. In ICDE, 2006.
[33] A. Vlachou et al. SKYPEER: Efficient Subspace Skyline Computation

over Distributed Data. In ICDE, pages 416–425, 2007.
[34] T. Xia et al. Refreshing the Sky: The Compressed Skycube with Efficient

Support for Frequent Updates. In SIGMOD, pages 491–502, 2006.
[35] D. Xin et al. P-Cube: Answering Preference Queries in Multi-

Dimensional Space. In ICDE, 2008.
[36] Y. Yuan et al. Efficient Computation of the Skyline Cube. In VLDB,

2005.
[37] S. Zhang et al. Scalable Skyline Computation Using Object-based Space

Partitioning. In SIGMOD, 2009.
[38] Z. Zhang et al. Kernel-based skyline cardinality estimation. In SIGMOD,

2009.

Man Lung Yiu received the bachelors degree
in computer engineering and the PhD degree in
computer science from the University of Hong
Kong in 2002 and 2006, respectively. Prior to his
current post, he worked at Aalborg University for
three years starting in the Fall of 2006. He is
now an assistant professor in the Department
of Computing, Hong Kong Polytechnic Univer-
sity. His research focuses on the management
of complex data, in particular query processing
topics on spatiotemporal data and multidimen-

sional data.

Eric Lo received a PhD degree in 2007 from
ETH Zurich. He is currently an assistant profes-
sor in the Department of Computing, Hong Kong
Polytechnic University. He research interests in-
clude databases and software engineering.

Duncan Yung received Bachelor Degree in
Computer Science in 2009 from the University
of Hong Kong, Hong Kong. He is currently an
MPhil student at the Department of Computing,
Hong Kong Polytechnic University, Hong Kong,
under the supervision of Dr Eric Lo. His research
focuses on different kinds of spatial data man-
agement and authentication.

