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Abstract. In this paper, we present a simple yet fast and robust algorithm which
exploits the dense spatio-temporal context for visual tracking. Our approach for-
mulates the spatio-temporal relationships between the object of interest and its
locally dense contexts in a Bayesian framework, which models the statistical cor-
relation between the simple low-level features (i.e., image intensity and position)
from the target and its surrounding regions. The tracking problem is then posed
by computing a confidence map which takes into account the prior information
of the target location and thereby alleviates target location ambiguity effectively.
We further propose a novel explicit scale adaptation scheme, which is able to deal
with target scale variations efficiently and effectively. The Fast Fourier Trans-
form (FFT) is adopted for fast learning and detection in this work, which only
needs 4 FFT operations. Implemented in MATLAB without code optimization,
the proposed tracker runs at 350 frames per second on an i7 machine. Extensive
experimental results show that the proposed algorithm performs favorably against
state-of-the-art methods in terms of efficiency, accuracy and robustness.

1 Introduction

Visual tracking is one of the most active research topics due to its wide range of applica-
tions such as motion analysis, activity recognition, surveillance, and human-computer
interaction, to name a few [29]. The main challenge for robust visual tracking is to han-
dle large appearance changes of the target object and the background over time due to
occlusion, illumination changes, and pose variation. Numerous algorithms have been
proposed with focus on effective appearance models, which are based on the target ap-
pearance [8,1,28,22,17,18,19,23,21,31] or the difference between appearances of the
target and its local background [11,16,14,2,30,15]. However, if the appearances are de-
graded severely, there does not exist enough information extracted for robustly tracking
the target, whereas its existing scene can provide useful context information to help
localizing it.

In visual tracking, a local context consists of a target object and its immediate sur-
rounding background within a determined region (see the regions inside the red rect-
angles in Figure 1). Most of local contexts remain unchanged as changes between two
consecutive frames can be reasonably assumed to be smooth as the time interval is usu-
ally small (30 frames per second (FPS)). Therefore, there exists a strong spatio-temporal
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Fig. 1. The proposed method handles heavy occlusion well by learning dense spatio-temporal
context information. Note that the region inside the red rectangle is the context region which
includes the target and its surrounding background. Left: although the target appearance changes
much due to heavy occlusion, the spatial relationship between the object center (denoted by solid
yellow circle) and most of its surrounding locations in the context region is almost unchanged.
Middle: the learned spatio-temporal context model (some regions have similar values which show
the corresponding regions in the left frames have similar spatial relations to the target center.).
Right: the learned confidence map.

relationship between the local scenes containing the object in consecutive frames. For
instance, the target in Figure 1 undergoes heavy occlusion which makes the object ap-
pearance change significantly. However, the local context containing the object does not
change much as the overall appearance remains similar and only a small part of the con-
text region is occluded. Thus, the presence of local context in the current frame helps
to predict the object location in the next frame. This temporally proximal information
in consecutive frames is the temporal context which has been recently applied to object
detection [10]. Furthermore, the spatial relation between an object and its local context
provides specific information about the configuration of a scene (see middle column in
Figure 1) which helps to discriminate the target from background when its appearance
changes much.

2 Related Works

Most tracking algorithms can be categorized as either generative [22,17,18,19,23,21,31]
or discriminative [11,16,14,2,30,15] based on their appearance models. A generative
tracking method learns an appearance model to represent the target and searches for
image regions with best matching scores as the results. While it is critical to construct
an effective appearance model in order to handle various challenging factors in track-
ing, the involved computational complexity is often increased at the same time. Further-
more, generative methods discard useful information surrounding target regions that can
be exploited to better separate objects from backgrounds. Discriminative methods treat
tracking as a binary classification problem with local search which estimates decision
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Fig. 2. Basic flow of our tracking algorithm. The local context regions are inside the red rectangles
while the target locations are indicated by the yellow rectangles. FFT denotes the Fast Fourier
Transform and IFFT is the inverse FFT.

boundary between an object image patch and the background. However, the objective
of classification is to predict instance labels which is different from the goal of track-
ing to estimate object locations [14]. Moreover, while some efficient feature extraction
techniques (e.g., integral image [11,16,14,2,30] and random projection [30]) have been
proposed for visual tracking, there often exist a large number of samples from which
features need to be extracted for classification, thereby entailing computationally ex-
pensive operations. Generally speaking, both generative and discriminative tracking al-
gorithms make trade-offs between effectiveness and efficiency of an appearance model.
Notwithstanding much progress has been made in recent years, it remains a challenging
task to develop an efficient and robust tracking algorithm.

Recently, several methods [27,13,9,25] exploit context information to facilitate vi-
sual tracking via mining the information of regions with consistent motion correlations
to the target object. In [27], a data mining method is used to extract segmented regions
surrounding the object as auxiliary objects for collaborative tracking. To find consis-
tent regions, key points surrounding the object are first extracted to help locating the
object position in [13,9,25]. The SIFT or SURF descriptors are then used to represent
these consistent regions. However, computationally expensive operations are required
in representing and finding consistent regions. Furthermore, due to the sparsity natures
of key points and auxiliary objects, some consistent regions that are useful for locat-
ing the object position may be discarded. In contrast, the proposed algorithm does not
have these problems because all the local regions surrounding the object are considered
as the potentially consistent regions, and the motion correlations between the objects
and its local contexts in consecutive frames are learned by the spatio-temporal context
model that is efficiently computed by FFT.
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Fig. 3. Graphical model representation of spatial relationship between object and its dense local
context. The dense local context region Ωc is inside the red rectangle which includes object
region surrounding by the yellow rectangle centering at the tracked result x?. The context feature
at location z is denoted by c(z) = (I(z), z) including a low-level appearance representation (i.e.,
image intensity I(z)) and location information.

In this paper, we propose a fast and robust tracking algorithm which exploits dense
spatio-temporal context information. Figure 2 illustrates the basic flow of our algorithm.
First, we learn a spatial context model between the target object and its local surround-
ing background based on their spatial correlations in a scene by solving a deconvolution
problem. Next, the learned spatial context model is used to update a spatio-temporal
context model for the next frame. Tracking in the next frame is formulated by comput-
ing a confidence map as a convolution problem that integrates the dense spatio-temporal
context information, and the best object location can be estimated by maximizing the
confidence map (See Figure 2 (b)). Finally, based on the estimated confidence map,
a novel explicit scale adaptation scheme is presented, which renders an efficient and
accurate tracking result.

The key contributions of the proposed algorithm are summarized as follows:

– To the best of our knowledge, it is the first work to use dense context information
for visual tracking and achieves fast and robust results.

– We propose a novel explicit scale update scheme to deal with the scale variations
of the target efficiently and effectively.

– The proposed algorithm is simple and fast that needs only 4 FFTs at 350 FPS in
MATLAB.

– The proposed algorithm has the merits of both generative and discriminative meth-
ods. On the one hand, the context includes target and its neighbor background,
thereby making our method have the merits of discriminative models. On the other
hand, the context is a whole of target and background, rendering our method the
merits of generative models.

3 Problem Formulation

The tracking problem is formulated by computing a confidence map which estimates
the object location likelihood:

m(x) = P (x|o), (1)
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Fig. 4. Illustration of the characteristic of the non-radially symmetric function hsc(·) in (3). Here,
the left eye is the tracked target denoted by xl whose context is inside the green rectangle while
xr represents the right eye which is a distractor with context inside the blue rectangle. Although
z has similar distance to xl and xr , their spatial relationships are different (i.e., hsc(xl − z) 6=
hsc(xr − z)), and this helps discriminating xl from xr .

where x ∈ R2 is an object location and o denotes the object present in the scene. (1)
is equal to the posterior probability P (o|x) because we use uniform prior P (o) for the
target presence for simplicity. In the following, the spatial context information is used
to estimate (1) and Figure 3 shows its graphical model representation.

In Figure 3, the object location x? (i.e., coordinate of the tracked object center) is
tracked. The context feature set is defined as Xc = {c(z) = (I(z), z)|z ∈ Ωc(x?)}
where I(z) denotes image intensity at location z and Ωc(x?) is the neighborhood of lo-
cation x? that is twice the size of the target object. By marginalizing the joint probability
P (x, c(z)|o), the object location likelihood function in (1) can be computed by

m(x) = P (x|o)
=
∑

c(z)∈Xc P (x, c(z)|o)

=
∑

c(z)∈Xc P (x|c(z), o)P (c(z)|o),
(2)

where the conditional probability P (x|c(z), o) models the spatial relationship between
the object location and its context information which helps to resolve ambiguities when
the degraded image measurements allow different interpretations, and P (c(z)|o) is a
context prior probability which models appearance of the local context. The main task
in this work is to learn P (x|c(z), o) as it bridges the gap between object location and its
spatial context.

3.1 Spatial Context Model

The conditional probability function P (x|c(z), o) in (2) is defined as

P (x|c(z), o) = hsc(x− z), (3)

where hsc(x−z) is a function (see Figure 4 and Section 3.4) with respect to the relative
distance and direction between object location x and its local context location z, thereby
encoding the spatial relationship between an object and its spatial context.
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Note that hsc(x − z) is not a radially symmetric function (i.e., hsc(x − z) 6=
hsc(|x − z|)), and takes into account different spatial relationships between an object
and its local contexts. This helps to resolve ambiguities when similar objects appear in
close proximity. For example, when a method tracks an eye based only on appearance
(denoted by xl) in the davidindoor sequence shown in Figure 4, the tracker may be
easily distracted to the right one (denoted by xr) because both eyes and their surround-
ing backgrounds have similar appearances (when the object moves fast and the search
region is large). However, in the proposed method, while the locations of both eyes are
at similar distances to location z, their relative locations to z are different, resulting in
different spatial relationships, i.e., hsc(xl − z) 6= hsc(xr − z). That is, the non-radially
symmetric function hsc helps to resolve ambiguities effectively.

3.2 Context Prior Model

In (2), the context prior probability is related to the context appearance which is simply
modeled by

P (c(z)|o) = I(z)wσ(z− x?), (4)

where I(·) is image intensity that represents appearance of context and wσ(·) is a Gaus-
sian weighted function defined by

wσ(z− x?) = ae−
|z−x?|2

σ2 , (5)

where a is a normalization constant that restricts P (c(z)|o) in (4) to range from 0 to 1
that satisfies the definition of probability and σ is a scale parameter.

In (4), it models focus of attention that is motivated by the biological visual system
which concentrates on certain image regions requiring detailed analysis [24]. The closer
the context location z is to the currently tracked target location x?, the more important
it is to predict the object location in the coming frame, and larger weight should be set
(please refer to Figure 2 (a)). Different from our algorithm that uses a spatially weighted
function to indicate the importance of context at different locations, there exist other
methods [3,26] in which spatial sampling techniques are used to focus more detailed
contexts at the locations near the object center (i.e., the closer the location is to the
object center, the more context locations are sampled).

3.3 Confidence Map

The confidence map of an object location is modeled as

m(x) = P (x|o) = be−|
x−x?
α |

β

, (6)

where b is a normalization constant, α is a scale parameter and β is a shape parameter
(please refer to Figure 5).

The confidence map m(x) in (6) takes into account the prior information of the
target location which is able to handle the location ambiguity problem effectively. The
object location ambiguity problem often occurs in visual tracking which adversely af-
fects tracking performance. In [2], a multiple instance learning technique is adopted to



Fast Visual Tracking via Dense Spatio-Temporal Context Learning 7

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
x 10

−4

 

 

β=0.5
β=1
β=1.5
β=2

Fig. 5. Illustration of 1-D cross section of the confidence map m(x) in (6) with different parame-
ters β. Here, the object location x? = (100, 100).

handle the location ambiguity problem with favorable tracking results. The closer the
location is to the currently tracked position, the larger probability that the ambiguity
occurs with (e.g., predicted object locations that differ by a few pixels are all plausi-
ble solutions and thereby cause ambiguities). In our method, we resolve the location
ambiguity problem by choosing a proper shape parameter β. As illustrated in Figure 5,
a large β (e.g., β = 2) results in an oversmoothing effect for the confidence value at
locations near to the object center, failing to effectively reduce location ambiguities. On
the other hand, a small β (e.g., β = 0.5) yields a sharp peak near the object center, and
activates much fewer positions when learning the spatial context model. This in turn
may lead to overfitting in searching for the object location in the coming frame. We find
that robust results can be obtained when β = 1 in our experiments.

3.4 Fast Learning Spatial Context Model

Based on the confidence map function (6) and the context prior model (4), our objective
is to learn the spatial context model (3). Putting (6), (4) and (3) together, we formulate
(2) as

m(x) = be−|
x−x?
α |

β

=
∑

z∈Ωc(x?) h
sc(x− z)I(z)wσ(z− x?)

= hsc(x)⊗ (I(x)wσ(x− x?)),

(7)

where ⊗ denotes the convolution operator.
We note (7) can be transformed to the frequency domain in which the Fast Fourier

Transform (FFT) algorithm [20] can be used for fast convolution. That is,

F(be−|
x−x?
α |

β

) = F(hsc(x))�F(I(x)wσ(x− x?)), (8)

where F denotes the FFT function and � is the element-wise product. Therefore, we
have

hsc(x) = F−1
(

F(be−| x−x?
α |

β

)

F(I(x)wσ(x− x?))

)
, (9)
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where F−1 denotes the inverse FFT function. The spatial context model hsc learns
the relatively spatial relations between different pixels (please refer to Figure 4 and
Section 3.1) in a Bayesian framework.

4 Proposed Tracking Algorithm

Figure 2 shows the basic flow of our algorithm. The tracking problem is formulated as a
detection task. We assume that the target location in the first frame has been initialized
manually or by some object detection algorithms. At the t-th frame, we learn the spatial
context model hsct (x) (9), which is used to update the spatio-temporal context model
Hstc
t+1(x) (12) to reduce noise introduced by target appearance variations. Hstc

t+1 is then
applied to detect the object location in the (t+1)-th frame. When the (t+1)-th frame
arrives, we crop out the local context region Ωc(x?t ) based on the tracked location x?t
at the t-th frame and construct the corresponding context feature set Xc

t+1 = {c(z) =
(It+1(z), z)|z ∈ Ωc(x?t )}. The object location x?t+1 in the (t+1)-th frame is determined
by maximizing the new confidence map

x?t+1 = argmax
x∈Ωc(x?t )

mt+1(x), (10)

where mt+1(x) is represented as

mt+1(x) = Hstc
t+1(x)⊗ (It+1(x)wσt(x− x?t )), (11)

which is deduced from (7) and can use FFT for fast convolution. Here, Hstc
t+1 derives

from the spatial context model hsct with a low-pass temporal filtering processing and
hence is able to reduce the noise introduced by abrupt appearance changes of It+1.

4.1 Update of Spatio-Temporal Context

The spatio-temporal context model is updated by

Hstc
t+1 = (1− ρ)Hstc

t + ρhsct , (12)

where ρ is a learning parameter and hsct is the spatial context model computed by (9)
at the t-th frame. We note (12) is a temporal filtering procedure which can be easily
observed in frequency domain

Hstc
ω = Fωh

sc
ω , (13)

where Hstc
ω ,

∫
Hstc
t e−jωtdt is the temporal Fourier transform of Hstc

t and similar to
hscω . The temporal filter Fω is formulated as

Fω =
ρ

ejω − (1− ρ)
, (14)

where j denotes imaginary unit. It is easy to validate that Fω in (14) is a low-pass
filter [20]. Therefore, our spatio-temporal context model is able to effectively filter out
image noise introduced by appearance variations, leading to more stable results.
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4.2 Update of Scale

According to (11), the target location in the current frame is found by maximizing the
confidence map derived from the weighted context region surrounding the previous
target location. However, the scale of the target often changes over time. Therefore, the
scale parameter σ in the weight function wσ (5) should be updated accordingly. We
propose the scale update scheme as

s′t =
√

mt(x?t )
mt−1(x?t−1)

,

st =
1
n

∑n
i=1 s

′
t−i,

st+1 = (1− λ)st + λst,
σt+1 = stσt,

(15)

where mt(·) is the confidence map at the t-th frame that is computed by (11), and s′t is
the estimated scale between two consecutive frames. To avoid oversensitive adaptation
and to reduce noise introduced by estimation error, the estimated target scale st+1 is
obtained through filtering in which st is the average of the estimated scales from n
consecutive frames, and λ > 0 is a fixed filter parameter (similar to ρ in (12)). The
derivation details of (15) can be found at http://www4.comp.polyu.edu.hk/
˜cslzhang/STC/STC.htm.

4.3 Analysis and Discussion

We note that the low computational complexity is one prime characteristic of the pro-
posed algorithm. In learning the spatial context model (9), since the confidence map
(11) and the scale updating (15) can be pre-computed only once before tracking, there
are only 4 FFT operations involved for processing one frame. The computational com-
plexity for computing each FFT is only O(MN log(MN)) for the local context region
ofM×N pixels, thereby resulting in a fast method (350 FPS in MATLAB on an i7 ma-
chine). More importantly, the proposed algorithm achieves robust results as discussed
bellow.

Difference with related work. It should be noted that the proposed dense spatio-
temporal context tracking algorithm is significantly different from recently proposed
approaches that use FFT for efficient computation [5,4,15].

In [5,4], the formulations are based on correlation filters that are directly obtained
by classic signal processing algorithms. At each frame, correlation filters are trained us-
ing a large number of samples, and then combined to find the most correlated position in
the next frame. In [15], the filters proposed by [5,4] are kernelized and used to achieve
more stable results. The proposed algorithm is significantly different from [5,4,15] in
several aspects. First, our algorithm models the spatio-temporal relationships between
the object and its local contexts which is motivated by the human visual system that
exploits context to help resolving ambiguities in complex scenes efficiently and effec-
tively. Second, our algorithm focuses on the regions which require detailed analysis,
thereby effectively reducing the adverse effects of background clutters and leading to
more robust results. Third, our algorithm handles the object location ambiguity prob-
lem using the confidence map with a proper prior distribution, thereby achieving more
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Fig. 6. Illustration of why the proposed model is equipped to handle distractor. The target inside
the yellow dotted rectangle is the distractor. The different surrounding contexts can well discrim-
inate target from distactor.

stable and accurate performance for visual tracking. Finally, our algorithm solves the
scale adaptation problem while the other FFT-based tracking methods [5,4,15] only
track objects with a fixed scale and achieve less accurate results than our method.

Robustness to occlusion and distractor. As shown in Figure 1, the proposed algorithm
handles heavy occlusion well as most of context regions are not occluded which have
similar relative spatial relations (see middle column of Figure 1) to the target center.
This helps to determine the target center. Figure 6 illustrates that our method is robust to
distractor (i.e., the bottom left object). If tracking the target only based on its appearance
information, the tracker will be distracted to the top right one because of their similar
appearances. Although the distractor has similar appearance to the target, most of their
surrounding contexts have different appearances which are useful to discriminate target
from distractor.

5 Experiments

We evaluate the proposed spatio-temporal context (STC) tracking algorithm using 18
video sequences with challenging factors including heavy occlusion, drastic illumina-
tion changes, pose and scale variation, non-rigid deformation, background cluster and
motion blur. We compare the proposed STC tracker with 18 state-of-the-art methods
in which the context tracker [9] and the FFT-based trackers [4,15] (i.e., ConT, MOS
and CST in Table 1) are included. For other context-based tracking methods [27,13,25],
their source codes are not available for evaluation and the implementations require some
technical details and parameters not discussed therein. The parameters of the proposed
algorithm are fixed for all the experiments. For other trackers, we use either the original
source or binary codes provided in which parameters of each tracker are tuned for best
results. The 18 trackers we compare with are: scale mean-shift (SMS) tracker [7], frag-
ment tracker (Frag) [1], semi-supervised Boosting tracker (SSB) [12], local orderless
tracker (LOT) [21], incremental visual tracking (IVT) method [22], online AdaBoost
tracker (OAB) [11], multiple instance learning tracker (MIL) [2], visual tracking de-
composition method (VTD) [17], L1 tracker (L1T) [19], tracking-learning-detection
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Table 1. Success rate (SR)(%). Red fonts indicate the best performance while the blue fonts
indicate the second best ones. The total number of evaluated frames is 7, 591.

Sequence SMS Frag SSB LOT IVT OAB MIL VTD L1T TLD DF MTT Struck ConT MOS CT CST LGT STC
animal 13 3 51 15 4 17 83 96 6 37 6 87 93 58 3 92 94 7 94

bird 33 64 13 5 78 94 10 9 44 42 94 10 48 26 11 8 47 89 65
bolt 58 41 18 89 15 1 92 3 2 1 2 2 8 6 25 94 39 74 98

cliffbar 5 24 24 26 47 66 71 53 24 62 26 55 44 43 6 95 93 81 98
chasing 72 77 62 20 82 71 65 70 72 76 70 95 85 53 61 79 96 95 97

car4 10 34 22 1 97 30 37 35 94 88 26 22 96 90 28 36 44 33 98
car11 1 1 19 32 54 14 48 25 46 67 78 59 18 47 85 36 48 16 86

cokecan 1 3 38 4 3 53 18 7 16 17 13 85 94 20 2 30 86 18 87
downhill 81 89 53 6 87 82 33 98 66 13 94 54 87 71 28 82 72 73 99

dollar 55 41 38 40 21 16 46 39 39 39 100 39 100 100 89 87 100 100 100
davidindoor 6 1 36 20 7 24 30 38 18 96 64 94 71 82 43 46 2 95 100

girl 7 70 49 91 64 68 28 68 56 79 59 71 97 74 3 27 43 51 98
jumping 2 34 81 22 100 82 100 87 13 76 12 100 18 100 6 100 100 5 100

mountainbike 14 13 82 71 100 99 18 100 61 26 35 100 98 25 55 89 100 74 100
ski 22 5 65 55 16 58 33 6 5 36 6 9 76 43 1 60 1 71 68

shaking 2 25 30 14 1 39 83 98 3 15 84 2 48 12 4 84 36 48 96
sylvester 70 34 67 61 45 66 77 33 40 89 33 68 81 84 6 77 84 85 78
woman 52 27 30 16 21 18 21 35 8 31 93 19 96 28 2 19 21 66 100

Average SR 35 35 45 35 49 49 52 49 40 62 53 59 75 62 26 62 60 68 94

(TLD) method [16], distribution field tracker (DF) [23], multi-task tracker (MTT) [31],
structured output tracker (Struck) [14], context tracker (ConT) [9], minimum output
sum of square error (MOS) tracker [4], compressive tracker (CT) [30], circulant struc-
ture tracker (CST) [15] and local-global tracker (LGT) [6]. For the trackers involving
randomness, we repeat the experiments 10 times on each sequence and report the aver-
aged results. Implemented in MATLAB, our tracker runs at 350 FPS on an i7 3.40 GHz
machine with 8 GB RAM. The MATLAB source codes are available at
http://www4.comp.polyu.edu.hk/˜cslzhang/STC/STC.htm.

5.1 Experimental Setup

The size of context region is initially set to twice the size of the target object. The
parameter σt of (15) is initially set to σ1 = sh+sw

2 , where sh and sw are height and
width of the initial tracking rectangle, respectively. The parameters of the map function
are set to α = 2.25 and β = 1. The learning parameter ρ = 0.075. We note that as
illustrated by Figure 2 (b), the weights from other frames are smaller than that from the
current observation no matter how small ρ is set. Thus, the current observation is the
most important one. The scale parameter st is initialized to s1 = 1, and the learning
parameter λ = 0.25. The number of frames for updating the scale is set to n = 5.
To reduce effects of illumination change, each intensity value in the context region is
normalized by subtracting the average intensity of that region. Then, the intensity in the
context region multiplies a Hamming window to reduce the frequency effect of image
boundary when using FFT [20,5].

5.2 Experimental Results

We use two evaluation criteria to quantitatively evaluate the 19 trackers: the center
location error (CLE) and success rate (SR), both computed based on the manually
labeled ground truth results of each frame. The score of success rate is defined as
score =

area(Rt
⋂
Rg)

area(Rt
⋃
Rg)

, where Rt is a tracked bounding box and Rg is the ground truth
bounding box, and the result of one frame is considered as a success if score > 0.5.
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Table 2. Center location error (CLE)(in pixels) and average frame per second (FPS). Red fonts
indicate the best performance while the blue fonts indicate the second best ones. The total number
of evaluated frames is 7, 591.

Sequence SMS Frag SSB LOT IVT OAB MIL VTD L1T TLD DF MTT Struck ConT MOS CT CST LGT STC
animal 78 100 25 70 146 62 32 17 122 125 252 17 19 76 281 18 16 166 15

bird 25 13 101 99 13 9 140 57 60 145 12 156 21 139 159 79 20 11 15
bolt 42 43 102 9 65 227 9 177 261 286 277 293 149 126 223 10 210 12 8

cliffbar 41 34 56 36 37 33 13 30 40 70 52 25 46 49 104 6 6 10 5
chasing 13 9 44 32 6 9 13 23 9 47 31 5 6 16 68 10 5 6 4

car4 144 56 104 177 14 109 63 127 16 13 92 158 9 11 117 63 44 47 11
car11 86 117 11 30 7 11 8 20 8 12 6 8 9 8 8 9 8 16 7

cokecan 60 70 15 46 64 11 18 68 40 29 30 10 7 36 53 16 9 32 6
downhill 14 11 102 226 22 12 117 9 35 255 10 77 10 62 116 12 129 12 8

dollar 55 56 66 66 23 28 23 65 65 72 3 71 18 5 12 20 5 4 2
davidindoor 176 103 45 100 281 43 33 40 86 13 27 11 20 22 78 28 149 12 8

girl 130 26 50 12 36 22 34 41 51 23 27 23 8 34 126 39 43 35 9
jumping 63 30 11 43 4 11 4 17 45 13 73 7 42 4 155 6 3 89 4

mountainbike 135 209 11 24 5 11 208 7 74 213 155 7 8 149 16 11 5 12 6
ski 91 134 10 12 51 11 15 179 161 222 147 33 8 78 386 11 237 13 12

shaking 224 55 133 90 134 22 11 5 72 232 11 115 23 191 194 11 21 33 10
sylvester 15 47 14 23 138 12 9 66 49 8 56 18 9 13 65 9 7 11 11
woman 49 118 86 131 112 120 119 110 148 108 12 169 4 55 176 122 160 23 5

Average CLE 79 63 54 70 84 43 43 58 62 78 52 80 19 42 103 29 54 22 8
Average FPS 12 7 11 0.7 33 22 38 5 1 28 13 1 20 15 200 90 120 8 350

Table 1 and Table 2 show the quantitative results in which the proposed STC tracker
achieves the best or second best performance in most sequences both in terms of center
location error and success rate. Furthermore, the proposed tracker is the most efficient
(350 FPS on average) algorithm among all evaluated methods. Although the CST [15]
and MOS [4] methods also use FFT for fast computation, the CST method performs
time-consuming kernel operations and the MOS tracker computes several correlation
filters in each frame, making these two approaches less efficient than the proposed al-
gorithm. Furthermore, both CST and MOS methods only track target with fixed scale,
which achieve less accurate results than the proposed method with scale adaptation.
Figure 7 shows some tracking results of different trackers. For presentation clarity, we
only show the results of the top 7 trackers in terms of average success rates. More re-
sults can be found in the paper website http://www4.comp.polyu.edu.hk/
˜cslzhang/STC/STC.htm.

Illumination, scale and pose variation. There are large illumination variations in the
evaluated sequences. The appearance of the target object in the car4 sequence changes
significantly due to the cast shadows and ambient lights (see #200,#250 in the car4 se-
quence shown in Figure 7). Only the models of IVT, L1T, Struck and STC adapt to these
illumination variations well. Likewise, only the VTD and our STC methods perform fa-
vorably on the shaking sequence because the object appearance changes drastically due
to the stage lights and sudden pose variations. The davidindoor sequence contain grad-
ual pose and scale variations as well as illumination changes. Note that most reported
results using this sequence are only on subsets of the available frames, i.e., not from
the very beginning of the davidindoor video when the target face is in nearly complete
darkness. In this work, the full sequence is used to better evaluate the performance of
all algorithms. Only the proposed algorithm is able to achieve favorable tracking re-
sults on this sequence in terms of both accuracy and success rate. This can be attributed
to the use of dense spatio-temporal context information which facilitates filtering out
noisy observations (as discussed in Section 4.1), enabling the proposed STC algorithm
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#20 #200 #250 #10 #330 #480

(a) car4 (b) davidindoor
#100 #120 #440 #130 #150 #230

(c) girl (d) woman
#50 #190 #290 #150 #200 #300

(e) cokecan (f) cliffbar

 

 

ConT TLD CST Struck CT LGT STC

Fig. 7. Screenshots of tracking results. More results and videos can be found in the supplementary
material.

to relocate the target when object appearance changes drastically due to illumination,
scale and pose variations.

Occlusion, rotation, and pose variation. The target objects in the woman, girl and bird
sequences are partially occluded at times. The object in the girl sequence also undergoes
in-plane rotation (See #100,#120 of the girl sequence in Figure 7) which makes the
tracking tasks difficult. Only the proposed algorithm is able to track the objects success-
fully in most frames of this sequence. The woman sequence has non-rigid deformation
and heavy occlusion (see #130,#150,#230 of the woman sequence in Figure 7) at
the same time. All the other trackers fail to successfully track the object except for the
Struck and the proposed STC algorithms. As most of the local contexts surrounding the
target objects are not occluded in these sequences, such information facilitates the pro-
posed algorithm relocating the object even they are almost fully occluded (as discussed
in Figure 1).

Background clutter and abrupt motion. In the animal, cokecan and cliffbar sequences,
the target objects undergo fast movements in the cluttered backgrounds. The target ob-
ject in the chasing sequence undergoes abrupt motion with 360 degree out-of-plane
rotation, and the proposed algorithm achieves the best performance in terms of both
success rate and center location error. The cokecan video contains a specular object
with in-plane rotation and heavy occlusion, which makes this tracking task difficult.
Only the Struck and the proposed STC methods are able to successfully track most of
the frames. In the cliffbar sequence, the texture in the background is very similar to
that of the target object. Most trackers drift to background except for CT, CST, LGT
and STC (see #300 of the cliffbar sequence in Figure 7). Although the target and its
local background have very similar texture, their spatial relationships and appearances
of local contexts are different which are used by the proposed algorithm when learning
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a confidence map (as discussed in Section 4.3). Hence, the proposed STC algorithm
is able to separate the target object from the background based on the dense spatio-
temporal context.

6 Conclusion

In this paper, we presented a simple yet fast and robust algorithm which exploits dense
spatio-temporal context information for visual tracking. Two local context models (i.e.,
spatial context and spatio-temporal context models) were proposed which are robust to
appearance variations introduced by occlusion, illumination changes, and pose varia-
tions. An explicit scale adaptation scheme was proposed which is able to adapt target
scale variations effectively. The Fast Fourier Transform algorithm was used in both on-
line learning and detection, resulting in an efficient tracking method that runs at 350
frames per second with MATLAB implementation. Numerous experiments with state-
of-the-art algorithms on challenging sequences demonstrated that the proposed algo-
rithm achieves favorable results in terms of accuracy, robustness, and speed.
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