
SHARON: Secure and Efficient Cross-shard
Transaction Processing via Shard Rotation

Shan Jiang, Jiannong Cao, Cheung Leong Tung, Yuqin Wang, Shan Wang
Department of Computing, The Hong Kong Polytechnic University

Abstract—Recently, sharding has become a popular direction
to scale out blockchain systems by dividing the network into
shards that process transactions in parallel. However, secure
and efficient cross-shard transaction processing remains a vital
and unaddressed challenge. Existing work handles a cross-
shard transaction via transaction division: dividing it into sub-
transactions, processing them separately, and combing the pro-
cessing results. Such an approach is unfavorable for decentralized
blockchain due to its reliance on trustworthy parties, e.g., the
client or a reference node, to perform the transaction division
and result combination. Furthermore, the processing result of one
transaction can affect another, violating the important property
of transaction isolation. In this work, we propose Sharon, a novel
sharding protocol that processes cross-shard transactions via
shard rotation rather than transaction division. In Sharon, shards
rotate to merge pairwisely and process cross-shard transactions
when merged. Sharon eliminates reliance on trustworthy parties
and provides transaction isolation in nature because transactions
are no longer divided. Nevertheless, it poses a scientific question
of when and how to merge the shards to improve system per-
formance. To answer the question, we formally define the shard
scheduling problem to minimize transaction confirmation latency
and propose a novel construction algorithm. The proposed
algorithm is proven optimal and runs in polynomial time. We
conduct extensive experiments on Amazon EC2 instances using
Bitcoin and Ethereum data. The results indicate that Sharon
achieves nearly linear scalability, improves the system throughput
by 139%, and saves the transaction processing latency by 72.4%
compared with state-of-the-art approaches.

Index Terms—Blockchain sharding, cross-shard transaction
processing, shard scheduling.

I. INTRODUCTION

Blockchain technology has been receiving extensive atten-
tion from the research community and industries due to its
distinctive features of rebuilding trust in trustless environ-
ments [1]. The first and most successful blockchain applica-
tion, Bitcoin, is a cryptocurrency and used only 12 years to
reach a US$1 trillion market capitalization [2]. In compari-
son, Microsoft, Apple, Amazon, and Google used more than
20 years. Besides cryptocurrencies, blockchain technology is
widely adopted for secure and trustworthy data storage in
many applications, including supply chain management [3]
and healthcare information exchange [4]. However, the inferior
system throughput of blockchains severely limits a broader
range of applications. In particular, the two most successful
public blockchains, i.e., Bitcoin and Ethereum, can only pro-
cess around 9 and 29 transactions per second, respectively
[5]. In comparison, modern financial systems process more
than 4, 000 transactions per second. Therefore, improving the
system throughput of public blockchains is highly demanded.

The primary reason for the limited system throughput of
public blockchains is that the whole blockchain network
needs to make consensus to keep a strongly consistent data
replica [6]. It means more worldwide nodes in the blockchain
network make consensus and consistency more complex, thus
decreasing the system throughput. Sharding is an essential
and promising technique to improve the system throughput of
blockchains [7]. A sharding protocol divides the blockchain
network into sub-networks, i.e., shards, that process transac-
tions in parallel [8]. Generally, the system throughput will
increase with more nodes owing to the parallelization.

However, designing a sharding protocol is non-trivial be-
cause it consists of complex steps, including partitioning the
network into shards, separating and allocating the transactions
to the shards, and balancing the storage [9]. Among the chal-
lenges, secure and efficient cross-shard transaction processing
is outstanding because it dramatically affects the system secu-
rity and throughput [10]. Specifically, each shard only stores
partial data and cannot validate every transaction [11]. In this
case, some transactions cannot be processed by any single
shard and need multiple shards to cooperate to handle. They
are called cross-shard transactions and significantly decrease
the parallelization degree of a sharding system. According
to [12], more than 90% transactions are cross-shard.

Fig. 1 depicts three traditional approaches to handling a
cross-shard transaction tx. In the first approach [13], the client
that submits tx will send tx to corresponding shards, i.e.,
shards A and B in Fig. 1(a), for validation. Then, shards
A and B return the signed validation results to the client
so that the client can commit tx. Such an approach relies
on the active participation of the client. In practice, client
devices have limited resources and unstable networks and are
not always online, making such an approach impracticable.
Furthermore, the clients can repeatedly validate transactions
while refusing to commit them, leading to resource profligacy
and performance degradation.

The second approach relies on special shards [12]. A special
shard divides tx into sub-transactions tx′ and tx′′ and sends
them to shards A and B for validation, respectively. Then,
the special shard can commit tx upon receiving the validation
results. Such an approach is similar to the first one but replaces
the client with a special shard. However, the special shard
has greater power than the others, leading to centralization
concerns. Furthermore, it can no longer provide the important
property of transaction isolation because the processing result
of one transaction affects another. For example, consider
two transactions tx1 and tx2, transferring some tokens from
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Fig. 1. Comparison between Sharon and traditional sharding protocols
when processing a cross-shard transaction tx: a) the client sends tx to the
corresponding shards for validation, collects the results, and commits tx, b) a
special shard receives tx, sends tx to the corresponding shards for validation,
collects the results, and commit tx, c) a group of special nodes joining
multiple shards receives, validates, and commits tx, d) Sharon (this work):
shards merge to process tx, without reliance on trustworthy parties.

accounts A and B to other accounts. Transaction tx1 can
be invalid because account B does not have enough tokens;
however, account A’s tokens are enough and locked. The
locking can lead to invalidation of tx2 although it is valid.
In this regard, the processing result of tx1 affects tx2.

More recently, some researchers propose allowing some
nodes to join multiple shards [14], as depicted in Fig. 1(c).
Some special nodes, called b-shard nodes, join multiple shards
to handle cross-shard transactions. Such an approach is still
inadequate. First, only a limited number of b-shard nodes
participate in cross-shard transaction processing, raising se-
curity and centralization concerns. Second, the b-shard nodes
demand manual configuration, e.g., the number of b-shard
nodes from which shards. Improper configuration results in
resource underutilization and even vulnerabilities.

Some other methods target to reduce cross-shard transac-
tions [15], [16] instead of processing. A popular approach is
to model the accounts and transactions as a graph and perform
graph partitioning algorithms. The objective is to split the
graph into subgraphs so that the edges crossing subgraphs
are minimized while the subgraphs’ weights are balanced.
In this way, the number of cross-shard transactions can be
reduced significantly without affecting the high parallelism
among shards. However, more than 90% transactions are cross-
shard in existing blockchains [14]. These methods can only
reduce around half of the cross-shard transactions but are far
from complete elimination, which is nearly impossible. There-
fore, secure and efficient cross-shard transaction processing
mechanisms are still highly demanded.

This work focuses on the key challenge, cross-shard pro-
cessing, in sharding for public blockchains. We propose a
novel protocol, Sharon shown in Fig. 1(d), that processes
cross-shard transactions via shard merging and rotation rather

than transaction division. In particular, when two shards A and
B are merged, the merged shards can handle the transactions
crossing A and B straightforwardly. Sharon does not rely on
the client, special shard, or special nodes; every node plays an
identical role. Meanwhile, Sharon provides transaction isola-
tion because each transaction is considered a whole and never
split. Despite the distinctive features of Sharon, it remains a
challenge when and how to schedule the merging and rotation
among shards. We formally formulate a shard scheduling prob-
lem of minimizing transaction confirmation delay to address
the challenge. Then, we design a construction algorithm that
optimally solves the shard scheduling problem in polynomial
time. We prove the optimality and time complexity of the
proposed algorithm to be O(n2), where n is the number of
shards. The main contributions of this work are as follows:

• We propose Sharon, a novel blockchain sharding protocol
that processes cross-shard transactions via merging shards
rather than dividing transactions. Such an approach elim-
inates the reliance on trustworthy parties and guarantees
transaction isolation in nature.

• We formally define the shard scheduling problem of
scheduling shard meetings to make all pairs of shards
met in minimum rounds. The target is equivalent to
minimizing the maximum transaction confirmation delay.

• We propose an optimal construction algorithm to solve
the shard scheduling problem and prove the optimality
rigorously. The proposed algorithm runs in O(n2) poly-
nomial time where n is that number of shards.

• We conduct extensive performance evaluation on AWS
with Bitcoin and Ethereum data. The experimental results
indicate that Sharon achieves nearly linear scalability,
improves the system throughput by 139%, and saves
the transaction processing latency by 72.4% on average
compared with state-of-the-art approaches.

II. RELATED WORK

A. Sharding for UTXO-based Transactions

Blockchain sharding has been a hot topic since 2016. Elas-
tico is the first sharding protocol for public blockchains [8].
In Elastico, the blockchain network is uniformly divided into
smaller shards that can parallelly process disjoint sets of
transactions. Elastico employs proof-of-work to validate the
role of blockchain nodes and byzantine agreement protocol
for intra-shard consensus. However, Elastico is dedicated to
UTXO (unspent transaction outputs)-based transaction model
and cannot handle cross-shard transactions securely and effi-
ciently. Furthermore, the performance of Elastico is limited.

Omniledger [13] and RapidChain [12] are two representa-
tives focusing on the UTXO-based transaction model and im-
proving Elastico. In Omniledger, a verifiable random function
is proposed to elect leaders efficiently, and a fast consensus
protocol is designed assuming partial synchrony [13]. A major
limitation of Omniledger lies in its heavy reliance on the
clients to confirm cross-shard transactions. That is, the client
needs to collect the confirmation results of cross-shard transac-
tions and commit them. RapidChain improves the performance
by introducing high-efficiency intra-shard consensus and shard



reconfiguration [12]. However, RapidChain processes cross-
shard transactions by dividing them into sub-transactions that
individual shards can process. Such an approach increases the
number of transactions and relies on trustworthy reference
nodes to partition transactions. Furthermore, RapidChain can-
not provide transaction isolation because the processing result
of one transaction affects another.

In literature, other similar work involves special roles to
process cross-shard transactions. For example, ABS considers
the satellite-based internet of things scenario and employs
the satellites as the rendezvous points to gather and confirm
cross-shard transactions [17]. CycLedger introduces leaders
and backups to handle cross-shard transactions efficiently [18].

B. Sharding for Account-based Transactions

In the UTXO-based transaction model, the transactions can
be evenly partitioned because the public keys are generated
randomly, even for the same account. Account-based transac-
tion model is different because an account uses the same public
key to sign transactions. To this end, it is challenging, yet an
opportunity, to partition the transactions evenly and distribute
the portions to shards [16]. Furthermore, a proper partition of
transactions based on account numbers can reduce the number
of cross-shard transactions.

Allowing one node to join multiple shards is one of the
initial ideas to reduce the amount of cross-shard transactions.
For example, Pyramid allows nodes with superior hardware
to participate in multiple shards to validate and execute the
cross-shard transactions without splitting [14]. An optimiza-
tion framework is proposed to compute the optimal sharding
strategy maximizing the system throughput subject to the
resource constraint and security level. Such an idea is also
used in Prophet [19] and CDT-B [20]. Mizrahi et al. reduced
cross-shard transactions based on memory usage rather than
transaction partition [21]. OptChain identifies and predicts
related transactions and groups them into the same shard to
reduce cross-shard transactions [15].

Besides reducing cross-shard transactions, achieving a more
balanced workload among shards is another approach to
improving the sharding performance for the account-based
transaction model. In BrokerChain [16], Huang et al. found
that traditional sharding protocols, such as Monoxide [22],
lead to an extremely unbalanced workload among shards.
The unbalanced workload makes the resources of less-loaded
shards underutilized. To this end, BrokerChain constructs a
weighted graph for the accounts and transactions and proposes
an account segmentation algorithm to allocate accounts to
shards, balancing the workload. LB-Chain considers a dy-
namic setting [23]. More specifically, LB-Chain periodically
offloads the workload of active accounts from shards with
heavy loads to ones with light loads. Similar ideas appear in
Transformers [24] and EfShard [25].

C. Sharding with Special Settings

The related work above concerns the sharding of
public blockchains on traditional hardware. Some other
work discusses sharding with special settings: permissioned

blockchains and trusted hardware. With the special settings,
the performance of sharding protocols can be much higher.

A permissioned blockchain is a blockchain that only allows
authenticated nodes to join the consensus process. Permis-
sioned blockchains are immune to Sybil attacks due to authen-
tication in nature. Therefore, the procedure of node validation
can be skipped, contributing to the reduction of time overhead.
Sharper [26] forms the permissioned blockchain ledger as
a directed acyclic graph, and each shard is responsible for
only a view of the graph. It employs decentralized flattened
protocols to handle cross-shard transactions safely. Aeolus [27]
introduces an execution master to distribute transactions to
shards optimally, considering the available resources of shards.
S-store [28] considers the shard reconfiguration issue in shard-
ing permissioned blockchains. When an existing shard is
removed, or a new shard is formed, many blockchain nodes
need to join new shards and synchronize the data, leading to
heavy communication overhead. S-store employs a consistent
hashing algorithm to reduce the number of rearranged nodes
to reduce the communication overhead.

Trusted hardware can ensure secure data storage, process-
ing, and protection from malicious access. Typical trusted
hardware includes Intel SGX and ARM Trustzone. With
trusted hardware, many time-consuming procedures can be
completed quickly with fewer resources, e.g., secret sharing,
transaction verification, and smart contract execution. Dang
et al. [29] designed a shard formation protocol leveraging
trusted hardware to securely assign blockchain nodes to shards.
Benzene [30] uses trusted hardware to process cross-shard
transactions securely and efficiently, achieving up to thirty
thousand transactions per second.

D. Summary

This work focuses on public blockchain sharding on tra-
ditional hardware. Handling cross-shard transactions securely
and efficiently is a key challenging issue in this context.
Existing solutions attempt to reduce but cannot cross-shard
transactions. The state-of-the-art solutions decompose cross-
shard transactions into sub-transactions that individual shards
can process. Such an approach lacks transaction isolation and
relies on a trustworthy party for transaction decomposition.
This work proposes a novel sharding protocol that merges
shards rather than decomposing transactions to achieve secure
and efficient cross-shard transaction processing.

III. SHARON PROTOCOL OVERVIEW

This work proposes Sharon for secure and parallel cross-
shard transaction processing in public blockchains. As shown
in Fig. 2, Sharon starts with shard formation and then pro-
ceeds in epochs, in which each epoch consists of intra-shard
consensus, cross-shard consensus, and shard reconfiguration.

In shard formation, each node in the blockchain network
needs to go through proof-of-work testing with a small dif-
ficulty. The testing is to prevent the blockchain system from
incurring the Sybil attack. Suppose that m nodes passed the
testing. Then the m nodes will agree on the number of shards n
and be mapped to shards randomly using random numbers [8].
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Fig. 2. Overview of the Sharon protocol. Sharon starts with shard formation
and runs epoch by epoch. Each epoch consists of intra-shard consensus,
cross-shard consensus, and shard reconfiguration. The cross-shard consensus
procedure runs round by round. In each round, shards form paired joint shards,
and each joint shard makes a consensus to process cross-shard transactions.

In this way, the m nodes have formed n shards with an
approximately even size. Note that the number of nodes in
each shard will be kept small, i.e., less than 100, to take care
of the performance. That is, Sharon will make m

n < 100.
The shard reconfiguration procedure consists of two parts:

1) validating existing nodes and incorporating new nodes
through proof-of-work and 2) adjusting the mapping between
nodes and shards. The first part is straightforward and similar
to the shard formation procedure. The second part is to balance
the shard size and prevent the whole system from incurring
attacks. On the one hand, if a large number of nodes newly
join (a larger m), the number of shards should increase (a
larger n) to keep the average shard size small (a balanced m

n ).
Similarly, we need to decrease the number of shards when
too many nodes leave. On the other hand, it can raise security
issues, e.g., slowly adaptive adversary and join-leave attacks
[31], if the nodes keep in the same shard for a long time.
However, it incurs high communication overhead when a node
joins a new shard. Sharon employs the Cuckoo rule [12] and
S-Store scheme [28] to rearrange a small number of nodes
with few data among shards.

We employ practical byzantine fault tolerance as the consen-
sus algorithm due to its perfect finality and high efficiency in
the case of a small number of participating nodes [32]. In the
following, we name a consensus instance as the execution of
the practical byzantine fault tolerance protocol. In intra-shard
consensus, each shard will run a consensus instance to confirm
the transactions that can be processed by itself. Because each
shard only stores partial blockchain data, some transactions
may need multiple shards to process them. These transactions
are called cross-shard ones and will be processed by the cross-
shard consensus procedure.

This work focuses on the security and efficiency of cross-
shard consensus. Consider a cross-shard transaction tx that
needs to be processed by two shards S0 and S2. Most existing
sharding protocols deal with cross-shard transactions in three
steps. First, tx is divided into two sub-transactions A and
B that can be processed by and are sent to shards S0 and
S2, respectively. Second, shards S0 and S2 process A and
B, respectively. The processing result can be validated or
invalidated. Finally, the two processing results are combined

to decide the processing result of the original tx.
Such an approach cannot achieve transaction isolation and

rely on the participation of clients or reference nodes. More
specifically, consider two transactions txa and txb, in which
txa cross shard Si and Sj while txb cross shards Sj and
Sk. One of txa and txb can be validated; however, it is
possible that neither txa nor txb is validated using existing
sharding protocols. That is, these protocols fail to provide
transaction isolation. Moreover, existing protocols rely on the
active participation of clients and reference nodes to combine
the processing results of sub-transactions and decide the final
result [13], [29]. The approach is vulnerable if the clients and
the reference nodes are malicious.

In Sharon, we propose to combine shards instead of dividing
transactions as shown in Fig. 1(d). Consider a transaction
crossing shards S0 and S2, then the transaction can be con-
firmed when shard S0 and S2 are merged. Shard merging can
provide the favorable feature of transaction isolation because
each transaction is considered a whole rather than many pieces.
Moreover, there is no need for the participation of clients or
reference nodes. Regarding the transactions that cross more
than two shards, Sharon processes them by accumulating
intermediate results. For example, consider a transaction tx
crossing three shards S0, S1, and S2. When S0 and S1 meet,
they will process tx and save its intermediate processing result.
Next, when S0 or S1 meets S2, the intermediate processing
result can be combined with the one from S2, leading to the
final processing result of tx. Despite the advantages, shard
merging faces two challenging issues. On the one hand, a
large amount of data needs to be synchronized when a node
is merged into a new shard. On the other hand, it remains a
question of how to schedule the shard merging to optimize the
overall system performance.

Regarding shard merging, the objective is to make each
pair of shards meet from time to time to process cross-shard
transactions efficiently. A running example with four shards
in an epoch is shown in Fig. 2. The shard merging proceeds
round by round. In round 1, shards S0 and S1 form a joint
shard and shards S2 and S3 form another joint shard; in round
2, shards S0 and S2 form a joint shard and shards S1 and
S3 form another joint shard; in round 3, shards S0 and S3
form a joint shard and shards S1 and S2 form another joint
shard. In this way, every pair of shards have met in three
rounds. When a joint shard is formed, it will run a consensus
instance to process cross-shard transactions. This work aims to
minimize the number of rounds to make every pair of shards
met to reduce the time overhead as much as possible. In the
example, at least three rounds are demanded to make every
pair of shards met. In the following, we formally define the
shard scheduling problem, propose an optimal solution, prove
the optimality, and analyze the time complexity.

IV. OPTIMAL SHARD SCHEDULING

This section concerns the scheduling of the shard merging
and rotation. We first formally define the shard scheduling
problem. Then, we present an optimal shard scheduling algo-
rithm. Finally, we analyze the correctness and time complexity
of the proposed scheduling algorithm.



A. Problem Formulation

The target of scheduling the shards is to let the shards meet
regularly to confirm the cross-shard transactions. Considering
a pair of shards, we aim to make the interval of their two
consecutive meetings as short as possible. Note that a short
interval is preferred because it indicates a short confirmation
time for the transactions crossing the pair of shards. As for all
shard pairs, we aim to minimize the longest interval.

We consider the shards repeat to meet epoch by epoch. In
each epoch, the shards meet in a determined meeting sequence
that guarantees all pairs of shards will meet. In this way, the
longest interval of shard meetings will be no more than the
duration of an epoch. Then, our problem is to determine the
meeting sequence. The longest interval can be minimized if
the meeting sequence makes each pair of shards meet precisely
once with the shortest time. We formulate the shard scheduling
problem to determine the optimal meeting sequence.

Definition 1. Shard scheduling problem. Consider n ≥ 2
shards that meet round by round. In each round, a shard can
meet at most one another shard. Schedule the shard meetings
so that all pairs of shards have met with the minimum rounds.

A naive solution to the shard scheduling problem is
to enumerate the permutations of the shard pairs. For
each permutation, we segment it into rounds so that no
shard appears twice for all the rounds. In this way, the
permutation with the minimum rounds can be found
and will be the answer. For example, consider four
shards {S0,S1,S2,S3}, resulting in six pairs of shards
{{S0,S1}, {S0,S2}, {S0,S3}, {S1,S2}, {S1,S3}, {S2,S3}}.
A permutation of the pairs of shards will be
({S0,S2}, {S1,S2}, {S0,S3}, {S1,S3}, {S0,S1}, {S2,S3}).
It should be segmented into four rounds, i.e., {S0,S2} ∥
{S1,S2}, {S0,S3} ∥ {S1,S3} ∥ {S0,S1}, {S2,S3}. In such a
segmentation, S1 meets S2 at the same time when S0 meets
S3 in the second round.

However, the naive solution incurs an extremely high time
complexity. There are n(n−1)

2 pairs of shards when there are
n shards. Then, the number of permutations of the shard pairs
is n(n−1)

2 !. Each permutation needs O(n2) time to perform
the segmentation. Therefore, the naive solution takes up to
O(n2 · n(n−1)

2 !) time, which is exponential and unacceptable.

B. Proposed Solution

In this work, we propose an optimal solution to solving the
shard scheduling problem in O(n2) time. More specifically,
we separate the cases when n is odd and even and construct
the optimal meeting sequence respectively.

First, Algo. 1 depicts the construction algorithm when n is
odd. At least n rounds are needed for every pair of n shards
to meet when n is odd. The idea is to enumerate the number
of rounds r from 1 to n. In round r, a shard Si will try to
meet shard S(r−1−i) mod n. Here, if i equals (r−1−i) mod n,
then shard Si will skip the round r, i.e., to meet no shard in
round r. Note that in each round, at least one shard should
remain unmet because n is odd. In Sec. IV-C, we will prove
the optimality of Algo. 1.

Algorithm 1 Optimal shard scheduling when there are an odd
number of shards

1: res ← a list of n sets initiated to be empty sets
2: for r ← 1 to n do ▷ For round r
3: L ← a list of n boolean values initiated as FALSE
4: for i← 0 to n− 1 do ▷ For the shard Si
5: if Li+1 = FALSE then ▷ If Si has not yet met
6: j ← (r − 1− i) mod n ▷ Si may meet Sj
7: if i = j then continue end if ▷ Avoid j = i
8: Li+1, Lj+1 ← TRUE ▷ Mark Si and Sj as

met
9: resi ← resi ∪ {{Si,Sj}} ▷ Si meets Sj

10: end if
11: end for
12: end for
13: return res

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4
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r = 1 r = 2 r = 3

r = 4 r = 5

Fig. 3. A running example of Algo. 1 when n = 5. Every pair of shards will
have met after five rounds.

Algorithm 2 Optimal shard scheduling for 2 shards
1: return ({{S0,S1}})

Fig. 3 depicts a running example of Algo. 1 when there
are five shards (n = 5). In the first round (r = 1), consider
shard S0 (i = 0), then it will try to meet S0 itself because
(r − 1− i) mod n = 0. However, a shard cannot meet itself,
so shard S0 will skip the first round, i.e., to meet no shard
in this round. Regarding shard S1 (i = 1), it will meet S4
because 1 − 1 − 1 mod 5 = 4. Shard S2 will meet S3 in the
first round. Similarly, in round 2, S0 meets S1 and S2 meets
S4. In round 3, S0 meets S2 and S3 meets S4. In round 4, S0
meets S3 and S1 meets S2. In round 5, S0 meets S4 and S1
meets S3. After the five rounds, we can observe that all the
pairs of shards, in total 5×4

2 = 10 pairs, have met.
Second, when n is even, at most n

2 pairs of shards can meet
in each round, leaving no shard alone. We consider the base
case when n = 2 first. In this case, there is only a single pair
of shards, and we can just make shards S0 and S1 meet in a
round. The corresponding algorithm is shown in Algo. 2.

Third, Algo. 3 depicts the construction algorithm solving
the shard scheduling problem when n is even other than 2.
Consider a simple case when n = 6 first, and the solution can
be constructed based on the case when n = 5. In Fig. 3, each
round leaves a shard alone, and the five shards left in the five
rounds are distinct. To this end, we can make the alone shard
meet shard S5 for each of the five rounds. That is, shard S5
will meet S0, S3, S1, S4, and S2 in rounds 1 to 5, respectively.
To this end, we can observe that all the pairs of shards, in total
6×5
2 = 15 pairs, have met after five rounds.
The same idea fits any n when n exceeds 2 and is even.



Algorithm 3 Optimal shard scheduling when there are an even
number of shards (not two shards)

1: res← The optimal shard scheduling result for n−1 shards
using Algo. 1

2: for r ← 1 to n− 1 do ▷ For round r
3: L ← a list of n−1 boolean values initiated as FALSE
4: for each {Si,Sj} ∈ resr do
5: Li+1, Lj+1 ← TRUE ▷ Mark Si and Sj as met
6: end for
7: Find an arbitrary i that satisfies Li+1 = FALSE ▷

There is only one i satisfying the constraint
8: resr ← resr ∪ {{Si,Sn−1}} ▷ Si meets Sn
9: end for

10: return res

Algorithm 4 Optimal shard scheduling
1: if n = 2 then return the result of running Algo. 2 end if
2: if n is odd then return the result of running Algo. 1 with

the input n end if
3: if n is even then return the result of running Algo. 3 with

the input n end if

Lemma 2

Optimality of Algo. 1

Lemma 3

Validity of Algo. 1

Theorem 4

Correctness of Algo. 1

Theorem 5

Correctness of Algo. 3

Theorem 6

Correctness of Algo. 4

Correctness of Algo. 2

Case when

𝑛 ≥ 3 and is odd

Case when

𝑛 ≥ 4 and is even

Case when 

𝑛 = 2

For all 𝑛 ≥ 2

Fig. 4. Correctness proof sketch of Algo. 4. We prove the correctness of the
overall algorithm by considering three cases: n = 2, n ≥ 3 and is odd, and
n ≥ 4 and is even.

There will be n · (n−1) pairs of shards. We can construct the
solution res of n − 1 first. The solution res should contain
n − 1 rounds, in which each round contains n−2

2 pairs of
shards, leaving a single shard alone. The alone shards in the
n−1 rounds are distinct, and we can make the alone shard meet
shard Sn−1 when there are n shards. It results in n−1 pairs of
shards newly met. In total, n−2

2 ·(n−1)+(n−1) = n ·(n−1)
pairs of shards will have met after n− 1 rounds.

Finally, we can synthesize Algo. 2, Algo. 1, and Algo. 3
to get the overall algorithm, Algo. 4, for optimal shard
scheduling. Note that the three cases above, i.e., n = 2, n
is odd, and n is even other than 2, can cover every possible
value of n. Therefore, Algo. 4 simply checks how n falls into
the three cases and selects the corresponding algorithms.

C. Correctness Proof

This subsection presents the correctness proof of Algo. 4.
Particularly, the correctness concerns the validity and optimal-
ity: 1) validity: in the output, every pair of shards have met,
and no shard meets itself or two shards in any round, and 2)
optimality: the output uses the least number of rounds.

Fig. 4 depicts the correctness proof sketch. We consider
Algo. 1 first because Algo. 3 is based on Algo. 1. In order to
prove the correctness of Algo. 1, we proves its validity and
optimality in Lem. 2 and Lem. 3. Then, the correctness of
Algo. 3 is proven owing to the construction based on Algo. 1.
Finally, the overall Algo. 4 is proven correct due to three cases:
case when n ≥ 3 and is odd in Algo. 1, case when n ≥ 4 and
is even in Algo. 3, and case when n = 2 in Algo. 2.

Lemma 2. Suppose there are n shards {S0, · · · ,Sn−1}, where
n ≥ 3 and is odd. Algo. 1 will and will only leave a single
shard unmet while making all the others met for every round.

Proof. In any round r (1 ≤ r ≤ n), Algo. 1 will leave a shard
not met, or unmatched, with others only when it goes to line 7
and satisfies the condition i = j. To this end, we can obtain
that a shard Si is unmatched if and only if i ≡ (r − 1 − i)
mod n. The condition is equivalent to r−1 ≡ 2i mod n and
called the condition in the following. We discuss the parity of
r.

If r is odd, then r − 1 is even, making the condition
equivalent to r−1

2 ≡ i mod n. Because 0 ≤ i < n and
0 ≤ r−1

2 < n, we have the only solution i = r−1
2 that satisfies

the condition.
Otherwise, r is even, making r− 1 odd and 0 ≤ r− 1 < n.

If i <= n−1
2 , then 2i <= n− 1. In this case, the condition is

equivalent to r−1 = 2i. It is impossible to achieve so because
the left side is odd while the right side is even. Therefore, only
if i ≥ n+1

2 could it be possible to satisfy the condition. In such
a circumstance, n+1 ≤ 2i <= 2(n−1) and 1 ≤ 2i−n ≤ n−2,
making the condition equivalent to r−1 = 2i−n. To this end,
i = n+r−1

2 is the only solution that satisfies the condition.
To summarize, Algo. 1 will and only will leave the shard
S r−1

2
(Sn+r−1

2
) not met with others for an arbitrary odd (even)

round. Except for the unmatched shard, all the others meet in
pairs, which proves the lemma.

Lemma 3. Suppose there are n shards {S0,S1, · · · ,Sn−1},
where n ≥ 3 and is odd. For any shard Si, Algo. 1 makes Si
meet all the other shards.

Proof. Consider an arbitrary shard Si where 0 ≤ i < n. In a
round r where 1 ≤ r ≤ i and r ̸= 2i + 1 mod n, the shard
Si will meet Sj where j = n+ r− 1− i in line 6 of Algo. 1.
Because r ranges from 1 to i (except 2i+1 mod n if inside),
j will range from n− i to n− 1 (except i if inside).

Similarly, in a round r where 1+ i ≤ r ≤ n and r ̸= 2i+1
mod n, the shard Si will meet Sj where j = r−1−i. Because
r ranges from i+ 1 to n (except 2i+ 1 mod n if inside), j
will range from 0 to n− i− 1 (except i if inside).

Combining the two cases, we get that Si will meet Sj where
j ranges from 0 to n−1 except i, which proves the lemma.

Theorem 4. Algo. 1 optimally solves the shard scheduling
problem when there are n shards, where n ≥ 3 and is odd.

Proof. First, we prove the validity of Algo. 1. On the one hand,
Lem. 2 indicates that n− 1 shards will meet in pairs for any
round because only one shard will be unmatched, and there
are n shards in total. It means no shard will meet more than



one shard in each round. On the other hand, Lem. 3 indicates
that Algo. 1 makes all pairs of shards met.

Second, we prove the lower bound of the number of rounds.
Note that there will be n(n−1)

2 pairs of shards given n shards.
In each round, at most n−1 shards can meet in pairs, resulting
in n−1

2 pairs met. We divide the number of shard pairs by
the maximum number of shard pairs that can meet in each
round to get the minimum possible number of rounds, that is
n(n−1)

2 /n−1
2 = n rounds. We can see that Algo. 1 runs in

exactly n rounds, reaching the lower bound.
As a result, Algo. 1 is valid and reaches the lower bound, in-

dicating that it optimally solves the shard scheduling problem
when there n shards, where n ≥ 3 and is odd.

Theorem 5. Algo. 3 optimally solves the shard scheduling
problem when there are n shards, where n ≥ 4 and is even.

Proof. First, we prove the validity. Algo. 3 runs Algo. 1 to
get the results when there are n−1 shards. It means the shard
pairs {{Si,Sj} | 0 ≤ i, j < n − 1, i ̸= j} already meet in a
valid manner. We still have n− 1 shard pairs not met, which
are U = {{Si,Sn−1} | 0 ≤ i < n − 1}. In Lem. 2, we
have proven that Algo. 1 leaves and only leaves the shards
S r−1

2
not met in odd rounds and the shards Sn−1+r−1

2
not

met in even rounds. We range r from 1 to r − 1 and can
obtain that the unmatched shards are indexed 0, 1, · · · , n−2

2
and n

2 ,
n+2
2 , 2n−4

2 . The indexes are distinct and range from 0
to n− 2. In lines 7 and 8, Algo. 3 finds the unmatched shard
and makes it meet shard Sn−1. To this end, Algo. 3 makes
the shard pairs in U meet in a valid manner.

Second, we prove the lower bound of the rounds. There are
n

n−1/2 shard pairs. Given that n is even, at most n
2 shard

pairs can meet per round. To this end, it requires at least
n(n−1)

2 /n
2 = n − 1 rounds to make all the shards meet with

each other. We can see that Algo. 3 runs in exactly n − 1
rounds, reaching the lower bound.

Therefore, Algo. 3 is valid and reaches the lower bound, in-
dicating that it optimally solves the shard scheduling problem
when there n shards, where n ≥ 4 and is even.

Theorem 6. Algo. 4 optimally solves the shard scheduling
problem.

Proof. Algo. 4 is exhaustive by invoking Algo. 2, Algo. 1,
and Algo. 3 when there are two, odd, and even (not two)
shards. Because Algo. 2, Algo. 1, and Algo. 3 optimally solve
the shard scheduling problem in the respective cases, Algo. 4
optimally solves the shard scheduling problem.

D. Time Complexity Analysis

This subsection shows that Algo. 4 runs in O(n2) time
where n is the number of shards.

Theorem 7. The time complexity of Algo. 4 is O(n2).

Proof. In the following, we show that Algo. 2, Algo. 1, and
Algo. 3 take O(1), O(n2), and O(n2) time, respectively.
Algo. 4 invokes Algo. 2, Algo. 1, and Algo. 3. Hence, the
time complexity of Algo. 4 is O(n2).

Algo. 1 has two nested for-loops over n elements in lines 2
and 4. The for-loops take O(n2) time because they are nested.
The list L can be implemented using an array, making its
operations of initialization, update, and lookup take O(1) time.
Therefore, Algo. 1 runs in O(n2) time.

Algo. 3 runs Algo. 1 for the n−1-instance and takes O(n2)
time. Then Algo. 3 goes through two nested for-loops over
n elements in lines 2 and 4. The two for-loops also take
O(n2) time. The list L can also be implemented using an array
with O(1)-time operations. As a result, the time complexity
of Algo. 3 is O(n2).

V. PERFORMANCE EVALUATION

A. System Implementation & Experimental Settings
We implement a prototype of Sharon in C++ based on

Ethereum [33]. The byzantine fault tolerance consensus prim-
itive is implemented efficiently using Boneh-Lynn-Shacham
signature [34] of the C++ implementation [35]. Data syn-
chronization among shards is implemented using the informa-
tion dispersal algorithm [36]. We implement two benchmark
sharding protocols, i.e., RapidChain and Monoxide, with the
same consensus primitive. Note that the implementations of
the three protocols are different only in cross-shard transaction
processing. We run the three protocols on 16 Amazon EC2
c4.4xlarge instances (16 vCPUs and 30GB memory) with pa-
rameter settings the same as traditional blockchain platforms.
The blockchain nodes are pairwise connected by a link of
20Mbps bandwidth and 100ms latency.

This work considers two performance metrics of
blockchains. 1) System throughput: the number of
transactions that can be processed per second; it is an
important performance metric because it relates to the
maximum affordable workload of a blockchain system. 2)
Transaction processing latency: the average time from the
submission to confirmation of transactions; a high latency
limits the applications of a blockchain system, especially
those demanding real-time.

We evaluate the influence of four factors on the system
performance. 1) Shard number. When the shard size is fixed,
more nodes and shards can increase the parallelization ratio of
transaction processing. However, it will also make it difficult
to synchronize data among shards. 2) Shard size. Given a
fixed number of nodes, a larger shard size will decrease the
number of shards, thus decreasing the parallelization ratio of
transaction processing. Meanwhile, the transaction processing
logic may be simplified, decreasing the transaction processing
latency. 3) Average transaction step. A shard only keeps a
portion of the blockchain state, so processing cross-shard
transactions demands the cooperation of multiple shards. The
transaction step of a cross-shard transaction refers to the
number of related shards. If a transaction is not cross-shard,
then its transaction step is 1. A larger average transaction step
indicates that the shards need to cooperate more. 4) Ratio of
cross-shard transactions. The cross-shard ratio refers to the
percentage of cross-shard transactions in all transactions. A
higher ratio indicates more transactions are cross-shard and
need shard cooperation. In existing blockchains, more than
90% transactions are cross-shard [14].
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Fig. 5. Influence of number of nodes on system performance.

We employ real-world Bitcoin and Ethereum transactions as
the dataset. Specifically, we collected the Bitcoin data in 2012,
containing around 1.9 million transactions, and the Ethereum
data in 2016, containing around 14.5 million transactions. The
average transaction steps of Ethereum and Bitcoin are 7.48
and 2.93, respectively. We randomly select the transactions
from Bitcoin and Ethereum to fit the parameter settings of the
average transaction step and ratio of cross-shard transactions.

In the following, we employ the control variable approach
to examine the influence of each of the four factors above. We
vary a factor each time while fixing the other three and conduct
experiments to see how the system throughput and transaction
processing latency change according to the varying factor.

B. Influence of Shard Number

In this set of experiments, we fix the shard size, average
transaction step, and ratio of cross-shard transactions to be
100, 7.48 (fitting Ethereum), and 90%, respectively, and vary
the number of shards from 10 to 30 with a step of 2. The
number of nodes will increase from 1000 to 3000. Fig. 5
depicts the experimental results of system throughput and
average transaction processing latency.

The system throughput of all three sharding protocols
increases linearly with increasing shards. When there are
10 shards, Sharon, Monoxide, and RapidChain can process
1986, 933, and 870 transactions per second, respectively.
Sharon achieves 113% and 128% more system throughput
than Monoxide and RapidChain. When there are 30 shards,
Sharon, Monoxide, and RapidChain can process 5522, 2127,
and 1751 transactions per second, respectively. Sharon out-
performs Monoxide and RapidChain by 160% and 215%,
respectively. Besides high throughput, Sharon enjoys high
scalability as well. More specifically, the scalability is mea-
sured by ∆TPS/∆N , where ∆TPS and ∆N are the changes
in system throughput and shard number, respectively. The
average scalability of Sharon, Monoxide, and RapidChain can
be computed as 0.96, 0.84, and 0.77, respectively. Sharon
achieves nearly linear scalability.

Fig. 5(b) shows that the transaction processing latency
increases and then decreases with more shards. The reasons
are analyzed as follows. On the one hand, more shards
improve system throughput, decreasing the average waiting
time of transactions. On the other hand, too many shards result
in higher complexity of cross-shard transaction processing

(a) (b)

Fig. 6. Influence of shard size on system performance.

and higher communication overhead of data synchronization
among shards. Sharon, Monoxide, and RapidChain achieve the
least average transaction processing latency, i.e., 7.16s, 25.96s,
and 31.84s, respectively, when there are 20 shards. Sharon
decreases the average transaction processing latency by 72.4%
and 77.5% compared to Monoxide and RapidChain.

C. Influence of Shard Size

We fix the number of nodes, average transaction step, and
ratio of cross-shard transactions to be 2000, 7.48 (fitting
Ethereum), and 90%, respectively, and change the shard size
from 40 to 240 with a step of 20. Note that the number of
nodes is slightly below 2000 sometimes because the number
2000 is not divisible by some shard sizes, e.g., 60 and 120.
Fig. 6 depicts the experimental results of system throughput
and average transaction processing latency.

Fig. 6(a) depicts that the system throughput drops dramat-
ically when the shard size increases for all three protocols.
The reason is that a larger shard size decreases the number
of shards, thus the ability to process transactions in parallel.
For example, when the shard size increases from 40 to 60, the
number of shards will decrease from 2000

40 = 50 to 1980
60 = 33.

With a shard size 40, Sharon, Monoxide, and Sharon can form
50 shards and process 11753, 4173, and 3347 transactions
per second. Sharon outperforms Monoxide and Sharon by
182% and 251%, respectively. When each shard consists of
240 nodes, only 8 shards will be formed. In this context,
Sharon, Monoxide, and Sharon achieve a system throughput
of 1573, 805, and 785 transactions per second, respectively.
Sharon outperforms Monoxide by 95.4%, and Monoxide has a
similar system throughput compared with RapidChain. Based
on Fig. 5(a) and Fig. 6(a), we can infer that the system
throughput is primarily affected by the number of shards rather
than the number of blockchain nodes.

The influence of shard size on transaction processing latency
is shown in Fig. 6(b). The result indicates that the transaction
processing latency decreases and then increases with larger
shards. When there are 2000 nodes in 50 shards, Sharon,
Monoxide, and RapidChain process a transaction on average
in 24.57s, 51.61s, and 65.15s, respectively. Sharon saves the
transaction processing latency by 52.4% and 62.3% compared
to Monoxide and RapidChain, respectively. All three protocols
achieve the least transaction processing latency for 2000 nodes
in 20 shards. Such a result echos the analysis in Sec. V-B.
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Fig. 7. Influence of average transaction step on system performance.

D. Influence of Transaction Steps

We fix the number of nodes, shard size, and ratio of cross-
shard transactions to be 2000, 100, and 90%, respectively,
and change the average transaction step from 1 to 10. We
intentionally consider the transaction steps of 2.93 and 7.48,
fitting Bitcoin and Ethereum, respectively.

Fig. 7(a) depicts how the system throughput changes accord-
ing to the average transaction step. When the transaction step
is 1, there is no cross-shard transaction. In this case, the three
sharding protocols share the same system throughput, i.e.,
3839 transactions per second. Sharon outperforms Monoxide
and RapidChain with an increasing transaction step. The
system throughput of Sharon is not affected by the transaction
step because Sharon processes cross-shard transactions via
shard merging and rotation regardless of cross-shard trans-
actions. On the contrary, the system throughput of Monoxide
and RapidChain decreases when the transaction steps increase
due to the performance bottleneck of trustworthy parties to
handle cross-shard transactions. Regarding Bitcoin data, when
the transactions step is 2.93, Sharon outperforms Monoxide
and RapidChain regarding system throughput by 51.5% and
69.7%, respectively. Regarding Ethereum data, when the trans-
action step is 7.48, Sharon enjoys 139.3% and 182.2% higher
system throughput than Monoxide and RapidChain.

The impact of the transaction step on transaction processing
latency is shown in Fig. 7(b). Similarly, Sharon, Monoxide,
and RapidChain share the same transaction processing latency,
i.e., 1.76s, when the transaction step is 1. With an increasing
transaction step, all three protocols process transactions slower.
However, the transaction step has less impact on Sharon than
Monoxide and RapidChain. In particular, when the average
transaction step is 2.93 (Bitcoin data), Sharon, Monoxide,
and RapidChain process transactions in 2.88s, 9.16s, and
11.07s on average, respectively. Sharon saves 68.6% and
74.0% transaction processing time compared to Monoxide and
RapidChain, respectively. When the average transaction step is
7.48 (Ethereum data), Sharon processes a transaction in 7.16s
on average and enjoys 72.4% and 77.5% less time compared
to Monoxide (25.96s) and RapidChain (31.84s), respectively.

E. Influence of Ratio of Cross-shard Transactions

We fix the number of nodes, shard size, and average
transaction step to be 2000, 100, and 7.48 (fitting Ethereum),
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Fig. 8. Influence of ratio of cross-shard transactions on system performance.

respectively, and change the ratio of cross-shard transactions
from 0% to 100% with a step of 10%.

The influence of the ratio of cross-shard transactions on
system throughput is depicted in Fig. 8(a). We can observe
that Sharon’s system throughput is immune to the ratio of
cross-shard transactions because Sharon process cross-shard
transactions as normal ones. On the contrary, Monoxide and
RapidChain can process much fewer transactions with an
increasing ratio of cross-shard transactions. When all trans-
actions are cross-shard, Sharon, Monoxide, and RapidChain
process 3775, 1371, and 1140 transactions per second, respec-
tively. In this case, Sharon enjoys 175.3% and 231.1% higher
system throughput than Monoxide and RapidChain.

Fig. 8(b) shows the impact of cross-shard transaction ratio
on transaction processing latency. Overall, the latency in-
creases for all three protocols with a higher ratio of cross-shard
transactions. When all transactions are cross-shard, Sharon can
process a transaction in 8.05s on average, compared to 24.29s
for Monoxide and 29.00s for RapidChain. In this case, Sharon
saves 66.9% and 72.7% transaction processing time compared
to Monoxide and RapidChain, respectively.

VI. CONCLUSION

This work presents Sharon, the first public blockchain shard-
ing protocol that does not rely on trustworthy parties, e.g.,
clients, special shards, or special nodes. The major innovation
of Sharon lies in processing cross-shard transactions through
shard merging and rotation rather than transaction division in
state-of-the-art protocols. In Sharon, we formally formulate
the shard scheduling problem that orders shard meetings
minimizing the rounds to confirm cross-shard transactions.
We propose a construction algorithm that optimally solves
the shard scheduling problem in polynomial time. This work
focuses on the bottleneck problem in blockchain sharding, i.e.,
cross-shard transaction processing, and opens a new direction
to solve the problem, i.e., shard merging and rotation.
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