
Reliable Navigation of Mobile Sensors in Wireless
Sensor Networks without Localization Service

Qingjun Xiao, Bin Xiao, Jiaqing Luo and Guobin Liu
Department of Computing

The Hong Kong Polytechnic University
Hunghom, Kowloon, Hong Kong

E-mail: {csqjxiao, csbxiao, csjluo, csgliu}@comp.polyu.edu.hk

Abstract—This paper deals with the problem of guiding mobile
sensors (or robots) to a phenomenon across a region covered by
static sensors. We present a distributed, reliable and energy-
efficient algorithm to construct a smoothed moving trajectory
for a mobile robot. The reliable trajectory is realized by first
constructing among static sensors a distributed hop count based
artificial potential field (DH-APF) with only one local minimum
near the phenomenon, and then navigating the robot to that
minimum by an attractive force following the reversed gradient
of the constructed field. Besides the attractive force towards
the phenomenon, our algorithm adopts an additional repulsive
force to push the robot away from obstacles, exploiting the fast
sensing devices carried by the robot. Compared with previous
navigation algorithms that guide the robot along a planned path,
our algorithm can (1) tolerate the potential deviation from a
planned path, since the DH-APF covers the entire deployment
region; (2) mitigate the trajectory oscillation problem; (3) avoid
the potential collision with obstacles; (4) save the precious
energy of static sensors by configuring a large moving step
size, which is not possible for algorithms neglecting the issue
of navigation reliability. Our theoretical analysis of the above
features considers practical sensor network issues including radio
irregularity, packet loss and radio conflict. We implement the
proposed algorithm over TinyOS and test its performance on
the simulation platform with a high fidelity provided by TOSSIM
and Tython. Simulation results verify the reliability and energy
efficiency of the proposed mobile sensor navigation algorithm.

Index Terms—Hybrid Sensor Networks, Mobile Sensors Nav-
igation, Location Free, Angle of Arrival, Navigation Reliability.

I. INTRODUCTION

Hybrid sensor networks comprising of mobile sensors and
cheap static sensors open new frontiers in a variety of military
and civilian applications. In hybrid sensor networks, a large
quantity of networked static sensors monitor the environment,
while a few mobile sensors provide the actuation with lo-
comotion modules equipped. Typical usages of these mobile
nodes include energy recharge for static sensors, collection
of a large volume of data in Delay Tolerant Networks, coun-
terattack against intruders. As a summary, the emergence of
hybrid sensor networks converts the static sensor networks for
environmental monitoring into a reactive or active system [1].

One fundamental problem for the hybrid sensor networks is
how to guide a mobile sensor to a phenomenon across the re-
gion covered by static sensors while evading the obstacles [1].
This problem is different from the past robot path planning

problem based on centrally stored map, since the mobile
sensors (or robots) utilize distributed sensing ability of static
sensors to detect dangers (or obstacles) and their distributed
computations plus wireless connections to plan the moving
trajectories collaboratively. These distributed sensing and path
planning abilities can enhance the robots’ ability to function
in unfamiliar environments, where the hybrid sensor networks
has two advantages: easy-to-deploy (e.g., by a flying vehicles)
and more accurate sensing ability. For example, within a forest,
their distributed sensing abilities can penetrate through the
thick vegetation to detect wild fire early, and in a battle
field, they can not be easily deceived by enemies’ disguise,
if compared with the remote sensing based on satellites.

For the problem of mobile sensor navigation assisted by
static sensors, one constraint is that an effective localization
service for static sensors is not always available, especially in
complex concave regions [2], [3]. Moreover, localization ser-
vices may require additional ranging hardware that increases
WSNs deployment cost, and running localization services may
elongate the network deployment time, consumes the precious
energy of static sensors. Considering these facts, we have this
location-free assumption, which may invalidate some previous
mobile sensor navigation schemes. For example, the Berkeley
solution [4] of the pursuer-evader game depends on the static
sensors with location knowledge to track the evader and guide
the pursuer to the reported position by an installed map, which
however may be unavailable in unfamiliar environments.

Several recent works [1], [5] can remove these location and
map assumptions by running a location-free routing protocol
within the network and by navigating the robots following the
routing path to the sensor detecting the phenomenon. To make
the routing path more tangible for robots, a navigation band
is explicitly built by [5] along the path and the robot knows
its relative position to the band by wireless communications.
However, there are two inadequacies for these previous works.
First, the robots are only guided by networks and the readings
from sensors carried by the robots are forgotten, which can
provide fast response to unexpected obstacles. Second, the
guiding from networks depends on wireless communications,
which are by nature unreliable (e.g., radio irregularity, lossy
channels and radio conflicts). It’s not yet clear how this com-
munication unreliability affects the robots’ navigation quality.

This paper mainly provides two contributions for this prob-

978-1-4244-3876-1/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

lem of location-free robot navigation. First, through both
analysis and simulation studies, we demonstrate that, for the
navigation based on unreliable talks with the static sensor
networks, the robots frequently make wrong decisions about
their next step moving directions. The robots therefore may
collide with obstacles, deviate from an planned path or move
out of sensor deployment fields, which reduces the navigation
qualities and consumes their energies. Moreover, the robots
may suffer from path oscillation, caused by the narrowness
of the navigation band. Second, we present a reliable robot
navigation algorithm which can handle the unreliability in
wireless communications, construct a smoothed robot moving
trajectory and improve the reliability of robot navigation. Our
algorithm is based on the artificial potential field (APF) [6]
and adopts a two layer architecture [7] - a global path planning
module over a local obstacle avoidance layer. The global
planing is conducted by an event dissemination initiated by
the static sensor detection an phenomenon. This dissemination
constructs a distributed hop count based APF (DH-APF),
which has only one local minimum near the phenomenon.
Afterwards, the reversed gradients of this DH-APF can provide
to the robots attractive forces leading them to the phenomenon.
In practice, we propose to implement these attractive forces by
an elegant integration of the robot navigation protocol and the
tree based routing protocol with the pull rule. Additionally, the
agile repulsive forces can be provided by the fast readings from
the robots’ sensors to steer the robots away from unexpected
obstacles (called reactive local obstacle avoidance).

Our algorithm is different from the previous works [1], [8]–
[10] that also deal with navigation qualities for the following
reasons. (1) Their major quality metric is the exposure to
danger problem, since they models the navigating robots either
as malicious entities trying to avoid the tracking by static
sensor networks or as cautious entities trying to keep the
safest distance to obstacles. In contrast, our work regards that
the duty of sensor networks is only to provide optimized
navigation guidance to the goals and without the collision
with obstacles, and that the obstacle avoidance should be the
duty of robots themselves by their self-carried sensors. In
this way, the static sensors can save the energy for dissem-
inating the knowledge about obstacles and robots make their
own decisions on avoiding obstacles (perhaps fast moving
unexpected ones), since no matter how fast the wireless
communications are in spreading out obstacles’ knowledge,
they can not compete with the speed of robots’ self-carried
sensors. (2) Their navigation quality evaluation is conducted
assuming ideal sensor communication model. Although [1]
also presents the imperfect radio channel problem, it does
not present systematical analysis on how error-prone nature
of sensor networks affects robots’ navigation quality, which
is one of the major focuses of this paper. (3) Previous works
fails to consider the trajectory smoothness, which is one of the
advantages of our algorithms, since we recommend to smooth
the attractive forces of all upstream nodes rather than to follow
the direction of only one upstream node on the planned path.

To verify the designed features of our navigation algorithm,

we implement the behavior of static sensors over TinyOS [11]
and the functions of mobile sensors by Tython [12]. Then
we evaluate the performance of our algorithm in a controlled
environment provided by TOSSIM [13], which can simulate
irregular radio propagation, radio conflict and lossy network
behavior at a high fidelity by its empirical probability bit
error model. Based on this prototype system and simulation
platform, we evaluate the path quality, which shows the
effectiveness of our algorithm in producing smoothed path, in
tolerating collision with obstacles and in reducing the chances
of out-of-field and path oscillation.

The rest of the paper is organized as follows. In section
II, we highlight the related work and introduce a two layer
architecture for path planning. In section III, we formulate
the location-free robot navigation problem and explain an
inspiring scenario used throughout the paper. Section IV and
V separately present the planning part and the navigation part
of our two layer algorithm. Section VI shows the simulation
results and section VII concludes our work.

II. RELATED WORK

Path planning is an extensively studied topic in the field of
robot motion planning. Proposed algorithms can be broadly
grouped into two categories [14]: local and global approaches.
Local planning considers only local information about the
surrounding, obtained from the sensors carried by robots
(e.g., APF [6], VFH+). Global planning is based on the
global knowledge of the workspace (e.g., Wavefront [15],
A*, roadmap). Generally speaking, local approaches support
real time response to obstacles, but are impossible to achieve
optimal trajectories and suspectable to trap in local minima.
The global approaches can produce optimal and smoothed
trajectory, but with slow response to environmental changes.

In the field of traditional robot motion planning, the two-
level robot navigation structure (Fig. 1) is a widely-accepted
architecture [14]: a global trajectory is calculated in the global
planning phase, while in the local obstacle avoidance phase the
robot reads its own sensory data and adjusts the local trajectory
in a reactive way, which gives the robot the ability to cope with
unexpected obstacles. This division into two layers is primarily
due to the high computation and communication cost required
in most global planning techniques.

Feedback

Task

Global Path or
Navigational Field

Local Path

Two Layer Robot Navigation Architecture

Maps or Net-
worked Sensors Path Planning

Self-carried
Sensors Local Obstacle Avoidance

Robot & Environment Motor Control

Fig. 1. A two-layer robots navigation system.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

The traditional two level architecture needs to be adjusted in
the background of hybrid sensor networks, since it is the static
sensor network, rather than a map, who gives robots the global
knowledge about the whole region and plans the global path
accordingly. Compared with the dead maps, the networked
static sensors can sketch a real-time picture of the unfamiliar
environments. This navigation scheme by sensor networks has
been adopted by a recent work [5], which however forget about
the self carried sensors in the Local Obstacle Avoidance layer.

Another adaptation to the traditional architecture in Fig. 1
is to change the data coupling between the two layers. The
traditional coupling by Global Path may be unsuitable in hy-
brid sensor networks, since whenever the old path invalidates
(e.g., robots deviate from the old path), a new path should
be reconstructed, which is more feasible on a centralized map
than within a distributed sensor network due to different cost
of path reconstruction. A more appropriate coupling is by
a Navigational Field covering the entire sensor deployment
region, for the following reasons. First, the frequency for the
routing path to be invalid can be high in sensor networks,
because (1) the routing path is by nature zigzag and may
intersects with obstacles, and (2) it can be difficult to control
the robots to navigate strictly along the routing path, since this
control is implemented via irregular and error-prone wireless
communications. Second, a navigational field covering the
entire deployment region can give the local obstacle avoidance
layer more freedom to steer the robots and avoid unexpected
obstacles without the inhibitive cost of recomputing the global
path. This freedom is important, since the reliability of navi-
gation assisted by sensor networks can be much lower due to
the unreliability of wireless channels.

III. PROBLEM FORMULATION

A hybrid sensor network comprises of numerous static sen-
sors and a few mobile sensors, with three major assumptions.
(1) Different from the static sensors, the mobile sensors can
change their geometric locations autonomously. For the sake
of simplicity, their mobility platforms are assumed to be free-
flying, which explains why the robots can be treated as points.
This assumption in future can be relaxed to be holonomic or
nonholonomic mobility platform. (2) Although the nodes have
different mobilities, their wireless communication components
are homogeneous, i.e. the same MAC protocol over the same
type of radio antennas configured to the same power level. In
our experiments, the adopted wireless module is the TinyOS
active message layer [11] over a CC2420 RF transceiver.
(3) Robots are assumed to be able to detect the Angle-
of-Arrival (AoA) of incoming radio signals, by amplitude
anisotropy or phase interferometry. Radio AoA devices are
recognized to be too expensive to deploy on the massive
static sensors, but they’re affordable to equip on a few robots.
Fig. 2(a) illustrates such a hybrid sensor network with a grid
arrangement of a ten feet spacing (the simulation section
presents other network configurations, like random sensor
distribution and sparse networks). The exemplified network
has only one mobile sensor located at the left bottom corner.

Mobile
sensor

Fire

Impassable region
• •with high temperature

• •Event
•owner

Ideal Path

(a) The mission and the ideal path

Planned Path

Moving Trajectory

(b) Our trajectory and routing path.

Fig. 2. A rescue mission carried by a hybrid network in an on-fire building.

For a mobile sensor, its free moving space is not the
entire region covered by the network, due to the existence of
obstacles. The static sensors know the presence of obstacles
in their own vicinities, by checking their ADC readings. In
our scenario, the obstacles are regions with high temperature,
which may paralyze the function of a mobile sensor. A static
sensor can measure the temperature and tell whether it’s
safe for robots by comparing its reading with a predefined
threshold. Fig. 2(a) has only one obstacle colored by red,
where the temperatures are above a threshold of 100◦C.

When an event of interest occurs within the network, static
sensors can detect its occurrence and forward this message
to robots by some protocol. Mobile sensors then navigate to
the phenomenon region to provide actuation, which is the
basic motivation of hybrid sensor networks. This complex con-
ceptual process includes event detection, event identification,
event notification and robot navigation. Event detection and
identification are application specific issues and beyond the
scope of this paper. For simplicity, we assume only one static
sensor is the owner of an event, whom is probably chosen by
a small scale leader election held in the phenomenon region.

The objective of this paper is to design effective algorithms
(1) for the static sensors to collaboratively conduct path plan-
ning during the event notification phase initiated by the event
owner, and afterwards (2) for the mobile sensor to develop a
sense of direction and navigate accordingly, until it establishes
a direct radio link with the event owner. The constraints for this
path planning and robot navigation problem include: (1) final
navigation path for the robot should be collision-free for its
safety; (2) static sensors do not know their geometric locations;
(3) the radio model for sensors, both static and mobile, is not
unit disk based but follows the empirical probabilistic bit error
model in TOSSIM, which permits irregular radio propagation,
packet loss and radio conflicts. Although the above problem
definition includes only one event owner and one robot, it can
be easily extended to multiple owners and multiple robots, by
incorporating the semantics of Anycast.

The following two sections present a reliable solution for
this navigation problem in wireless sensor networks, compris-
ing of two consecutive phases: a path planning phase followed
by a robot navigation phase. The planning phase corresponds
to the Path Planning layer in Fig. 1 and is discussed in
Section IV. The navigation phase relates to the Local Obstacle

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

Avoidance layer and is explained in Section V.

IV. PATH PLANNING PHASE

The path planning phase is a process initiated by the
event owner to search for a path to the robot and notify
the robot about the occurrence of a certain event. But when
this phase completes, not a single path but a distributed hop
count based artificial potential field (DH-APF) is established,
which is essentially a distributed scalar field with only one
global minimum at the event owner. The gradients of DH-
APF thus, in the subsequent navigation phase, can help the
robot develop a sense of direction and navigate to the event
owner. This section firstly presents a distributed DH-APF
construction algorithm called distributed wavefront and later
identifies several innate inadequacies of this DH-APF, which
inspire us to design a reliable robot navigation algorithm in
Section V.

A. Distributed Wavefront Algorithm

The design space for the path planning phase is extremely
narrowed by two constraints: distributed computing and lo-
cation free. The decentralization requirement inhibits the use
of centralized search algorithms (e.g., A*), since their coordi-
nation among different search branches can incur unbearably
high communication cost. The absence of location knowledge
bans the use of heuristic search algorithms inspired by the
geometric location (e.g., various geometric routing algorithms,
GHT, double ruling). The wavefront algorithm [15] however
can satisfy these two requirements, which is essentially a
breadth first path search algorithm resembling the well-known
flooding in the field of network routing. A wave is initiated by
an event owner and gets propagated among networked static
sensors, by which we are able to construct a DH-APF with
only one local minimum.

We present a rule-based description of a distributed wave-
front algorithm in TABLE I, which is deployed on all static
sensors. A typical execution of the rule-based code is as
follows. The event occurrence triggers the execution of Initiate
rule on the sensor who is the event owner. The owner then
sends to itself a loop-back message with hopcount −1, which
activates the Push rule on the owner. The Push rule updates
the hopcount of the owner as 0 and propagates that number
to its neighborhood by rule Propagate. Upon the receiving
of hopcount 0 from the owner, the neighbors of the owner
schedule the execution of their Push rules. The process repeats
and it terminates when the hopcounts of all static sensors
are configured to their proper values (see the Ignore rule).
However, the sensors in impassable regions is excluded from
the above DH-APF construction process, since sensors there
by applying the Impassable rule disable all their activities.
But we do not assume that our static sensors in impassable
regions with high temperature in the scenario can endure the
heat there, because (1) sensors that are destroyed by the heat
can not involve in the DH-APF construction, and (2) sensors
still alive voluntarily exclude themselves from the process and
pretend to be destroyed.

TABLE I
DISTRIBUTED WAVEFRONT ALGORITHM FOR STATIC SENSORS

state definitions for a static sensor

integer hopcount := INFINITY. # my hopcount

‘defrule’ marks the beginning of a definition, while ’.’ tells the end.

‘:’ separates definition name and body.

‘⇒’ is a mapping from condition to a sequence of actions.

‘;’ indicates a sequential execution between two actions.

bold letters emphasize events or actions that can signal events.

rule definitions for a static sensor

defrule Impassable : # if impassable, it shields all rules that follows

my vicinity is not suitable for passage ⇒ do nothing.

defrule Initiate :

become an event owner ⇒ send −1 hopcount to myself.

defrule Ignore :

receive a hopcount no more than one hop different from mine

⇒ do nothing.

defrule Push :

receive a hopcount at least two hops smaller than mine ⇒
update my hopcount as the received hopcount plus one;

activate rule Propagate.

defrule Propagate :

choose a backoff (half of window plus jitter);

send my hopcount to vicinity;

choose a backoff (half of window plus jitter);

resend my hopcount to vicinity. # increase comm reliability

B. Algorithm Evaluation and Enhancement

The distributed wavefront algorithm establishes a DH-APF
covering the obstacle-free region and with a global minimum
at the event owner. One such field is shown by Fig. 3(a),
in which the three LEDs of each sensor display the lowest
three bits of that sensor’s hopcount and each gray arrow
outgoing from a sensor indicates from which neighbor that
sensor updates its hopcount to the current value. However,
the DH-APF established by networked static sensors is far
from the ideal APF constructed from map, according to our
experiments. We identify several problems of DH-APF: (1)
Zigzag Planned Path; (2) Link �= Safe - the possibility that
radio links intersect with obstacles; (3) Backward Link; (4)
Coverage problem - flooding fails to cover all sensors and
the robot may fail to hear about the flooded event. Although
these problems are largely inevitable due to the unreliability
of wireless links and the sparse distribution of static sensors,
we recommend an enhancement by the Pull rule to mitigate
problem (3)&(4) at the end of this subsection.

The Zigzag Planned Path problem is due to the much lower
resolution of sensor distribution than grids in a map and the
much longer connectivity range of sensors than the distance
between neighboring map grids. Traditionally, the strength
of globally planned path based on maps is its promise to
(1) generate optimized global pathes, (2) avoid trap in local
minima and (3) construct smoothed pathes. When the planning
is changed to be conducted by sensor networks, the advantages

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

Fail to receive flooding

Backward link

Zigzag path

(a) Distributed wavefront.

Zigzag path

Link = Safe?

(b) Distributed wavefront with pull.

Fig. 3. The enhancement to the generation of DH-APF by the pull rule.

(1) and (2) are partially retained but the third one is sacrificed
that will lead to a Zigzag planned path. This low quality zigzag
path is one of the reasons that we are reluctant to restrict the
robots to navigate along the path planned by sensor networks.

The Link �= Safe problem may mislead the robots to collide
with obstacles, if they follows those dangerous links. It is a
fundamental assumption beneath grid based motion planning
algorithms [14], that the link connecting two neighboring grids
lies in free space if the two grids are in free space. This
assumption however may not hold for the sensor networks
if we simply regard static sensors as grids. This link �=
Safe problem is one of the proofs that navigation guided by
static sensors may not be collision-free and reliable obstacle
avoidance assisted by robot sensor readings is necessary.

The Backward Link is a well-known problem of the span-
ning tree built from flooding, which can potentially mislead
a robot to move to a wrong direction. We recommend an
additional Pull rule (see TABLE II) to reduce the possibility
of backward links. When the end node of a backward link
propagate its own hopcount by Push rule, some neighbor
may detect the existence of the backward link, by finding
the propagated hopcount is at least two hop larger than the
one owned by itself. The detector then correct the backward
link by propagating its hopcount and making the end node
of the backward link point to itself. The effectiveness of the
Pull rule to reduce backward links is illustrated in Fig. 3(b).
Another use of the Pull rule is in Section V for the robot
to query its neighbors for their hopcount. When the robot
broadcasts a hopcount with value INFINITY, the Pull rule
of its neighboring sensors will be activated to schedule a
propagation of their own hopcounts in near future.

The Coverage problem, similar to the Backward Link prob-
lem, is caused by fault-prone radio links. This problem of how
to disseminate events reliably to robots has already been solved
by adopting the eventual consistency semantics in Trickle
[16], which in fact also adopts the Pull rule. As a summary,
the Pull rule is a MUST for three reasons: reliable event
dissemination, backward links mitigation and neighborhood
querying by robots. The additional energy consumption by
adopting the Pull rule is inevitable.

TABLE II
ADDING THE PULL RULE

defrule Pull : # increase the chance of propagation of smaller hopcount

receive a hopcount at least two hops larger than mine ⇒
activate rule Propagate.

V. ROBOT NAVIGATION PHASE

For the robot navigation phase, we present an algorithm to
give the robots a sense of direction based on the reversed
gradients of DH-APF, which are calculated by only local
communications between an robot and its immediate neigh-
bors. Here, we assume the presence of radio AoA devices on
robots to eliminate the need for location knowledge of the
neighbors. However, we argue that robot navigation purely by
reversed gradients is unsafe and it should be combined with
the agile sensing ability of the robot’s sensors. Additionally,
we compare the performance of navigation field with that of
navigation band [5] and show the effectiveness of navigational
fields in tolerating deviation and mitigating oscillations.

A. Robot Navigation guided by Reversed Field Gradients

The purpose of this navigation phase is to generate a
collision-free moving trajectory starting from the robot’s initial
position and ending at a point within the one hop range of the
event owner. Fig. 2(b) illustrates one such trajectory in our
exemplified scenario where the planned path may pass through
a dangerous area but the final moving trajectory of the robot
remains to be safe. This navigation is a step-by-step process
with each step as a line segment. At the beginning of each
step, the robot should determines this step’s moving direction
by querying neighboring static sensors about their hop counts.
The step size is an adjustable system parameter.

In TABLE III, we restate the above process without ambi-
guity by a rule-based language. The activation of rule Start-
Mission is a symbol of phase transition from Path Planning
to Robot Navigation. The rule MissionDone is to terminate
this Robot Navigation phase. The rule MoveAStep, which
recursively activates itself at the end, carries out the step-by-
step navigation process. The third line of the MoveAStep rule
is a request to collect all hopcounts around the robot neigh-
borhood by propagating an INFINITY hopcount to vicinity.
The neighbors later respond with their hopcount applying the
Pull rule in TABLE II. The CollectGuide rule listens to and
record critical information of these replies, based on which
we estimate the reversed DH-APF gradient. In this algorithm
description, the robot moves to its next position only following
the direction of the estimated reversed DH-APF gradient. This
navigation based on reversed gradient can cause trouble, which
we shall explain in the next subsection.

Here we describe the algorithm to calculate the reversed
gradient −�∇f of the artificial potential field f(p) at the point
p0 = [x0, y0]T where robot locates. If f(p) is a continuous
and differentiable scalar field, the required gradient can
easily be calculated by −�∇f |p0 = −∂f

∂p |p0 . However, the
DH-APF constructed by static sensors is a discrete scalar

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

TABLE III
DISTRIBUTED WAVEFRONT ALGORITHM ON A ROBOT

state definitions

import state hopcount defined for a static sensor.

bool onmission := FALSE.

list guides of struct <integer nbr, integer hopcount, double aoa >.

struct force < double dx, double dy >.

rule definitions for a mobile sensor; here ’∧’ represents logical and

defrule StartMission :

onmission = FALSE ∧ my hopcount is updated ⇒
onmission := TRUE;

wait still until flooding converges; # guides collection period

calculate the reversed DH-APF gradient �g from collected guides;

force := �g/|�g| · step size.

activate rule MoveAStep.

defrule MoveAStep :

move a step driven by the force;

stop the motor engine; clear the guides list;

hopcount := INFINITY; activate rule Propagate;

stay still for a period; # guides collection period

calculate the reversed DH-APF gradient �g from collected guides;

force := �g/|�g| · step size;

if onmission, then activate rule MoveAStep.

defrule MissionDone :

onmission = TRUE ∧ my hopcount is updated to one ⇒
onmission := FALSE; stop the motor engine;

clear the guides list; hopcount := INFINITY.

defrule CollectGuide : # guides collection period

receive a hopcount from the neighor nbr with angle aoa ⇒
if received hopcount is at least two hop smaller than mine,

then update my hopcount as the received hopcount plus one;

append <nbr, hopcount, aoa> to guides list.

import rule Propagate defined for a static sensor.

field and the knowledge collected by the robot includes only
f(p0) : potential value at p0 or hopcount of the robot
f(pi) : potential value at pi or hopcount of neighbor i
−−→p0pi : unit vector from p0 to pi or the angle-of-arrival

of radio from neighbor i to the robot.
Here the p0, pi, −−→p0pi are all defined in the robot’s local
coordinate frame, which do not need any translation into the
global coordinate frame. The following is the equation to
estimate the reversed gradient in the discrete scalar field built
by static sensors.

− �∇f |p0 =
∑

f(pi)<f(p0)
−−→p0pi +

∑
f(pi)>f(p0)

−−→pip0 (1)

The mathematical meaning of Eq. (1) is the vector of left
derivative plus that of right derivative. Its physical meaning
is that the upstream nodes (neighbors with hopcount smaller
than that of the robot) exert attractive forces on the robot, while
the downstream nodes (with larger hopcount) exert repulsive
forces. The direction of the resultant force is treated as the
reversed gradient direction. In Fig. 4, the reversed gradient
direction is calculated by combining the attractive force from
mote 33 with hopcount 1 and the repulsive forces from motes

36 and 38 with hopcount 3. Although these forces direction
are known from the robot radio AOA ability, robots do not
need to know their magnitude (all unified to one) with the
absence of range information.

Forces exerted
on the robot by
sensors with
different hop
counts

Resultant force
for each step

Temperature readings

Mote id

Mobile
Robot

2hopsThis step

Previous step

Fig. 4. Deciding the moving direction by the reversed gradients of DH-APF.

B. Algorithm Evaluation and Enhancement

This subsection evaluates the performance of robot naviga-
tion based on reversed gradients by both theoretical analysis
and experiments. There are three potential problems in our al-
gorithm (also existed in previous navigation algorithms guided
by static sensors): (1) possible deviation from planned pathes;
(2) possible collision with obstacles; (3) oscillation in narrow
passages. After presenting these problems, we also recommend
corresponding solutions.

1) Error in reversed gradient estimation and its sources:
It’s inevitable that an estimated reversed gradient deviates
from the real gradient, caused by many factors. For example,
even in Fig. 5 where DH-APF is ideal, an obvious deviation
can happen between the real gradient �G and the estimated
reversed gradient �C. The �C is calculated by combining the
attractive force �A from centroid of lower hopcount region
and the repulsive force �B from centroid of higher hopcount
region. It’s the deviation of �A and �B from �G that causes the
deviation of �C from �G. The deviation of �A and �B from �G
is due to the radio irregularity [17] of the robot. Therefore,
the radio irregularity of robot is one of the reasons for error
in reversed gradient estimation. Other factors include the
irregular DH-APF, instability in DH-APF (topology changes),
nonuniform sensor distribution in robot’s neighborhood and
message loss when the robot talks with its neighbors. With so
many interfering factors, it’s difficult to predict and quantify
the error in the reversed gradient estimation.

Robot
Event
Owner

A
G

C
B

Fig. 5. Error in reversed gradient estimation with isotropic DH-APF.

An unexpected observation about the reversed gradient
estimation is that it’s more appropriate to revise Eq (1) by
Eq (2) adopting only the attractive forces from upstream nodes,
which are more robust against network topology change and

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

more accurate when the robots are turning around corners.

− �∇f |p0 =
∑

f(pi)<f(p0)
−−→p0pi (2)

2) Collision problem, deviation problem and their solu-
tions: Caused by the error in the reversed gradient estimation,
frequently the robot collides with obstacles and occasionally
the robot deviates from the planned path, as demonstrated
by our experiments. The collision, or intrusion into the high
temperature region in Fig. 6(a), may paralyze the function
of robots and endanger the overall task completion. The
deviation, like in Fig. 6(b), not just wastes robot’s energy
but also may lead the robot out of the deployment region,
where it’s impossible for the robot to seek guidance from static
sensors. The possibility of moving out of navigation field is
much higher for the navigation band based algorithm, in which
only sensors along the planned path can provide guidance. We
name this problem as the “out-of-field” problem. However, it is
difficult to qualify the possibilities of the two exceptional cases
- collision and out-of-field, mainly because of the difficulty in
quantifying the error in the reversed gradient estimation.

Escape from
the fire

Intrusion into
impassble region

(a) Detect a collision then escape.

Stray away

Return back

Normal
Course

(b) Stray away then return back.

Fig. 6. Enhance the robustness of navigation to collision and straying away.

We solve the collision problem by exploiting the agile
readings from the robot self-carried sensors, which belongs
to the Local Obstacle Avoidance layer in Fig. 1. This solution
needs two devices on a robot: a temperature sensor and a heat
source detector with only coarse precision. As indicated by
the Escape rule in TABLE IV, the robot detects the collision
by comparing current temperature reading with a predefined
alert threshold. If it’s higher than the alert threshold, the
Escape rule constructs a repulsive force to avoid the collision.
The direction of the repulsive force escaping from the fire is
retrieved from the heat source detector and its magnitude is
the adjustable escaping step size. The Fig. 6(a) illustrates the
working of the Escape rule with alert threshold is set to 100
degree and escaping step configured to 10. The robot detects
the collision happened by finding its temperature reading is
above 100 degree. Then it moves out of the impassable region
following the direction away from the fire and with step size
10. After the evacuation, the robot reissues the request for
guidance within its neighborhood and continues its mission.
Although in Fig. 6(a) the collision actually happens, potential
collision can be avoided by changing the behavior pattern
from collide-then-escape to predict-collision-then-escape. The

TABLE IV
ADDING THE ESCAPE RULE

defrule Escape :

sensed temperature is above the alert threshold ⇒
construct a vector �e escaping from the fire detected by a coarse

heat source detector;

force := �e/|�e| · escaping step size.

collision prediction can be implemented in our scenario by
configuring an alert threshold lower than the temperature
threshold of impassable region, like 80 degree. The assumed
availableness of temperature reading and heat source informa-
tion to robots can be abstracted as the robots’ local obstacle
avoidance abilities. The assumption of this ability is also valid
in other scenarios, e.g. the wall is the obstacle and the robot
has the ultrasound based obstacle sensing ability.

We mitigate the out-of-field problem by expanding the
narrow navigation band along planned path to the broad DH-
APF based navigation field covering the entire deployment
region. Therefore, in Fig. 6(b), even when the robot strays
away to the right bottom corner, far away from the the planned
route. Still, it can retrieve the reversed field gradient from
surrounding and get back to normal course later. We admit that
with our solution it is still possible for the occurrence of out-
of-field event, e.g. the robot again makes wrong decision about
next step moving direction at the right bottom corner. Actually,
we doubt the existence of an ultimate solution that robots
never get lost. At least, our solution gives the sensor network
deployer a method to reduce the out-of-field possibility by
throwing more sensors and broaden the deployment region.

3) Motion oscillation problem and its solutions: Another
advantage of replacing the navigation bands by our DH-APF
based navigation fields is to mitigate the oscillation problem
in narrow passages. We observe that when the robot moves
in narrow corridors, it often encounters a path oscillation
problem, as illustrated by Fig. 7. When the robot locates near
the center of the corridor, it tends to move by a smoothed
trajectory, represented by a blue line in graph. However, when
there is a disturbance that the robot locates near the boundary
of the corridor, its moving path oscillates along the blue
smoothed path. In fact, [5] naturally creates such a corridor
by building a navigation band along the planned path and the
oscillation in robots’ motion can be anticipated. The existence
of oscillation problem get verified by our experiment in
Fig. 8(a). Here, the initial disturbance required by oscillations
is introduced by making the robot to turn around a corner.

Event
Point

Robot

Robot

Oscillated Path
Smoothed Path

Roughly Equal Areas

Ideal Navigational
Band Built from
Concentric Rings

Fig. 7. Model of oscillations in a narrow passage or a navigational band.

The oscillation problem in fact is inevitable for artificial
potential field based methods as argued by [6]. We however

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

can mitigate it here by throwing more sensors and expanding
the corridors. In Fig. 8(b), with the two layers at the top
which provides additional attractive forces, the motion of the
robot no longer oscillates. It turns around the corner smoothly,
which shortens the time to arrive at the target. Another cheaper
mitigation than the corridor expansion is reducing the step size
when detecting a dramatic change in the sequence of reversed
gradient estimates. When there is only slight changes in the
gradient estimates sequence, we can enlarge the step size to
reduce the interactions between robots and static sensors, thus
save the precious energies of static sensors and increase the
robots’ moving speed. A thorough investigation into the energy
features of this dynamic step size scheme is our future works.

Robot begins to oscillate at this point

(a) Unstable motions in narrow cor-
ridors.

The robot would turn downwards at
this point, if without the two upper
layers of sensors. Then it would
suffer from oscillations.

(b) Stable motions in broad re-
gions.

Fig. 8. Oscillation in narrow passages and a possible mitigation.

4) Conclusion: The robot navigation guided by networked
static sensors is unreliable, which requires careful engineering
efforts. This unreliability mainly originates from the irreg-
ular, fault-prone nature of wireless communication and can
be worsen by sparse and nonuniform sensor distributions.
Our proposed solutions here are to increase robot navigation
reliability by exploiting robot self-carried sensors to grantee
the collision-free property, and by throwing more sensors to
cover a broader region to mitigate the out-of-field problem
and the path oscillation problem, especially when the robot
turns around the corners. With these efforts on navigation
reliability, it’s possible for our algorithm to configure a large
step size, which reduces the interactions with static sensors,
saves sensors’ energies and increases the speed of robots.
This large step size is impossible for other robot navigation
algorithms, since the large step size increases the possibility of
out-of-band, oscillation and collision, which can not be well
handled by them.

VI. SIMULATIONS

A. Experiment Setup

We setup our simulation platform as described below. The
path planning algorithm in TABLE I&II is developed by
nesC over TinyOS [11]. The robot navigation algorithm in
TABLE III&IV is implemented by a mixture of nesC and
Tython scripts [12]. We simulate the unreliable radio links
by TOSSIM’s empirical bit error model [13]. The sensors are
placed either in regular grids or in disturbed grids. Although
the grid spacing is fixed throughout our experiments, we still
have control over the network density or the average node

degree by adjusting the radio transmission range. Obstacles in
the sensor deployment region can be simulated by one of the
two ways: (1) turn off motes in the obstacle regions; (2) create
a Tython SimObject with a high temperature attribute.

We use the follow notations for our experiments:
D : sensor distribution density 100

100·100ft2
= 0.01sensor/ft2

R : average symmetric communication range ≈ 20ft
k : range scaling factor
r : average symmetric communication range R

k
d : average node degree in the symmetric topology πr2D

B. Experiment on Trajectory Smoothness

Let lt be the length of robot trajectory generated by our
reliable robot navigation algorithm and lr be the length of a
reversed routing path. Our experiments, by comparing lt with
lr, are to demonstrate our algorithm can produce smoother
trajectories than the shortest routing path and it’s safer to
function in twisted corridors environments. The reason why we
choose the shortest routing path for comparison is that many
algorithms are proposed to steer the robot along it, though they
may not actually achieve the same efficiency with routing path.

In Fig. 9∼12, robot trajectories are represented by red
polylines, while shortest routing paths are represented by blue
dotted polylines. The red robot trajectories do not need to
end precisely at the event owner, since the robot stop its
engine once it arrives within the one hop range of the event
owner. Our algorithm has been tested in various network con-
figurations. The primary network parameter we varied is the
radio range r by adjusting the scaling factor k. The functional
relation between r and k can be found in Subsection VI-A.
Other factors include the sensor distribution pattern (regular
grid topology or disturbed grid topology) and deployment
region (with or without obstacles). In experiments, the function
adopted to estimate the reversed field gradients is Eq. (2).

(a) k = 1, d = 12.56. (b) k = 1.15, d = 10.9. (c) k = 1.3, d = 7.44.

Fig. 9. A comparison in rectangular fields with disturbed grid placement.

(a) k=1, d=12.56. (b) k=1.15, d=10.9. (c) k=1.3, d=7.44.

Fig. 10. A comparison in rectangular fields with disturbed grid placement.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

In Fig. 9, the length of multihop routing paths in a regular
grid topology is sensitive to the change in sensor density.
However, no obvious variations can be witnessed for the length
of red trajectories generated by our algorithm. Compared
with the shortest routing paths, our trajectories are constantly
shorter and more smoothed. This advantage originates from
Eq. (2), because in the routing path, only one node is chosen
from a pack of upstream sensors as the next hop node,
and however, in our robot trajectory, the next step moving
direction is determined by “averaging” the attractive forces by
all upstream sensors. This advantage can also be witnessed
in disturbed grid topologies in Fig. 10, i.e., although the
routing paths become smoother in disturbed grid topologies
than in regular grid topologies, our trajectories still exhibit
better quality. Another observation from Fig. 9&10 is that our
trajectories is not sensitive to the change in network densities.
This is probably due to the small amount of data exchanges
required by our algorithm. Therefore, a denser network with
symmetric node degree 12.56 does not necessarily mean much
heavier message loss (due to radio conflicts), and a sparse
network with symmetric node degree 7.44 is sufficient for the
robot to make a good decision about the next step moving
directions.

Fig. 11&12 make similar comparisons in twisted corridors.
The shortest routing paths have very short moving distance,
which are confined by the corridors and are prone to stick
to the corners when turning around them. As a comparison,
robots applying our algorithm tend to keep a descent distance
away from the obstacles, since the lower-hop-count upstream
nodes that do not stick to obstacles also exert their attractive
forces over the robot. Therefore, though our trajectories are a
little longer than the routing paths in twisted corridors, they
provide higher safety.

(a) k=1, d=12.56. (b) k=1.15, d=10.9. (c) k=1.3, d=7.44.

Fig. 11. A comparison in twisted corridors with regular grid placement.

(a) k=1, d=12.56. (b) k=1.15, d=10.9. (c) k=1.3, d=7.44.

Fig. 12. A comparison in twisted corridors with disturbed grid placement.

VII. CONCLUSION

The algorithm presented in this paper provides a solution
to guide a mobile sensor to the region of phenomenon in a
reliable way. This reliability is achieved by (1) avoiding the
local trap by exploiting a global DH-APF; (2) solving the
problem of deviation from a planned global path; (3) avoiding
collision with obstacles; (4) mitigating the motion oscillation
problem. Though the proposed algorithm cannot ensure perfect
toleration of navigation path deviation and oscillation, it gives
insight as how to use the DH-APF to reduce the possibility
of out-of-field problem and improve the navigation trajectory
efficiency. Besides the reliability features, this algorithm is also
energy-efficient in the sense of (1) saving the energy of static
sensors by reducing the interaction between robot and them;
(2) saving the energy of robot by constructing a smoothed
trajectory shorter than or at least comparable to the shortest
routing path. The analysis and experiments in the paper are of
a high fidelity, which consider practical issues of error-prone
wireless commutations with implementations on TinyOS.

ACKNOWLEDGMENT

This work was supported in part by HK RGC PolyU
5322/08E.

REFERENCES

[1] Q. Li, M. De Rosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in MobiCom ’03, 2003.

[2] B. Xiao, H. Chen, and S. Zhou, “Distributed localization using a moving
beacon in wireless sensor networks,” IEEE TPDS, vol. 19, no. 5, pp.
587–600, 2008.

[3] B. Xiao, L. Chen, Q. Xiao, and M. Li, “Reliable anchor-based sensor
localization in irregular areas,” accepted in IEEE TMC, 2009.

[4] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and
D. Culler, “Design and implementation of a sensor network system
for vehicle tracking and autonomous interception,” in Wireless Sensor
Networks, 2005, pp. 93–107.

[5] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of mobile
sensor nodes using a sensor network,” in PerCom, 2005, pp. 41–50.

[6] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in IEEE Int. Conf. Robotics
and Automation, 1991, pp. 1398–1404.

[7] S. Garrido, L. Moreno, D. Blanco, and M. l. Munoz, “Sensor-based
global planning for mobile robot navigation,” Robotica, vol. 25, no. 2,
pp. 189–199, 2007.

[8] C. Buragohain, D. Agrawal, and S. Suri, “Distributed navigation algo-
rithms for sensor networks,” INFOCOM, pp. 1–10, April 2006.

[9] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure
in wireless ad-hoc sensor networks,” in MobiCom, 2001.

[10] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak, “Minimal and maximal
exposure path algorithms for wireless embedded sensor networks,” in
SenSys. ACM, 2003, pp. 40–50.

[11] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The emergence of networking abstractions
and techniques in TinyOS,” in NSDI’04, 2004, pp. 1–1.

[12] M. Demmer, P. Levis, A. Joki, E. Brewer, and D. Culler, “Tython: A dy-
namic simulation environment for sensor networks,” EECS Department,
UCBerkeley, Tech. Rep. UCB/CSD-05-1372, 2005.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire TinyOS applications,” in SenSys’03.

[14] J.-C. Latombe, Robot Motion Planning.
[15] J. Barraquand, B. Langlois, and J. C. Latombe, “Numerical potential

field techniques for robot path planning,” in Advanced Robotics, 1991.
[16] P. Levis, E. Brewer, D. Culler, and et al, “The emergence of a networking

primitive in wireless sensor networks,” Comm. of the ACM, 2008.
[17] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher,

“Range-free localization and its impact on large scale sensor networks,”
Trans. on Embedded Computing Sys., vol. 4, no. 4, pp. 877–906, 2005.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 1, 2009 at 05:47 from IEEE Xplore. Restrictions apply.

