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Abstract

The bag-of-features (BoF) model for image classification has been thoroughly
studied over the last decade. Different from the widely usedBoF methods which
model images with a pre-trained codebook, the alternative codebook-free image
modeling method, which we call Codebookless Model (CLM), attracts little atten-
tion. In this paper, we present an effective CLM that represents an image with a
single Gaussian for classification. By embedding Gaussian manifold into a vector
space, we show that the simple incorporation of our CLM into alinear classifier
achieves very competitive accuracy compared with state-of-the-art BoF methods
(e.g., Fisher Vector). Since our CLM lies in a high-dimensional Riemannian man-
ifold, we further propose a joint learning method of low-rank transformation with
support vector machine (SVM) classifier on the Gaussian manifold, in order to
reduce computational and storage cost. To study and alleviate the side effect of
background clutter on our CLM, we also present a simple yet effective partial
background removal method based on saliency detection. Experiments are exten-
sively conducted on eight widely used databases to demonstrate the effectiveness
and efficiency of our CLM method.
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1. Introduction

Image classification has been attracting massive attentions in computer vision
and pattern recognition communities in recent years. It is one of the most funda-
mental but challenging vision problems because images, as illustrated in Fig. 1,
often suffer from significant scale, view or illumination variations (e.g., in texture
classification [8] and material recognition [23]), and posechanges, background
clutter, partial occlusion (e.g., in scene categorization[31, 32] and object recog-
nition [17, 18, 22, 52]).

For a long time the bag-of-features (BoF) model [46] has beenalmost given
priority to image classification. As shown in Fig. 2 (a), the BoF-based methods
generally consist of five components: local features extraction, learning codebook
with training data, coding local features with pre-trainedcodebook, pooling or
aggregating codes over images, and finally, learning classifier (e.g., SVM) for
classification. With this processing pipeline, the BoF-based methods can be seen
as a hand-crafted five-layer hierarchical feed-forward network [49] with a pre-
trained feature coding template (codebook) [7]. The learned codebook depicts
the distribution of feature space, and makes coding of high dimensional features
possible. This architecture has achieved very promising performance in a variety
of image classification tasks.
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Figure 1: Some example images and accuracy comparison (in %)between Fisher vector (FV) and
our codebookless model (CLM) on various image databases.
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Figure 2: Comparison between (a) the BoF model and (b) our CLM. The major difference between
them is that whether there is a pre-trained codebook & codingor not. Our CLM mainly consists
of a Gaussian model for image representation and a joint low-rank learning with linear SVM
classifier.

The codebook as a reference for feature coding serves as a bridge between
local features and global image representation. However, it is well known that
segmentation of feature space involved in building of codebook brings on quan-
tization error [6], and leads to continuous striving for this side effect (e.g., soft
coding methods [44, 19, 55] alleviate but cannot completelyeliminate it). Though
offline, training of codebook, particularly large size ones, is time consuming. In
addition, in general the pre-trained codebook on one database cannot naturally
adapt to other databases [58].

An alternative approach is to estimate the statistics directly on sets of local
features from input images [10, 38, 50], as illustrated in Fig. 2 (b), which is called
codebookless model (CLM) in this paper. It is clear from Fig.2 that the major
difference is that the BoF model learns a codebook to explorethe statistical distri-
bution of local features and then performs coding of descriptors, while the CLM
represents images with descriptors directly, requiring nopre-trained codebook and
the subsequent coding. Conceptually, the codebookless model has the potential to
circumvent the aforementioned limitations of the BoF model, however, which has
received little attention in image classification community. The main reasons may
be that such methods have not yet shown competitive classification performance,
and that they often need to utilize inefficient and unscalable kernel-based classi-
fiers.

In this paper, we propose an effective CLM scheme, and argue that the CLM
can be a competitive alternative to the BoF methods for imageclassification. The
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comparison between state-of-the-art BoF method, Fisher Vector (FV) [44], and
our CLM on various image databases is shown in Fig. 1. First and foremost,
we extract a set of local features (e.g., SIFT [37]) on a densegrid of image, and
simply model them with a single Gaussian model to represent the input image.
Then, we employ a two-step metric for matching Gaussian models. By using this
metric, Gaussian models can be fed to a linear classifier for ensuring efficient
and scalable classification while respecting the Riemannian geometry structure of
Gaussian models. Moreover, we introduce two well-motivated parameters into
the used metric. One is to balance the effect between mean andcovariance of
Gaussian, and another is for eigenvalue power normalization on covariance.

Our codebookless model usually is of high dimension, by incorporating low-
rank learning with SVM, we propose a joint learning method toeffectively com-
press Gaussian models while respecting their Riemannian geometry structure. It
is mentionable that, to the best of our knowledge, we make thefirst attempt to per-
form joint learning of low-rank transformation and SVM on Gaussian manifold.
Finally, to alleviate the side effect of background clutter, a saliency-based partial
background removal method is proposed to enhance our CLM. The experimental
results show that partial background removal is helpful to CLM when images are
heavily cluttered (e.g., CUB200-2011 and Pascal VOC2007).

2. Related work

The codebookless model for directly modeling the statistics of local features
has been studied in past decades. Rubner et al [43] introduced signatures for
image representation, and proposed the Earth Mover’s Distance for image match-
ing which is robust but has high computational cost. Tuzel etal [50] for the
first time used covariance matrices for representing regular image regions, and
employed Affine-Riemannian metric which suffers from high computational cost
[40]. Gaussian model as image descriptor has been used for visual tracking [20],
in which Gaussian models are matched based on the Riemannianmetric, involv-
ing expensive operations to solve generalized eigenvalue problem. Going beyond
Gaussian, Gaussian mixture model (GMM) is more informativeand is used in
image classification and retrieval [3, 41]. However, GMM suffers from some
limitations, such as high computational cost of matching methods and lacking of
general criteria for model selection.

Our work is motivated by [9, 10] and [38]. Carreira et al [9, 10] modeled the
free-form regions obtained by image segmentation with estimating the second-
order moments. By using Log-Euclidean metric [2], the method in [9, 10] can be
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combined with a linear classifier, which has shown competingrecognition perfor-
mance on images with less background clutter (e.g., Caltech101 [18]). Different
from [9, 10], we employ a Gaussian model to represent the whole image. It is
well-known that a covariance matrix can be seen as a Gaussianmodel with fixed
mean vector. Compared to [9, 10], our CLM contains both the first-order (mean)
and second-order (covariance) information. Note that the first-order statistics has
proved to be important in image classification [26, 44]. Moreover, the manifold
of Gaussian models and that of covariance matrices are quitedifferent, and the
embedding method in our CLM makes Gaussian models can be handled flexibly
and conveniently.

Nakayama et al [38] also represented an image with a global Gaussian for
scene categorization. However, they matched two Gaussian models by using the
Kullback-Leibler (KL) divergence, and hence kernel-basedclassifiers have to be
used. This method is not scalable and has high computationalcost. In contrast
to [38], our metric is decoupled which allows a linear classifier to be combined,
which makes our method more efficient and scalable than the KLkernel based one
in [38]. Moreover, compared with the ad-hoc linear kernel (Euclidean baseline) in
[38], our method takes advantage of the geometry structure of Gaussian models
and brings large performance improvement.

There is another line of research on codebookless model methods. Grauman
et al [21] proposed a pyramid match kernel to map feature setsto multi-resolution
histograms, and employed histogram intersection kernel for classification. Bo et al
[5] presented efficient match kernels to map local features into a low dimensional
space, and adopted a linear classifier. Boiman et al [6] developed an image-to-
class distance between the sets of local features, and employed a nearest neighbor
classifier. Yao et al [56] proposed a codebook-free approachby using a large
number of randomly generated image templates for image representation, and de-
veloped a bagging-based classifier. Peng et al. [39] studiedimage representation
from the discriminative-generative viewpoint, and suggested a deep boosting ar-
chitecture for joint filter learning and feature selection in a layer-by-layer manner.
Lin et al. [35] proposed to use a set of random image patches torepresent an
input image in object detection task and achieved promisingresults, where they
decided locations of objects by employing location sensitive matching between
image patch and reference patches (ε-balls). Thoseε-balls are learned from a
massive of training image patches with maximal informationgain strategy. Dif-
ferent from the above methods, we exploit a single Gaussian model to represent
image for classification.
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3. Proposed method

We first introduce the image representation by a single Gaussian model. Then,
we employ an effective and efficient two-step metric for matching Gaussian mod-
els, and propose two well-motivated parameters to improve the used distance met-
ric. Finally, we present a joint learning method of low-ranktransformation and
SVM on Gaussian manifold.

3.1. Gaussian model for image representation

Given an input image, we extract a set ofN local features{xi ∈ R
k×1, i =

1, . . . , N} at a dense grid. By the maximum likelihood method, the image can be
represented by the following Gaussian model:

N (xi|µ,Σ) =
exp

(
− 1

2
(xi − µ)TΣ−1(xi − µ)

)
√

(2π)kdet(Σ)
,

whereµ = 1

N

∑N
i=1

xi andΣ = 1

N−1

∑N
i=1

(xi − µ)(xi − µ)T are mean vector
and covariance matrix, anddet(·) denotes matrix determinant. Compared with
histogram and covariance, Gaussian model is more informative. Meanwhile, un-
like matching of signatures [43] or GMMs [3], matching of Gaussian models does
not bring high computational cost.

3.2. Two-step metric between Gaussian models

To match Gaussian models, we exploit a two-step metric whichhas been pro-
posed to compute the ground distance between Gaussian components of GMMs
[34]. The first step is to embed Gaussian manifold into the space of SPD matri-
ces [36], and then map the Lie group of SPD matrices into its corresponding Lie
algebra, a linear space, by using the Log-Euclidean metric [2].

The space ofk-dimensional Gaussian models is a Riemannian manifold. Let
N (µ,Σ) be a Gaussian model with mean vectorµ and covariance matrixΣ.
Through a continuous functionπ, N (µ,Σ) is mapped to an affine matrix, an
element in the affine groupA+

k = {(µ,P)|µ ∈ R
k×1,P ∈ R

k×k, det(P) > 0};
that is,

π : N (µ,Σ) 7→ A =

[
P µ

0
T 1

]
, (1)

whereΣ = PP
T is the Cholesky factorization ofΣ. Further, through the function

γ : A 7→ S = AA
T , A is mapped to an SPD matrixS. So far, by the successive
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functionsπ andγ, N (µ,Σ) is uniquely designated as an(k + 1)× (k + 1) SPD
matrix

N (µ,Σ) ∼ S =

[
Σ+ µµT µ

µT 1

]
. (2)

Please refer to [36] for details on the embedding process.
The space of(k + 1) × (k + 1) SPD matricesS+

k+1
is a Lie group that forms

a Riemannian manifold. Two operations, namely the logarithmic multiplication
and the scalar logarithmic multiplication, are defined in the Log-Euclidean metric
[2], which equipS+

k+1
with structures of not only the Lie group but also vector

space. Through the matrix logarithm,S+

k+1
is mapped into its Lie algebraSk+1,

the vector space of(k + 1)× (k + 1) symmetric matrices. The matrix logarithm
is a deffemorphism and an isomorphism so that operations over SPD matrices
can be replaced by the Euclidean operations of their counterparts in the vector
space. So, through the matrix logarithm, an SPD matrixS is one-to-one mapped
to a symmetric matricesG which lies in a linear space, and the geodesic distance
between SPD matricesSi andSj is defined bydistSi,Sj

= ‖Gi −Gj‖F , whereF
is the Frobenius norm.

3.3. Two well-motivated parameters

In practice, we found that it is important to balance mean vector and covari-
ance matrix in the embedding matrix (2), because their dimensions and order of
magnitude of each dimension may vary considerably. Meanwhile, the effect of
mean vector and covariance matrix may vary for different tasks. With these con-
siderations, we introduce a parameterβ > 0 in the functionπ (1):

π(β) : N (µ,Σ) 7→ A =

[
P βµ
0
T 1

]
. (3)

Accordingly, the embedding matrix has the following form:

N (µ,Σ) ∼ S(β) =

[
Σ+ β2µµT βµ

βµT 1

]
. (4)

The embedding matrix (4) reduces to the covariance matrix when β = 0, and
is equal to the original one whenβ = 1. Hence, the role of mean vector and
covariance matrix can be adjusted byβ.

The maximum likelihood estimator of the empirical covariance matrix is sus-
ceptible to interference of noise, especially for high dimension space [15]. Based
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on observation that the maximum likelihood estimator of covariance ought to be
improvable by eigenvalue shrinkage [48], we exploit power normalization on the
eigenvalues of covariance matrix (EPN). LetN (µ,Σ) be a Gaussian model esti-
mated from a set of descriptors extracted from some image. The covariance matrix
Σ has eigenvalue decompositionΣ = Udiag(λi)U

T , whereU is an orthornormal
matrix whoseith column is the eigenvector ofΣ andλi > 0 is the corresponding
eigenvalue, anddiag(·) denotes diagonal matrix. Then by introducing a parameter
ρ, our normalization is defined as

Σ
ρ = Udiag(λρ

i )U
T , with 0 < ρ ≤ 1. (5)

With EPN, our final embedding matrix is:

N (µ,Σ) ∼ S(β, ρ) =

[
Σ

ρ + β2µµT βµ
βµT 1

]
. (6)

It is easy to prove that the embedding matrix (6) is still positive definite asΣρ

being an SPD matrix. The eigenvalues power normalization has been proposed to
measure distances between covariance matrices [16, 25] or tensor [30], namely,
Power-Euclidean metric. Different from previous work, we use eigenvalues power
normalization for robust estimation of covariance matrices in Gaussian setting for
the case of high dimensional features, and compare Gaussians by using Gaussian
embedding and the Log-Euclidean metric.

According to the Log-Euclidean framework, the matrixS(β, ρ) can be further
embedded into a linear space by matrix logarithm:

G(β, ρ) = log(S(β, ρ)). (7)

LetNi = N (µi,Σi) andNj = N (µj,Σj) be two Gaussian models and their cor-
responding symmetric matrices areGi(β, ρ) andGj(β, ρ). The distance between
two Gaussian models is

distNi,Nj
=

∥∥Gi(β, ρ)−Gj(β, ρ)
∥∥
F
. (8)

It is easy to know that distance (8) is decoupled so thatGi(β, ρ) andGj(β, ρ) can
be computed separately and adopted in a linear classifier. For notational simplic-
ity, we omit the parametersβ andρ in the distance measure (8).
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3.4. Joint low-rank learning and SVM classifier

Our CLM usually is of high dimension (> 104). In order to suppress redundant
and noisy information while reducing computational and storage cost, we propose
a low-rank learning method to compact our CLM. The matrixG in geodesic dis-
tance (8) is a(k+1)×(k+1) symmetric matrix which lies in the Euclidean space.
Due to its symmetry, we can unfold the upper triangular part of G to a vector of
sized = (k+1)× (k+2)/2. We can modify geodesic distance (8) by introducing
a low-rank transformation matrixL ∈ R

d×r, r ≪ d:

distNi,Nj
= ‖LT (fi − fj)‖2, (9)

wherefi and fj are the unfolding vectors of two Gaussian modelsNi andNj ,
respectively.

Recent studies [27, 54] have shown that joint optimization of dimensionality
reduction with classifier performs better than separate optimization of the two
modules. Thus, givenN training samples{fn, n ∈ [1, N ]}, we optimize the low-
rank learning jointly with a linear SVM (LRSVM):

min
L,w,ξ

1

2
‖w‖2 + C

N∑

n=1

ξn (10)

s.t. yn(w
T
L

T
fn + b) ≥ 1− ξn, ∀ξn > 0, n ∈ [1, N ],

L
T
L = I,

wherew, ξ, b are parameters of SVM, andyn is the label offn. The dimensionality
reduction for SPD matrices [24] has been studied with dimensionality reduction
and classification separately performed, while our method is quite different in that
we focus on Gaussian models and perform joint learning of low-rank transforma-
tion and SVM.

In practice, we extend the objective function (10) to multi-class problem under
the spatial pyramid matching (SPM) framework [31]. Given animageIn, we can
obtain its SPM representationFn = [(f1n)

T , . . . , (fBn )T ]T , whereB is the number
of blocks in SPM, which is fed to a one vs. all SVM for solving the M classes
problem. As suggested in [27], we optimize the dual problem of the objective
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function (10) under the SPM framework:

min
L̂

max
αm

M∑

m=1

( N∑

n=1

αn
m −

1

2
(αT

mYmFHF
T
Ymαm)

)

s.t.
N∑

n=1

ynmα
n
m = 0, 0 ≤ αm ≤ C, ∀m (11)

L̂
T
L̂ = I, L̂T = Diag(LT

1 , . . . ,L
T
B), H = L̂L̂

T ,

whereF = [F1, . . . ,FN ]
T indicates all training features, andYm is the diagonal

label matrix of themth class with diagonal elementYm(n, n) = ynm.
The problem (11) is non-convex and can be optimized by a two-step alternat-

ing method:Step One, fixing L̂, we can optimize the Lagrange parametersαm

with off-the-shelf SVM;Step Two, for fixed αm, we solve the following trace
maximization problem:

max
L̂

tr

(
L̂

T
F

T
M∑

m=1

(Ymαmα
T
mY

T
m)FL̂

)
(12)

s.t. L̂
T
L̂ = I, L̂T = Diag(LT

1 , . . . ,L
T
B).

We optimize the problem (12) by independently solving eachL
T
i , i = 1, . . . , B

with a closed-form solution [27] which is corresponding to the eigenvectors of
matrix (Fi)T

∑M
m=1

(Ymαmα
T
mY

T
m)(F

i) with larger eigenvalues, andLT
i Li = I

is naturally satisfied. Due to the problem (11) being non-convex, initialization is
nontrivial to reach a good local optimal solution and for fast convergence. In this
paper, we use the basis of principal component analysis (PCA) as initialization,
and we find that it can always achieve good performance and fast convergence.

4. Partial background removal (PBR)

We then present a simple yet effective method for analyzing and handling the
side effect of background clutter based on unsupervised, bottom-to-up saliency
detection. Our purpose here is to remove the interference ofbackground, which
is distinguished from the purpose of precise foreground localization in saliency
detection community. Our method consists of two steps: coarse foreground de-
tection and partial background removal. In the first step we localize in image the
foreground based on saliency detection [28] and then determine the bounding-box
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surrounding the foreground. Next, we adaptively expand bounding-box to accom-
modate some background regions based on size and intensity variance of the area
inside the bounding-box. Then, the area outside bounding-box is removed for
recognition. Our method is based on the considerations thataccurate foreground
detection is currently very difficult and neighboring regions of object can serve as
the context and may be helpful for recognition. In our experiments, we adopt PBR
to the two datasets with heavy background clutter: CUB200-2011 and VOC2007.
Since PBR is designed for foreground objects with separablebackground clutter,
we do not perform PBR on images with less background clutter and scene images
where both foreground and background are valuable for sceneunderstanding.

5. Implementation details

We extract multi-scale SIFT descriptors [37] (standard pipeline in the BoF
model) with cell size2i, i = 1, 2, . . ., and single scale pixel-wise covariance
descriptor [33] via the dense sampling strategy with step-length 2. The dense
covariance descriptors are computed with 17 dimensional raw features including
intensity and four kinds of first-order and second-order gradients from [42]. We
perform matrix logarithm on the covariance descriptors (LogCov), which are then
vectorized. The SIFT features are calculated via the VLFeatlibrary [51]. More-
over, following [9, 10], we also extract additional image cues, including color,
location, scale, gradient and entropy to concatenate SIFT and LogCov. In order
to ensure that there is sufficient data to estimate Gaussian models and covariance
matrices are positive definite, we limit the minimum size of width or height of
images to be larger than 64, and add10−3 to the diagonal entries of covariance
matrices, respectively. We employ the spatial pyramid strategy [31] which divides
an image into some regular regions (e.g.,1 × 1, 2 × 2, 1 × 3, 4 × 4). For each
region we compute a Gaussian model, and then concatenate them to represent the
whole image. Each Gaussian is weighted by1/Nl∑L

l=1
1/Nl

, whereL andNl are the

number of pyramid levels and regions in thelth layer, respectively. We implement
a one-vs-all SVM with LibSVM [11] and set parameterC to 0.01 on VOC2007
and10 on all the other databases. All algorithms are written in Matlab, and run
on a PC equipped with i7-4770k CPU and 32G RAM.

6. Experimental evaluation

In this section, we evaluate the classification performanceof our CLM on
eight benchmark databases. First of all, we make an analysisof local features,
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Local descriptors Parameters BR
ST eST LC eLC Beta EPN PBR GT Acc.

Cov.
X 16.8

X 24.1

Gau.

X 18.6
X 25.6

X 19.1
X 26.3

X X 26.5
X X 26.8
X X 33.3
X X 45.3
X X X 28.1
X X X X 36.0
X X X X 48.2

Table 1: Classification results (in %) of our CLM vs. various combinations of descriptors, param-
eters and background removal on CUB200-2011.

the parameters of our method, the proposed low-rank learning method and the
partial background removal method on the challenging CUB200-2011 [52]. Then,
we compare with state-of-the-art methods on Caltech101 [18], Caltech256 [22],
KTH-TIPS2b [8], Flickr Material Database (FMD) [23], Pascal VOC2007 [17],
Scene15 [31] and Sports8 [32]. Finally, we analyze the computational complexity
of our CLM.
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Figure 3: Effect of balance parameterβ in Eq. (4) (left) and comparison of PCA, PLS and our
LRSVM with various compression ratios on CUB200-2011 (right).
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6.1. Parameters analysis

Local descriptors Four kinds of local descriptors, SIFT (ST) and its enrich-
ment (eST), and LogCov (LC) and its enrichment (eLC), are evaluated in this
section. The results of our CLM with various local descriptors on CUB200-2011
are shown in Table 1. We can see that the Gaussian model used inour method out-
performs covariance matrix by1.5% or higher with either SIFT or eSIFT, which,
we believe, can indicate that the first-order (mean) information is non-trivial. We
use eST to evaluate other parameters as follows.
Two well-motivated parameters The proposed EPN (5) is a generic method for
robust estimation of covariance in high dimension space. Weset parameterρ in
EPN (5) as0.5 in all databases. From Table 1, we can see that EPN can bring
1.2% performance gain over the relevant method without EPN. The embedding
parameterβ (6) balances the effect of mean vector and covariance matrix. To
test its effect, we determine the optimal value ofβ via cross validation. The per-
formances of our CLM with variousβ are illustrated in Fig. 3 (left). Compared
to β = 0 (covariance matrix only [9, 10]) andβ = 1 (the embedding in [36]),
appropriate balancing atβ = 0.4 achieves2.4% and 0.9% gains, respectively.
The parameterβ can balance the effect of covariance matrix and mean vector on
classification, and the biggerβ indicates mean vector has greater impact on clas-
sification. On CUB200-2011, the performance will continuously decrease with
bigger value ofβ when it is bigger than 1, which indicates the effect of covariance
matrix should be greater on CUB200-2011. The parameterβ varies in different
tasks or databases, which can be decided by cross validation. It is set to 0.4 on
KTH-TIPS2b and CUB200-2011, 0.6 on Scene15 and FMD, 0.8 on Sports8 and
Caltech101, 1.5 on Pascal VOC 2007 and Caltech 256, respectively.
LRSVM To evaluate the proposed LRSVM method, we compare LRSVM with
unsupervised principal component analysis (PCA) and supervised partial least
square (PLS) [1] under different compression ratios. The LRSVM is initialized by
PCA, and the results on CUB200-2011 are illustrated in Fig. 3(right). From it we
can see that LRSVM always performs better than PLS, and is superior to PCA by
a large margin. Different from PLS which exploits the least squares loss, LRSVM
uses the hinge loss. We argue that the improvement owes to thejoint learning
of dimensionality reduction and classifier. Note that, withlarger compression ra-
tio, LRSVM achieves larger improvement over PCA and PLS. Meanwhile, the
proposed LRSVM has insignificant performance loss (less than 1.5%) with large
compression ratio (> 100). We also can see that LRSVM can slightly improve the
performance of our CLM when compression rations are smaller(< 80), which
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(a)

Database Classes Images in total Training/Test Measurement
CUB200-2011 [52] 200 11,788 Split in [52] Acc. of split
Caltech101 [18] 102 9,144 30/remaining per class Acc. of 5 runs
Caltech256 [22] 256 30,607 30/remaining per class Acc. of 5 runs
Sports8 [32] 8 1,792 70/60 per class Acc. of 5 runs
KTH-TIPS2b [8] 11 4,752 [13] Acc. of splits
FMD [23] 10 1,000 50/50 per class Acc. of 5 runs
VOC2007 [17] 20 9,963 Split in [17] mAP of split
Scene15 [31] 15 4,485 100/remaining per class Acc. of 5 runs

(b)

Database Scale View Illumination Pose Bg Clutter Occlusion
CUB200-2011 [52] X X X X X X

Caltech101 [18] X X

Caltech256 [22] X X X

Sports8 [32] X X X X

KTH-TIPS2b [8] X X X

FMD [23] X X X

VOC2007 [17] X X X X X X

Scene15 [31] X X X

Table 2: Descriptions and experimental setup on eight widely used benchmarks.

we owe to that LRSVM can suppress some noisy information. In general, we set
compression ratio as80 ∼ 100 to balance the efficiency and effectiveness.
Impact of PBR We apply PBR to CUB200-2011 and the results are presented
in Table 1. We can see that the method using PBR achieves greatgains (more
than7.5%) over the one without PBR. Note that we achieve about1% gain in
VOC2007 by using PBR. It shows that our PBR is a general methodto handle
background for CLM. The gains achieved by using ground truth(GT) bounding
box indicate more advanced background removal methods havefurther ability to
improve the recognition performance of our CLM. Compared with the improve-
ment in CUB200-2011, the gains in VOC2007 are relative small. The reasons are
mainly that the saliency-based methods fail to locate precisely the foregrounds in
the challenging databases, and CUB200-2011 only contains one object per image
while one image may contain multiple objects in VOC2007. PBRcan not segment
image into multiple objects so that multi-object images will heavily influence the
performance of CLM.

6.2. Comparison with state-of-the-art methods
We compare our CLM with more than ten state-of-the-art methods on eight

widely used benchmarks. The descriptions and experimentalsetup on these bench-
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(a) CUB200-2011
Methods Acc.
BoF-hard [31] 18.6
FV [44] 25.8
FV + eSIFT 27.3
FV + eSIFT + PBR 33.2
Kobayashi2014 [29] 27.3
PPK [57] 28.2
CLM (SIFT) 18.6
CLM (eSIFT) 28.1
CLM (LogCov) 19.1
CLM (eLogCov) 28.6
CLM (eSIFT) + PBR 36.0

(b) Caltech101
Methods Acc. (Tr. = 30)
FV+SIFT [44] 80.8± 0.3
FV+eSIFT 83.7± 0.3
DeCAF [14] 86.9± 0.7
O2P+eSIFT [10] 80.8
SQ-O2P+SIFT [7] 79.5
M-GOLD [45] 81.0
CLM (SIFT) 84.9± 0.1
CLM (eSIFT) 86.3± 0.3
CLM (LogCov) 82.5± 0.3
CLM (eLogCov) 84.7± 0.2

(c) Caltech256
Methods Acc. (Tr. = 30)
FV+SIFT [44] 47.4± 0.1
FV+eSIFT 50.1± 0.3
Kobayashi2014 [29] 49.8± 0.1
NBNN [6] 43

M-GOLD [45] 44.2
M-HMP [6] 50.7
CLM (SIFT) 48.9± 0.2
CLM (eSIFT) 53.6± 0.2
CLM (LogCov) 48.6± 0.3
CLM (eLogCov) 53.2± 0.1

(d) Sports8
Methods Acc.
FV+SIFT [44] 91.3± 1.3
FV+eSIFT 90.4± 1.2
Kobayashi2014 [29] 92.6± 0.7
GG (ad-linear) [38] 80.2
GG (ct-linear) [38] 82.9± 1.0
GG + KL Div. [38] 84.4± 1.4
CLM (SIFT) 88.8± 1.0
CLM (eSIFT) 91.5± 1.2
CLM (LogCov) 88.3± 1.3
CLM (eLogCov) 90.7± 0.7

(e) KTH-TIPS2b
Methods Acc.
BoF-LLC [53] 57.6± 2.3
VLAD [26] 63.1± 1.0
FV+SIFT [44] 69.3± 1.0
FV+eSIFT 71.3± 3.1
DeCAF [14] 70.7± 1.7
Attributes [13] 73.8± 1.3
CLM (SIFT) 71.8± 3.1
CLM (eSIFT) 75.2± 2.6
CLM (LogCov) 72.2± 3.3
CLM (eLogCov) 73.6± 2.6

(f) FMD
Methods Acc.
VLAD [26] 52.6± 1.5
FV+SIFT [44] 58.3± 1.0
FV+eSIFT 58.9± 1.7
Kobayashi2014 [29] 57.3± 0.9
DeCAF [14] 60.7± 2.1
Attributes [13] 61.1± 1.4
CLM (SIFT) 51.6± 1.2
CLM (eSIFT) 57.7± 1.6
CLM (LogCov) 62.4± 1.5
CLM (eLogCov) 64.2± 1.0

(g) VOC2007
Methods mAP.
BoF-LLC [53] 57.4
SV [59] 58.2
SQ-O2P+SIFT [7] 51.0
M-GOLD [45] 61.1
FV+SIFT [44] 61.8
FV+eSIFT 60.8
CLM (SIFT) 55.8
CLM (eSIFT) 60.4
CLM (LogCov) 56.6
CLM (eLogCov) 61.7

(h) Scene15
Methods Acc.
SV [59] 85.0
FV+SIFT [44] 88.1± 0.2
FV+eSIFT 89.4± 0.2
GG (ad-linear) [38] 79.8
GG (ct-linear) [38] 82.3± 0.4
GG + KL Div. [38] 86.1± 0.5
CLM (SIFT) 88.1± 0.4
CLM (eSIFT) 89.4± 0.4
CLM (LogCov) 88.3± 0.6
CLM (eLogCov) 89.2± 0.5

Table 3: Comparison (in %) with state-of-the-art methods oneight widely used benchmark datasets
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marks are listed in Table 2. We report the results in Table 3, and discuss the
experimental results as follows.
Comparison of various local descriptors We combine our CLM with four kinds
of local descriptors, and assess them on all databases. FromTable 3 we can see
that SIFT and LogCov achieve comparable results. For objectrecognition, Log-
Cov is superior to SIFT on CUB200-2011 and VOC2007 while SIFToutperforms
LogCov on Caltech101 and Caltech256. On scene categorization, SIFT and Log-
Cov obtain similar performances on both Sports8 and Sence15. For texture and
material classification, SIFT achieves gains over LogCov onKTH-TIPS2b while
LogCov is superior to SIFT by a large margin on FMD. The eSIFT and eLogCov
perform with the similar rule as SIFT and LogCov, respectively. The enrichment
on SIFT and LogCov can considerably boost the performance ofour CLM, which
encourages us to utilize more informative descriptors for further improvement.
Comparison with counterparts Here, we compare our CLM with its counter-
parts, O2P [10], Global Gaussian (GG) [38], mixture of GOLD (M-GOLD) [45]
and NBNN [6]. As shown in Tables 1 & 3, our CLM significantly outperforms
O2P [10] on CUB200-2011 and Caltech101, and is also superiorto its variant with
sparse quantization (SQ-O2P) [7] on Caltech101 and VOC2007by a large margin,
which are mainly due to the appropriate use of mean information and EPN. More-
over, our CLM performs much better than GG methods [38] with ad-hoc linear
kernel (ad-linear), center tangent linear kernel (ct-linear) and KL divergence on
Sports8 and Sence15. The ad-linear can be seen as a baseline in Euclidean space.
It is mentionable that the methods in [38] exploit probabilistic discriminant anal-
ysis (PDA) as a classifier. If SVM is used, their results will drop to71.7%, 78.8%
and81.4% on Sports8, and74.3%, 80.7% and83.1% on Scene15, respectively.
In addition, our CLM outperforms mixture of GOLD which modeled image with
Gaussian or Gaussian mixture model, and then mapped covariance of Gaussian
into Euclidean space with concatenating to the mean vector for matching Gaus-
sian models. We attribute the gains of our CLM over [38, 45] tothe use of two-
step metric with the proposed well-motivated parameters. We also compare our
CLM with NBNN [6]. It is easy to see that our CLM performs much better than
NBNN on Caltech101 and Caltech256. The main differences between our CLM
and NBNN are that our CLM employs an effective model-to-model distance and
SVM classifier.
Comparison with FV We make a comprehensive comparison with one state-of-
the-art BoF method, FV [44], throughout all databases, and also adopt enrichment
SIFT (eSIFT) to FV. On all databases except for FMD, our CLM achieves bet-
ter than or comparable performances with FV when SIFT or eSIFT is used. On
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FMD, with SIFT or eSIFT, our CLM is inferior to FV, but with LogCov or eLog-
Cov, our CLM is much better than FV. In our experiments, we findthat LogCov
or eLogCov is not very suitable for FV, so the relevant results are not reported.
It is found that our CLM is more sensitive to local descriptors than FV, as eSIFT
brings less or no gains on FV while our CLM greatly benefits from the enrich-
ment on SIFT or LogCov. On CUB200-2011, we also adopt the proposed PBR to
Fisher vector with eSIFT (FV+eSIFT+PBR). FV+eSIFT+PBR canachieve33.2%
accuracy, which improves FV+eSIFT but is inferior to our CLM+ PBR (36.0%)
by 2.8%. Note that PBR is not essential to our proposed method, but itis a simple
yet effective method to alleviate the effect of background clutter on our CLM, if
necessary.
Comparison with other state-of-the-art methods Some recent results are also
presented for comparison. On Caltech101, DeCAF [14] with 6 layers CNN and
dropout strategy [47] slightly outperforms our CLM. Without dropout, the result
of DeCAF drops to84.8%. On Caltech256, our CLM outperforms the deep archi-
tecture Multipath Hierarchical Matching Pursuit (M-HMP) [4] by 2.9%. Cimpoi
et al [13] achieved state-of-the-art results on KTH-TIPS2band FMD with seman-
tic attributes which are trained on the additional databaseby combining FV [44]
and DeCAF [14]. Our CLM is superior to the method with attributes, FV and
DeCAF. By combining attribute features, FV and DeCAF, Cimpoi et al [13] ob-
tained77.3% and 67.1% accuracy on KTH-TIPS2b and FMD. Kobayashi [29]
proposed a histogram transformation method, and it achieves state-of-the-art re-
sults on Sports8 and VOC2007.
Summary In this paper, we assess our CLM on eight image benchmarks, as
shown in Table 2, which contains various transformations ornoisy factors. We
claim that (1) the results on Caltech101 and Caltech256 showthat our CLM can
well deal with location and pose variations of objects; (2) the results on FMD and
KTH-TIPS2b show that our CLM is robust to scale, viewpoint, illumination and
appearance variation; (3) the results on Sports8 and Sence15 indicate our CLM
can well classify scene images with certain background clutters; and (4) the results
on CUB200-2011 and VOC2007 demonstrate our CLM also can handle images
with complex surroundings, such as heavy background clutters and occlusion.

6.3. Computational complexity analysis

Our CLM for classification mainly consists of three components: extracting
local descriptors, computing Gaussian models using Eq.(4)followed by EPN (5)
and matrix logarithm in Eq.(8), and learning LRSVM for classification. Most of
the computational costs of CLM lie in the eigenvalue decomposition produced by
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EPN and matrix logarithm. Their computational complexity areO(k3) andO((k+
1)3), respectively, wherek is the dimension of local descriptors. During joint
training of low-rank matrix and SVM classifier, optimizing the objective function
(11) consists of alternating SVM minimization problem and trace minimization
problem, whose complexity isO(J(N2D +D3 +Bd3)), whereN is the number
of training samples of dimensionD = Bd, andJ is the number of iterations which
is less than3 in our experiments.

Here, we give empirical running time by taking KTH-TIPS2b and Caltech101
as examples. The time of computing image representation, which includes extrac-
tion of SIFT at multiple scales, and the time of computation of Gaussian models
and embedding matrices, are 30 minutes on KTH-TIPS2b and 1.5hours on Cal-
tech101. The average time of modeling one image takes about 0.4 second and 0.6
second on relevant databases. For each trial, training (resp. test) of LRSVM takes
20s (resp. 2s) and 7min (resp. 40s) on KTH-TIPS2b and Caltech101, respectively.

7. Discussion and conclusion

The bag-of-features (BoF) is a popular method in classification and recogni-
tion fields, demonstrating convincing performance in many computer vision tasks
in the last decades. It might seem that training codebook & descriptor coding are
indispensable ingredients. However, the codebookless model (CLM) proposed in
this work has proven to be an effective alternative method tothe BoF methods
for image classification. Below we give some discussions about why CLM shows
such competitive performance.

Different from the BoF methods, our CLM leverages continuous functions for
statistical modeling of local descriptors, which does not need codebook and thus
has no quantization brought in. Recent studies [12] showed that high dimension-
ality can bring impressive performance. The state-of-the-art BoF methods such as
SV/VLAD or FV have inherently high dimensionality, which, in our opinion, is
the key for characterizing distinctness and discriminativess of individual images
as well as image categories. Our CLM directly employs the first- and second-
order statistics of high dimensional local descriptors, giving rise to informative
image-level models of high dimensionality as well. In this respect, it is worth-
while to study more informative or high dimensional CLM. Moreover, as shown
in [9, 10], the CLM is more efficient than the BoF methods for modeling images
because learning codebook & coding are not necessary. In addition, the CLM
may be more suitable for the tasks where the datasets will be regularly updated or
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increased, and thus the codebook in the BoF model has to be regularly adjusted to
fit the changing datasets.

The contributions of this paper are concluded as follows. (1) Our work has
clearly shown that the CLM is a very competitive alternativeto the mainstream
BoF model. The above finding, to our best knowledge, has not yet appeared in
pervious literatures. We hope our work can raise potential interests in the classifi-
cation (or retrieval) community and pave a way to future research. (2) Our method
enables Gaussian models to be successfully combined with linear SVM classifier,
which makes our method scalable and efficient. The key is thatwe embed Gaus-
sian models into a vector space which also allows us to perform joint low-rank
learning and SVM on Gaussian manifold, which is different from pervious related
work [38, 45]. Meanwhile, the proposed two well-motivated parameters further
improve our CLM. (3) We performed extensive experiments, evaluating various
aspects of our CLM and comparing with its counterparts as well as state-of-the-
art methods. The comprehensive experiments demonstrated the promising perfor-
mance of our CLM. In future work, we will extend our method with more effective
local features (e.g., CNN features), and apply the proposedmethod to other vision
tasks and practical applications, such as texture classification and segmentation,
scene categorization and image retrieval.
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