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Abstract

The bag-of-features (BoF) model for image classificatioa haen thoroughly
studied over the last decade. Different from the widely uBeB methods which
model images with a pre-trained codebook, the alternatweloook-free image
modeling method, which we call Codebookless Model (CLMyaats little atten-
tion. In this paper, we present an effective CLM that repnesan image with a
single Gaussian for classification. By embedding Gaussemfiold into a vector
space, we show that the simple incorporation of our CLM intmear classifier
achieves very competitive accuracy compared with statbefirt BoF methods
(e.g., Fisher Vector). Since our CLM lies in a high-dimensicRiemannian man-
ifold, we further propose a joint learning method of low-4aransformation with
support vector machine (SVM) classifier on the Gaussian folaniin order to
reduce computational and storage cost. To study and aketha side effect of
background clutter on our CLM, we also present a simple yieicgve partial
background removal method based on saliency detectioreriEmpents are exten-
sively conducted on eight widely used databases to denadestre effectiveness
and efficiency of our CLM method.
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1. Introduction

Image classification has been attracting massive attenittocomputer vision
and pattern recognition communities in recent years. Ihisaf the most funda-
mental but challenging vision problems because imagedluasrated in Fig[1L,
often suffer from significant scale, view or illuminationnaions (e.g., in texture
classificationﬁb] and material recognitidn__t23]), and pebanges, background
clutter, partial occlusion (e.g., in scene categorizaﬁj @] and object recog-
nition ﬂﬁ,@]ﬁbz}).

For a long time the bag-of-features (BoF) model [46] has mBTost given
priority to image classification. As shown in Fid. 2 (a), themBbased methods
generally consist of five components: local features ettraclearning codebook
with training data, coding local features with pre-trairemtiebook, pooling or
aggregating codes over images, and finally, learning ¢iesge.g., SVM) for
classification. With this processing pipeline, the BoFdubmethods can be seen
as a hand-crafted five-layer hierarchical feed-forwardvoek @] with a pre-
trained feature coding template (codebodﬂ) [7]. The ledroedebook depicts
the distribution of feature space, and makes coding of higtedsional features
possible. This architecture has achieved very promisim@ppaance in a variety
of image classification tasks.
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Figure 1: Some example images and accuracy comparison (ireééeen Fisher vector (FV) and
our codebookless model (CLM) on various image databases.
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Figure 2: Comparison between (a) the BoF model and (b) our Clii major difference between
them is that whether there is a pre-trained codebook & codingpt. Our CLM mainly consists
of a Gaussian model for image representation and a jointréow-learning with linear SVM
classifier.

The codebook as a reference for feature coding serves asigelsetween
local features and global image representation. Howetves,well known that
segmentation of feature space involved in building of cadélbrings on quan-
tization error [[__é , and leads to continuous striving forstlside effect (e.g., soft
coding methodsﬂEBEBS] alleviate but cannot completiginate it). Though
offline, training of codebook, particularly large size onisstime consuming. In
addition, in general the pre-trained codebook on one datgabannot naturally
adapt to other databases|[58].

An alternative approach is to estimate the statistics tlyrem sets of local
features from input image@@@ 50], as illustrated m[Bi(b), which is called
codebookless model (CLM) in this paper. It is clear from BEghat the major
difference is that the BoF model learns a codebook to exph&rstatistical distri-
bution of local features and then performs coding of deswrgy while the CLM
represents images with descriptors directly, requiringmestrained codebook and
the subsequent coding. Conceptually, the codebooklesslhasd the potential to
circumvent the aforementioned limitations of the BoF moteivever, which has
received little attention in image classification communithe main reasons may
be that such methods have not yet shown competitive clessoiicperformance,
and that they often need to utilize inefficient and unscal&ieirnel-based classi-
fiers.

In this paper, we propose an effective CLM scheme, and attatdlie CLM
can be a competitive alternative to the BoF methods for intéagsification. The



comparison between state-of-the-art BoF method, Fishetov€FV) ], and

our CLM on various image databases is shown in Fij. 1. Firdtfaremost,

we extract a set of local features (e.qg., SIET [37]) on a denskof image, and
simply model them with a single Gaussian model to represenirtput image.
Then, we employ a two-step metric for matching Gaussian so&g using this

metric, Gaussian models can be fed to a linear classifierrisureng efficient

and scalable classification while respecting the Riemangé@metry structure of
Gaussian models. Moreover, we introduce two well-motiygiarameters into
the used metric. One is to balance the effect between meacavadiance of
Gaussian, and another is for eigenvalue power normalizatiocovariance.

Our codebookless model usually is of high dimension, by rpemting low-
rank learning with SVM, we propose a joint learning methoeffectively com-
press Gaussian models while respecting their Riemanniameggey structure. It
is mentionable that, to the best of our knowledge, we makéridteattempt to per-
form joint learning of low-rank transformation and SVM on @&aian manifold.
Finally, to alleviate the side effect of background cluyteesaliency-based partial
background removal method is proposed to enhance our CLEIeXperimental
results show that partial background removal is helpful t&/Gvhen images are
heavily cluttered (e.g., CUB200-2011 and Pascal VOC2007).

2. Related work

The codebookless model for directly modeling the stagsiclocal features
has been studied in past decades. Rubner | [43] intrddsigeatures for
image representation, and proposed the Earth Mover’siistéor image match-
ing which is robust but has high computational cost. Tuzeith@] for the
first time used covariance matrices for representing regolage regions, and
employed Affine-Riemannian metric which suffers from higimputational cost

]. Gaussian model as image descriptor has been useobtml\t'racking],
in which Gaussian models are matched based on the Riemameiaic, involv-
ing expensive operations to solve generalized eigenvahldgm. Going beyond
Gaussian, Gaussian mixture model (GMM) is more informa#ind is used in
image classification and retrieval 41]. However, GMMferg from some
limitations, such as high computational cost of matchinghoés and lacking of
general criteria for model selection.

Our work is motivated byﬂﬂO] anﬂbS]. Carreira etEI@] hibdeled the
free-form regions obtained by image segmentation withmesdtng the second-
order moments. By using Log-Euclidean metric [2], the mdti ,@] can be
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combined with a linear classifier, which has shown compeateggnition perfor-
mance on images with less background clutter (e.g., Cdlt&clil8]). Different
from E @], we employ a Gaussian model to represent the evimhge. It is
well-known that a covariance matrix can be seen as a Gaussde! with fixed
mean vector. Compared {d @ 10], our CLM contains both tls-Grder (mean)
and second-order (covariance) information. Note that tisedrder statistics has
proved to be important in image classificati[, 44]. Mo, the manifold
of Gaussian models and that of covariance matrices are dtiieeent, and the
embedding method in our CLM makes Gaussian models can becubftekibly
and conveniently.

Nakayama et aI@S] also represented an image with a globatgsan for
scene categorization. However, they matched two Gaussiaels1by using the
Kullback-Leibler (KL) divergence, and hence kernel-baskgsifiers have to be
used. This method is not scalable and has high computatimsal In contrast
to @], our metric is decoupled which allows a linear cléssito be combined,
which makes our method more efficient and scalable than thiegkhel based one
in [38]. Moreover, compared with the ad-hoc linear kernel¢ktlean baseline) in

], our method takes advantage of the geometry structu@aassian models
and brings large performance improvement.

There is another line of research on codebookless modeloagtiGrauman
et al ] proposed a pyramid match kernel to map featuresetslti-resolution
histograms, and employed histogram intersection kermelé&ssification. Bo et al
[E] presented efficient match kernels to map local featursa low dimensional
space, and adopted a linear classifier. Boiman et al [6] dped an image-to-
class distance between the sets of local features, and gegdonearest neighbor
classifier. Yao et aI|E6] proposed a codebook-free apprdgchsing a large
number of randomly generated image templates for imageseptation, and de-
veloped a bagging-based classifier. Peng etal. [39] studhiade representation
from the discriminative-generative viewpoint, and suggeés deep boosting ar-
chitecture for joint filter learning and feature selectinrailayer-by-layer manner.
Lin et al. @] proposed to use a set of random image patchespi@sent an
input image in object detection task and achieved promisasglts, where they
decided locations of objects by employing location sevsithatching between
image patch and reference patcheddlls). Thoses-balls are learned from a
massive of training image patches with maximal informagam strategy. Dif-
ferent from the above methods, we exploit a single Gaussiaheirto represent
image for classification.



3. Proposed method

We first introduce the image representation by a single Gawugsodel. Then,
we employ an effective and efficient two-step metric for rmatg Gaussian mod-
els, and propose two well-motivated parameters to improe@sed distance met-
ric. Finally, we present a joint learning method of low-raménsformation and
SVM on Gaussian manifold.

3.1. Gaussian model for image representation

Given an input image, we extract a set/éflocal featuresx; € R**! i =
1,..., N} ata dense grid. By the maximum likelihood method, the imagele
represented by the following Gaussian model:

_exp (=30 — p)"'E (% — )
N(xilp, 2) = (2m)kdet(X) |

wherep = £ 5% x; andX® = o1 SN (x; — p)(x; — p)T are mean vector
and covariance matrix, antbt(-) denotes matrix determinant. Compared with
histogram and covariance, Gaussian model is more infovenalileanwhile, un-
like matching of signatureﬁhB] or GMMS [3], matching of Gaian models does
not bring high computational cost.

3.2. Two-step metric between Gaussian models

To match Gaussian models, we exploit a two-step metric whashbeen pro-
posed to compute the ground distance between Gaussian nentp@mf GMMs
[@]. The first step is to embed Gaussian manifold into thesmgd SPD matri-
ces @3], and then map the Lie group of SPD matrices into iteesponding Lie
algebra, a linear space, by using the Log-Euclidean m&}jc [

The space ok-dimensional Gaussian models is a Riemannian manifold. Let
N(w,X) be a Gaussian model with mean vectorand covariance matrix.
Through a continuous function, AV(u, ) is mapped to an affine matrix, an
element in the affine groud;” = {(u, P)|p € R¥1 P € R¥* det(P) > 0};
that is,

W:N(/L,E)i—)A:Lf; 'ﬂ, (1)

whereX = PP7 is the Cholesky factorization &. Further, through the function
v: A~ S=AAT, Ais mapped to an SPD matr& So far, by the successive
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functionst and~y, MV (u, X) is uniquely designated as éh+ 1) x (k + 1) SPD
matrix

T
Nz ~s = [PTR0 4 @
7!

Please refer t@G] for details on the embedding process.

The space ofk + 1) x (k 4+ 1) SPD matricesS," , is a Lie group that forms
a Riemannian manifold. Two operations, namely the logamichmultiplication
and the scalar logarithmic multiplication, are defined i tlog-Euclidean metric
[E], which equipS,jJrl with structures of not only the Lie group but also vector
space. Through the matrix Iogarithlzﬁ,j+1 IS mapped into its Lie algebré&; ., 1,
the vector space aft + 1) x (k + 1) symmetric matrices. The matrix logarithm
is a deffemorphism and an isomorphism so that operations & matrices
can be replaced by the Euclidean operations of their copatesr in the vector
space. So, through the matrix logarithm, an SPD m&ns one-to-one mapped
to a symmetric matrice& which lies in a linear space, and the geodesic distance
between SPD matricé% andS; is defined bylists, s, = ||G; — G;||r, whereF
is the Frobenius norm.

3.3. Two well-motivated parameters

In practice, we found that it is important to balance meartareand covari-
ance matrix in the embedding matriX (2), because their daioais and order of
magnitude of each dimension may vary considerably. Medewtiie effect of
mean vector and covariance matrix may vary for differerkga¥Vith these con-
siderations, we introduce a parameter 0 in the functionr (D):

T(B): N (1, %) A = [(5 fﬂ . (3)
Accordingly, the embedding matrix has the following form:
b + 2 T
N D) ~5(0) = [T E O] @

The embedding matriXx]14) reduces to the covariance matrignwth = 0, and
is equal to the original one wheh = 1. Hence, the role of mean vector and
covariance matrix can be adjusted by

The maximum likelihood estimator of the empirical covadamatrix is sus-
ceptible to interference of noise, especially for high dugien spacelﬂS]. Based
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on observation that the maximum likelihood estimator ofar@nce ought to be
improvable by eigenvalue shrinka@[48], we exploit powammalization on the
eigenvalues of covariance matrix (EPN). Lé{u, 32) be a Gaussian model esti-
mated from a set of descriptors extracted from some image cdhariance matrix

3 has eigenvalue decompositi@h= Udiag()\;)UT, whereU is an orthornormal
matrix whose'" column is the eigenvector & and); > 0 is the corresponding
eigenvalue, andiag(-) denotes diagonal matrix. Then by introducing a parameter
p, our normalization is defined as

¥* = Udiag(\))UT, with0 < p < 1. (5)

With EPN, our final embedding matrix is:

p 2 T
N(p,X) ~S(B,p) = > j;BT“” ﬁﬂ (6)
7}
It is easy to prove that the embedding matfik (6) is still pesidefinite as>”
being an SPD matrix. The eigenvalues power normalizatisrbean proposed to
measure distances between covariance matviﬂaﬂll& 2B6hsort|[30], namely,
Power-Euclidean metric. Different from previous work, veeigenvalues power
normalization for robust estimation of covariance masiceGaussian setting for
the case of high dimensional features, and compare Gasgdsyamsing Gaussian
embedding and the Log-Euclidean metric.
According to the Log-Euclidean framework, the matsigs, p) can be further
embedded into a linear space by matrix logarithm:

G(8, p) = log(S(8,p))- (7)

LetN; = N (i, ;) andN; = N (u;, ;) be two Gaussian models and their cor-
responding symmetric matrices &&g(, p) andG;(f3, p). The distance between
two Gaussian models is

disty;, n; = ||Gi(83, p) — G4(B, p) || - (8)

It is easy to know that distande (8) is decoupled so @, p) andG; (3, p) can
be computed separately and adopted in a linear classifiendtational simplic-
ity, we omit the parameter$ andp in the distance measuid (8).



3.4. Joint low-rank learning and SVM classifier

Our CLM usually is of high dimension 10%). In order to suppress redundant
and noisy information while reducing computational andage cost, we propose
a low-rank learning method to compact our CLM. The maixn geodesic dis-
tancel(8) is dk+1) x (k+1) symmetric matrix which lies in the Euclidean space.
Due to its symmetry, we can unfold the upper triangular paGdo a vector of
sized = (k+1) x (k+2)/2. We can modify geodesic distan€é (8) by introducing
a low-rank transformation matrik € R¥" r < d:

distyn; = L7 (f = £)]2, ©)

wheref; andf; are the unfolding vectors of two Gaussian modglsand A},
respectively.

Recent studiei_[i[lﬂ] have shown that joint optimizatibdimensionality
reduction with classifier performs better than separat@ropation of the two
modules. Thus, givelV training samplegf,,n € [1, N]}, we optimize the low-
rank learning jointly with a linear SVM (LRSVM):

N
1 9
min o |w] +C;§n (10)

sit. yo(WILTE, +0) > 1—¢,,¥, > 0,n € [1,N],
L'L =1,

wherew, €, b are parameters of SVM, ang is the label of,,. The dimensionality
reduction for SPD matriceﬁlm] has been studied with dinosadity reduction
and classification separately performed, while our methaglite different in that
we focus on Gaussian models and perform joint learning oframk transforma-
tion and SVM.

In practice, we extend the objective functignl(10) to maléss problem under
the spatial pyramid matching (SPM) framewdrk [31]. Givenraagel/,, we can
obtain its SPM representatidn, = [(f})7, ..., (f5)"]" , whereB is the number
of blocks in SPM, which is fed to a one vs. all SVM for solvingeth/ classes
problem. As suggested iﬂ27], we optimize the dual problérthe objective



function (10) under the SPM framework:

M N
min max Z ( Z al — %(agYmFHFTYmam))
L am m=1 n=1

N
s.t. Zy:;a% =0,0<a,, <C,Vm (11)
n=1
L’L =1, L” = Diag(L7,...,L%), H=LL",

whereF = [Fy,...,Fy|T indicates all training features, aid,, is the diagonal
label matrix of themth class with diagonal elemeM,,,(n,n) = /..

The problem[(Il1) is non-convex and can be optimized by a tep-alternat-
ing method: Step Onefixing L, we can optimize the Lagrange parameiers
with off-the-shelf SVM;Step Two for fixed a,,,, we solve the following trace
maximization problem:

M
max tr (ETFT Z(YmamafnYz;)Ff) (12)
L

m=1

st. L'L =1, L = Diag(L7”,...,L%).

We optimize the probleni{12) by independently solving eb¢h i = 1,..., B
with a closed-form solution_[27] which is corresponding e teigenvectors of
matrix (F)” "M (Y, ., @l YT )(F?) with larger eigenvalues, a L, = 1
is naturally satisfied. Due to the probleml(11) being nonveaninitialization is
nontrivial to reach a good local optimal solution and fort fa@nvergence. In this
paper, we use the basis of principal component analysis RS Anitialization,
and we find that it can always achieve good performance ahddasergence.

4. Partial background removal (PBR)

We then present a simple yet effective method for analyzimghendling the
side effect of background clutter based on unsupervisettiprineto-up saliency
detection. Our purpose here is to remove the interferentadfground, which
is distinguished from the purpose of precise foregroundlipation in saliency
detection community. Our method consists of two steps: seoforeground de-
tection and partial background removal. In the first stepaealize in image the
foreground based on saliency detection [28] and then detertine bounding-box
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surrounding the foreground. Next, we adaptively expandidmg-box to accom-
modate some background regions based on size and inteas#yee of the area
inside the bounding-box. Then, the area outside boundingi$k removed for
recognition. Our method is based on the considerationsatt@trate foreground
detection is currently very difficult and neighboring regsmf object can serve as
the context and may be helpful for recognition. In our expemts, we adopt PBR
to the two datasets with heavy background clutter: CUB20D12and VOC2007.
Since PBR is designed for foreground objects with sepaiadt&ground clutter,
we do not perform PBR on images with less background cluttérsaene images
where both foreground and background are valuable for sgeaerstanding.

5. Implementation details

We extract multi-scale SIFT descripto@[:%?] (standarcefoe in the BoF
model) with cell size2’, i = 1,2,..., and single scale pixel-wise covariance
descriptorEb] via the dense sampling strategy with seyadh 2. The dense
covariance descriptors are computed with 17 dimensiomafeatures including
intensity and four kinds of first-order and second-ordeduggats from @2]. We
perform matrix logarithm on the covariance descriptorgyCov), which are then
vectorized. The SIFT features are calculated via the VLKegtry ﬂﬂ]. More-
over, following E},], we also extract additional imageesuincluding color,
location, scale, gradient and entropy to concatenate SheTLagCov. In order
to ensure that there is sufficient data to estimate Gaussaelsiand covariance
matrices are positive definite, we limit the minimum size ofithr or height of
images to be larger than 64, and add™ to the diagonal entries of covariance
matrices, respectively. We employ the spatial pyramidesg;aEi] which divides
an image into some regular regions (elgx 1, 2 x 2, 1 x 3, 4 x 4). For each
region we compute a Gaussian model, and then concatenatadhrepresent the
whole image. Each Gaussian is Weightedfﬁ/]\“—, whereL and N, are the

=1 1/Nl
number of pyramid levels and regions in ﬂ‘FEIa{yer, respectively. We implement
a one-vs-all SVM with LibSVMI[11] and set parametérto 0.01 on VOC2007
and10 on all the other databases. All algorithms are written inl&gtand run
on a PC equipped with i7-4770k CPU and 32G RAM.

6. Experimental evaluation

In this section, we evaluate the classification performawsiceur CLM on
eight benchmark databases. First of all, we make an analystcal features,
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Local descriptors Parameters BR
ST | eST| LC | eLC | Beta | EPN | PBR | GT | Acc.
v 16.8
v 24.1
v 18.6
v 25.6
v 19.1
v 26.3

Cov.

Gau.

45.3
v 28.1
v v 36.0
v v 48.2

ANENESENENENEN
(\

ANESEN

Table 1: Classification results (in %) of our CLM vs. variowsrbinations of descriptors, param-
eters and background removal on CUB200-2011.

the parameters of our method, the proposed low-rank legnmethod and the
partial background removal method on the challenging CUB2011 I[Et]. Then,
we compare with state-of-the-art methods on Caltech@]l (a8ltech2561[22],
KTH-TIPS2b [8], Flickr Material Database (FMD) [23], Pas&0C2007 [17],
ScenelS@l] and SportslﬂSZ]. Finally, we analyze the cdatfmnal complexity
of our CLM.

27 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 30
26.5F
. 26f A267 Vs o
g g LR N
g < BRI R
> > &~
8 25.5¢ - - =B =0 (Covariance) g 24 4
§ -8 Various § 0oL
< 250 22} 0o o
---No Compression 00
o
o PCA .
24.51 20r | - PLS q
—&-LRSVM
Py il et e 18 . . . . . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4 50 60 70 80 90 100 110 120 130 150 180
The value of B Compression ratio

Figure 3: Effect of balance parametgin Eq. (4) (left) and comparison of PCA, PLS and our
LRSVM with various compression ratios on CUB200-2011 (tjgh

12



6.1. Parameters analysis

Local descriptors Four kinds of local descriptors, SIFT (ST) and its enrich-
ment (eST), and LogCov (LC) and its enrichment (eLC), arduatad in this
section. The results of our CLM with various local descripton CUB200-2011
are shown in Tablel1. We can see that the Gaussian model usedrimethod out-
performs covariance matrix bly5% or higher with either SIFT or eSIFT, which,
we believe, can indicate that the first-order (mean) infdiomas non-trivial. We
use eST to evaluate other parameters as follows.

Two well-motivated parameters The proposed EPN5) is a generic method for
robust estimation of covariance in high dimension space.s&¥garametep in
EPN [B) as0.5 in all databases. From TaHlé 1, we can see that EPN can bring
1.2% performance gain over the relevant method without EPN. Theeglding
parameter3 (@) balances the effect of mean vector and covariance mafiix
test its effect, we determine the optimal valuesofia cross validation. The per-
formances of our CLM with varioug are illustrated in Fig[]3 (left). Compared
to 5 = 0 (covariance matrix onl d:iO]) and = 1 (the embedding in_[36]),
appropriate balancing at = 0.4 achieves2.4% and 0.9% gains, respectively.
The parametef can balance the effect of covariance matrix and mean veator o
classification, and the biggerindicates mean vector has greater impact on clas-
sification. On CUB200-2011, the performance will continsigudecrease with
bigger value ofy when it is bigger than 1, which indicates the effect of comace
matrix should be greater on CUB200-2011. The parametearies in different
tasks or databases, which can be decided by cross validdtianset to 0.4 on
KTH-TIPS2b and CUB200-2011, 0.6 on Scenel5 and FMD, 0.8 antS§p and
Caltech101, 1.5 on Pascal VOC 2007 and Caltech 256, regplcti

LRSVM To evaluate the proposed LRSVM method, we compare LRSVM with
unsupervised principal component analysis (PCA) and sigest partial least
square (PLSﬂl] under different compression ratios. Th8YN is initialized by
PCA, and the results on CUB200-2011 are illustrated in[Bigight). From it we
can see that LRSVM always performs better than PLS, and ergugo PCA by

a large margin. Different from PLS which exploits the leapiares loss, LRSVM
uses the hinge loss. We argue that the improvement owes toittidearning

of dimensionality reduction and classifier. Note that, Watger compression ra-
tio, LRSVM achieves larger improvement over PCA and PLS. hgzle, the
proposed LRSVM has insignificant performance loss (less thidht) with large
compression ratioX 100). We also can see that LRSVM can slightly improve the
performance of our CLM when compression rations are sméiteg0), which
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(@)

Database Classes| Images in total Training/Test Measurement

CUB200-2011 [52]| 200 11,788 Splitin [52] Acc. of split

Caltech101 [18] 102 9,144 30/remaining per class| Acc. of 5 runs

Caltech256 [22] 256 30,607 30/remaining per class| Acc. of 5 runs

Sports8 [32 8 1,792 70/60 per class Acc. of 5 runs

KTH-TIPS2b [8] 11 4,752 [13] Acc. of splits

FMD [23] 10 1,000 50/50 per class Acc. of 5 runs

VOC2007 [17] 20 9,963 Splitin [17] mAP of split

Scenel5 [31] 15 4,485 100/remaining per class Acc. of 5 runs
(b)

Database Scale | View | lllumination | Pose | Bg Clutter | Occlusion

CUB200-2011 [52]| v v v v v v

Caltech101 [18] v v

Caltech256 [22] v v v

Sports8 [32] v v v v

KTH-TIPS2b [8] v v v

FMD [23] v v v

VOC2007 [17] v v v v v v

Scenel5 [31] v v v

Table 2: Descriptions and experimental setup on eight widséd benchmarks.

we owe to that LRSVM can suppress some noisy information elregal, we set
compression ratio &) ~ 100 to balance the efficiency and effectiveness.
Impact of PBR We apply PBR to CUB200-2011 and the results are presented
in Table[1. We can see that the method using PBR achieves gmaat (more
than 7.5%) over the one without PBR. Note that we achieve abidatgain in
VOC2007 by using PBR. It shows that our PBR is a general metbdandle
background for CLM. The gains achieved by using ground t(Gh) bounding
box indicate more advanced background removal methodsfbewer ability to
improve the recognition performance of our CLM. Comparethiie improve-
ment in CUB200-2011, the gains in VOC2007 are relative snidlé reasons are
mainly that the saliency-based methods fail to locate pedgithe foregrounds in
the challenging databases, and CUB200-2011 only conta@®bject per image
while one image may contain multiple objects in VOC2007. RAR not segment
image into multiple objects so that multi-object imaged davily influence the
performance of CLM.

6.2. Comparison with state-of-the-art methods

We compare our CLM with more than ten state-of-the-art mgghan eight
widely used benchmarks. The descriptions and experimseiiap on these bench-
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(a) CuB200-2011 (b) Caltech101 (c) Caltech256

Methods Acc. Methods Acc. (Tr.=30) Methods Acc. (Tr. = 30)
BoF-hard [31] 18.6 FV+SIFT [44] 80.8 +0.3 FV+SIFT [44] 47.4+0.1
FV [44] 25.8 FV+eSIFT 83.7+0.3 FV+eSIFT 50.1+0.3
FV + eSIFT 27.3 DeCAF [14] 86.9+ 0.7 Kobayashi2014 [29]| 49.8 £0.1
FV +eSIFT + PBR | 33.2 O2P+eSIFT J10] 80.8 NBNN [6] 43
Kobayashi2014 [29] | 27.3 SQ-O2P+SIFT [7] 79.5 M-GOLD [45] 44.2
PPK [57] 28.2 M-GOLD [45] 81.0 M-HMP [6] 50.7
CLM (SIFT) 18.6 CLM (SIFT) 84.9 £0.1 CLM (SIFT) 48.9 £ 0.2
CLM (eSIFT) 28.1 CLM (eSIFT) 86.3 + 0.3 CLM (eSIFT) 53.6 + 0.2
CLM (LogCov) 19.1 CLM (LogCov) 82.5+0.3 CLM (LogCov) 48.6 £0.3
CLM (eLogCov) 28.6 CLM (eLogCov) 84.7+0.2 CLM (eLogCov) 53.2£0.1
CLM (eSIFT) + PBR | 36.0
(d) Sports8 (e) KTH-TIPS2b (f) FMD
Methods Acc. Methods Acc. Methods Acc.
FV+SIFT [44] 91.3+1.3 BoF-LLC [53] 57.6 £2.3 VLAD [26] 52.6 + 1.5
FV+eSIFT 90.4+1.2 VLAD [26] 63.1+1.0 FV+SIFT [44] 58.34+ 1.0
Kobayashi2014 [29]| 92.6 4+ 0.7 FV+SIFT [44] 69.3+ 1.0 FV+eSIFT 58.9+ 1.7
GG (ad-linear) [38] 80.2 FV+eSIFT 71.3+3.1 Kobayashi2014 [29]| 57.3 +0.9
GG (ct-linear) [38] | 82.9+ 1.0 DeCAF [14] 70.7+1.7 DeCAF [14] 60.7 £ 2.1
GG + KL Div. [38] 84.4+ 1.4 Attributes [13] 73.8+1.3 Attributes [13] 61.1+1.4
CLM (SIFT) 88.8+ 1.0 CLM (SIFT) 71.8+3.1 CLM (SIFT) 51.6 + 1.2
CLM (eSIFT) 91.5+1.2 CLM (eSIFT) 75.2+2.6 CLM (eSIFT) 57.7+1.6
CLM (LogCov) 88.3+ 1.3 CLM (LogCov) 72.2+£3.3 CLM (LogCov) 624+ 1.5
CLM (eLogCov) 90.7 £ 0.7 CLM (eLogCov) | 73.6 £2.6 CLM (eLogCov) 64.2 + 1.0
(g) VOC2007 (h) Scenels

Methods mMAP. Methods Acc.

BoF-LLC [53] 57.4 SV [59] 85.0

SV [59] 58.2 FV+SIFT [44] 88.1+0.2

SQ-O2P+SIFT [7]| 51.0 FV+eSIFT 89.4+0.2

M-GOLD [45] 61.1 GG (ad-linear) [38] 79.8

FV+SIFT [44] 61.8 GG (ct-linear) [38] | 82.3+0.4

FV+eSIFT 60.8 GG +KLDiv. [38] | 86.1+0.5

CLM (SIFT) 55.8 CLM (SIFT) 88.1+0.4

CLM (eSIFT) 60.4 CLM (eSIFT) 89.4 £ 0.4

CLM (LogCov) 56.6 CLM (LogCov) 88.3 0.6

CLM (eLogCov) 61.7 CLM (eLogCov) 89.24+0.5

Table 3: Comparison (in %) with state-of-the-art methodsight widely used benchmark datasets
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marks are listed in Tablel 2. We report the results in Tablen8l, discuss the
experimental results as follows.

Comparison of variouslocal descriptors We combine our CLM with four kinds
of local descriptors, and assess them on all databases. Fabl&3 we can see
that SIFT and LogCov achieve comparable results. For obgactgnition, Log-
Cov is superior to SIFT on CUB200-2011 and VOC2007 while Sbkiperforms
LogCov on Caltech101 and Caltech256. On scene categonz&IFT and Log-
Cov obtain similar performances on both Sports8 and Sencedbtexture and
material classification, SIFT achieves gains over LogCoK®oH-TIPS2b while
LogCov is superior to SIFT by a large margin on FMD. The eSIR@ aLogCov
perform with the similar rule as SIFT and LogCov, respedyiv&he enrichment
on SIFT and LogCov can considerably boost the performanoemELM, which
encourages us to utilize more informative descriptorsdathier improvement.
Comparison with counterparts Here, we compare our CLM with its counter-
parts, O2P/[10], Global Gaussian (G@[SS], mixture of GOIND-GOLD) [@]
and NBNN [6]. As shown in Tabldd 1 & 3, our CLM significantly petforms
o2pP m)] on CUB200-2011 and Caltech101, and is also superitsvariant with
sparse quantization (SQ-OZQ) [7] on Caltech101 and VOCB@@Aarge margin,
which are mainly due to the appropriate use of mean infoonatnd EPN. More-
over, our CLM performs much better than GG methods [38] witkhac linear
kernel (ad-linear), center tangent linear kernel (ctdmend KL divergence on
Sports8 and Sencel5. The ad-linear can be seen as a bas&indidean space.
It is mentionable that the methods [38] exploit probaiiti discriminant anal-
ysis (PDA) as a classifier. If SVM is used, their results withpl to 71.7%, 78.8%
and81.4% on Sports8, and4.3%, 80.7% and83.1% on Scenelb5, respectively.
In addition, our CLM outperforms mixture of GOLD which moddlimage with
Gaussian or Gaussian mixture model, and then mapped covara Gaussian
into Euclidean space with concatenating to the mean veotambtching Gaus-
sian models. We attribute the gains of our CLM over @ 45 use of two-
step metric with the proposed well-motivated parameters.al¥o compare our
CLM with NBNN [E|]. It is easy to see that our CLM performs mucétter than
NBNN on Caltech101 and Caltech256. The main differencesdxst our CLM
and NBNN are that our CLM employs an effective model-to-malilstance and
SVM classifier.

Comparison with FV We make a comprehensive comparison with one state-of-
the-art BoF method, F\mM], throughout all databases, &swadopt enrichment
SIFT (eSIFT) to FV. On all databases except for FMD, our CLMiages bet-
ter than or comparable performances with FV when SIFT or E&Rised. On
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FMD, with SIFT or eSIFT, our CLM is inferior to FV, but with Ldgov or eLog-
Cov, our CLM is much better than FV. In our experiments, we fimat LogCov
or eLogCov is not very suitable for FV, so the relevant resalie not reported.
It is found that our CLM is more sensitive to local descrigttrtan FV, as eSIFT
brings less or no gains on FV while our CLM greatly benefitsrfrihe enrich-
ment on SIFT or LogCov. On CUB200-2011, we also adopt thegseg@ PBR to
Fisher vector with eSIFT (FV+eSIFT+PBR). FV+eSIFT+PBR aahieve33.2%
accuracy, which improves FV+eSIFT but is inferior to our CEMBR §6.0%)

by 2.8%. Note that PBR is not essential to our proposed method, Buaisimple
yet effective method to alleviate the effect of backgrouhuter on our CLM, if
necessary.

Comparison with other state-of-the-art methods Some recent results are also
presented for comparison. On Caltech101, DeCAF [14] witay@ts CNN and
dropout strateg;}ﬂ?] slightly outperforms our CLM. Withadropout, the result
of DeCAF drops t®4.8%. On Caltech256, our CLM outperforms the deep archi-
tecture Multipath Hierarchical Matching Pursuit (M-HM@] by 2.9%. Cimpoi

et al ] achieved state-of-the-art results on KTH-TIP&8d FMD with seman-
tic attributes which are trained on the additional datatilgseombining FV ]
and DeCAF Eh]. Our CLM is superior to the method with atttds) FV and
DeCAF. By combining attribute features, FV and DeCAF, Cimgtaal [ﬂ] ob-
tained77.3% and 67.1% accuracy on KTH-TIPS2b and FMD. Kobayas[29]
proposed a histogram transformation method, and it achistate-of-the-art re-
sults on Sports8 and VOC2007.

Summary In this paper, we assess our CLM on eight image benchmarks, as
shown in Tablé 2, which contains various transformationaasy factors. We
claim that (1) the results on Caltech101 and Caltech256 shatvour CLM can
well deal with location and pose variations of objects; (8 tesults on FMD and
KTH-TIPS2b show that our CLM is robust to scale, viewpoifitymination and
appearance variation; (3) the results on Sports8 and Sénoditate our CLM
can well classify scene images with certain backgroundesisitand (4) the results
on CUB200-2011 and VOC2007 demonstrate our CLM also canleéamages
with complex surroundings, such as heavy background ctudied occlusion.

6.3. Computational complexity analysis

Our CLM for classification mainly consists of three compadserextracting
local descriptors, computing Gaussian models usind Eép(wed by EPN [(b)
and matrix logarithm in Ed.{8), and learning LRSVM for cldisation. Most of
the computational costs of CLM lie in the eigenvalue decaositjpm produced by
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EPN and matrix logarithm. Their computational complexig@(k*) andO((k+
1)%), respectively, wheré: is the dimension of local descriptors. During joint
training of low-rank matrix and SVM classifier, optimizingg objective function
(@I7) consists of alternating SVM minimization problem anace minimization
problem, whose complexity i9(J(N?D + D* + Bd?*)), whereN is the number
of training samples of dimensidn = Bd, and.J is the number of iterations which
is less thars in our experiments.

Here, we give empirical running time by taking KTH-TIPS2a®altech101
as examples. The time of computing image representatioichviiicludes extrac-
tion of SIFT at multiple scales, and the time of computatibaussian models
and embedding matrices, are 30 minutes on KTH-TIPS2b antdugs on Cal-
tech101. The average time of modeling one image takes abbgefond and 0.6
second on relevant databases. For each trial, training.(test) of LRSVM takes
20s (resp. 2s) and 7min (resp. 40s) on KTH-TIPS2b and Cdléschespectively.

7. Discussion and conclusion

The bag-of-features (BoF) is a popular method in classiéinand recogni-
tion fields, demonstrating convincing performance in mamyputer vision tasks
in the last decades. It might seem that training codebookstmator coding are
indispensable ingredients. However, the codebookles&€h{GiLM) proposed in
this work has proven to be an effective alternative methothéoBoF methods
for image classification. Below we give some discussionsiblary CLM shows
such competitive performance.

Different from the BoF methods, our CLM leverages continufunctions for
statistical modeling of local descriptors, which does retahcodebook and thus
has no quantization brought in. Recent studies [12] showathigh dimension-
ality can bring impressive performance. The state-ofattd8oF methods such as
SV/VLAD or FV have inherently high dimensionality, whichy our opinion, is
the key for characterizing distinctness and discrimirests/of individual images
as well as image categories. Our CLM directly employs thé-faad second-
order statistics of high dimensional local descriptorsjrgj rise to informative
image-level models of high dimensionality as well. In thespect, it is worth-
while to study more informative or high dimensional CLM. Mower, as shown
in [|§ ], the CLM is more efficient than the BoF methods fordaling images
because learning codebook & coding are not necessary. liicagdhe CLM
may be more suitable for the tasks where the datasets widldndarly updated or
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increased, and thus the codebook in the BoF model has to bkarggadjusted to
fit the changing datasets.

The contributions of this paper are concluded as followsg.Qar work has
clearly shown that the CLM is a very competitive alternativghe mainstream
BoF model. The above finding, to our best knowledge, has noayeeared in
pervious literatures. We hope our work can raise potenttatests in the classifi-
cation (or retrieval) community and pave a way to future aesle. (2) Our method
enables Gaussian models to be successfully combined wihrliSVM classifier,
which makes our method scalable and efficient. The key iswkeadmbed Gaus-
sian models into a vector space which also allows us to parfomt low-rank
learning and SVM on Gaussian manifold, which is differeotirpervious related
work @%,@]. Meanwhile, the proposed two well-motivateatgmeters further
improve our CLM. (3) We performed extensive experiments|ating various
aspects of our CLM and comparing with its counterparts a$ agestate-of-the-
art methods. The comprehensive experiments demonstheguidmising perfor-
mance of our CLM. In future work, we will extend our methodhviore effective
local features (e.g., CNN features), and apply the proposstiod to other vision
tasks and practical applications, such as texture claadicand segmentation,
scene categorization and image retrieval.
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