
Extracting Top-K Insights from Multi-dimensional Data

Bo Tang†∗ Shi Han‡ Man Lung Yiu† Rui Ding‡ Dongmei Zhang‡
† The Hong Kong Polytechnic University, Kowloon, Hong Kong

‡ Microsoft Research, Beijing, China
† {csbtang,csmlyiu}@comp.polyu.edu.hk ‡ {shihan,juding,dongmeiz}@microsoft.com

ABSTRACT
OLAP tools have been extensively used by enterprises to make bet-
ter and faster decisions. Nevertheless, they require users to specify
group-by attributes and know precisely what they are looking for.
This paper takes the first attempt towards automatically extracting
top-k insights from multi-dimensional data. This is useful not only
for non-expert users, but also reduces the manual effort of data
analysts. In particular, we propose the concept of insight which
captures interesting observation derived from aggregation results
in multiple steps (e.g., rank by a dimension, compute the percent-
age of measure by a dimension). An example insight is: “Brand B’s
rank (across brands) falls along the year, in terms of the increase in
sales”. Our problem is to compute the top-k insights by a score
function. It poses challenges on (i) the effectiveness of the result
and (ii) the efficiency of computation. We propose a meaningful
scoring function for insights to address (i). Then, we contribute a
computation framework for top-k insights, together with a suite of
optimization techniques (i.e., pruning, ordering, specialized cube,
and computation sharing) to address (ii). Our experimental study
on both real data and synthetic data verifies the effectiveness and
efficiency of our proposed solution.

1. INTRODUCTION
OLAP tools facilitate enterprise knowledge workers (e.g., ex-

ecutives, managers, and analysts) on decision making in business
intelligence applications. Their interfaces allow users to navi-
gate the aggregation result by operations (e.g., slicing, dicing, drill
up/down). Nevertheless, these tools still require users to specify the
dimensions (i.e., group-by attributes) in OLAP queries. This anal-
ysis process requires tedious hit-and-trial from the user, on man-
ually posing queries, analyzing results and deciding what is inter-
esting [31]. To alleviate this issue, semi-automatic methods [25,
28] can be used to detect local anomalies or interesting views in
an OLAP cube; however, these methods still require the user to
specify a target (e.g., an OLAP cell or a dimension). Recent vision
papers [10, 31] and the industry [9] have called for automatic tech-
∗This work was conducted when the first author was a research
intern at Microsof Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035922

niques to obtain insights from data, helping users when they are not
clear on what they are looking for [27, 15].

Taking a step further, in this paper, we take the first attempt to ex-
tract interesting insights from facts in a multi-dimensional dataset
(e.g., sales data). We plan to: (i) formulate the concept of insight
and propose a meaningful scoring function for it, and (ii) provide
efficient solutions to compute top-k insights automatically.

Suppose that we have a car sales dataset with the schema (Year,
Brand, Category, Sales) 1. OLAP tools support aggregation on data
(e.g., the SUM of Sales by Year and Brand, cf. Step 1 in Fig-
ure 1). However, aggregation alone does not reveal much informa-
tion (e.g., clear trend), as illustrated in Figure 1(a). In this work,
we consider insight as an interesting observation derived from ag-
gregation in multiple steps. In following examples, we demonstrate
how insights provide valuable information by performing analysis
operations (e.g., rank, difference) over aggregation.

Example 1. (Yearly increased sales): We may compare the
growth of different brands by the yearly increased sales (cf. Step 2
in Figure 1). In Figure 1(b), we observe that the yearly increased
sales of brand H is rising with years. The aggregation result of
the sales of brand H (cf. Figure 1(a)) first drops and then rises,
whose trend is not intuitive to understand. In contrast, our insight
(cf. Figure 1(b)) provides a clear rising trend. This insight can be
effectively used to reveal the potential market and seek profits.

Example 2. (The rank of yearly increased sales among brands):
Regarding the brand B, we have not found any “interesting” in-
formation about it from raw aggregation (cf. Step 1) and yearly
increased sales (cf. Step 2). Nevertheless, we can obtain insight
by applying analysis operations on the yearly increased sales. For
example, if we rank the yearly increased sales across brands (cf.
Step 3), we derive: “the rank of brand B’s (across brands) yearly
increased sales falls with years”, as shown in Figure 1(c). Such
insight implies that the competitiveness of brand B decreases with
years.

The above examples illustrate typical insights extracted
from multi-dimensional data. These insights have two us-
ages in business intelligence applications. First, they provide
informative summaries of the data to non-expert users, who do not
know exactly what they are looking for [27, 15]. For example, a
car seller is looking for interesting patterns in car sales, without
knowing the exact patterns in advance. Insights can provide quick
and informative summaries of interesting observations in the data
and reveal interesting patterns (e.g., the sales of SUV is the best
across Category in brand B). Second, data analysts may customize
insights by their needs to guide directions for data exploration. For

1Due to confidential reasons, we anonymized some attributes of the car sales data set
in our running examples and experiments.

Step 2: :¿ãåØéá����;

Year

Step 3: :����á�����;

Year

Brand

2010 2011 2012 2013 2014

Step 1: :���á �����;

Year

Brand

2011 2012 2013 2014

Brand

2011 2012 2013 2014

40 35 36 43 58

38 34 34 29 36

13 10 14 23 27

20 18 20 17 19

H

T

F

B

-5 1 7 15

-4 0 -5 7

-3 4 9 4

-2 2 -3 2

4 3 2 1

3 4 4 2

2 1 1 3

1 2 3 4

(b) InsightW��]�]vP����v��}(����v��,[��

yearly increased sales

(c) InsightW�(�oo]vP����v��}(����v���[��

rank (across brands)

(a) Raw aggregation result

H

T

F

B

H

T

F

B

Figure 1: Example of insights

example, a data analyst focusing on brand B may wish to find in-
sights related to B, e.g., the rank of brand B’s yearly increased sales
falls with year (as insight in Figure 1(c)). Then, he will continue to
investigate the reason why such a trend happens.

Besides the above insights, the dataset may contain many other
insights for other combinations of group-by attributes and analy-
sis operations. Even with the aid of OLAP tools, it is tedious for
data analysts to enumerate all possible insights and evaluate their
“importance” manually. Motivated by this, we propose the top-
k insight problem, which returns the best k insights with respect
to an importance measure. Our problem does not require users to
specify any input (e.g., group-by attributes, analysis operations in
each step). Although there exist several works on extending the
capability of OLAP [25, 34, 33, 1], they do not support automatic
extraction of our proposed insights. We leave the discussion of
these works in the related work section (cf. Table 6, Section 10).

Our problem poses challenges on (i) the effectiveness of the re-
sult and (ii) the efficiency of computation. Regarding the effec-
tiveness aspect, existing OLAP tools lack the means to evaluate the
importance of insights. We need a meaningful scoring function that
supports generality and comparability among different insights. On
the other hand, the efficiency aspect involves the following three
technical challenges.

C1) Huge search space: The search space is exponential to the
number of dimension attributes d and the depth of insight τ (i.e., the
number of steps in an insight). Also, the search space is polynomial
to the domain sizes of dimensions and the combinations of analysis
operations. We leave the analysis in Section 2.3.

C2) Expensive insight computation: The evaluation of an in-
sight requires applying multiple analysis operations after aggrega-
tion (e.g., Steps 2 and 3 in the above example). Each analysis oper-
ation may require accessing multiple values in aggregation results.

C3) Non-monotonicity of insight score: As we will explain
shortly, the insight score function is not monotonic. For example,
there is no insight in brand B with yearly increased sales (cf. Step
2), but there is an insight in the rank of brand B (across brands)
with regard to the yearly increased sales, as shown in Figure 1(c).
Moreover, there is no insight in the rank of brand T (as Figure 2 (a))
in above example; but there is an insight in its children spaces (e.g.,
〈*, T, SUV〉 in Figure 2(b), where SUV is a value for the Category

dimension). Such non-monotonicity prevents us from utilizing ex-
isting aggregation computation methods [13, 35], which require the
function to be monotonic.

#4

#3

#2

#1

2011 2012 2013 2014

R
a

n
k

Year

Brand T

#4

#3

#2

#1

2011 2012 2013 2014

R
a

n
k

Year

Brand TBrand T,SUV

(a) subspace 〈*, T, *〉 (b) subspace 〈*, T, SUV〉
score = 0.0001 score = 0.37

Figure 2: Examples of non-monotonicity

While the problem of automatic insight extraction is challeng-
ing, we develop efficient evaluation techniques that render insight
extraction feasible for large-scale applications (i.e., the execution
time of our solution is sub-linear with data size). Specifically, we
devise a suite of optimization techniques to reduce the computation
cost. The contributions of this paper are:

1. We formulate the top-k insight problem (Section 2) and pro-
pose a meaningful scoring function for insights (Section 3);

2. We propose the architecture of our top-k insight extraction
system (Section 4) and the computation framework (Sec-
tion 5);

3. We design a suite of optimization techniques — pruning, or-
dering, specialized cube (Section 6) and computation sharing
(Section 7) to speedup insight extraction;

4. We verify the effectiveness of top-k insights on three real
datasets by case study and user study (Section 8), and demon-
strate the efficiency of our proposal (Section 9).

The remainder of this paper is organized as follows. Section 2
formulates our problem and Section 3 provides a meaningful score
for insights. Section 4 describes the architecture of our proposed
system and discusses its extensibility. Sections 5, 6 and 7 present
the computation framework and a suite of performance optimiza-
tion techniques. Sections 8 and 9 demonstrate the effectiveness

and efficiency of our proposal, respectively. Section 10 discusses
related work, followed by the conclusion in Section 11.

2. PROBLEM STATEMENT
In this section, we provide formal definitions of the multi-

dimensional data model, composite extractors, and the score func-
tion of insights. Finally, we formulate our insight extraction prob-
lem and analyze its search space.

2.1 Data Model and Subspace
We are given a multi-dimensional dataset R(D,M) where D =
〈D1, ..., Dd〉 is the list of dimension attributes, andM is the mea-
sure attribute. Let dom(Di) denote the domain of attributeDi. We
assume that each Di satisfies |dom(Di)| > 12.

Consider the entire OLAP cube defined on the dataset D. Given
a cube cell, we can describe its attributes’ values by a subspace S
and its aggregate value by a measure S.M, as defined below.

DEFINITION 1 (SUBSPACE). A subspace is defined as an ar-
ray S = 〈S[1], ..., S[d]〉, where S[i] can take a value in dom(Di)
or the value ∗ (i.e., ‘all’ values). Given the dataset D, the aggre-
gate measure S.M is defined as the aggregation of tuples inD that
match with S.

For simplicity, we also call S.M as the measure of subspace S.
It is convenient to analyze the change of cube cells (i.e., subspaces)
by varying a single dimension. Therefore, we define a sibling group
to cover subspaces that differ on a single dimension only.

DEFINITION 2 (SIBLING GROUP). Given a subspace S and
a dimension Di, a sibling group is defined as SG(S,Di) = {S′ :
S′[i] 6= ∗ ∧ ∀j 6= i, S′[j] = S[j]}, i.e., a set of subspaces that
instantiate the values in dom(Di). We also call Di as a dividing
dimension for SG(S,Di).

Example: Table 1 illustrates an example dataset (car sales). It con-
tains two dimensions (Year, Brand) and a measure (Sales). By
fixing the year (to 2010) and varying the brand, we can compare
the sales of different brands in the same year: 〈2010,F〉, 〈2010,B〉,
〈2010,H〉, 〈2010,T〉. These four subspaces belong to the sibling
group SG(〈2010,*〉,Brand).

Tuples Tuples Tuples Tuples
2010, F, 13 2010, B, 20 2010, H, 40 2010, T, 38
2011, F, 10 2011, B, 18 2011, H, 35 2011, T, 34
2012, F, 14 2012, B, 20 2012, H, 36 2012, T, 34
2013, F, 23 2013, B, 17 2013, H, 43 2013, T, 29
2014, F, 27 2014, B, 19 2014, H, 58 2014, T, 36

Table 1: Car sales dataset (Year, Brand, Sales)

2.2 Composite Extractor
We shall conduct analysis operations on a sibling group in order

to derive an observation. First, we introduce an extractor as a basic
analysis operation on a sibling group.

DEFINITION 3 (EXTRACTOR). An extractor ξ takes a sib-
ling group SG(S,Dx) as input, and computes for each subspace
Sc ∈ SG(S,Dx) a derived measure Sc.M′ based on (i) Sc.M
and (ii) {(Sc′ , Sc′ .M) : Sc′ ∈ SG(S,Dx)}, i.e., the measures of
all subspaces in SG(S,Dx).

2We discard any attribute Di with |dom(Di)| = 1 because such an attribute is not
meaningful for analysis.

Inspired by Sarawagi et al. [23, 26] and market share analy-
sis3, we propose four instances of extractors (i.e., Rank, %, ∆avg ,
∆prev) and describe their semantics in Table 2. The extractor
∆prev imposes an requirement thatDx must be an ordinal attribute,
because prevDx(Sc) refers to the previous subspace of Sc along
Dx. The other extractors are applicable to any type of attribute. In
addition to these extractors, we also allow data analysts to define
their own extractors for their applications.

Extractor ξ Derived measure Sc.M′ for Sc Requirement
Rank the rank of Sc.M in SG(S,Dx) nil
% % of Sc.M over the SUM of measures in SG(S,Dx) nil

∆avg Sc.M− the AVERAGE of measures in SG(S,Dx) nil
∆prev Sc.M− prevDx (Sc).M Dx is ordinal

Table 2: List of extractors, with the input SG(S,Dx)

Example: We illustrate the output of the above extractors in Table 3.
Consider the sibling group SG(S,Year), where S=〈*,F〉. The ex-
tractor Rank computes the rank of each Sc among all years. the
extractor % calculates the percentage of each Sc among all years.
The extractor ∆avg returns the difference of each Sc from the av-
erage measure. The extractor ∆prev obtains the difference of each
Sc from its previous subspace along Year.

Sib. group Measure Derived measure Sc.M′ for
SG(S,Dx) Sc.M Rank % ∆avg ∆prev

〈2010,F〉 13 4 15% -4.4
〈2011,F〉 10 5 11% -7.4 -3
〈2012,F〉 14 3 16% -3.4 4
〈2013,F〉 23 2 27% 5.6 9
〈2014,F〉 27 1 31% 9.6 4

Table 3: Examples for extractors

We then introduce a composite extractor Ce to capture a multi-
step analysis operator on a sibling group.

DEFINITION 4 (COMPOSITE EXTRACTOR). Given a depth
parameter τ , a composite extractor Ce is defined as a length-τ
array of pairs (Ce[i].ξ, Ce[i].Dx) such that it satisfies: (i) Ce[1].ξ
is an aggregate function and Ce[1].Dx is the measure attributeM,
(ii) each Ce[i] (i > 1) is an extractor, and (iii) adjacent extractors
are compatible 4 (see Appendix A).

We assume that the aggregate function is SUM on the mea-
sure attribute M in the dataset. Nevertheless, we will consider
other aggregate functions and multiple measure attributes in Sec-
tion 4.2. The depth parameter τ captures the complexity of a
composite extractor. When τ = 1, a composite extractor is the
same as the aggregate function. We recommend setting τ to 2
or 3, which are analogous to first-order and second-order deriva-
tives in Mathematics, respectively. For the examples in Figure 1,
we can express steps 1–2 by a depth-2 composite extractor Ce =
〈(SUM,Sales),(∆prev ,Year)〉, and express steps 1–3 by a depth-3
Ce = 〈(SUM,Sales),(∆prev ,Year),(Rank, Brand)〉.

Next, we define the result set of applying a composite extractor
Ce on a sibling group SG(S,Da), as in Definition 5.

DEFINITION 5 (RESULT SET OF COMPOSITE EXTRACTOR).
A composite extractor Ce takes sibling group SG(S,Da) as in-
put, and computes the result set Φ = {(S′, S′.Mτ) : S′ ∈
SG(S,Da)}, where the Sc.Mi denotes the level-i derived mea-
sure of a subspace Sc with respect Ce[i]. The value of Sc.Mi is
defined recursively as follows.
3https://en.wikipedia.org/wiki/Market_share_analysis
4Two extractors Ce[i] and Ce[i + 1] are compatible if the output set of Ce[i] can be
used as the input of Ce[i+ 1].

At any level i > 1, we obtain each S′.Mi by applying the extrac-
tor Ce[i].ξ on the set {(Sc, Sc.Mi−1) : Sc ∈ SG(S′, Ce[i].Dx)}.

At level i=1, S′.M1 is the aggregate result on the measureM.

Example: Figure 3 shows the result set Φ after applying the
composite extractor Ce = 〈(SUM,Sales),(%,Year)〉 on the sibling
group SG(〈*,F〉,Year). For example, at level 2, the derived mea-
sure of Sc=〈2014, F〉 is: Sc.M2 = Sc.M1∑

S′∈SG(〈∗,F〉,Year) S
′.M1

=

27
13+10+14+23+27

= 31%, as illustrated in Figure 3, where S′.M1

is SUM(S′). We will propose an algorithm to compute the result
set in Section 5.2.

5Ö 5Ö ä/5

<2010, F > 13

<2011, F > 10

<2012, F > 14

<2013, F > 23

<2014, F > 27

5Ö 5Ö ä/6

<2010, F > 15%

<2011, F > 11%

<2012, F > 16%

<2013, F > 27%

<2014, F > 31%

su

suE srE svE tuE ty

ty

suE srE svE tuE ty

YY

YY

YY

Figure 3: Example of composite extractor computation

In some cases, a composite extractor is not applicable to
some sibling groups. For example, the composite extractor
〈(SUM,Sales),(%,Year)〉) cannot be applied to the sibling group
SG(〈*,*〉,Brand) because the subspaces in the group do not have
known values in the dimension ‘Year’. We will discuss how to
test the validity of a composite extractor Ce on a sibling group
SG(S,Di) in Appendix B.

2.3 Problem Definition
Intuitively, business analysts are interested in exceptional facts

(e.g., significant differences within a sibling group) and unexpected
trends (e.g., rapid rise during a time period). Let Φ be the re-
sult set after applying a composite extractor Ce on a sibling group
SG(S,Di). We propose to extract two representative types of “in-
sights” from Φ.

1. Point insight (outstanding): Outstanding (No.1 / Last)
means that a subspace is remarkably different from others
in terms of Sc.Mτ .

2. Shape insight (trend): This insight is applicable when Di
is an ordinal dimension. A rising / falling trend means that
Sc.Mτ exhibits such a trend when Di increases.

There are various other types of insights, e.g., those in the Mi-
crosoft Power BI product [3]. We will discuss the extensions of our
solution for other types of insights in Section 4.2.

Formally, we denote a specific insight instance by
(SG(S,Di), Ce,T) where T is an insight type. Our prob-
lem is to find the top-k insights according to a score function
S(SG(S,Di), Ce,T), which we will elaborate in Section 3.

PROBLEM 1 (INSIGHT PROBLEM). Given a dataset
R(D,M) and composite extractor depth τ , find top-k in-
sights {(SG(S,Di), Ce,T)} with the highest scores among all
possible combinations of sibling groups, composite extractors, and
insight types.

Search Space Size: Before presenting our solutions, we first an-
alyze the search space size of our problem, i.e., the number of
possible insights (SG(S,Di), Ce,T), where SG(S,Di) is a sibling
group, Ce is a composite extractor, and T is an insight type. In our
analysis, let D = maxdi=1 |dom(Di)| be the maximum domain
size, β be the number of extractor types, and |T| be the number of
insight types. The search space of our solutions is as follows.

LEMMA 1 (SEARCH SPACE SIZE). The number of possible
insights is O(|T| · d · (β · d)τ−1 · (D + 1)d).

PROOF. First, the number of insight types is |T|. For the number
of sibling groups, the number of subspaces is O((D + 1)d), and
there are O(d) choices for Di.

An extractor (ξ, dim) has O(β · d) possible choices. Since a
composite extractor contains τ − 1 extractors, there are O((β ·
d)τ−1) possible composite extractors.

By multiplying the above terms, we obtain the number of possi-
ble insights: O(|T| · d · (β · d)τ−1 · (D + 1)d).

The scope of this paper: The insight problem involves two eval-
uation metrics: (i) efficiency, and (ii) effectiveness. For efficiency,
we propose a computation framework (in Section 5) with optimiza-
tion techniques (in Sections 6 and 7) to extract top-k insights effi-
ciently. For effectiveness, we present our methodology to measure
the score of an insight (in Section 3), and then verify the effective-
ness of top-k insights by case study and user study on real datasets
(in Section 8).

3. MEANINGFUL INSIGHT SCORE
The insight score reflects the interestingness of an insight. In

order to rank different insights, the insight score metric should ex-
hibit: (i) generality (i.e., applicable to different types of insights),
(ii) comparability (i.e, fair across different types of insights).

We first discuss existing works for evaluating the interestingness
of information in the literature. In the problem context of [34], the
score of a subspace S is defined as:

S(q, S) = Rank(q, S)−1 ·ObjCount(S)

where q is a given query tuple, ObjCount(S) is the number of tu-
ples in S, and Rank(q, S) is the percentile rank of q among tuples
in S. Unfortunately, their score function cannot be readily applied
to our insights because (i) our problem does not have any query
tuple, (ii) the functions Rank(q, S)−1 and ObjCount(S) do not
capture the characteristics of our insights (e.g., point and shape in-
sights).

The concept of interestingness has also been studied in the con-
text of OLAP cube analysis [25, 24, 32]. All of them define inter-
estingness of a cell value (in the cube) by how surprising that value
differs from the expectation. The expectation is often set by the
system in [25, 32], whereas [24] allows a user to specify a list of
“known cells” in order to set the expectation for other cells. Follow-
ing the above works, [11] proposes measuring the interestingness
of facets in textual documents by using p-value. Unfortunately, all
these notions of interestingness are not applicable for our problem
as they do not satisfy the properties (e.g., generality, comparability)
of insight score.

3.1 Insight Score Function
We propose a more appropriate score function for an insight

(SG(S,Di), Ce,T) as:

S(SG(S,Di), Ce,T) = Imp(SG(S,Di)) · SigT(Φ) (1)

where Imp measures the impact in the sibling group SG(S,Di),
SigT measures the significance of type-T insight observed from Φ,
and Φ is the result of Ce on SG(S,Di).
The Impact Measure Imp: From a business viewpoint, the impact
represents the market share of S. We employ

Imp(SG(S,Di)) =
∑
S′∈SG(S,Di)

SUM(S′)/SUM(〈∗, · · · , ∗〉),

so that its value domain is normalized in the interval [0, 1].

The Significance Measure SigT: It reveals the uncommonness of
an observed insight in the result set Φ. The higher the score, the

more uncommon/unexpected that insight is. We intend to formu-
late SigT based on the p-value, which essentially measures how
extreme an event is. It also allows fair comparisons among differ-
ent types of insights when user properly set common cases (i.e.,
null hypotheses) for each insight type. In addition, the usage of
p-value has been justified by the user-study in [11]. Therefore, we
use p-value to measure SigT.

3.2 The Sig of insight
In statistics, the p-value is defined as “the probability of obtain-

ing a result equal to or more extreme than what is actually observed,
with the given null hypothesis being true” [17]. To achieve gener-
ality, we measure the p-value of different types of insights by using
different kinds of null hypotheses. We suppose that the null hy-
potheses for different type of insights are common in real world.
We then propose significance functions for point insight and shape
insight. The detailed methodologies are available in Appendix C.
Please note that, alternatively, users may customize null hypotheses
for personalized analysis and employ their own significance func-
tions. We will discuss them in the extensions in Section 4.2.

Measuring Sig of Point Insight. Let X = {x1, x2, ..., xn} be the
set of numeric values in the result Φ. In the business domain [5],
the sale of products often follows a power-law distribution5. Thus,
we set the null hypothesis of point insight as:

H0 : X follows a power-law distribution with Gaussian noises.

The significance should reveal how surprisingly the maximum
value differs from the rest of values in Φ with H0 is true6.

First, we sortX in the descending order and obtain the maximum
value xmax. Then, we fit the values in X \ {xmax} to a power-law
distribution if it is good fit, like in Figure 4(a), where the predic-
tion errors of xi ∈ X \{xmax} (i.e., subtracting observed value xi
from estimated value x̂i, also called residuals) approximately fol-
low Gaussian distribution N(µ, δ). Next, we determine how sur-
prising it is that xmax observed against the hypothesis H0 is true
by (i) deriving xmax’s prediction error by εmax = x̂max − xmax,
(ii) calculating the p-value p = Pr(ε > εmax|N(µ, δ)), as we
depicted in Figure 4(b). Finally, we obtain the significance as
SigT(Φ) = 1− p.

Power-law distribution

Ý����

����
m

����
n

¶m

¶n

Residual

ón L ����
n

-Ý���� ó
m
L ����

m
-Ý����

��:ó P óm �0:äá Ü;;= 0.09

��:ó P ón �0:äá Ü;;=0.62

ó

ä

z:Æá¾;

(a) Power-law distribution (b) p-value

Figure 4: The significance of point insight
We illustrate an example in Figure 4. For the result set ΦA,

the prediction error xAmax is large, so we obtain p = Pr(ε >
εAmax|N(µ, δ)) = 0.09 and derive the significance as SigT(ΦA) =
1 − p = 0.91. For the result set ΦB , the prediction error xBmax
is small, so we derive the significance as SigT(ΦA) = 1 − p =
1− 0.62 = 0.38. Thus, ΦA is more significant than ΦB .

Measuring Sig of Shape Insight. LetX = 〈x1, x2, ..., xn〉 be the
time series of values in the result Φ. It is common that the trend is
neither rising nor falling. Therefore, we set the null hypothesis as:

H0 : X forms a shape with slope ≈ 0.

5https://en.wikipedia.org/wiki/Long_tail
6We omit the minimum value discussion, as it is similar with the maximum case.

In business intelligence applications, data analysts are attracted to
a clear rising/falling trend, whose slope is very different from 0.
Thus, the p-value should measure how surprisingly the slope differs
from 0.

OHKLA» L räs1, N»
6

= 0.92

OHKLAº L särtá Nº
6

= 0.99

Year

D
e

ri
v
e

d
 m

e
a

su
re

:
/
�

ä
�����m�����n

�� O P �OHKLA» � .:äá ã;;=0.79

�� O P �OHKLAº � .:äá ã;;=0.11x:ÆáÅ;

O

-�����m -�����n

(a) Slope of trends (b) p-value

Figure 5: The significance of shape insight

First, we fit X to a line by linear regression analysis (see Fig-
ure 5(a)), and then compute its slope slope and the goodness-of-
fit7 value r2. In this paper, we use logistic distribution L(µ, λ) [6],
where µ, λ are constant parameters, to model the distributions
of slopes. In Figure 5(b), the p-value is the probability of the
slope values equal to or larger than the observed slope of the
rising trend8. Specifically, we compute the p-value as p =
Pr(s > |slope| | L(µ, λ)). Finally, we define the significance
as SigT(Φ) = r2 · (1 − p), where the goodness-of-fit value r2 is
used as a weight.

We illustrate an example in Figure 5. Consider the shapes of
blue dots and red dots in Figure 5(a). After fitting blue dots to
a line, we obtain the slope slopeA = 1.02 and the goodness-of-
fit value r2A = 0.99. Similarly, after fitting red dots, we obtain
slopeB = 0.11 and r2B = 0.92. As illustrated in Figure 5(b), we
then compute: pA = 0.11 and pB = 0.79. In this example, since
slopeA > slopeB , the significance of A (i.e., 0.88 = 0.99 ∗ (1−
0.11)) is larger than that of B (i.e., 0.19).

4. SYSTEM ARCHITECTURE
We first describe the architecture of our top-k insight extraction

system, then discuss the extensibility of our system.

4.1 Architecture Overview
Figure 6 depicts the architecture of our system, which consists

of three layers.

1. The system configuration layer (at the bottom) allows a user
to configure system settings, e.g., specify a new insight type,
or customize the null hypothesis based on the user’s belief.
We will elaborate on the details of this layer in Section 4.2.

2. The insight extraction layer (in the middle) is the core com-
ponent of our system. First, it enumerates every possible
pair (SG(S,Di), Ce) of sibling group and composite extrac-
tor. Then, it feeds each pair (SG(S,Di), Ce) into the com-
putation engine and invokes the insight engine to compute
the score. During this process, the layer maintains the top-k
insights list.

3. The user interface layer (at the top) is front-end of our sys-
tem. It presents and visualizes the top-k insights to the users.

7https://en.wikipedia.org/wiki/Coefficient_of_determination
8We omit the falling trend discussion, as it is similar with rising trend.

Figure 6: Top-k insight extraction system architecture

4.2 Extensibility
We have suggested some type(s) of aggregate functions, extrac-

tors, dataset, insights, and their score functions so far. Nevertheless,
our system is extensible as follows:

Aggregate function and extractors: A composite extractor must
take an aggregate function as the level-1 extractor, and then take
any other extractor at higher levels. First, we support many typical
aggregate functions in OLAP, e.g., SUM, COUNT, AVERAGE,
MAX, MIN. For example, we will consider the aggregate function
COUNT, in the user study in Section 8. Second, we also allow
the data analyst to define his own extractor (e.g., difference from
Rank-1). Regarding the validity of insight score, we only need to
slightly revise the composite extractor adjunct taxonomy (cf. Table
7) and Imp function to ensure the validation of score computation.

Dataset: Since our system is built on top of an OLAP system, it can
handle any kind of dataset in the OLAP system. For a dataset with
multiple measure attributes, a user can either choose one measure
attribute, or specify a derived measure as a weighted sum of other
measure attributes [16] in system configuration layer.

Customization of insights: Our system supports other insight
types, e.g., the correlation between two trends, and the seasonal-
ity of a trend [3]. We will elaborate the details in Appendix D.

Our score functions, e.g., significance functions, are also cus-
tomizable. Recall in Section 3.2 that the significance of an insight
type is defined based on p-value, which essentially measures how
extreme an event is against a “common observation” in real world.
Data analysts may customize their “common observations” by their
domain knowledge.

Customization of the search space: Expert users may have some
ideas of what they are looking for. As such, we enable expert users
to declare constraints and limit the search space. For example, an
expert user may only consider sibling groups related to brand B in
the car sales dataset.

5. INSIGHT EXTRACTION
We present a computation framework for the insight extraction

layer.

5.1 Computation Framework
Algorithm 1 is the pseudo-code of our computation framework

for the insight extraction layer in the system architecture. It em-
ploys a heap H to keep the top-k insights found so far. The algo-
rithm needs to generate all possible instances of composite extrac-
tor Ce and sibling group SG(S,Di). It then computes the insight
from every (SG(S,Di), Ce,T), and updatesH upon finding a bet-
ter insight.

Generally, the number of sibling groups is much larger than the

Algorithm 1 Insights (datasetR(D,M), depth τ , result size k)
1: initialize a min-heapH ← ∅ . store top-k insights
2: let ubk be the k-th largest score inH
3: O ← enumerate all possible Ce with depth τ . enumerate Ce
4: for each Ce inO do
5: for i := 1 to d do . enumerate SG
6: initialize subspace S ← 〈∗, ∗, · · · , ∗〉
7: EnumerateInsight(S,Di, Ce)
8: returnH

Function: EnumerateInsight (S, Di, Ce):
9: if isValid (SG(S,Di), Ce) then . Phase I

10: Φ← ExtractΦ(SG(S,Di), Ce) . Alg. 2: computation engine
11: for each insight type T do
12: S← Imp(SG(S,Di)) · SigT(Φ) . Sec. 3: insight engine
13: if S > ubk then
14: updateH, ubk by (SG(S,Di), Ce,T)

15: for each value v ∈ dom(Di) do . Phase II
16: S

′ ← S, S
′
[Di]← v

17: for each j with S′[Dj] = ∗ do . enumerate SG

18: EnumerateInsight(S
′
, Dj , Ce)

number of composite extractors. To keep the memory consumption
manageable, we adopt the divide-and-conquer approach to generate
sibling groups. Specifically, we implement this with a recursive
function (Lines 9–18), which consists of two phases.

In Phase I (Lines 9–14), we first check whether the pair
(SG(S,Di), Ce) is valid. If yes, then we compute the result Φ of
the pair by Algorithm 2 which will be elaborated in Section 5.2.
Next, we compute the score for each insight type and update H
upon finding a better insight.

In Phase II (Lines 15–18), we create a child subspace S′ from S
by instantiating its value on dimension Di. For each S′, we pick a
dimension Dj where S′[Dj] = ∗, and then invoke a recursive call
on the sibling group SG(S′, Dj)
Example: Given the dataset in Table 1, we illustrate the ob-
tained insights in Table 4. For ease of illustration, we only
consider point insights and a fixed composite extractor Ce =
〈(SUM,Sales),(∆prev ,Year)〉. In Table 4, each row shows a sib-
ling group SG(S,Di) and its insight score S, i.e., the product of
impact Imp and significance Sig. Due to page limits, we do not
show the steps for computing Imp and Sig. When k = 1, the top-1
insight corresponds to the first row in Table 4.

SG(S,Di) S = Imp · Sig Point insight:
outstanding No.1

SG(〈*,*〉, Year) 0.61 = 1.00 · 0.61 〈2014〉
SG(〈*,H〉, Year) 0.16 = 0.38 · 0.42 〈2014, H〉
SG(〈*,T〉, Year) 0.14 = 0.30 · 0.45 〈2014, T〉
SG(〈*,F〉, Year) 0.02 = 0.15 · 0.10 〈2013, F〉
SG(〈*,B〉, Year) 0.01 = 0.17 · 0.03 〈2012, B〉

SG(〈2014,*〉, Brand) 0.07 = 0.25 · 0.27 〈2014, H〉
SG(〈2012,*〉, Brand) 0.03 = 0.18 · 0.14 〈2012, H〉
SG(〈2013,*〉, Brand) 0.02 = 0.20 · 0.12 〈2013, H〉
SG(〈2011,*〉, Brand) 0.01 = 0.17 · 0.04 〈2011, F〉

Table 4: Insight candidates for Ce = 〈(SUM,Sales),(∆prev ,Year)〉

5.2 Computation Engine
We introduce Algorithm 2 to apply a composite extractor Ce on

a sibling group SG(S,Di) and then compute a corresponding re-
sult set Φ. It enumerates each subspace S′ ∈ SG(S,Di) (Line 3)
and computes the derived measure of S′ with respect to Ce (Line
4). Finally, it inserts each S′ with its derived measure into Φ and
returns it to the caller.

Conceptually, the computation of the derived measure (at Line

Algorithm 2 ExtractΦ(SG(S,Di), Ce)
1: initialize a result set Φ← ∅
2: for each value v in dom(Di) do
3: S′ ← S, S′[Di]← v
4: M ′ ← RecurExtract(S′, τ, Ce)
5: insert (S′,M ′) into Φ

6: return Φ

Function: RecurExtract(Subspace S′, level, Ce):
7: if level > 1 then
8: initialize a result set Φlevel
9: Dξ ← Ce[level].Dx

10: for each value v in Dξ do
11: Sv ← S′, Sv [Dξ]← v
12: M ′v ← RecurExtract(Sv , level − 1, Ce)
13: insert (Sv ,M ′v) into Φlevel
14: M ′ ← derived S′.M ′ by applying Ce[level] on Φlevel . Def. 3
15: else
16: M ′ ← SUM(S′) . SUM(S′): data cube
17: return M ′

4) involves building trees in the top-down manner and running ex-
tractors on tree nodes in the bottom-up manner. This can be imple-
mented by a recursive function ‘RecurExtract’.

In this function, the parameter level indicates the current level of
the extractor in Ce. The initial level is τ , which corresponds to the
highest level. LetDξ be the dimension used by the current extractor
Ce[level] (Line 9). We examine each child subspace Sv (of S′),
apply the level−1 extractor to it recursively, and insert Sv with its
derived measure into a temporary result set Φlevel (Lines 10–13).
Finally, we apply the current extractor on Φlevel to compute the
derived measure at the current level.

When we reach the bottom level (i.e., level = 1), it suffices to
compute the SUM of measures in the subspace S′. This can be
obtained efficiently from a data cube.
Example: Consider the composite extractor Ce =
〈(SUM,Sales),(∆prev ,Year)〉 with the sibling group
SG(〈2013,*〉,Brand) in Table 4. We illustrate the recursive
computation of derived measures in Figure 7. Each tree node
represents a recursive call of ‘RecurExtract’, and it is associated
with a subspace Sv and a derived measure M ′v . In the first
phase, we build a tree in a top-down manner. The second phase
begins when we reach the bottom level (i.e., level = 1). Next,
we examine these tree nodes in a bottom-up manner and apply
the corresponding extractor on each tree node to compute its
derived measure. Then, we obtain the result set Φ={(〈2013,F〉,9),
(〈2013,B〉,-3), (〈2013,H〉,7), (〈2013,T〉,-5)}. Finally, we compute
the Sig value of Φ (cf. Section 3.2) and the Imp value in order to
obtain the insight score (i.e., 0.02).

trsu E 	

trsuá 	

Phase I: build trees

Phase II: compute derived measures

Level 2: ¿ãåØé

Level 1: ��� trstá 	 trsuá�trstá�

trsu E �

trsuá�trstá�

trsu E �

Level 2: ¿ãåØé

Level 1: ���

¿ãåØé = 23-14=9

��� = 20

¿ãåØé =17-20=-3

��� = 36 ��� = 43

¿ãåØé = 43-36=7

��� = 34 ��� = 29

¿ãåØé = 29-34=-5

trsu E 	

trsuá 	trstá 	

��� = 14 ��� = 23

trsu E �

trsuá�trstá�

��� = 17

trsu E �

trsu E �

trsuá�trstá�

trstá� trstá�

trsu E �

trstá� trstá�

Figure 7: Running a composite extractor on a sibling group,
Ce = 〈(SUM,Sales),(∆prev ,Year)〉, SG(〈2013,*〉,Brand)

Data cube optimization: Our framework performs aggre-

gation frequently, e.g., SUM(S) (Line 16 in Alg. 2), and
Imp(SG(S,Di)) = SUMS′∈SG(S,Di)(S

′)/SUM(〈∗, ∗, · · · , ∗〉)
(Line 12 in Alg. 1). We can construct a data cube and utilize it
to reduce the aggregation cost.

A data cube [14, 8] is a collection of cuboids, where each cuboid
stores the group-by aggregate result for a particular set of dimen-
sions. Figure 8(a) illustrates a data cube built for a dataset with
schema (A,B,C,M). It contains eight cuboids. The content of
cuboid 〈A,B〉 is shown in Figure 8(b).

To compute SUM(S) efficiently, we propose to store each
cuboid as a hash table. Given a subspace S, we can lookup the
corresponding entry in the cuboid and then retrieve SUM(S) in
O(1) time.

*

A B C

AB AC BC

ABC

key: A,B value:M
a1, b1 2
a1, b2 3
· · · · · ·
a2, b1 7
a2, b2 9
· · · · · ·
a3, b2 8
a3, b3 1

(a) a data cube (b) cuboid 〈A,B〉

Figure 8: Example of a data cube

5.3 Time Complexity Analysis
Since both Algorithms 1 and 2 spend the most of time on recur-

sive calls, we focus on analyzing the number of recursive calls in
these algorithms. We follow the notations in Section 2.3. In our
analysis, D = maxdi=1 |dom(Di)| denotes the maximum domain
size, and β denotes the number of types of extractors.

For Algorithm 1: It invokes the recursive func-
tion ‘EnumerateInsight’ for all possible insights of
(SG(S,Di), Ce,T). Each recursive call examines |T| types
of insights. Combining this with the results in Section 2.3,
the number of recursive calls to ‘EnumerateInsight’ is
O(|T| · d · (β · d)τ−1 · (D + 1)d).

For Algorithm 2: It examines each value of attribute Di and thus
calls the recursive function ‘RecurExtract’ for D times at most.

Let j be the current level in the function ‘RecurExtract’. When
j > 1, the function ‘RecurExtract’ examines each value of at-
tribute Ce[i].Dx and thus calls the function ‘RecurExtract’ for D
times at most.

In summary, the number of recursive calls to ‘RecurExtract’ is
O(D ·

∏τ
j=2 dommax) = O(Dτ).

6. OPTIMIZATION TECHNIQUES
In this section, we propose optimization techniques to reduce the

running time of our solution.

6.1 Pruning by Upper Bound Score
Consider the computation of insight score at Lines 10–12 in Al-

gorithm 1. The term Imp(SG(S,Di)) can be computed efficiently
(cf. Section 5.2). However, it is expensive to compute Φ as it in-
vokes Algorithm 2.

To reduce the cost, we propose an upper bound score

SUB(SG(S,Di), Ce,T) = Imp(S) (2)

and show that it serves as an upper bound of the insight score (cf.
Lemma 2).

LEMMA 2 (UPPER BOUND PROPERTY).

SUB(SG(S,Di), Ce,T) ≥ S(SG(S,Di), Ce,T)

PROOF. By Def. 2, we have Imp(SG(S,Di)) = Imp(S)
with S[i] = ∗ (Line 17, Alg 1). Hence, S(SG(S,Di), Ce,T) =
Imp(S) · SigT(Φ). Since SigT(Φ) ≤ 1, we have:
S(SG(S,Di), Ce,T) ≤ Imp(S) = SUB(SG(S,Di), Ce,T).

With this lemma, we can implement the following pruning rule be-
fore Line 10 in Algorithm 1. We compute SUB(SG(S,Di), Ce,T)
and then compare it with ubk (i.e., k-th insight score found so far).
If ubk > SUB(SG(S,Di), Ce,T), then we skip the execution of
Lines 10–14.

6.2 Subspace Ordering
The effectiveness of the above pruning rule (cf. Section 6.1)

depends on ubk (i.e., k-th insight score found so far). To enable
effective pruning, it is desirable to obtain a high ubk as early as
possible. Therefore, we propose techniques to reorder both outer
and inner loops (Lines 15–18) in Algorithm 1.

Ordering of outer-loop (Lines 15–16): Observe that the upper
bound score SUB(SG(S′, Di), Ce,T) = Imp(S′) depends on S′

only. Thus, we propose to compute SUB for each subspace S′ at
Line 16, and then examine those subspaces in descending order of
SUB .

Ordering of inner-loop (Lines 17–18): An intuitive strategy
is to order dimensions in ascending order of the domain size
|dom(Dj)|. When |dom(Dj)| is small, few subspaces will be gen-
erated and the average impact of each subspace is expected to be
high. This would increase the possibility to obtain a high ubk early.

6.3 Sibling Cube
Our framework incurs significant overhead on (i) hash table

lookup operation per computing SUM(S) (cf. Section 5.2), and
(ii) sorting operation in implementing subspace ordering (cf. Sec-
tion 6.2).

In this section, we propose an sibling cube in order to reduce the
number of lookup operations in hash tables. Furthermore, our sib-
ling cube can avoid redundant sorting operations in our framework.

6.3.1 Sibling cube structure
Our sibling cube is designed in a fashion that suits better with the

operations used in our framework. Specifically, our sibling cube is
a collection of the following cuboids:

DEFINITION 6 (CUBOID IN SIBLING CUBE). A cuboid is la-
beled by 〈D′〉 ◦ Di, where D′ ⊂ D is a subset of dimensions and
Di is a dimension not in D′.

The cuboid contains a cell for a subspace S if ∀j ∈ D′, S[j] 6=
∗ and ∀j /∈ D′, S[j] = ∗.

The cell for subspace S is an array of pairs 〈(vx,Mx) : vx ∈
dom(Di)〉 sorted in the descending order ofMx. We require that
Mx = SUM(S′), where S′ is a child subspace of S with its di-
mension Di set to vx.

Following the example in Section 5.2, we consider a dataset with
schema (A,B,C,M). We compare a data cube with our sibling
cube in Figure 9. A cuboid in a data cube contains many cells
(see Figure 9(a)). On the other hand, a cuboid in an sibling cube
contains fewer cells but each cell stores more information (see Fig-
ure 9(b)).

Compared to the data cube, the sibling cube occupies at most
d times the space in the worst case. Nevertheless, the iceberg

cube technique [8] can be adapted to shrink our cube size signif-
icantly. Specifically, we only store entries whose measures are
above minsup% (e.g., 0.1%) of measure in the dataset. Our ex-
perimental study shows that our sibling cube is small enough to fit
in main memory.

In the following discussion, we demonstrate the advantages of
using the sibling cube over the data cube.

6.3.2 Reducing hash table lookup operations
Our algorithms in Section 5 execute this operation: “Given a

sibling group SG(S,Di), retrieve SUM(S′) for each subspace
S′ ∈ SG(S,Di).”

For example, we take SG(〈a1, ∗〉, B) as the sibling group and
assume dom(B) = {b1, b2, b3}. When using a traditional data
cube, we issue three lookup operations 〈a1, b1〉, 〈a1, b2〉, 〈a1, b3〉
to the cuboid in Figure 9(a).

With our sibling cube, it suffices to issue one lookup operation
(a1) to the cuboid in Figure 9(b). Then, we can retrieve the list of
entries for 〈a1, b3〉, 〈a1, b2〉, 〈a1, b1〉 and process the list sequen-
tially.

key: A,B value:M
a1, b1 2
a1, b2 3
· · · · · ·
a2, b1 7
a2, b2 9
· · · · · ·
a3, b2 8
a3, b3 1

key: A value: B,M
a1 b3, 6 | b2, 3 | b1, 2
a2 b2, 9 | b1, 7 | b3, 5
a3 b2, 8 | b1, 4 | b3, 1

(a) data cube: cuboid 〈A,B〉 (b) sibling cube: cuboid 〈A〉 ◦ B

Figure 9: Data cube vs. sibling cube
In addition to reducing lookup operations, the sibling cube

improves the data access locality (e.g., converting random ac-
cesses to sequential accesses) and benefits the performance of CPU
cache [7].

6.3.3 Avoiding sorting operations in loop ordering
When we implement the outer loop ordering (see Section 6.2)

at Lines 15–16 in Algorithm 1, we need to sort subspaces S′ ∈
SG(S,Di) in descending order of their upper bound scores (which
can be derived from SUM values).

With our sibling cube, we can retrieve a sorted list directly and
avoid sorting operations on-the-fly.

We extend the computation framework (Algorithm 1) with the
above optimization techniques, and then present the optimized
computation framework (Algorithm 3) in Appendix E.1.

7. COMPUTATION SHARING
This section presents computation sharing techniques to further

accelerate our solution.

7.1 Sharing within a Sibling Group
First, we identify sharing opportunities within a sibling group in

an example. Then, we devise the condition for sharing.
As an example, suppose that we apply the composite extractor
Ce = 〈(SUM,Sales),(%,Year)〉 on the sibling group SG(〈∗,B〉,Year).
Figure 11(a) illustrates the computation process of Algorithm 2 on
this example. Observe that these trees have the same content at
level 1, as highlighted by red rectangles. In order to reduce compu-
tation cost, we propose to identify the shared content and compute
it only once, as shown in Figure 11(b).

We discover that significant computation can be saved when cer-
tain condition is satisfied. Specifically, we prove in Lemma 3 that,

Year

Brand

2010 2011 2012 2013 2014

Level 1: ���

(b)

Year2010 2011 2012 2013 2014

(a)

�
 æÛá ç� á����

�
 æÛá ç� á����

�
 æÛá ç	 á����

Level 2: %

Brand

36% 36% Y Y Y

34% 35% Y Y Y

12% 10% Y Y Y

18% 19% Y Y Y

H

T

F

B

40 35 36 43 58

38 34 34 29 36

13 10 14 23 27

20 18 20 17 19

Year2010 2011 2012 2013 2014

Brand

36% 36% 35% 38% 41%

34% 35% 33% 26% 26%

Y Y Y Y Y

Y Y Y Y Y

�
 æÛá ç� á����

H

T

F

B

H

T

F

B

Year2010 2011 2012 2013 2014

�
 æÛá ç� á����

�
 æÛá ç� á����

�
 æÛá ç	 á����

Level 1: ���

Level 2: %

Year

Brand

2010 2011 2012 2013 2014

40 35 36 43 58

38 34 34 29 36

13 10 14 23 27

20 18 20 17 19

36% 36% 35% 38% 41%

34% 35% 33% 26% 26%

12% 10% 13% 21% 19%

18% 19% 19% 15% 14%

�
 æÛá ç� á����

Brand

H

T

F

B

H

T

F

B

(a) no sharing (b) sharing across sibling groups

Figure 10: Running a composite extractor on multiple sibling groups, Ce=〈(SUM,Sales),(%,Brand)〉

42 34 27 29 36

æÛá ç� , 2010

2010 2011 2012 2013 2014B

Y

42 34 27 29 36

æÛá ç� , 2012

2010 2011 2012 2013 2014B

Y

42 34 27 29 36

æÛá ç� , 2014

2010 2011 2012 2013 2014

Level 2: ¨

Level 1: ���

B

(a) no sharing

42 34 27 29 36

æÛá ç� , 2012

2010 2011 2012 2013 2014B

æÛá ç� , 2010 æÛá ç� , 2014YYLevel 2: ¨

Level 1: ���

(b) sharing with a sibling group

Figure 11: Running a composite extractor on a sibling group,
Ce=〈(SUM,Sales),(%,Year)〉,SG(〈∗, B 〉,Year)

if a sibling group SG(S,Di) and the last extractor of Ce have the
same dimension (i.e., Ce[τ].Dx = Di), then we can share the in-
termediate result at level τ − 1.

LEMMA 3 (SHARING WITHIN A SIBLING GROUP). Given a
composite extractor Ce and a sibling group SG(S,Di), if
Ce[τ].Dx = Di, then all subspaces of SG(S,Di) share the same
intermediate result at level τ − 1.

PROOF. Let S′ ∈ SG(S,Di) be a subspace. Since S′ and S
differ on dimension Di only, we have: SG(S′, Di) = SG(S,Di)
——(F).

According to Definition 5, we derive S′.Mτ from the set Φ′ =
{(Sc, Sc.Mτ−1) : Sc ∈ SG(S′, Ce[τ].Dx)}.

By combining (F) with the given condition Ce[τ].Dx = Di,
we derive: SG(S′, Ce[τ].Dx) = SG(S,Di). Therefore, Φ′ is
independent of S′ and it can be used to derive S′′.Mτ for any
S′′ ∈ SG(S,Di).

We enhance the computation engine (Algorithm 2) with the
above sharing idea, and then obtain the optimized version (Algo-
rithm 4) in Appendix E.2.

7.2 Sharing across Sibling Groups
We proceed to investigate sharing opportunities across multiple

sibling groups.
Consider our computation framework in Algorithm 1. Af-

ter fixing the composite extractor Ce (at Line 4), we enumerate
sibling groups and apply Ce on each of them. In this exam-
ple, we assume Ce=〈(SUM,Sales),(%,Brand)〉. Figure 10(a) illus-
trates the computation process when we apply Ce on multiple sib-
ling groups: SG(〈2010, ∗〉,Brand) · · · SG(〈2014, ∗〉,Brand), then

SG(〈∗,H〉,Year) · · · SG(〈∗,F〉,Year). Observe that, at level 2, the
derived measures in green rectangles are the same as those in red
rectangles. This happens because some subspace (〈2010,H〉:42%)
appears in more than one sibling groups (SG(〈2010, ∗〉,Brand) and
SG(〈∗,H〉,Year)).

We illustrate how this method works with the example in Fig-
ure 10(b). We employ a temporary hash table Ψ to store the de-
rived measure S′.M ′ for subspace S′ that we have processed be-
fore (in other sibling groups). Initially, Ψ is empty. First, we ex-
amine SG(〈2010, ∗〉, Brand), and process four subspaces 〈2010,
F〉, 〈2010, B〉, 〈2010, H〉, 〈2010, T〉. Since Ψ is empty, we need
to compute the derived measures for the above subspaces and then
insert them into Ψ. Similarly, we populate Ψ when we examine
SG(〈2011, ∗〉, Brand), · · · , SG(〈2014, ∗〉, Brand). Finally, when
we examine SG(〈∗,H〉,Year), we can find its subspaces in Ψ and
thus retrieve their derived measures from Ψ directly.

We then discuss how to incorporate the above techniques into our
algorithms. First, we apply the above technique and obtain an effi-
cient computation engine (Algorithm 5) in Appendix E.3. Second,
by using all techniques in Sections 6 and 7, we have an efficient
computation framework (Algorithm 6) for insight extraction layer
in Appendix E.4.

8. EFFECTIVENESS STUDY
In this section, we evaluate the effectiveness of our top-k insight

extraction system by (1) case study, (2) insight utility study, and (3)
human effort study on real datasets.

8.1 Case Studies
We collect the following two real datasets (i.e, car sales and

tablet sales), and then demonstrate the insights obtained from these
datasets.

Car sales dataset9: The dataset contains 276 tuples. Each tuple
(i.e., a car) has 4 dimensions and a measure Sales. The domain sizes
of dimensions are: Year (5), Brand (8), Category (8) and Model
(55).

Tablet sales dataset10: The dataset contains 20,685 tuples. Each
tuple (i.e., a tablet) has 11 dimensions and a measure Sales. The
domain sizes of dimensions are: Year (11), CPU (2), OS (7), Con-
nectivity (5), Price (23), Region (9), Country (54), Product (2), Res-
olution (18), Size (9) and Vendor (157).
9http://www.goodcarbadcar.net/p/sales-stats.html

10This is a private real dataset collected from the industry.

Insight score SG(S,Di) composite extractor Ce
Top-1 0.31 SG({SUV},Brand) 〈(SUM,Sales),(∆avg ,Category)〉
Point When measuring the importance of SUV sales for a certain Brand,

brand F is Outstanding No.1.
Top-2 0.30 SG({SUV},Year) 〈(SUM,Sales),(%,Category)〉
Shape There is a rising trend of SUV’s market share.

(a) car sales, top-2 insights with τ = 2
Top-1 0.32 SG({SUV},Year) 〈(SUM,Sales),(%,Year),(∆avg ,Category)〉
Point In 2014, SUV exhibits most advantage over other categories than ever.
Top-2 0.25 SG({F},Year) 〈(SUM,Sales),(%,Brand),(∆avg , Year)〉
Shape There is a falling trend of brand F’s market share.

(b) car sales, top-2 insights with τ = 3
Top-1 0.96 SG({*},Year) 〈(SUM,Sales),(∆prev ,Year)〉
Shape The yearly increase of tablet sales is slowing down.
Top-2 0.64 SG({WiFi},Year) 〈(SUM,Sales),(∆prev ,Year)〉
Shape The yearly increase of sales of WIFI tablets is slowing down.

(c) tablet sales, top-2 insights with τ = 2
Top-1 0.99 SG({ * },Year) 〈(SUM,Sales),(∆prev ,Year),(∆avg ,Year)〉
Point 2012/04-07’s yearly increase of tablet sales is remarkably lower than ever.
Top-2 0.96 SG({Tablet},Year) 〈(SUM,Sales),(%,Year),(Rank,Year)〉
Shape There is a rising trend of Tablet (vs. eReader) sales.

(d) tablet sales, top-2 insights with τ = 3

Table 5: Case studies of insights on real datasets
Table 5 shows the top-2 insights on car sales and tablet sales,

respectively, at τ=2 and τ=3. For convenience, we have omitted
∗ in sibling groups in Table 5. For example, SG({SUV},Year) is
equivalent to SG(〈*,*,SUV,*〉, Year). We then elaborate some of
these insights from Figure 12 to 15.

Insights from car sales: We first compare our insight with a raw
aggregation result on car sales. Figure 12(a) refers to the top-
2 shape insight in Table 5(a). Its SG(〈*,*,SUV,*〉, Year) means
that we compare SUV cars by year. Its Ce = 〈(SUM,Sales),(%,
Category)〉 means that we analyze the percentage of SUV’s sales
among all categories. Figure 12(a) shows that such a percentage
rises with year. On the other hand, the raw aggregation result for
the same SG(〈*,*,SUV,*〉, Year) does not reveal much information.

Figure 13(a) refers to the top-1 point insight (outstanding No.1)
in Table 5(b). Its SG(〈 *,*,SUV,* 〉, Year) means we compare SUV
cars by year. Its Ce = 〈(SUM,Sales),(%,Year),(∆avg , Category)〉
means we analyze SUV’s yearly share over the average yearly share
of all categories. Figure 13(a) shows that in 2014, SUV exhibits the
most advantages over the other years. However, the raw aggrega-
tion result in Figure 13(b) does not reveal this information.

20

25

30

35

40

2010 2011 2012 2013 2014

D
e
ri
v
e
d
 m

e
a
s
u
re

 M
2

Year

1.0

1.2

1.4

1.6

2010 2011 2012 2013 2014

S
U

M
 (

X
 1

0
6
)

Year

(a) insight: rising trend (b) raw aggregation result

Figure 12: Car sales shape insight: SG(〈∗, ∗,SUV,∗〉, Year)

-1.5

0

1.5

3.0

2014 2013 2010 2012 2011

D
e
ri
v
e
d
 m

e
a
s
u
re

 M
3

Year

1.0

1.2

1.4

1.6

2014 2013 2010 2012 2011

S
U

M
 (

X
 1

0
6
)

Year

(a) Point insight: Outstanding No.1 (b) raw aggregation result

Figure 13: Car sales point insight: SG(〈 *,*,SUV,* 〉, Year)

Insights from tablet sales: We then compare our insights with

a raw aggregation result on tablet sales. Figure 14(a) refers to
the top-1 shape insight in Table 5(c). Its SG(〈∗, · · · , ∗〉, Year)
means that we compare the tablet sales by year. Its Ce =
〈(SUM,Sales),(∆prev ,Year)〉 means that we analyze the incremen-
tal sales between successive years. As shown in Figure 14(a), the
incremental sales falls with year. In contrast, the raw aggregation
result in Figure 14(b) only shows a rising trend, but it is not as infor-
mative as the above insight. We elaborate the details in Appendix
F.

Figure 15(a) refers to the top-1 point insight (outstanding Last)
in Table 5(d). Its SG(〈 *,· · · ,* 〉,Year) means we compare tablet
sales by year. Its Ce = 〈(SUM,Sales), (∆prev , Year), (∆avg ,
Year)〉 means we analyze the incremental sales of each year over
the average of incremental sales among all years. Figure 15(b)
shows that 07/2012 is the “outstanding last” when compared with
the other years. On the other hand, the raw aggregation results in
Figure 15(b) do not reveal the above insight.

0

1e+5

2e+5

3e+5

4e+5

04/2011 07/2011 10/2011 01/2012 04/2012

D
e
ri
v
e
d
 m

e
a
s
u
re

 M
2

Year

0.6

0.8

1.0

1.2

1.4

1.6

01/2011 04/2011 07/2011 10/2011 01/2012 04/2012

S
U

M
 (

X
 1

0
6
)

Year

(a) insight: falling trend (b) raw aggregation result

Figure 14: Tablet sales shape insight: SG(〈∗, · · · , ∗〉, Year)

-4e+5

-2e+5

0

2e+5

04/2011 07/2011 10/2011 01/2012 04/2012 07/2012

D
e
ri
v
e
d
 m

e
a
s
u
re

 M
3

Year

0.6

0.8

1.0

1.2

1.4

1.6

01/2011 04/2011 07/2011 10/2011 01/2012 04/2012 07/2012

S
U

M
 (

X
 1

0
6
)

Year

(a) Point Insight: Outstanding Last (b) raw aggregation result

Figure 15: Tablet sales point insight: SG(〈 *,· · · ,* 〉, Year)

8.2 Insight Utility Study
In this section, we assess the utility of our top-k insights by 6

domain experts from a leading IT company.

Intern dataset: This dataset is obtained from the University Rela-
tionship (UR) team of the above IT company from 2012 to 2016.
It contains 1,201 tuples. Each tuple (i.e., an intern) has 15 dimen-
sions. The domain sizes of dimensions are: Year (4), Group (50),
Name (1109), FullTime (2), Start Quarter (13), End Quarter (13),
Duration (4), Mentor (300), Nationality (16), Degree (3), Origin
(20), University (200), Department (813), Research Area (511),
Advisor (831). The aggregate function is COUNT in this study.

Study methodology: We first extract top-5 insights with depth-2
and depth-3 composite extractors, and illustrate these insights in
Table 9 in Appendix G. Due to confidential reasons from the data
provider, we anonymize some attributes by pseudo-values (e.g., A,
B, C, D).

In the following user study, we invite 3 UR managers and 3 data
analysts (from the above IT company) and call them the domain ex-
perts because they have conducted analysis on this dataset before.
We conduct one-on-one interviews with them, collect their com-
ments on our insights, and also ask them to rate the insights by the
following two metrics:

1. Usefulness: (from 1 to 5), a higher score indicates more use-
ful insight.

2. Difficulty: (from 1 to 5), a higher score indicates that the
insight is more difficult to obtain by using an existing data
analysis tool (i.e., Microsoft Excel PivotTable).

Results and Feedback: In these interviews, the domain experts
appreciate our top-k insights and find them to be quite useful. They
agreed that most of our insights are actionable. For example, the
UR team may take actions to improve the intern diversity from a
certain region, or further analyze the root cause of some unusual
quarter regarding the number of check-in and check-out interns.

We report the ratings of our top-5 insights by the domain expert
in Table 9. The average usefulness score of depth-2 insights and
depth-3 insights are 3.24 and 3.76, respectively. On the other hand,
the average difficulty score of depth-2 insights and depth-3 insights
are 2.88 and 4.12, respectively. In summary, the domain experts
agreed that depth-3 insights are more useful. However, these in-
sights are harder to summarize with their data analysis tool.

8.3 Human Effort Study
We measure the time taken by users to obtain our insights by

using other tools. Due to page limits, we place the details in Ap-
pendix H. In summary, users spend significant time compute our
insights (i.e., 29.2 minutes by SQL, 14.2 minutes by Microsoft Ex-
cel PivotTable), whereas our system takes just 0.17 seconds.

9. PERFORMANCE EVALUATION
We proceed to evaluate the performance of our solutions. We

conducted all experiments (with single thread) on a machine with
an Intel i7-3770 3.4GHz processor, 16GB of memory. We imple-
mented our three solutions in C#. We denote the baseline solution
(cf. Algorithm 1) for Extracting top-K Insights problem as EKI.
EKIO (cf. Algorithm 3 in Appendix E.1) applies all optimization
techniques in Section 6. EKISO (cf. Algorithm 6 in Appendix E.4)
applies techniques in Section 6 (optimizations) and Section 7 (com-
putation sharing).

We report the running time (i.e., wall clock time) of solutions in
our experiments. Before running experiments, we load the datasets
from disk to main memory. SUM is used as the aggregate function.
As discussed in Section 2.2, unless otherwise stated, the depth of
composite extractor τ is set to 2 or 3 by default.

First, we show the efficiency of our solutions on a real dataset.
Then, we investigate the efficiency and scalability of our solutions
on TPC-H data with respect to various parameters.

9.1 Real dataset: Tablet sales

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Top-k

EKI

EKIO

EKISO
 10

 100

 1000

 10000

 0 20 40 60 80 100

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Top-k

EKI

EKIO

EKISO

(a) at τ=2 (b) at τ=3

Figure 16: Runtime on tablet sales vs. result size k

Among the real datasets described in Section 8, we use only the
tablet sales dataset as it is much larger than the car sales and intern
dataset. In Figure 16, we vary the result size k and report the run-
ning time of solutions on the tablet sales dataset. EKIO performs

better than EKI by 10 times, implying the power of our proposed
sibling cube and optimization techniques. Since EKISO employs
computation sharing techniques, it further outperforms EKIO by an
order of magnitude.

9.2 TPC-H dataset
TPC-H11 data: By default, we generate TPC-H data with scale
factor set to 1. We extract the lineitem table, which contains
6,001,215 tuples and 16 dimensions. We use l_extendedprice
(ranging from 901.00 to 104949.50) as measure. We use
the following 6 dimensions; their domain sizes are as fol-
lows: l_shipdate(2526), l_discount(11), l_returnflag(3),
l_shipinstruct(7), l_shipmode(4) and l_linestates(2).

We then study the efficiency and scalability of our methods for
various parameters. The default parameter setting is: the number
of tuples N=1,000,000, the depth of composite extractor τ=2, the
result size k=10, and the number of dimensions d=6.

Effect of result k: Figure 17(a) compares the performance of our
solutions by varying k from 1 to 100. EKISO is two orders of
magnitude faster than EKI. It allows us to obtain the top-1, top-10,
top-100 results at 94s, 137s, 622s, respectively. Its running time
scales sub-linearly with k.

Effect of number of tuples N : Then we test the performance of
our solutions with respect toN . According to Figure 17(b), EKISO
outperforms EKI by at least two orders of magnitude. Their perfor-
mance gap widens as N increases. The running time of EKISO
also rises sub-linearly with N .

Effect of dimensions d: In Figure 17(c), we vary the number
of dimensions d from 2 to 10. In addition to the 6 dimensions
mentioned earlier, we include 4 more dimensions when d >
6: l_suppkey(1000) l_tax(9), l_linenumber(7) and l_quantity(50).
When d is small (≤ 4), we can obtain top-10 results in 1–2 min-
utes. At large values of d, the running time becomes high due to the
huge combinations of composite extractors and sibling groups. The
performance gap widens with d, and EKISO achieves three orders
of magnitude improvement over EKI at d=10.

Effect of depth τ : Next, we examine the performance of our so-
lutions with respect to the depth of composite extractor (from 2
to 4). As illustrated in Figure 17(d), the running time rises with
the depth because the number of possible composite extractors in-
creases rapidly with τ . EKISO again outperforms the other solu-
tions. We omitted EKI as it is too slow.

Effect of domain size: In this experiment, we vary the domain
size of the l_shipdate dimension and fix the domain size of other
dimensions. The default domain size of l_shipdate is 2562 values
(one per day). We obtain smaller domain sizes by changing the
granularity: 84 values (one per month), 7 values (one per year). As
displayed in Figure 17(e). EKISO is significantly faster than EKI.
EKISO and EKIO perform similarly at low and median domain
sizes because the total number of sibling groups is quite small.

Finally, we evaluate the space and running time overhead of our
sibling cube.

Space: Figure 17(f) displays the sibling cube size with respect to
the iceberg constraint minsup. The size of sibling cube ranges
from 87.6MB to 1.68MB. All of them can fit in main memory.

Running time breakdown: Figure 17(g) shows the breakdown of
the running time of EKISO. We vary the dimensionality d from 2
to 10. Observe that the sibling cube construction time and insight

11http://www.tpc.org/tpch/

 100

 1000

 10000

 100000

 0 20 40 60 80 100

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Top-k

EKI

EKIO

EKISO 10

 100

 1000

 10000

 100000

10K 100K 500K 1M 6M

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

of Tuples

EKI

EKIO

EKISO

 100

 1000

 10000

 100000

 2 4 6 8 10

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

of Dimensions

EKI

EKIO

EKISO
 100

 1000

 10000

 100000

2 3 4

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

τ

EKISO

EKIO

(a) vary result size k (b) vary number of tuples N (c) vary dimensionality d (d) vary depth τ

 1

 10

 100

 1000

 10000

 100000

High(2526) Median(86) Low(7)

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Domain size

EKI

EKIO

EKISO

 0

 20

 40

 60

 80

 100

0.1 1 2 3 4 5

S
ib

lin
g
 c

u
b
e
 s

iz
e
 (

M
B

)

minsup (%)

0

20

40

60

80

100

2 4 6 6 10

R
u
n
ti
m

e
 b

re
a
k
d
o
w

n
 (

%
)

of dimensions

Build-Cube

Measure-Sig.

Execute-Algo.

(e) vary domain size (f) cube size vs minsup (g) running time breakdown

Figure 17: Performance results on the TPC-H data

significance measurement time occupy only less than 5% of the
total running time.

10. RELATED WORK
Multiple research areas are relevant to our problem. In the fol-

lowing, we review the related work in each relevant area.

Top-k queries: Top-k queries have been extensively studied in
databases [16]. They require user to specify a ranking function
(or the weighting of attributes), and then return k result objects. In
contrast, our problem does not require any user parameter and our
results are insights rather than objects.

OLAP data cube: The OLAP data cube model [14] supports effi-
cient aggregation on a multi-dimensional dataset and allows users
to navigate the aggregation result by operations (e.g., slicing, dic-
ing, drill up/down). Efficient construction algorithms for data cubes
have also been studied [13, 8]. In our problem context, data cube
supports only aggregation but not the computation of extractors and
insights.

Advanced cubes have been proposed for other forms of analysis
beyond aggregation such as dominant relationship analysis [18],
statistical analysis [19], and ranking analysis [33, 34]. Neverthe-
less, these cubes cannot be readily applied to evaluate composite
extractors and insights in our problem. Thus, these existing OLAP
systems cannot be readily applied to evaluate composite extractors
and insights in our problem.

Subspace mining: The data mining community has developed
subspace mining techniques to discover interesting subspaces from
a dataset [22, 34]. Müller et al. [22] have studied various problems
on subspace mining analysis (e.g., subspace clustering, outlier min-
ing). However, the work in [22] has not considered the composite
extractor and insights in our paper. Wu et al. [34] studied how to
find the top-R subspaces with the highest ‘promotiveness’ values,
for a given query object specified by user. Our problem differs
from [34] in two ways. First, [34] requires a query object, while
our problem does not require any user input. Second, our proposed
composite extractors and insights have not been studied in [34].

Mining and learning-based techniques: Recent works [20, 2]
employ data mining techniques (e.g., outlier detection, cluster anal-
ysis) and machine learning techniques (e.g., inductive learning
[21]) on datasets to perform pattern discovery and predictive an-
alytics, respectively. Our problem differs from them in two as-

pects. First, we focus on the data warehousing setting, in which
users are more interested in computing aggregations on a fact ta-
ble. Our proposed insights can be considered as interesting obser-
vations derived from aggregation results in multiple steps. Second,
since existing algorithms in DM and ILP (e.g., outlier detection [4],
subgroups discovery [20]) are dedicated to the statistical modeling
of data or the prediction of future data, they cannot be adapted to
compute our top-k insights.

Exploratory analysis: The most relevant works in exploratory
analysis area are: Sarawagi et al. [25], Wu. et. al [34], ARcube
[33], IBM Cogons[1], and SEEDB [30]. We summarize the main
differences between these works and our proposal in Table 6, with
respect to four features, i.e., user input, top-k, result, and concepts.
Our proposal only requires the user to provide the number of results
(k), but the other works demand more input from the user, Thus,
our proposal is more user-friendly for non-expert users. Observe
that the result and concepts of our proposal are also significantly
different from those of the other works.

Data exploration: Data exploration is about efficiently extract-
ing knowledge from data [15]. In the database community, several
works have investigated efficient data exploration [23, 26, 12, 27].
We omit the discussion of these works and refer readers to the re-
cent overview paper [15]. Unlike these works, our insight extrac-
tion solution can return interesting insights to users automatically,
instead of letting the users determine whether it is interesting [31].

11. CONCLUSION AND FUTURE WORK
Conclusion: This paper investigates how to extract top-k insights
from multi-dimensional data. We proposed a systematic computa-
tion framework for this problem, and a suite of performance opti-
mization techniques (e.g., pruning, ordering, sibling cube and com-
putation sharing). Our effectiveness studies (e.g., case study, util-
ity study) have demonstrated that top-k insights reveal meaningful
observations on different real datasets. Our best solution EKISO
outperforms the baseline solution by several orders of magnitude.

Future work: This paper takes the first attempt to extract insights
hidden in the data. We want to pursue several promising directions
in the future to support both expert data analysts and non-expert ex-
ecutives or managers. First, we plan to incorporate user feedback in
insight extraction. Second, for massive datasets, we will investigate
how to extract insights efficiently in a distributed environment.

Approaches User input Top-k Result Concepts
Sarawagi. et. al [25] OLAP operations No anomalies precomputed expectations

Wu. et. al [34] promotion objectives, integer k Yes subspaces subspace ranking function
ARcube [33] aggregate queries, integer k Yes aggregate values materialized data cubes

IBM Cogons [1] OLAP operations No aggregate values traditional OLAP techniques
SEEDB [30] queries No visualization visualization and DBMS

Our paper integer k Yes insights composite extractor / ranking on insights

Table 6: Comparison with related works

Acknowledgements
Man Lung Yiu and Bo Tang were supported by grant GRF
152043/15E from the Hong Kong RGC. The authors would like
to thank the participants of our insight utility study, and the anony-
mous reviewers for their valuable comments.

12. REFERENCES
[1] Ibm cogons. https://goo.gl/6dYxLc.
[2] Ibm watson analytics. http://goo.gl/EK1nNU.
[3] Quick insights in microsoft power bi. https://goo.gl/xHwCLg.
[4] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional

data. In ACM Sigmod Record, 2001.
[5] C. Anderson. The long tail: Why the future of business is selling

more for less. Hyperion, 2008.
[6] N. Balakrishnan. Handbook of the logistic distribution. CRC Press,

2013.
[7] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core,

main-memory joins: Sort vs. hash revisited. PVLDB, 2013.
[8] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse

and iceberg cube. In SIGMOD Record, 1999.
[9] S. Chaudhuri. What next?: a half-dozen data management research

goals for big data and the cloud. In PODS, 2012.
[10] S. Chaudhuri, U. Dayal, and V. Narasayya. An overview of business

intelligence technology. Communications of the ACM, 2011.
[11] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman. Dynamic

faceted search for discovery-driven analysis. In CIKM, 2008.
[12] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.

Explore-by-example: An automatic query steering framework for
interactive data exploration. In SIGMOD, 2014.

[13] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D.
Ullman. Computing iceberg queries efficiently. In VLDB, 1999.

[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data Mining and Knowledge Discovery, 1997.

[15] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data
exploration techniques. In SIGMOD, 2015.

[16] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 2008.

[17] M. Krzywinski and N. Altman. Points of significance: Significance,
p values and t-tests. Nature methods, 2013.

[18] C. Li, B. C. Ooi, A. K. Tung, and S. Wang. Dada: a data cube for
dominant relationship analysis. In SIGMOD, 2006.

[19] X. Li, J. Han, Z. Yin, J.-G. Lee, and Y. Sun. Sampling cube: a
framework for statistical olap over sampling data. In SIGMOD, 2008.

[20] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov,
M. Vejdemo-Johansson, M. Alagappan, J. Carlsson, and G. Carlsson.
Extracting insights from the shape of complex data using topology.
Scientific Reports, 2013.

[21] R. S. Michalski. A theory and methodology of inductive learning. In
Machine learning. Springer, 1983.

[22] E. A. Müller. Efficient knowledge discovery in subspaces of high
dimensional databases. PhD thesis, RWTH Aachen University, 2010.

[23] S. Sarawagi. Explaining differences in multidimensional aggregates.
In VLDB, 1999.

[24] S. Sarawagi. User-adaptive exploration of multidimensional data. In
VLDB, 2000.

[25] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of olap data cubes. In EDBT, 1998.

[26] S. Sarawagi and G. Sathe. i3: intelligent, interactive investigation of
olap data cubes. In ACM SIGMOD Record, 2000.

[27] T. Sellam and M. L. Kersten. Meet charles, big data query advisor. In
CIDR, 2013.

[28] T. Sellam, E. Müller, and M. L. Kersten. Semi-automated exploration
of data warehouses. In CIKM, 2015.

[29] R. H. Shumway and D. S. Stoffer. Time series analysis and its
applications: with R examples. Springer Science & Business Media,
2010.

[30] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. SEEDB: efficient data-driven visualization
recommendations to support visual analytics. PVLDB, 2015.

[31] A. Wasay, M. Athanassoulis, and S. Idreos. Queriosity: Automated
data exploration. In IEEE Congress on Big Data, 2015.

[32] P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven
analytical processing. In SIGMOD, 2007.

[33] T. Wu, D. Xin, and J. Han. Arcube: supporting ranking aggregate
queries in partially materialized data cubes. In SIGMOD, 2008.

[34] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in
multi-dimensional space. PVLDB, 2009.

[35] D. Xin, J. Han, X. Li, Z. Shao, and B. W. Wah. Computing iceberg
cubes by top-down and bottom-up integration: The starcubing
approach. TKDE, 2007.

APPENDIX
A. COMPOSITION TAXONOMY

We give a well-defined composition closure to ensure the validity
of generated composite extractors, as shown in Table 7. The result
of extractors in the first column serves as the input of extractors in
the first row. ’X’ means a meaningful composition, ’7’ means a
meaningless composition.

ξ Rank % ∆avg ∆prev

Rank X 7 X X
% X 7 X X

∆avg X 7 X X
∆prev X 7 X X

Table 7: Composition taxonomy for adjacent extractors

Example: The composite extractor Ce = 〈SUM, (∆prev ,Year),
(Rank, Brand)〉 is valid according to Table 7. It corresponds to the
semantic that ranks the value of “difference from previous year”
across all brands in the dataset in Table 1. However, the composite
extractor Ce = 〈SUM, (Rank, Year), (%, Brand)〉 is invalid, be-
cause it does not make sense to calculate the percentage of ranking
positions.

B. VALIDITY

DEFINITION 7 (VALIDITY OF SG(S,Di) AND Ce). A sibling
group SG(S,Da) is a valid input for composite extractor Ce iff for
each pair (ξ,Dx) in Ce, Dx=Da or S[Dx] 6= ∗.

level Extractor

2 (%,Year)

1 (SUM, Sales)

<2010, F>

YY

<2014, F>

5Ö 5Ö ä/"

<2010, F> 15%

YY Y

<2014, F> 31%

Valid

Ûá�

Ûá�

Ûá 	

Ûá�

Invalid

5): ÛáÛ á�����;5): Ûá 	 á�	�;

Sibling group Sibling group

Composite extractor

Result set

Figure 18: Example of SG(S,Di) and Ce

Example: In Figure 18, a sibling group SG(〈*,F〉,Year) is valid for
the composite extractor Ce = 〈(SUM,Sales),(%,Year)〉), as the di-
mension ‘Year’ in Ce[2] has known values in every subspace Sc
of SG(〈*,F〉,Year). However, the sibling group SG(〈*,*〉,Brand) is
not valid for the same Ce because SG(〈*,*〉,Brand) does not have
known values in the dimension ‘Year’.

C. INSIGHT EVALUATION
We describe the significance evaluation procedure for each type

of insight in Table 8.
Figure 19 shows the significance value of the insight “outstand-

ing No.1” for two different pairs of (SG(S,Di), Ce). Figure 19(a)
shows that the highest bar is remarkably higher than other bars,
thus the significance value is high (0.96). In Figure 19(b), since the
highest bar is not much higher than other bars, the significance is
relatively low (0.36).

-0.5

0.0

0.5

1.0

1.5

F B G A V M T H

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2
 (

X
 1

0
6
)

Category:SUV

-1.5

0

1.5

3.0

2014 2013 2010 2012 2011

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

3

Year

(a) Sig = 0.97 (b) Sig = 0.36

Figure 19: The significance of outstanding No.1

As another example, we then illustrate the significance of shape
insights. In Figure 20(a), the derived measure increases quickly
from 01/2010 to 04/2011 (i.e., high slope), thus its significance is
high (0.99). However, in Figure 20(b), the derived measure rises
slowly, so its significance is low (0.31).

 0

 2

 4

 6

 8

01/2010 04/2010 07/2010 10/2010 01/2011 04/2011

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2

Year

Price:$100-$199

 2

 2.3

 2.6

01/2010 04/2010 07/2010 10/2010 01/2011 04/2011

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2

Year

Vendor:S

(a) Sig = 0.99 (b) Sig = 0.31

Figure 20: The significance of rising trend

D. CORRELATION INSIGHT
We first introduce the correlation insight, and then demonstrate

the top-2 correlation insights on a real dataset.

Correlation Insight: Given two sibling groups SG(Sa, Di) and
SG(Sb, Di) whereDi is an ordinal dimension, a positive / negative

correlated insight means that the series Sa.Mτ and Sb.Mτ exhibit
a positive / negatitve correlation with Di.

We denote the computation result of two sibling groups (i.e.,
SG(Sa, Di) and SG(Sb, Di)) with composite extractor Ce as two
time series X and Y . Generally, data analysts are interested in
positive / negative correlated time series. Thus, we set the null hy-
pothesis of correlated insight as:

H0 : the Pearson correlation ρ (X ,Y) ≈ 0

The p-value reveals how surprisingly the correlation ρ(X ,Y) is
against the null hypothesis H0, with the correlation coefficient
following the Normal distribution N(µ, δ) [29], where µ = 0,
δ = 0.05. Thus, the p-value of the correlation of two time series
can be calculated by Pr(ρ(X ,Y)|N(µ, δ)).

15%

18%

21%

24%

27%

2010 2011 2012 2013 2014

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2

Year

ALL T

15%

18%

21%

24%

27%

2010 2011 2012 2013 2014

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2

Year

ALL Subcompact

(a) Positive correlated (b) Negative correlated
SG({ * }, Year) with SG({ * }, Year) with

SG({T}, Year) SG({Subcompact}, Year)

Figure 21: Correlation insights in Tablet sales

We compute some correlation insights on the car sales dataset,
and then discuss about them briefly. The top-2 correlation insights
of car sales dataset are visualized in Figures 21(a) and (b). Fig-
ure 21(a) reveals the percentage of brand T’s sales is positively
correlated to the percentage of the entire car market from 2010
to 2014. However, the percentage of Subcompact’s (i.e., Cate-
gory=Subcompact) sales is negatively correlated to the percentage
of the entire car market from 2010 to 2014, as shown in Figure
21(b).

E. ALGORITHMS

E.1 Algorithm EKIO
Algorithm 3 is an optimized version of Algorithm 1 (cf. Sec-

tion 5.1) that incorporates all optimization techniques in the above
subsections. We employ a pruning technique (cf. Section 6.1) at
Line 6. We apply loop ordering techniques (cf. Section 6.2) at
Lines 3 and 10. Also, we construct an sibling cube SIBCUBE (cf.
Section 6.3) at Line 2, and then use it at Lines 7 and 9–10. At
Line 12, we store the value ofM, obtained at Line 10, in S

′
.SUM.

When the recursive call requires SUM(S
′
), it can access S

′
.SUM

immediately.

E.2 Sharing within a Sibling Group
Algorithm 4 applies Lemma 3 (cf. Section 7.1) to accelerate the

computation of Ce on SG(S,Di). First, we check the condition
in Lemma 3. If it is not satisfied, we revert back to calling Algo-
rithm 2. Otherwise, we invoke the function ‘RecurExtractII’ to
compute an intermediate result set Φτ (Line 6) and then reuse it to
obtain the derived measure for each subspace in SG(S,Di).

Note that ‘RecurExtractII’ returns a pair (M ′,Φlevel), where
Φlevel is the intermediate result set for computing the derived mea-
sure M ′ of subspace S′. Actually we only need Φlevel at level τ
and only M ′ at other levels.

Insight types Description & Significance definition
Point Insight: Given a group of numerical values X = {x1, x2, ..., xn},

outstanding No.1 the significance of the biggest value xmax being Outstanding No. 1 of X is defined by
the p-value against the null hypothesis H0: X follows a power-law distribution.

Significance i) sort X in descending order;
calculation: ii) conduct regression analysis for the values X \ xmax using power-law function α · i−β , where i is index
p-value of iii) use residuals in regression analysis to train a Gaussian model N(µ, δ);

outstanding No.1 iv) obtain the residual εmax by x̂max − xmax
v) calculate the p-value by P (ε > εmax|N(µ, δ)).
vi) compute the significance of xmax by 1− P (ε > εmax|N(µ, δ))

outstanding Last Replace xmax ∈ X by xmin ∈ X , and the significance calculation is the same as Outstanding No.1
Example cf. Figure 19

Shape Insight: A time series has an remarkable trend (increase/decrease) with a certain turbulence level (steadily/with turbulence).
trend For a time series X = 〈x1, x2, ..., xn〉, the trend insight reflects a relatively sustained trend of Xi.

The significance of shape insight is defined by the p-value against the null hypothesis H0 : X forms a shape with slope ≈ 0
Significance i) fit X to a line by linear regression analysis and obtain goodness-of-fit value r2.
calculation: ii) compute the slope of the X ’s fitted line

trend iii) employ a logistic distribution to capture the distributions of slope L(µ, λ), µ = 0.2 and λ = 2
significance iv) calculate the p-value by P (s > |slope||L(µ, δ))

v) compute the significance of X by r2 · (1− P (s > |slope||L(µ, δ)))
Example cf. Figure 20

Table 8: Insights categories and evaluation procedures

Algorithm 3 Insights+Optimized (dataset R(D,M), depth τ ,
result size k)
1: run Lines 1–3 in Alg. 1
2: construct an sibling cube SIBCUBE . Sec. 6.3
3: sort Di ∈ D by ascending domain size . Sec. 6.2
4: run Lines 4–8 in Alg. 1 . call the function below

Function: EnumerateInsightI (S, Di, Ce):
5: if isValid(SG(S,Di), Ce) then
6: if ubk ≤ SUB(SG(S,Di), Ce,T) then . Sec. 6.1
7: Φ← use SIBCUBE in ExtractΦ(SG(S,Di), Ce) . Alg. 2
8: run Lines 11–14 in Alg. 1
9: sorted list L← SIBCUBE[S ◦Di] . Sec. 6.3

10: for each value-measure pair (v,M) ∈ L do . Sec. 6.2
11: S

′ ← S, S
′
[Di]← v

12: S
′
.SUM←M . stored value of SUM(S

′
)

13: run Lines 17–18 in Alg. 1 . Line 18: EnumerateInsightI

Algorithm 4 ExtractΦII(SG(S,Di), Ce)
1: if Di 6= Ce[τ].Dx then . test for Lem. 3
2: Φ← ExtractΦ(SG(S,Di), Ce) . Alg. 2
3: else
4: initialize a result set Φ← ∅
5: S′ ← S, S′[Di]← dom(Di).first
6: (M ′,Φτ)← RecurExtractII(S′, τ, Ce)
7: for each value v ∈ dom(Di) do
8: S′ ← S, S′[Di]← v
9: M ′ ← derived S′.M ′ after applying Ce[τ] on Φτ

10: insert (S′,M ′) into Φ

11: return Φ

Function: RecurExtractII(Subspace S′, level, Ce):
12: initialize a result set Φlevel
13: Dξ ← Ce[level].Dx
14: if level > 2 then
15: for each value v in Dξ do
16: Sv ← S′, Sv [Dξ]← v
17: (M ′v ,Φtemp)← RecurExtractII(Sv , level− 1, Ce)
18: insert (Sv ,M ′v) into Φlevel
19: else
20: Φlevel ← SIBCUBE[S′ ◦Dξ] . Sec. 6.3
21: M ′ ← derived S′.M ′ by applying Ce[level] on Φlevel . Def. 3
22: return (M ′,Φlevel)

E.3 Sharing across Sibling Groups
To save computation cost, we need to detect the shared content

and reuse it, as depicted in Figure 10(b). We present Algorithm 5 to
integrate Algorithm 2 with a sharing technique (cf. Section 7.2). It
employs a hash table Ψ to store the derived measure S′.M ′ for sub-
space S′ that we have processed before (in other sibling groups). If
Ψ contains S′, we can retrieve its derived measure from Ψ imme-
diately. Otherwise, we need to compute the derived measure and
store it into Ψ.

Algorithm 5 ExtractΦIII(SG(S,Di), Ce, hash table Ψ)
1: initialize a result set Φ← ∅
2: for each value v in dom(Di) do
3: S′ ← S, S′[Di]← v
4: if Ψ contains S′ then
5: M ′ ← Ψ[S′] . get from Ψ
6: else
7: M ′ ← RecurExtract(S′, τ, Ce) . function in Alg. 2
8: Ψ[S′]←M ′ . store into Ψ

9: insert (S′,M ′) into Φ

10: return Φ

E.4 Algorithm EKISO
Algorithm 6 is an integrated version of Algorithm 3 (cf. Ap-

pendix E.1) that incorporates sharing computation techniques in
Section 7. We employ sharing within a sibling group (cf. Section
7.1) at Line 14. We apply sharing across sibling groups (cf. Section
7.2) at Line 12. Hash table Ψ will be flushed for each composite
extractor at Line 4.

F. TOP-2 INSIGHTS IN TABLET SALES
In this section, we discuss the two insights in Table 5(c). We

illustrate the significance of these two insights, i.e., SigShape(Φ1)
and SigShape(Φ2), in Figures 22(a) and (b), respectively.

The insight scores of top-1 and top-2 shape insights were com-
puted as Imp(SG(∗,Year) · SigShape(Φ1) = 1 · 0.96 = 0.96, and
Imp(SG({WiFi},Year) · SigShape(Φ2) = 0.643 · 0.99 = 0.64, re-
spectively. The top-1 and top-2 shape insights have similar signifi-
cance scores (i.e., 0.96 and 0.99). However, the top-1 shape insight
is applicable to the entire tablet market (i.e., Imp(SG(∗,Year) =

Usefulness Difficulty SG(S,Di) Composite Extractor Ce
2.8 2.6 SG({*}, End Quarter) 〈(COUNT),(∆Prev , EndQuarter)〉
Top-1 Insight We consider the increase of check-out interns in each quarter with the previous quarter. The largest increase happens in 2016Q2.
2.6 2.2 SG({3 months}, Nationality) 〈(COUNT),(∆avg , Duration)〉
Top-2 Insight The internship duration of interns from Country B is always 3 months.
3.6 3.6 SG({6 months}, Start Quarter) 〈(COUNT),(∆Prev , StartQuarter)〉
Top-3 Insight Consider the increase of check-in interns whose internship duration is 6 months among successive start quarters. The largest increase happens in 2015Q1.
3.6 3.0 SG({PhD}, Nationality) 〈(COUNT),(∆avg , Degree)〉
Top-4 Insight Consider all interns from Country A. The number of PhD interns is obviously higher than the number of interns with other degrees.
3.6 3.0 SG({Undergraduate}, Year) 〈(COUNT),(Rank, Degree)〉
Top-5 Insight Regarding the rank (i.e., rank by the number of interns) of each degree among all years, the rank of undergraduates is the lowest in 2013.

(a) Top-5 insights from Intern Dataset with τ = 2

3.8 3.6 SG({PhD}, Year) 〈(COUNT),(%, Year), (∆avg , Degree)〉
Top-1 Insight Consider the percentage of interns in each year by their degrees. The percentage of PhD interns is the highest in 2014.
3.4 4.4 SG({2015Q2}, Group) 〈(COUNT),(%, Group), (∆avg , EndQuarter)〉
Top-2 Insight Group A at 2015Q2 is the best in terms of the percentage of check-out interns among all quarters.
3.4 4.4 SG({2016Q1}, Group) 〈(COUNT),(%, Group), (∆prev , StartQuarter)〉
Top-3 Insight Group B at 2016Q1 is the best in terms of the increased percentage of check-in interns among all successive quarters.
4.4 4.0 SG({University H}, Group) 〈(COUNT),(%, Group), (∆avg , University)〉
Top-4 Insight Group C is the most favorite group among all research groups for the interns from University H.
3.8 4.2 SG({2014Q3}, Group) 〈(COUNT),(%, Group), (∆avg , EndQuarter)〉
Top-5 Insight Group D at 2014Q3 is the worst in terms of the percentage of check-out interns among all quarters.

(b) Top-5 insights from Intern Dataset with τ = 3

Table 9: User study result on the intern dataset with COUNT

Algorithm 6 Insights+Sharing+Optimized (dataset R(D,M),
depth τ , result size k)
1: create a hash table Ψ
2: run Lines 1–3 in Alg. 3
3: for each Ce ∈ O do
4: clear Ψ
5: for i := 1 to d do
6: initialize subspace S ← 〈∗, ∗, · · · , ∗〉
7: EnumerateInsightIII(S,Di, Ce,Ψ)
8: returnH

Function: EnumerateInsightIII (S, Di, Ce, Ψ):
9: if isValid (SG(S,Di), Ce) then

10: if ubk ≤ SUB(SG(S,Di), Ce,T) then
11: if Di 6= Ce[τ].Dx then
12: ExtractΦIII(SG(S,Di), Ce,Ψ) . Alg. 5
13: else
14: ExtractΦII(SG(S,Di), Ce) . Alg. 4
15: run Line 8 in Alg. 3
16: run Lines 9–13 in Alg. 3 . Line 13: EnumerateInsightIII

1), and the top-2 shape insight is only applicable to the sub-market
for WIFI tablets (i.e., Imp(SG({WiFi},Year) = 0.643). Thus, the
interestingness score of the top-1 shape insight is higher than that
of the top-2 shape insight (i.e., 0.96 > 0.64).

0

1

2

3

4

04/2011 07/2011 10/2011 01/2012 04/2012

D
e
ri
v
e
d
 m

e
a
s
u
re

 M
2
 (

X
 1

0
5
)

Year

-3

-2

-1

0

1

2

3

04/2011 07/2011 10/2011 01/2012 04/2012

D
e
ri
v
e
d
 m

e
a
s
u
re

 M
2
 (

X
 1

0
5
)

Year

(a) SigShape(Φ1)=0.96 (b) SigShape(Φ2) =0.99

Figure 22: Significances of top-2 insights in Tablet sales

G. INSIGHT UTILITY STUDY
Tables 9(a) and (b) illustrate the top-5 insights extracted from

the intern dataset with depth-2 and depth-3 composite extractors,

respectively. Each insight has five attributes: usefulness score, dif-
ficulty score, sibling group, composite extractor, and its meaning in
English. We conducted one-on-one interviews with 6 domain ex-
perts (i.e., managers, data analysts) from the leading IT company.
In these interviews, we provided the last three attributes to them in
a questionnaire, and then asked them to rate the insights by useful-
ness and difficulty. We reported the average ratings in Table 9.

H. HUMAN EFFORT STUDY
In this section, we measure the time taken by users to obtain our

insights by using two existing tools: (i) SQL queries, (ii) Microsoft
Excel PivotTable. Observe that these tools cannot be readily ap-
plied to extract our top-k insights. Nevertheless, we can provide
users with a sibling group SG and a composite extractor Ce, then
ask users to compute the result of applying Ce on SG.

In this study, we invited 4 senior database researchers, who are
proficient in SQL queries and familiar with Microsoft Excel Pivot-
Table (i.e., a data analysis tool). To make this study manageable,
we chose the top-3 insights obtained from car sales with depth-2
composite extractors. This car sales dataset and the depth of com-
posite extractor (i.e., τ = 2) were chosen because it is smallest and
simple for human effort study. We provided the participants with
the sibling groups and composite extractors of those insights, and
then asked them to compute the result in each case by two methods:
(i) SQL queries and (ii) Microsoft Excel PivotTable, respectively.
For each participant, we measure the total time of computing all
three insights by using SQL queries and Microsoft Excel Pivot-
Table, respectively. We exclude the time of loading data into the
database and Excel files.

Given information Analysis tool User 1 User 2 User 3 User 4

(SG,Ce) pairs SQL Query 20.2 23.4 34.7 38.5
Excel PivotTable 12.6 10.8 17.3 16.1

Table 10: Study on human effort (in minutes)

We reported the time taken in Table 10. On overage, the partici-
pants spent 29.2 minutes with SQL queries and 14.2 minutes with
Microsoft Excel PivotTable to complete the above task. In contrast,
our system just takes 0.17 seconds to compute the top-3 insights.

