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a b s t r a c t

This paper presents the concept of color space normalization (CSN) and two CSN techniques, i.e., the

within-color-component normalization technique (CSN-I) and the across-color-component normal-

ization technique (CSN-II), for enhancing the discriminating power of color spaces for face recognition.

Different color spaces usually display different discriminating power, and our experiments on a large

scale face recognition grand challenge (FRGC) problem reveal that the RGB and XYZ color spaces are

weaker than the I1I2I3, YUV, YIQ, and LSLM color spaces for face recognition. We therefore apply our CSN

techniques to normalize the weak color spaces, such as the RGB and the XYZ color spaces, the three

hybrid color spaces XGB, YRB and ZRG, and 10 randomly generated color spaces. Experiments using the

most challenging FRGC version 2 Experiment 4 with 12,776 training images, 16,028 controlled target

images, and 8,014 uncontrolled query images, show that the proposed CSN techniques can significantly

and consistently improve the discriminating power of the weak color spaces. Specifically, the

normalized RGB, XYZ, XGB, and ZRG color spaces are more effective than or as effective as the I1I2I3,

YUV, YIQ and LSLM color spaces for face recognition. The additional experiments using the AR database

validate the generalization of the proposed CSN techniques. We finally explain why the CSN techniques

can improve the recognition performance of color spaces from the color component correlation point of

view.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Color provides an important clue or useful feature for object
detection, tracking and recognition, image (or video) segmenta-
tion, indexing and retrieval, etc. [1–15]. Different color spaces (or
color models) possess different characteristics and are suitable for
different visual tasks. For instance, the HSV color space and the
YCbCr color space are effective for face detection [2,3], while the
modified L*u*v* color space is useful for image segmentation [7].
As a result, when applying color information, we should first
choose an appropriate color space, and such a choice is very
important for achieving the best result for a specific visual task
[15].

The RGB color space is a fundamental and widely used color
space, and other color spaces (or color models) are usually defined
by transformations of the RGB color space. The transformations
involved are either linear or nonlinear. The color spaces generated
via the nonlinear transformations (of the RGB color space), such as
ll rights reserved.

ng), chengjun.liu@njit.edu
the HSV and L*a*b* color spaces [16], generally associate with the
human vision system, while the color spaces determined by the
linear transformations, such as the YUV and YIQ color spaces [17],
usually associate with color display of some hardware (such as
television and color monitors) for adapting to human color-
response characteristics.

Although color has been demonstrated helpful for face
detection and tracking, some past research suggests that color
appears to confer no significant face recognition advantage
beyond the luminance information [18]. Recent research efforts,
however, reveal that color may provide useful information for
face recognition. The experimental results in [19] show that the
principal component analysis (PCA) method using color informa-
tion can improve the recognition rate compared to the same
method using only luminance information. The results in [20]
reveal that color cues do play a role in face recognition and their
contribution becomes evident when shape cues are degraded. The
results in [45] further demonstrate that color cues can signifi-
cantly improve recognition performance compared with inten-
sity-based features for coping with low-resolution face images.
Other research findings also demonstrate the effectiveness of
color for face recognition [21–28].
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Fig. 1. Illustration of three sets of color spaces.

J. Yang et al. / Pattern Recognition 43 (2010) 1454–1466 1455
Different color spaces derived from different transformations
of the RGB color space revealed different face recognition
performance. The YUV color space, for example, is shown more
effective than the RGB color space [19]. The YQCr color config-
uration (a hybrid color space), where the Y and Q color
components are from the YIQ color space and the Cr color
component is from the YCbCr color space, is more powerful than
the RGB, HSV and L*a*b* color spaces [23–25]. Another two hybrid
color spaces, RIQ [44], RQCr [45] are demonstrated effective
recently. Some color spaces generated by evolution algorithms
[43] and discriminant models [27,28] also turn out to be very
powerful. Current research findings showed that some linear color
spaces, which are derived by linear transformations from the RGB
color space, perform much better those derived by nonlinear
transformations from the RGB color space. We therefore focus on
linear color spaces in this paper. Rather than searching for a more
effective color space as the previous research [23–28,43–45], we
try to explore general ways for enhancing the performance of
conventional color spaces for face recognition.

This paper assesses the performance of different color spaces
using a large scale database, the Face Recognition Grand
Challenge (FRGC) version 2 database [29–31]. The assessment
results reveal that some color spaces, such as the RGB, XYZ, HSV
and L*a*b* color spaces [16], are relatively weak, whereas the
other color spaces, such as the I1I2I3 [32], YUV, YIQ and LSLM color
spaces [33], are relatively powerful in achieving good face
recognition performance. What characteristics make the I1I2I3,
YUV, YIQ and LSLM color spaces more powerful than the RGB and
XYZ color spaces for face recognition? By analyzing the transfor-
mation matrices of the I1I2I3, YUV, YIQ and LSLM colors spaces, we
find out that these matrices all share a common characteristic: the
sums of the elements in the second and third rows of the
transformation matrix are both zero. The RGB and XYZ color
spaces, however, do not have such a property. Inspired by the
finding of the difference of the transformation matrices between
the weak and powerful color spaces, we present the concept of
color space normalization (CSN) and develop two CSN techniques.
These CSN techniques normalize any color space that is derived
by a linear transformation of the RGB color space, so that the
normalized color space possesses the same properties as the
powerful color spaces do, i.e., the sums of the elements in the
second and third rows of the transformation matrix are both zero.
The proposed two CSN techniques are demonstrated to be very
effective: the normalized RGB and XYZ color spaces are as
powerful as or even more powerful than the I1I2I3, YUV, YIQ and
LSLM color spaces for face recognition.

The proposed CSN techniques, which are capable of converting
weak color spaces into powerful ones, provide us more flexibility
for color space selection for specific pattern recognition tasks.
Previous color space selection is limited to the set of conventional
color spaces or their hybrids. Specifically, we choose a powerful
color space by experiments from two sets of color spaces: one set
of conventional color spaces and one set of hybrid color spaces
that are generated by choosing some color components from the
conventional color spaces. The weak color spaces are simply left
behind due to their unsatisfactory performance. The proposed
color space normalization techniques, however, can convert the
weak color spaces into powerful ones, and these normalized color
spaces form a new set of color spaces, from which we might find a
more effective color space for a specific recognition task. The
three sets of color spaces are illustrated in Fig. 1.

The remainder of paper is organized as follows. Section 2
outlines some conventional color spaces. Section 3 presents
the concept of color space normalization (CSN) and two CSN
techniques. In Section 4, the proposed CSN techniques are
assessed using the face recognition grand challenge (FRGC)
database as well as the AR database, and the problem of why
the proposed CSN techniques can improve the face verification
and recognition performance is addressed. Finally, some conclu-
sions are offered in Section 5.
2. Conventional color spaces

A color space, generally associated with the definition of a
color model, is a means of uniquely specifying a color. There are a
number of color spaces in common usage depending on the
particular application involved. The RGB color model is an
additive model in which red, green, and blue are combined in
various ways to reproduce different colors. The RGB color space,
therefore, describes color by three components: red, green, and
blue. The RGB color space is a fundamental and commonly used
color space. Other color spaces can be calculated from the RGB
color space by means of either linear or nonlinear transforma-
tions. It is apparent that every color space derived by the linear
transformation of the RGB color space is uniquely determined by
the associated transformation matrix. In the following, we review
five color spaces derived from the RGB color space via linear
transformations.

The XYZ color space was derived from a series of experiments
in the study of the human perception by the International
Commission on Illumination (CIE) in 1931. The transformation
from the RGB color space to the XYZ color space is as follows [16]:

X
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Z

2
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3
75¼

0:607 0:174 0:201
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64

3
75 ð1Þ

The I1I2I3 color space was obtained through the decorrelation of
the RGB color components using the K–L transform by Ohta et al.
[32] in 1980. The transformation from the RGB color space to the
I1I2I3 color space is as follows:
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The YUV color space is defined in terms of one luminance (Y) and
two chrominance components (U and V), and it is used in the PAL
(phase alternating line), NTSC (National Television System
Committee), and SECAM (Séquentiel couleur �a mémoire) compo-
site color video standards [17]. The transformation from the RGB
color space to the YUV color space is as follows:
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The YIQ color space was formerly used in the National Tele-
vision System Committee (NTSC) television standard [17]. The
YIQ system, which is intended to take advantage of human
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color-response characteristics, and can be derived from the
corresponding RGB space as follows:
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Note that the I and Q components in the YIQ color space are
obtained via a clockwise rotation (331) of the U and V color
components in the YUV color space.

The LSLM color space is a linear transformation of the RGB
color space based on the opponent signals of the cones: black–
white, red–green, and yellow–blue. The LSLM color space is
defined as follows [33]:
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For a given color image, the color component images correspond-
ing to the six color spaces discussed in this section are illustrated
in Fig. 2.
3. Color space normalization: concept and techniques

Different color spaces usually display different discriminating
power, and our experiments on a large scale face recognition
grand challenge (FRGC) problem reveal that some color spaces,
such as the RGB and XYZ color spaces, are relatively weak,
whereas other color spaces, such as the I1I2I3, YUV, YIQ and LSLM
color spaces, are relatively powerful (for more details, please refer
to the experimental assessment in Section 4). What character-
istics make the I1I2I3 [32], YUV, YIQ and LSLM color spaces more
powerful than the RGB and XYZ color spaces for recognition? By
analyzing the transformation matrices of the I1I2I3, YUV, YIQ and
LSLM colors spaces, we find out that these matrices all share a
common characteristic: the sums of the elements in the second
and third rows of the transformation matrix are both zero. The
RGB and XYZ color spaces, however, do not have such a property.
Fig. 2. Illustration of the three color component i
Note that the transformation matrix of the RGB color space is an
identity matrix:
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Inspired by the finding of the difference of the transformation
matrices between the weak and powerful color spaces, we
present the concept of color space normalization (CSN) and
develop two CSN techniques. These CSN techniques normalize any
color space that is derived by a linear transformation of the RGB
color space, so that the normalized color space possesses the same
property as the powerful color spaces do, i.e., the sums of the
elements in the second and third rows of the transformation
matrix are both zero.
3.1. Within-color-component normalization

To achieve the goal that the sums of the elements in the second
and the third rows of the color space transformation matrix are
zero, the within-color-component normalization technique works
by directly removing the means of the second and the third row
vectors, respectively. Let C1, C2 and C3 be the three color
components derived by the following linear transfomation of
the RGB color space:
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The mean of the second row vector of the transformation matrix A
is m2 ¼ ða21þa22þa23Þ=3 and the mean of the third row vector is
m3 ¼ ða31þa32þa33Þ=3. Removing m2 from the second row vector
and m3 from the third row vector, we obtain a normalized
transformation matrix ~AI , which determine the normalized color
mages corresponding to the six color spaces.
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Fig. 3. Illustration of the color component images of the normalized RGB and XYZ color spaces using CSN-I and CSN-II, respectively.

1 The two basis vectors are not necessarily orthogonal. But, here we prefer the

orthogonal basis vectors and use the matlab function nullð½s1; s2 ; s3�Þ to calculate

them.
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space ~C 1
~C 2
~C 3:
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The within-color-component normalization technique is named
color space normalization I (CSN-I).

For example, the normalized RGB color space using CSN-I is
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The normalized XYZ color space using CSN-I is
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For the original color image shown in Fig. 2, the color component
images corresponding to these two normalized color spaces are
illustrated in Fig. 3.

3.2. Across-color-component normalization

To make the sums of the elements in the second and the third
rows of the color space transformation matrix be zero, the across-
color-component normalization technique works in the following
way. The original three row vectors of the color space transforma-
tion matrix are first used to generate two zero-mean row vectors
via a linear combination. A new color space transformation matrix
is then obtained by replacing the second and third row vectors of
the original transformation matrix with the generated two zero-
mean row vectors.

The linear combination of the three row vectors of the original
color space transformation matrix A may be written as follows:

n¼ k1A1þk2A2þk3A3 ¼

�X3

i ¼ 1

kiai1;
X3

i ¼ 1

kiai2;
X3

i ¼ 1

kiai3

�
ð11Þ

Let the sum of the elements of this linear combination vector n
(row vector) be zero, i.e.,

X3

i ¼ 1

kiai1þ
X3

i ¼ 1

kiai2þ
X3

i ¼ 1

kiai3 ¼ k1

X3

j ¼ 1

a1jþk2

X3

j ¼ 1

a2jþk3

X3

j ¼ 1

a3j

¼ ½s1; s2; s3�½k1; k2; k3�
T ¼ 0; ð12Þ

where si ¼
P3

j ¼ 1 aij, i¼ 1;2;3. Obviously, si is the sum of the
elements of the i-th row vector of the color space transformation
matrix A.
Eq. (12) shows that the linear combination coefficient vector
½k1; k2; k3�

T can be chosen as the basis vectors of the null space of
½s1; s2; s3�. Since this null space is two-dimensional, it has only two
basis vectors. Let the two basis vectors1 be K1 ¼ ½k11; k21; k31�

T and
K2 ¼ ½k12; k22; k32�

T . We then obtain the two zero-mean row
vectors as follows:
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The normalized color space transformation matrix is defined as
follows:
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2
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which determines the following normalized color space ~C 1
~C 2
~C 3:
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The across-color-component normalization technique is named
color space normalization II (CSN-II).

For example, the normalized RGB color space using CSN-II is
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The normalized XYZ color space using CSN-II is

~X II
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For the original color image shown in Fig. 2, the color component
images corresponding to these two normalized color spaces are
illustrated in Fig. 3.
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3.3. An insight into the normalized color spaces

To facilitate better understanding of the proposed color space
normalization techniques (especially for CSN-II: the across-color-
component normalization), we provide more details of some color
spaces (models) defined by NTSC. In the YUV color space, for
example, the luminance component, Y, is derived from the XYZ
color space, while the remaining two chrominance components, U

and V, are derived from the linear combination of the Y

component, and the R and B components from the RGB color
space. Specifically, let us first define the YRB color space as
follows:
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0 0 1
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64
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From the YRB color space, the C–Y color model (space) is defined
as follows [16]:
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The YUV color space is a scaled version of the C–Y color space, and
the U and V components are computed as follows:

U ¼
0:436

0:866
ðB2YÞ and V ¼

0:615

0:701
ðR2YÞ ð21Þ

The YUV color space is equivalent to the C–Y color space for face
recognition because the scaling factors have been eliminated (by
normalizing the standard deviation of each component image) in
our experiments in Section 4.

The C–Y color space, as a matter of fact, can be viewed as a
normalized YRB color space using the across-color-component
normalization technique. For the transformation matrix A of the
YRB color space, the sum of the elements in each row is one, i.e.,
½s1; s2; s3� ¼ ½1;1;1�. As a result, the linear equation in Eq. (12) has
two basis vectors: K1 ¼ ½�1;1;0�T and K2 ¼ ½�1;0;1�T . These two
basis vectors determine the two zero-mean row vectors,
n1 ¼KT

1A¼ R2Y and n2 ¼KT
2A¼ B2Y , respectively. Thus, the

transformation matrix of the normalized YRB color space is

Y

R2Y

B2Y

2
64

3
75

which is exactly the transformation matrix of the C–Y color space.
Note that these two basis vectors K1 ¼ ½�1;1;0�T and
K2 ¼ ½�1;0;1�T are not orthogonal.

Now, we can interpret the normalized color space ~C 1
~C 2
~C 3 from

the color model (space) point of view, that is, ~C 1 can be viewed as
the luminance component while ~C 2 and ~C 3 can be viewed as the
chrominance components.
4. Experimental evaluation and analysis

This section first presents the face recognition grand challenge
(FRGC) database, the evaluation criteria and methodology, and
then assesses the performance of six conventional color spaces
and a series of normalized color spaces. All experimental results
show that the proposed CSN techniques improve the discriminat-
ing power of the color spaces. This section finally provides an
explanation of why the CSN techniques can improve the
performance of color spaces for recognition.
4.1. Database, evaluation criteria and methodology

4.1.1. The FRGC and AR databases

We assess the performance of different color spaces using a
large scale database, the FRGC version 2 database [29,30]. This
database contains 12,776 training images, 16,028 controlled
target images, and 8,014 uncontrolled query images for the FRGC
Experiment 4. The controlled images have good image quality,
while the uncontrolled images display poor image quality, such as
large illumination variations, low resolution of the face region,
and possible blurring. It is these uncontrolled factors that pose the
grand challenge to face recognition performance [23]. The BEE
system [21] provides a computational experimental environment
to support a challenge problem in face recognition, and it allows
the description and distribution of experiments in a common
format. The BEE system uses the PCA method that has been
optimized for large scale problems as a baseline algorithm, which
applies the whitened cosine similarity measure [21]. The BEE
baseline algorithm shows that the FRGC Experiment 4, which is
designed for indoor controlled single still image versus uncon-
trolled single still image, is the most challenging FRGC experi-
ment. We therefore choose the FRGC Experiment 4 to evaluate our
method. In our experiments, the face region of each image is first
cropped from the original high-resolution still images and resized
to a spatial resolution of 32�32. Fig. 4 shows some example FRGC
images used in our experiments. Following the FRGC protocol, we
use the standard training set of the FRGC version 2 Experiment 4
for training.

We further validate the effectiveness and generalization of the
proposed method using another database: the AR database [40].
The AR database contains over 4,000 color face images of 126
people (70 men and 56 women), including frontal views of faces
with different facial expressions, lighting conditions and occlu-
sions. The pictures of most persons were taken in two sessions
(separated by two weeks). Each section contains 13 color images
and 120 individuals (65 men and 55 women) participated in both
sessions. The images of these 120 individuals were selected and
used in our experiment. Only the full facial images were
considered here (no attempt was made to handle occluded face
recognition in each session). We manually cropped the face
portion of the image and then normalized it to 50�45 pixels. The
normalized images of one person are shown in Fig. 5, where (a)–
(g) are from Session 1, and (n)–(t) are from Session 2. The details
of the images are: (a) neutral expression, (b) smile, (c) anger, (d)
scream, (e) left light on; (f) right light on; (g) all sides light on; and
(n)–(t) were taken under the same conditions as (a)–(g). In our
experiments, images from the first session (i.e., (a)–(g)) were used
for training, and images from the second session (i.e., (n)–(t))
were used for testing.
4.1.2. Evaluation criteria

Two criteria are involved to evaluate the performance of
different color spaces: one is the verification rate and the other is
the recognition rate. The FRGC protocol recommends using the
receiver operating characteristic (ROC) curves, which plot the face
verification rate (FVR, i.e., the true accept rate) versus the false
accept rate (FAR), to report the face recognition performance. The
ROC curves are automatically generated by the BEE system when
a similarity matrix is input to the system. In particular, the BEE
system generates three ROC curves, ROC I, ROC II, and ROC III,
corresponding to images collected within semesters, within a
year, and between semesters, respectively. The face verification
rate at the false accept rate of 0.1% is generally used as a standard
for performance comparison.
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Fig. 4. Example FRGC images that have been cropped to 32�32.

Fig. 5. Sample images for one subject of the AR database.
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The recognition rate is another popular evaluation criterion for
face recognition, although it is not recommended by the FRGC
protocol. To obtain the recognition rate, we need to first calculate
distance between every pair of a query image and a target image,
and then use the nearest-neighbor classifier for classifying all
query images. The recognition rate is the ratio of the number of
correctly classified query images to the total number of query
images.

It should be pointed out that the verification rate in the FRGC
Experiment 4 emphasizes the similarity of samples that are
relatively distant from one another within a class because it needs
to measure all similarity between samples, whereas the recogni-
tion rate emphasizes the similarity of samples that are close to
one another within a class since it applies a nearest-neighbor
classifier. Therefore, these two criteria evaluate the performance
of different color spaces for recognition from different viewpoints.
4.1.3. Evaluation methodology

We evaluate the performance of different color spaces using
the Fisher linear discriminant anlysis (FLD) method [34–38]. In
the FLD method, the between-class scatter matrix Sb and the
within-class scatter matrix Sw are defined as follows [39]:

Sb ¼
1

M

Xc

i ¼ 1

liðmi�m0Þðmi�m0Þ
T

ð22Þ

Sw ¼
1

M

Xc

i ¼ 1

li
li�1

Xli

j ¼ 1

ðxij�miÞðxij�miÞ
T

ð23Þ

where xij denotes the j-th training sample in class i; M is the total
number of training samples, li is the number of training samples
in class i; c is the number of classes; mi is the mean of the training
samples in class i; m0 is the mean across all training samples. The
Fisher discriminant basis vectors u1;u2; . . . ;ud are selected as the
generalized eigenvectors of Sb and Sw corresponding to the d

ðdrc�1Þ largest generalized eigenvalues, i.e., Sbuj ¼ ljSwuj,
where l1Zl2Z � � �Zld. To avoid overfitting and to improve
generalization performance of the FLD method, the principal
component analysis (PCA) method [34–38] is generally applied
for dimensionality reduction in advance of the FLD method. This
combined method is called the PCA+FLD method.

To combine the information in the three discriminating color
component images for recognition purpose, we concatenate the
three color component images C1, C2 and C3 into one pattern
vector and then perform PCA+FLD on the concatenated pattern
vector. To avoid the negative effect of magnitude dominance of
one component image over the others, we apply a basic image
normalization method by removing the mean and normalizing
the standard deviation of each component image before the
concatenation. In the PCA+FLD method, we choose 1000 principal
components after PCA and derive 220 discriminant features after
FLD. We apply the cosine similarity measure to calculate the
similarity scores of the query and target image pairs. The cosine
similarity measure between two vectors x and y is defined as
follows:

dcosðx; yÞ ¼
xT y

JxJ � JyJ
ð24Þ

where J � J is the notation of the Euclidean norm.
In the FRGC experiments, the similarity matrix stores the

similarity score of every query image versus target image pair. As
a result, the size of the similarity matrix is T�Q, where T is the
number of target images (16,028 for FRGC version 2 Experiment
4) and Q is the number of query images (8,014 for FRGC version 2
Experiment 4). The similarity matrix is input to the BEE system
and three ROC curves (the verification rate vs. the false accept
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Fig. 6. The ROC curves corresponding to the six conventional color spaces and the

BEE baseline performance. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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rate) are generated. In addition, for achieving the recognition rate,
we use the cosine distance, i.e., �dcosðx;yÞ, in the nearest-neighbor
classifier for experiments on both databases.

4.2. Experiments and results on the FRGC database

We first assess the performance of eight conventional color
spaces and show that the RGB and XYZ color spaces are weaker
than the I1I2I3, YUV, YIQ, and LSLM color spaces for face
recognition. We then design three experiments to evaluate the
effectiveness of the proposed color space normalization (CSN)
techniques for improving the performance of weak color spaces.
In the first experiment, we normalize the RGB and XYZ color
spaces. In the second experiment, we normalize the hybrid color
spaces generated by combining the color components from the
RGB and XYZ color spaces. In the third experiment, we normalize
the randomly generated color spaces defined by random trans-
formations of the RGB color space.

In the following experiments, for a color space C1C2C3, C1C2C3-
NI denotes its normalized version using CSN-I, and C1C2C3-NII
denotes its normalized version using CSN-II. For example, RGB-NI
denotes the normalized RGB color space using CSN-I, and RGB-NII
denotes the normalized RGB color space using CSN-II.

4.2.1. Experiments using the eight conventional color spaces

We use the FRGC version 2 database, the evaluation criteria
(recognition rate and verification rate), and the evaluation
methodology (the PCA+LDA method) introduced in Section 4.1
to assess the six linear color spaces: RGB, XYZ, I1I2I3, YUV, YIQ, and
LSLM and two nonlinear color spaces: HSV and L*a*b*. Fig. 6
shows the three ROC curves corresponding to each of these six
linear color spaces. The performances of the hybrid color spaces
YQCr [23] and RQCr [45], and the BEE baseline algorithm on
grayscale images (obtained by averaging the R, G and B

components) are also included for comparison. Table 1 presents
the recognition rates and the verification rates at the false accept
rate of 0.1%. The recognition rate of the same evaluation method
on the grayscale images is also listed in Table 1. These results
indicate that the I1I2I3, YUV, YIQ and LSLM color spaces have
similar performance, except that the YUV color space is a little
worse than the other three color spaces. The performance of these
four color spaces is much better than that of the RGB, XYZ, HSV
and L*a*b* color spaces. Even the YUV color space achieves a
verification rate over 9% higher than that achieved by the XYZ
color space based on the ROC III curves, and achieves a recognition
rate nearly 5% higher than that by the RGB color space. From these
results, we can conclude that the RGB and XYZ color spaces are
weaker than the I1I2I3, YUV, YIQ and LSLM color spaces for face
recognition. In addition, the nonlinear transformation generated
color spaces, HSV and L*a*b*, does not show any advantage over
the RGB and XYZ color spaces.

4.2.2. Experiments using the normalized RGB and XYZ color spaces

We now normalize the RGB and XYZ color spaces using two
CSN techniques and obtain four normalized color spaces: RGB-NI,
RGB-NII, XYZ-NI and XYZ-NII. We then apply the FRGC Experi-
ment version 2 database, the evaluation criteria, and the
evaluation methodology introduced in Section 4.1 to evaluate
the performance of the four normalized color spaces. The
experimental results are shown in Fig. 7 and Table 2. In
particular, Fig. 7 shows the three ROC curves corresponding to
the four normalized color spaces. The ROC curves of the RGB color
space, the XYZ color space and the BEE baseline algorithm on
grayscale images are also included in Fig. 7 for comparison. Table
2 presents the recognition rate and the verification rates at the
false accept rate of 0.1%. From Fig. 7 and Table 2, we can see that
both the verification rates and the recognition rates are
significantly improved after the color space normalization, no
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Table 1
Comparisons of the recognition rate (%) and the verification rate (%) at the false

accept rate of 0.1%.

Color Space Verification rate Recognition rate

ROC I ROC II ROC III

RGB 44.95 44.80 45.20 89.1

XYZ 58.16 58.16 57.88 84.3

I1I2I3 68.58 68.95 69.36 94.5

YUV 66.40 66.81 67.29 94.0

YIQ 68.45 69.03 69.75 94.6

LSLM 68.84 69.36 69.88 94.3

YQCr (YQV) 71.12 71.54 71.85 94.7

RQCr 71.64 72.16 72.51 94.8

HSV 58.84 58.65 58.42 85.1

L*a*b* 45.21 45.25 45.59 86.5

Grayscale 36.88 36.65 36.94 76.2 0
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Fig. 7. ROC curves corresponding to the RGB color space, the XYZ color space, and

their corresponding normalized color spaces generated by the color space

normalization techniques. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

J. Yang et al. / Pattern Recognition 43 (2010) 1454–1466 1461
matter which CSN technique is applied. Specifically, the results in
Tables 1 and 2 show that the two normalized color spaces, RGB-NI
and XYZ-NII, outperform those powerful conventional color
spaces, the I1I2I3, YUV, YIQ and LSLM color spaces, in terms of
the verification rate.

To gain more insights into color spaces, let us provide the
performance of individual color components of the RGB and XYZ
color spaces, as presented in Table 3. By comparing the results in
Tables 2 and 3, we find that the combination of three color
components is more effective than the use of one individual color
component, especially for recognition rates. However, we can also
find that a simple combination of three color components, for
example, directly concatenating the R, G, and B components,
cannot significantly improve the verification rate of the R

component. This is due to the high correlation between the
three color components. We will address this problem in detail in
Section 4.3.

4.2.3. Experiments using Hybrid color spaces

Inspired by the formation of the YUV color space (which is
derived from a hybrid color space YRB), we generate three hybrid
color spaces, the XGB, YRB and ZRG color spaces, by configuring
the components from the RGB and XYZ color spaces. Normalizing
these three hybrid color spaces using the proposed CSN
techniques can produce six normalized color spaces: XGB-NI,
XGB-NII, YRB-NI, YRB-NII, ZRG-NI, and ZRG-NII. These color
spaces are evaluated in the way as suggested in Section 4.1. The
experimental results, as presented in Table 4, demonstrate again
the effectiveness of the proposed normalization techniques. The
recognition rate is improved by at least 5% and the verification
rate is improved by more than 10% after the color space
normalization. The ZRG-NII color space, for example, achieves
the best verification rate (72.86% based on the ROC III curve)
among all color spaces. Note that the performance of the YRB-NII
color space is different from that of the YUV color space, although
they are both derived from the hybrid YRB color space. This is
because the generation of ZRG-NII is somewhat different from
that of the YUV color space: an orthogonality constraint is
imposed to calculate the basis vectors in the generation of the
ZRG-NII color space.

4.2.4. Experiments using randomly generated color spaces

To further test the effectiveness of the proposed CSN
techniques, we randomly generate 10 3�3 matrices using the
matlab function ‘‘rand’’ (Note that the elements of each generated
matrix are all between 0 and 1). Each of these matrices is used as a
transformation matrix to determine a color space that is
transformed from the RGB color space. The generated color space
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is normalized using the proposed two CSN techniques. All color
spaces and their normalized versions are evaluated in the way as
suggested in Section 4.1. The corresponding verification rates and
recognition rates are presented in Tables 5 and 6, respectively.
Table 2
Comparisons of the recognition rate (%) and the verification rate (%) at the false

accept rate of 0.1% using the RGB, XYZ color spaces and their normalized color

spaces.

Color space Verification rate Recognition rate

ROC I ROC II ROC III

RGB 44.95 44.80 45.20 89.1

RGB-NI 69.52 69.87 70.28 94.3

RGB-NII 66.41 66.76 67.07 94.4

XYZ 58.16 58.16 57.88 84.3

XYZ-NI 63.94 64.37 65.01 93.8

XYZ-NII 70.27 70.69 71.12 94.4

Table 3
Comparisons of the recognition rate (%) and the verification rate (%) at the false

accept rate of 0.1% using the individual R, G, B, X, Y, Z color component images.

Color component image Verification rate Recognition rate

ROC I ROC II ROC III

R 43.54 43.92 44.58 82.8

G 35.89 35.56 35.48 74.3

B 27.83 27.12 26.24 61.3

X 47.49 47.79 48.17 80.1

Y 39.23 38.86 38.83 77.4

Z 27.82 27.06 26.21 62.0

Table 4
Comparisons of the recognition rate (%) and the verification rate (%) at the false

accept rate of 0.1% using the hybrid color spaces and their normalized color spaces.

Color space Verification rate Recognition rate

ROC I ROC II ROC III

XGB 41.03 40.82 40.92 87.1

XGB-NI 70.54 70.60 70.62 94.2

XGB-NII 70.41 70.48 70.51 94.2

YRB 49.70 49.87 50.49 86.8

YRB-NI 61.08 61.67 62.37 92.9

YRB-NII 58.07 58.48 59.18 92.6

ZRG 42.72 42.82 43.19 89.0

ZRG-NI 68.03 68.22 68.29 94.0

ZRG-NII 73.00 72.94 72.86 94.4

Table 5
Verification rates (based on ROC III) of 10 randomly generated color spaces before colo

No. of generated color space Before CSN (ROC III)

1 52.32

2 47.87

3 35.31

4 45.62

5 45.67

6 49.27

7 53.50

8 48.91

9 53.16

10 51.18

Average 48.28
Note that in Table 5, we only list the verification rates (at the false
accept rate of 0.1%) corresponding to ROC III for simplicity, since
all the three ROCs have very similar performance. The results in
Tables 5 and 6 show that the two CSN techniques (CSN-I and CSN-
II) consistently improve the verification and recognition
performance of the randomly generated color spaces by large
margins. In particular, the average verification rate is improved
16% and the average recognition rate is improved 12%. These
results demonstrate again the effectiveness of the proposed two
CSN techniques.
4.3. Experiments and results on the AR database

To validate the generalization of the proposed CSN techniques,
we experiment on the AR database [40]. We use two conventional
color spaces: RGB and XYZ, and three hybrid color spaces: XGB,
YRB and ZRG. Each of these color spaces is normalized using the
proposed two CSN techniques. All color spaces and their normal-
ized versions are evaluated in the way as suggested in Section 4.1.
The resulting recognition rates are presented in Table 7. The
recognition rate of the same evaluation method on the grayscale
images is also listed for comparison. The results in Table 7 show
that the two CSN techniques (CSN-I and CSN-II) consistently
improve the recognition performance of color spaces by an
average of more than 3%. These results demonstrate again the
effectiveness of the proposed two CSN techniques.

Comparing the results in Table 7 with those in Tables 2 and 4,
we can find that the performance improvement caused by the two
CSN techniques on the FRGC database appears more significant
than that on the AR database. This fact indicates that the
advantage of the proposed CSN techniques becomes more evident
in uncontrolled illumination conditions than in controlled condi-
tions, noticing that many images in the FRGC database were taken
r space normalization and after color space normalization.

After CSN-I (ROC III) After CSN-II (ROC III)

73.52 70.28

58.96 56.34

72.13 56.33

63.17 57.36

68.96 67.70

63.04 71.01

64.14 63.83

69.46 69.07

65.37 65.16

68.76 70.71

66.75 64.78

Table 6
Recognition rates of 10 randomly generated color spaces before color space

normalization and after color space normalization.

No. of generated color space Before CSN After CSN-I After CSN-II

1 84.1 95.0 94.6

2 80.3 92.1 91.8

3 80.4 94.6 88.7

4 83.5 92.5 90.8

5 82.6 93.7 93.8

6 79.1 93.3 94.1

7 79.7 92.9 93.9

8 74.9 93.5 93.4

9 79.4 93.8 94.0

10 82.5 94.1 94.3

Average 80.65 93.55 92.94
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Table 7
Recognition rates of color spaces before color space normalization and after color

space normalization on the AR database.

Color space Before CSN After CSN-I After CSN-II

RGB 80.0 83.5 84.3

XYZ 79.0 81.9 83.3

XGB 78.9 83.5 83.7

YRB 79.9 83.5 83.5

ZRG 79.6 83.7 83.1

Grayscale 78.2

Table 8
Recognition rates of color spaces before color space normalization and after color

space normalization using the LBP features on the AR database.

Color space Before CSN After CSN-I After CSN-II

RGB 92.4 93.9 94.6

XYZ 93.8 94.5 94.4

XGB 93.2 94.0 95.4

YRB 93.2 94.9 94.9

ZRG 93.0 94.5 94.5

Grayscale 91.9 – –
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in uncontrolled illumination conditions while all images in the AR
database were taken in controlled conditions. The controlled
images have good image quality, while the uncontrolled images
display poor image quality, such as low resolution of the face
region and possible blurring. Color cues plan a significantly more
important role in uncontrolled image recognition than in
controlled image recognition. The performance difference be-
tween on grayscale images and on color images in the FRGC
database is dramatically larger than that in the AR database, as
presented in Tables 1 and 7. This conclusion is completely
consistent with Yip and Sinha’s conclusion, i.e., the contribution
of color cues becomes evident when shape cues are degraded [20].

In addition, we also perform feature extraction by applying
local binary patterns (LBP) method [42] to each color component
images and concatenate the LBP features of the three component
images into one augmented pattern vector. We then perform
PCA+FLD based on the augmented pattern vector and achieve the
results as shown in Table 8. These results indicate that the
proposed CSN techniques are still effective for improving the
performance of the RGB, XYZ and their hybrid color spaces. By
comparing the results in Tables 7 and 8, we find that LBP can
significantly enhance the performance of color spaces (or
grayscale images) on the AR database.
Table 9
Average absolute correlation coefficient comparison: before color space normal-

ization and after color space normalization.
4.4. Why can the CSN techniques improve recognition performance?

In this subsection, we try to address the problem of why the
proposed CSN techniques can improve the face verification and
recognition performance. We will show that the proposed CSN
techniques can greatly reduce the correlation of the three color
component images and thus can significantly enhance the
discriminating power of color spaces. Here, we only show the
analysis results on the FRGC database for conciseness, although
the similar results are achieved on the AR database.
Color space Before CSN After CSN-I After CSN-II

RGB 0.8109 0.5850 0.7775

XYZ 0.8868 0.6210 0.4281

XGB 0.8756 0.5142 0.5378

YRB 0.8229 0.6938 0.6923

ZRG 0.8200 0.2964 0.1548
4.4.1. Correlation analysis of color components

Let x¼ ðx1; x2; x3Þ
T be the color component vector in the original

RGB color space and y¼ ðy1; y2; y3Þ
T be the color component vector

in the transformed color space. The transformation from x to y is
given by

y¼Ax¼

A1

A2

A3

2
64

3
75

x1

x2

x3

2
64

3
75 ð25Þ

In the transformed color space, the correlation between the two
color components yi ¼Aix and yj ¼Ajx is

Covðyi; yjÞ ¼ Eðyi�EyiÞðyj�EyjÞ ¼ AifEðx�ExÞðx�ExÞTgAT
j ¼ AiSAT

j ;

ð26Þ

where S¼ Eðx�ExÞðx�ExÞT is the covariance matrix of the color
component vectors in the original RGB color space.

Accordingly, the correlation coefficients between yi and yj is

rðyi; yjÞ ¼
AiSAT

jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiSAT

i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AjSAT

j

q ð27Þ

Since the color space is usually three-dimensional, there are
totally three correlation coefficients: rðy1; y2Þ, rðy2; y3Þ and
rðy1; y3Þ. The average absolute correlation coefficient is defined
as follows:

r¼ ðjrðy1; y2Þjþjrðy2; y3Þjþjrðy1; y3ÞjÞ=3 ð28Þ

We use Eq. (28) to measure the correlation of three color
components of a color space. The obtained average absolute
correlation coefficients corresponding to all color spaces men-
tioned before are presented in Tables 9 and 10.

From Tables 9 and 10, we can see that the average absolute
correlation coefficients are decreased after color space normal-
ization, no matter which CSN technique is used. These results
indicate that the proposed CSN techniques can greatly reduce the
correlation between the three color components. The reduced
correlation makes the discriminative information contained in the
three color component images as mutually complementary as
possible. Therefore, the concatenation of the three color compo-
nent images can make use of the discriminative information from
the three color channels. For the color spaces such as RGB, XYZ
and their hybrid color spaces, the three color components are
strongly correlated. As a result, the discriminative information
from the three color component images is highly redundant. The
concatenation of these three color component images cannot help
much for improving the recognition performance.

In summary, the proposed CSN techniques can significantly
reduce the correlation between the three color component images
and thus can enhance the discriminating power of the concate-
nated color component images. This offers an intrinsic (or
internal) reason for why the CSN techniques can improve the face
verification and recognition performance. In the following sub-
section, we will use the total Fisher discriminant criterion value to
measure the discriminating power of the concatenated color
component images and show that the proposed CSN techniques
can really enhance the discriminating power of color spaces.
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Table 10
Average absolute correlation coefficient comparison of 10 randomly generated

color spaces: before color space normalization and after color space normalization.

No. of generated color space Before CSN After CSN-I After CSN-II

1 0.9859 0.5518 0.6436

2 0.9781 0.6306 0.6339

3 0.9938 0.5481 0.7181

4 0.9503 0.7564 0.7526

5 0.9897 0.5676 0.6192

6 0.9976 0.6454 0.5817

7 0.9911 0.5891 0.5665

8 0.9989 0.2978 0.2110

9 0.9960 0.6919 0.6891

10 0.9877 0.6094 0.5857

Average 0.9869 0.5888 0.6001

Table 11
Discriminant criterion value (DCV) comparison: before color space normalization

and after color space normalization.

Color space Before CSN After CSN-I After CSN-II

RGB 344.79 391.67 394.08

XYZ 307.08 382.84 395.91

XGB 328.39 397.19 397.83

YRB 326.13 386.51 387.45

ZRG 344.86 397.98 409.94

Table 12
Discriminant criterion value (DCV) comparison of 10 randomly generated color

spaces: before color space normalization and after color space normalization.

No. of generated color space Before CSN After CSN-I After CSN-II

1 283.8168 414.9811 411.8312

2 270.5928 376.2171 363.7114

3 258.8294 409.3863 307.7064

4 286.9860 360.4551 344.2855

5 277.8274 373.4547 377.3002

6 244.3608 373.6426 371.5806

7 254.2313 394.5399 406.0598

8 235.5036 388.8860 389.1861

9 247.2688 394.2379 397.3350

10 271.9312 384.8894 384.8185

Average 263.1348 387.0690 375.3815
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4.4.2. Discriminating power analysis of color spaces

The discriminating power of color images corresponding to a
given color space can be characterized by the discriminant
criterion value of the adopted evaluation method—the Fisher
linear discriminant anlysis (FLD) method. The FLD method applies
the following Fisher criterion to determine its discriminant
projection basis vectors [32]:

JðuÞ ¼
uT Sbu
uT Swu

; ð29Þ

The Fisher criterion represents the ratio of the between-class
scatter to the within-class scatter of the data that are projected
onto u. Maximizing this criterion is equivalent to solving a
generalized eigenvalue problem. The generalized eigenvector u1

of Sbu¼ lSwu corresponding to the largest eigenvalue l1 is
chosen as a projection basis vector for two-class problems. The
largest eigenvalue is the optimal value of the Fisher criterion, i.e.,
Jðu1Þ ¼ l1, which determines the clustering performance of the
data that are projected onto u1. Generally, for the given data, the
larger the eigenvalue l1 is, the better the clustering performance
is. For multi-class problems, we usually choose a set of d

eigenvectors u1;u2; . . . ;ud of Sbu¼ lSwu corresponding d largest
eigenvalues l1; l2; . . . ;ld. The sum of these d largest eigenvalues,
i.e., the total Fisher discriminant criterion value (DCV) is
computed as follows:

DCV¼
Xd

j ¼ 1

lj ð30Þ

The DCV is thus used as a measure for evaluating the clustering
performance (or the generalization performance of LDA) of the
multi-class data that are projected onto u1;u2; . . . ;ud. Here, we
use this measure to evaluate discriminating power of color images
corresponding to a color space.

The total DCVs corresponding to all color spaces mentioned
before are presented in Tables 11 and 12. From these tables, we
can see that all DCVs are significantly increased after color space
normalization, no matter which CSN technique is used. These
results indicate that the proposed CSN techniques can greatly
enhance the discriminating power of color spaces, which offers a
direct reason for why the CSN techniques can improve the face
verification and recognition performance.
5. Conclusions and discussions

This paper presents the concept of color space normalization
(CSN) and two CSN techniques for enhancing the discriminating
power of color spaces for face recognition. Our experimental
results reveal that some color spaces, like RGB and XYZ, are
relatively weak for recognition, whereas other color spaces, such
as I1I2I3, YUV, YIQ and LSLM, are relatively powerful. The proposed
CSN techniques are applied to the RGB and XYZ color spaces, the
three hybrid color spaces XGB, YRB and ZRG which are generated
by configuring the components from the RGB and XYZ color
spaces, and the 10 randomly generated color spaces. All experi-
mental results demonstrated the effectiveness of the proposed
CSN techniques.

To address the problem of why the CSN techniques can
improve the face recognition performance of weak color spaces,
we perform the correlation analysis on color component images
corresponding to different color spaces and show that the
proposed CSN techniques can significantly reduce the correlation
between color component images and thus can enhance the
discriminating power of the concatenated color component
images. We further use the total Fisher discriminant criterion
value to measure the discriminating power of the concatenated
color component images and show that the proposed CSN
techniques can really enhance the discriminating power of color
spaces.

Finally, it should be pointed out that the focus of this paper is
on validating the effectiveness of the color space normalization
techniques for color images based face recognition. We only use a
basic face feature extraction method, i.e., Fisher linear discrimi-
nant analysis, for performance evaluation. If using and combining
more complicated feature extraction methods, such as kernel
Fisher dicriminant [31], Gabor wavelet [31], local binary patterns
(LBP) [42], we can achieve state-of-the-art FRGC verification
results based on the normalized color spaces. Additionally, we can
further improve the verification rates of color spaces once the z-
score normalization technique is applied [41].
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