What you will learn...

- Multiple textures
- Basic light modeling
- Basic Shading
- Lighting vs Shading Differences
Multiple Textures

• Single Texture

• Double Texture
Multiple Texture

• You can use multi-textures to produce special effects such as:
 ▪ light or height maps
 ▪ bumpmapping (simulating bumps and wrinkles).

• We will just take the WebGL logo as a texture and mix it with the stone texture.
Two Textures

• We assign constant values to the variables:
 ▪ STONE_TEXTURE
 ▪ WEBGL_LOGO

• We will use them as our new array indices.

• Then, we change our texture variable declarations to be arrays

• Adjust the LoadTexture and SetupTexture functions to handle multiple textures.
Preparing for MultiTexture

// Global settings:
STONE_TEXTURE = 0,
WEBGL_LOGO = 1,
texture = [],
textureImage = [],
textureFileName[] = [
"./texture/stone-128px.jpg",
"./texture/webgl-logo-512px.png"
];
Texture $i = 0..1$

```javascript
function wglLoadTexture(i) {
    textureImage[i] = new Image();
    textureImage[i].onload = function() {
        setupTexture(i);
        gl.uniform1i(glProgram.samplerUniform, i);
    }
    textureImage[i].src = textureFileName[i];
}
```
Set up the uniform

glProgram.uDoTexturing =

gl.getUniformLocation(glProgram, "uDoTexturing");

gl.uniform1i(glProgram.uDoTexturing, 1);
```
function wglSetupTexture(i) {
    gl.activeTexture(gl.TEXTURE0 + i); // must specify the active texture
    texture[i] = gl.createTexture();
    gl.bindTexture(gl.TEXTURE_2D, texture[i]);
    gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
    gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, textureImage[i]);
    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
    if( !gl.isTexture(texture[i]) ) { console.error("Error: Texture is invalid"); } }
```
function getMatrixUniforms()
{
 glProgram.pMatrixUniform =
 gl.getUniformLocation(glProgram, "uPMatrix");

 glProgram.mvMatrixUniform =
 gl.getUniformLocation(glProgram, "uMVMatrix");

 glProgram.samplerUniform =
 gl.getUniformLocation(glProgram, "uSampler");

 glProgram.samplerUniform2 =
 gl.getUniformLocation(glProgram, "uSampler2");
}
Finally, the Frag. Shader

```glsl
<script id="shader-fs" type="x-shader/x-fragment">
    varying highp vec2 vTextureCoord;
    uniform sampler2D uSampler;
    uniform sampler2D uSampler2;
    uniform int uDoTexturing;

    // ...
</script>
void main(void) {
    if(uDoTexturing == 1){ // check for texturing flag
        highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
        highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));
        gl_FragColor = mix(stoneColor, webglLogoColor, 0.5);
    }else{
        gl_FragColor = vec4(1.0, 0.1, 0.1, 1.0);
    }
}
Code at:

http://www.comp.polyu.edu.hk/~csgeorge/comp4422/wgl/07/01-MultiTexture
1. Learn about transmission of light
2. Learn about light-object phenomena
3. Learn about illumination models
The Illumination Problem
Illumination Models

• Specify light propagation

• Specify light-surface interactions

• Note:
Shading Models

• Specify the color of each surface point \( P(x,y,z) \)

• Employ an illumination model

• Determine when to compute illumination
Example: No lights
Example: Two Lights
Part 2: Complete Model

Light Models

Irradiance at Point \((x,y,z)\)

\[
E_i = \int_{\Omega_i} L_i \cos \theta_i \, d\omega_i
\]

Reflection Function

\[
l_r(\mathbf{x}, y, z) = \int_{-\infty}^{\infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} L(t, \mathbf{x}, y, z, \varphi, \theta, \lambda) \, R(t, \varphi, \theta, \lambda) \, d\theta \, d\varphi \, d\lambda \, dt
\]

where:
- \(x, y, z\) = the coordinates of the point on the surface
- \(t\) = time
- \(\lambda\) = wavelength
- \(\varphi\) = azimuthal angle (from Z axis)
- \(\theta\) = angle about Z axis
Light

• **Light** is electromagnetic radiation.

• At any **point**, at any **time**, one can measure the “flow” of light through that point in a given **direction**:
  - The **plenoptic function** describes the light in a region:
    - $\rho(x, \theta, \phi, t)$;
  - The **plenoptic function** over an area defines:
    - the **light field** in that region;
Light as Flux

• Radiance:
  The radiant flux per unit wavelength \((d\lambda)\)
  per unit solid angle \((d\omega)\)
  per unit of projected area of the source \((dA)\)

• Units:
  watts per nanometer per steradian per square meter

Energy per unit time = power
Irradiance

• Irradiance:

*The radiance flux emitted by a light source.*

• Units: the same as radiance

  *watts per nanometer per steradian per square meter*
Spherical Geometry

Incoming Light

Normal Vector

Outgoing Light
Solid Angle

Solid Angle $\Omega$:

The solid angle subtended by a surface $S$, is the surface area $\Omega$ of a unit sphere covered by the surface projection onto the sphere; infinitesimal solid angle is $d\omega$;

What does this mean?:

1. Take an arbitrary surface
2. Project it onto a unit sphere of radius 1
3. Calculate the surface area of the projection: $\Omega$
Solid Angle Geometry

• Solid Angle $\Omega$:

• Geometrically:
Simplified Light Models

• **Purpose:**
  to simulate certain aspects of physical light transmission and reflection

• **Note:**
  NOT a full imitation of reality
Light-Object Interface

Reflection

Transmission

Absorption

Diffraction

Refraction

Interference
Light-Object Interactions

Diagram showing light interactions with an object, including:
- Light Source
- Surface Normal
- Scattering Emission
- Absorption
- Internal Reflection
- Diffuse Reflection
- Specular Reflection
- Transmitted Light
Other Interactions

• **Diffraction:**
  altering the path of light without any collision in a magnetic field.

• **Absorption:**
  energy diminishes as light penetrates an object.

• **Interference:**
  Canceling or amplification of coexisting waves producing interference patterns.
Light Behavior

• Intensity and wavelength of reflected light depend on:

1. angle of incidence
2. surface geometry
3. material properties
   Eg. Permeability, conductivity, temperature
In general...

- Incident light = reflected light + scattered light + absorbed light + transmitted light

Concentrate on
Light Models

• Local models:
  1. Lambert
  2. Phong
  3. Cook and Torrance

• Global models:
  1. Ray tracing (Appel 1968)
  2. Radiosity (Goral 1984)
Local Models

• Two distinct approximations:
  1. Surface geometry (normals)
  2. Transmission of light (instant)

• Reflected light is the sum of:
  1. Ambient term
  2. Diffuse term
  3. Specular term
Ambient Light

• Result of multiple reflections

• Incident on a surface from all directions

• Modeled as a constant term:

\[ I_a k_a \]

• First global diffuse approximation
• No light-object interactions
Diffuse Surfaces

• A perfect diffuser:

1. Scatters light equally in all directions

2. Reflected light does NOT depend on the viewer’s position

3. Effect: dull or matte tone
Diffuse Reflection

• A surface reflects colored light when illuminated by white light due to absorption of some wavelengths and reflection of others.

• Modeled from Lambert’s Law:

\[ I_d = I_p k_d \cos(\theta) \]

\[ 0 \leq \theta \leq \frac{\pi}{2} \]
Lambert’s Law
Lambert’s Law

The amount of light energy that falls on infinitesimal area $dA$ is proportional to $\cos(\theta)$.
**Diffuse Model**

\[ I_d = I_p \ k_d \ \cos(\theta) \]

\[ 0 \leq \theta \leq \frac{\pi}{2} \]

- \( I_p \) = intensity of incident light
- \( k_d \) = diffuse reflectivity constant
- \( \theta \) = angle between:
  1. surface normal
  2. direction of light source
Multiple Diffuse Reflections

\[ I_d = I_p k_d \cos(\theta) \]

• We can also re-write it as:

\[ I_d = I_p k_d (L \cdot N) \]

• Multiple light sources:

\[ I_d = k_d \sum_{i=1}^{n} I_{p_i} (L_i \cdot N) \]
Total Diffuse+Ambient

\[ I = I_a k_a + I_p k_d (L \cdot N) \]
Attenuation

• Introduce a factor which modifies the light intensity depending on the distance from the viewer:

\[ I_d = I_a k_a + f_{att} I_p k_d (L \cdot N) \]
Attenuation (1)

• Inverse square law:

\[ f_{att} = \frac{1}{d^2} \]

• Note: in practice it does not work

1. If \( d \) is too large then \( f \) does not vary much
2. If \( d \) is too small then \( f \) varies too much
Attenuation (2)

• Modified inverse square law:

\[ f_{\text{att}} = \min \left( \frac{1}{c_1 + c_2 d + c_3 d^2}, 1 \right) \]

• \( c_1, c_2, c_3 \) are associated with light
  \( c_1 \): keeps denominator from being small
  \( c_2 \): controls \( d \)
  \( c_3 \): controls \( d^2 \)
Specular Reflection

- Models light reflected off a glossy surface.

- Distribution of reflected light is NOT the same in all directions.

- Mirrors: perfect specular reflection
Specular Reflection

Specular Highlight

Specular Color

Specular Reflection
Phong
Illumination
Model
Phong Specular Model

Bui-Tong Fong (1975)
Phong Model

• Approximate specularity by:

\[ I_p k_s \cos^n(\phi) \]

• \( \phi = \) angle between R & V

• \( n = \) controls the spread

  n is large \( \rightarrow \) glossy reflector

  n is small \( \rightarrow \) Matte/dull
Specular Coefficient

• Light intensity as a function of specular coefficient $n$

• Note: as $n$ goes to infinity we get perfect mirrors.
Total Intensity

\[ I = I_a k_a + I_p (k_d (L \cdot N) + k_s \cos^n(\varphi)) \]

OR

\[ I = I_a k_a + I_p (k_d (L \cdot N) + k_s (R \cdot V)^n) \]
Summary

- **Covered light transmission**
- **Identify light-object phenomena**
- **Two major light effects:**
  - Reflection: diffuse and specular
  - Transmission
- **Phong Illumination Model**