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Distributed Semi-Supervised Learning With
Consensus Consistency on Edge Devices
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Abstract—Distributed learning has been increasingly studied in
edge computing, enabling edge devices to learn a model collabo-
ratively without exchanging their private data. However, existing
approaches assume the private data owned by edge devices are all
labeled while the reality is that massive private data are unlabeled
and remain to be utilized, which leads to suboptimal performance.
To overcome this limitation, we study a new practical problem,
Distributed Semi-Supervised Learning (DSSL), to learn models
collaboratively with mixed private labeled and unlabeled data on
each device. We also propose a novel method DistMatch that exploits
private unlabeled data by self-training on each device with the help
of models from neighboring devices. DistMatch generates pseudo-
labels for unlabeled data by properly averaging the predictions
of these received models. Furthermore, to avoid self-training with
wrong pseudo-labels, DistMatch proposes a consensus consistency
loss to filter pseudo-labels with high consensus and force the output
of the trained model to be consistent with these pseudo-labels.
Extensive evaluation results via our self-developed testbed indicate
the proposed method outperforms all baselines on commonly used
image classification benchmark datasets.

Index Terms—Consistency regularization, distributed machine
learning, semi-supervised learning.

I. INTRODUCTION

NOWADAYS, machine learning applications are deployed
on many edge devices (such as mobile phones or IoT

devices) to provide artificial intelligence services. As a large
amount of data are generated at the edge, these applications
learn models collaboratively without exchanging private data
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in a distributed network. Since data labeling could be time-
consuming and costly, these generated data on edge devices are
largely unlabeled. Therefore, it is important to exploit massive
unlabeled data to augment distributed model learning in edge
computing.

In a traditional stand-alone computing environment, the
model can be trained with Semi-Supervised Learning (SSL) al-
gorithms to improve the model’s performance using large-scale
unlabeled data. Recently, researchers have proposed consistency
regularization [1], [2], [3], [4], [5] to exploit unlabeled data in
semi-supervised learning, which optimizes the model by forcing
the consistency of the model output between different perturba-
tion versions of the same unlabeled samples. Self-training [6],
[7], [8] is another commonly used technique in SSL algorithms,
which uses the model’s output of unlabeled samples (also known
as pseudo-labels) to optimize the model. These methods have
achieved great success in the past stand-alone computing en-
vironment. Still, in the distributed computing environment, the
accuracy of the models trained by these methods has declined
sharply due to the small number of samples on each node [9].
Moreover, due to privacy and other issues, these training samples
cannot be transmitted to the server for training, so we need to
explore how to implement distributed semi-supervised learning
without transferring datasets across the network.

To keep privacy and reduce the transmitting overhead, re-
searchers proposed several approaches for distributed machine
learning, such as federated learning [10], [11], [12], distributed
SGD [13], [14] and gossip learning [15], [16]. These methods
train a local model for each device using data on the device,
aggregating the models over the network. Private data are kept
on each device without transferring across the network and the
model is optimized with global data information. However, these
methods assume data generated on edge devices are all labeled
which is unrealistic in practice. Due to the labor-intensive and
time-consuming nature of data labeling in edge computing, only
a small portion of data will be labeled. To exploit unlabeled data
to augment the models on edge devices, researchers have done
several studies and proposed various methods for distributed
semi-supervised training. References [17], [18] consider the
scenario that there exists a shared unlabeled dataset across
the edge devices and use knowledge distillation to train the
model in a distributed manner. These methods reduce the com-
munication overhead by only transferring soft labels but can
not be applied in the scenario where each edge device has
private unlabeled data. To fully use these private data, Feder-
ated Semi-Supervised Learning (FSSL) [9], [19], [20], [21],
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Fig. 1. Illustration of Distributed Semi-Supervised Learning (DSSL). Each
device learns the local model on its private dataset consisting of a labeled dataset
and an unlabeled dataset, and receives models from its neighboring devices
across the network. DSSL aims to learn a model for each device on both the
private labeled and unlabeled datasets with the help of the neighbor device’s
model.

[22], [23], [24] is proposed to train a global model with these
unlabeled data by self-training or consistency regularization.
References [19], [20] combine a distributed learning method and
a semi-supervised learning algorithm, where each node trains
its model with a semi-supervised learning algorithm, followed
by model exchange and aggregation. However, this method
only uses an identical global model to predict pseudo-labels
for unlabeled samples, which reduces the accuracy of generated
pseudo-labels in the data-heterogeneous environment. To tackle
this problem, references [9], [21], [22], [23] are proposed to
train a global model with pseudo-labels generated by helper
models. The aggregation server selects these helper models for
each client without the information on the dataset distribution.
Therefore, it is difficult for the aggregation server to select proper
helper models for each client to generate accurate pseudo-labels.
Furthermore, the centralized aggregation server may suffer from
a single point of failure, making FSSL unreliable in the edge
computing environment.

To address the above issues, we study the practical problem
of Distributed Semi-Supervised Learning (DSSL) where each
device in the network optimizes its own machine learning model
with both labeled data and unlabeled data (See Fig. 1). We
show an illustration of the differences between DSSL and other
similar problems in Fig. 2. We assume that the owner of each
device randomly labels some of the data in the device so that the
distribution of the labeled dataset and the unlabeled dataset are
similarly identical. At the same time, datasets on different de-
vices are generally not identically and independently distributed
(non-IID [12]), which makes it hard for the models trained on
different devices to generate high-accuracy pseudo-labels.

To solve the problem of DSSL, we propose a novel framework,
Distributed Matching (DistMatch), which leverages private
unlabeled data by self-training with the help of the received
models from the neighboring devices. Each device validates
the received models with its labeled dataset to detect the data
distribution similarity between the devices. DistMatch generates
pseudo-labels by weighted averaging the predictions of the

Fig. 2. Difference between DSSL and other problem. (a) Traditional SSL
trains a model using a large-scale datasets consisting of labeled and unlabeled
data. (b) Previous distributed SSL learns models for each device by distilling
the logits of the shared unlabeled dataset if exists. (c) Federated SSL learns a
global model by local training with client dataset. (d) Our proposed SSL aims at
learning a model for each device using the local dataset without shared dataset
and centralized server.

models from the neighboring devices. The validation result
determines the averaging weight of the neighboring model.
The model from the neighboring device with a similar data
distribution has a higher weight in the averaging. Furthermore, to
avoid self-training with wrong pseudo-labels, we extend the con-
sistency regularization in the distributed scenario, and propose a
Consensus Consistency loss to force models to make identical
outputs on the same unlabeled data. We evaluate DistMatch on
several benchmark datasets in the IID and the non-IID settings
and show that DistMatch outperforms baselines. To sum up, our
main contributions are as follows:
� We study the problem of Distributed Semi-Supervised

Learning (DSSL), where each device in a network opti-
mizes its machine learning model with the mixed dataset
consisting of labeled data and unlabeled data. To the best of
our knowedge, we are the first to study the DSSL problem
in a fully distributed network without the presence of a
centralized server.

� We propose a novel DSSL method, named by Distributed
Matching (DistMatch), where each device performs self-
training with the consensus consistency loss, and assesses
all received models to improve the accuracy of pseudo-
labels of unlabeled data.
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� We evaluate our method on several image classification
benchmark datasets and show that DistMatch outperforms
baselines under both IID and non-IID settings.

The remainder of this article is organized as follows. Section II
presents the related work about semi-supervised learning and
federated semi-supervised learning. Section III presents the
preliminary of distributed semi-supervised learning. Section IV
describes DistMatch. Section V presents the experiment we
conducted to evaluate DistMatch. Section VI concludes this
article.

II. RELATED WORK

A. Semi-Supervised Learning

As numerous approaches are proposed for semi-supervised
learning, we only discuss methods closely related to DistMatch.
Self-training [6] offers a simple way of SSL by training models
with unlabeled data and pseudo-labels generated by the model it-
self. Obviously, the accuracy of pseudo-labels greatly affects the
convergence of the training and the performance of the trained
model. Some methods are introduced to reduce the generation
of wrong pseudo-labels, such as [3], [25], [26]. Nowadays,
self-training has been integrated with other semi-supervised
methods, such as consistency regularization [1], [2] and entropy
minimization [27]. Consistency regularization was introduced
in [1] and assumes that perturbations applied to data would not
affect data class semantics [2]. Generally, consistency regular-
ization methods [3], [4], [5], [28], [29], [30], [31], [32] reduce
the model output difference between two augmented versions
of the same images. References [3], [4], [5], [31], [32] apply
weak augmentation on the unlabeled sample to generate the
pseudo-labels, and apply strong augmentation to force the con-
sistency with the same unlabeled sample. Recently, FixMatch [3]
generates hard pseudo-labels by using a fixed threshold, reaching
the state-of-the-art and simplifying semi-supervised methods.
Improving upon FixMatch, Dash [4] uses an accending threshold
to exploit more unlabeled data. FlexMatch [5] uses a curricu-
lum training method to set dynamic thresholds for each class.
Entropy minimization [27] is another popular component for
semi-supervised learning, which enforce the model to reduce
the entropy of predictions for unlabeled data. Yet, these methods
require a considerable amount of unlabeled data to achieve the
best accuracy, which is impractical for each edge device. In
addition, these methods do not take into account the data hetero-
geneity on the device, which reduces the performance of these
methods.

B. Federated Semi-Supervised Learning

Unlike semi-supervised learning with various methods, Fed-
erated Semi-Supervised Learning (FSSL) [33] is a developing
field that has attracted the attention of some researchers. From
the perspective of dataset partitioning, there may be significant
differences in the federated semi-supervised learning problems
solved by different FSSL methods. The first dataset partition-
ing scenario is where each client holds labeled and unlabeled

datasets, which was first studied in [19] where each client opti-
mizes the model with the local labeled and unlabeled samples
by naive self-training. As knowledge distillation [34] makes
transferring knowledge from a big model to a small model
possible, some approaches [17], [35] use the server to aggregate
the predictions generated by all clients for unlabeled data and
deliver aggregated predictions to each client. These methods are
usually communication-efficient as the server and clients only
transfer the feature and soft labels of the unlabeled data across the
network but cannot be applied to the scenario where unlabeled
datasets are private. Another way to exploit private unlabeled
data on the client is using self-training in local training. There
are some works on boosting the accuracy of pseudo-labels
for clients, such as multi-view pseudo-labeling [21] for image
classification and OmniLabel [36] for federated semi-supervised
object detection. Some researchers study FSSL in a different
dataset partitioning scenario with more challenges where clients
do not have any labeled samples and only the server has a labeled
dataset, such as references [9], [20], [22]. Disjoint learning [9]
was proposed to learn a model with two parts of parameters on
the labeled dataset at the server and the unlabeled datasets at
clients, respectively, which mitigates the problem of accuracy
reduction in the labels-at-server scenario. SemiFL [20] was
proposed with alternate training, where the server fine-tuned
the global model with the labeled dataset. Moreover, there is
another dataset partitioning scenario where some clients hold
labeled datasets and others hold unlabeled datasets [23], [24].
For example, FedSSL [23] proposes a G-Mixup strategy to train
a generator that generates artificial data for clients’ training with-
out directly using labeled data on other clients, and RSCFed [24]
proposed the random sampling consensus FL to average a more
robust global model by reweighting each local model trained
on different clients. These methods tackled FSSL problems
in different scenarios. However, these methods all require a
centralized aggregation server to coordinate the training, which
presents a single point of failure in FSSL.

Unlike FSSL approaches, our methods are designed as a fully
decentralized algorithm for each device, where each device only
communicates with its neighboring devices. Each device learns
its model collaboratively with the help of received models from
neighbors. With the evaluation of the received models, each
device detects the data distribution similarity with neighboring
devices, mitigating the model accuracy degradation caused by
data heterogeneity.

III. DISTRIBUTED SEMI-SUPERVISED LEARNING

Distributed Semi-Supervised Learning (DSSL) aims to learn
a model θk collaboratively for each device k connected to a
network G. Consider the communication graph G = (V, E),
V = {1, . . ., N} denotes the devices in the network, and device i
can directly communicate with device j if and only if {i, j} ∈ E .
Assuming G is connected, device k only communicates its
model θk with its h-hop neighbors N(k, h).

For the private dataset Dk = (Dk
s ,Dk

u) on device k, let Dk
s =

{(xk
i , y

k
i )}

Nk
s

i=1 denote the labeled dataset where xk
i ∈ X is a

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:32:59 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: DISTRIBUTED SEMI-SUPERVISED LEARNING WITH CONSENSUS CONSISTENCY ON EDGE DEVICES 313

training sample and yki ∈ {1, . . ., C} is the ground-truth one-

hot label corresponding to xk
i , and Dk

u = {uk
j }

Nk
u

j=1 denote the
unlabeled dataset, where |Dk

s | � |Dk
u| generally. We reasonably

assume that the two datasets on the same device k follow an
identical distribution Pk(x), while data on different devices are
generally not identically and independently distributed (non-
IID [12]), i.e. Pi �= Pj for i �= j.

Considering the Deep Neural Network (DNN) model (e.g.,
ResNet [37]) for C classification problem on device k, we
assume that all devices use an identical structure of DNN. Let
p(y|x, θk) = σ(fθk(x)) denote the predicted class distribution
produced by model θk for the input sample x, where

σj(x) =
exp(xj)∑C
i=1 exp(xi)

(1)

is the softmax function and fθk : X −→ RC is the classifier on
device k. Each device k randomly initializes its model weights
θk and learns the model on the dataset Dk with the objective

min
θk

Lk(θk), (2)

where the loss function is

Lk(θk) = Lk
sup(θ

k;Dk
s ) + λuLk

uns(θ
k;Dk

u). (3)

The first term in (3) is the supervised loss term which is the
cross-entropy loss generally. The second term is the unsuper-
vised loss term which remains to be determined. To utilize
the received models from neighbors {θi}i∈N(k,h), each device
should validate the received models’ knowledge coming from
other datasets. As the datasets are private and each device can
only learn its model on its dataset, the main challenge of DSSL
is to design an algorithm for each device to discover the dataset
distribution similarity with its neighbors. With the information
on distribution similarity, each device generates pseudo-labels
ŷ for the unlabeled dataset Dk

u by properly averaging the pre-
dictions generated by the models from neighbors. Finally, each
device optimizes its model with the unsupervised loss as the
cross-entropy Lk

uns = �CE(ŷ, p(y|u, θk)). The main notations
in this paper are summarized in Table I.

IV. DISTRIBUTED MATCHING

In this section, we describe the proposed distributed semi-
supervised learning method, namely Distributed Matching
(DistMatch).

A. Overall Framework

Overall, all devices in DistMatch follow an identical pro-
cedure consisting of two stages: pre-training and self-training.
DistMatch requires all devices to synchronize with their neigh-
boring devices after training in each round to ensure that the
received models from their neighbors are up-to-date, so that
each device will not aggregate the local model with the outdated
model coming from a straggler. During the pre-training phase,
each device alternately executes two tasks: optimizes the local
model using its labeled dataset and aggregates the weights
of the local and neighboring models. After pre-training, each

TABLE I
SUMMARY OF NOTATIONS

device evaluates models received from neighbors and aggregates
these received models with the local model. Each device uses
received models as helper models to generate pseudo-labels for
unlabeled datasets based on the evaluation scores. Then each
device updates its model on both labeled and unlabeled datasets.
To prevent the use of wrong pseudo-labels, we extend the con-
sistency regularization in the distributed scenario and propose a
Consensus Consistency loss. Combining with the cross-entropy
loss LCE applied on the labeled dataset, in DistMatch, each
device k optimizes its model parameter θk using the following
loss function:

Lk(θk) = LCE(θ
k;Dk

s ) + λuLCC(θ
k;Dk

u), (4)

where the supervised loss LCE is computed on labeled samples
with the weak augmentation function α(·):

LCE(θ
k;Dk

s ) =
1

Nk
s

∑
(xk,yk)∈Dk

s

�CE(y
k, p(y|α(xk), θk)).

(5)
We present the general process of DistMatch in Algorithm 1 and
Fig. 3.

B. Helper Model Evaluation

In DSSL, each device only receives models from its neigh-
boring devices. Thus, the dataset distributions on neighboring
devices are unknown to each device. To utilize the models from
its neighbors, each device must first evaluate these models to
confirm that the knowledge held by these devices can be used
to assist the training of the local model. It is clear that models
trained on datasets with more similar data distributions will pro-
duce pseudo-labels with higher accuracy on the identically and
independently distributed unlabeled dataset. However, without
transferring the dataset across the network, it is hard to detect
the datasets’ distribution on neighboring devices. Therefore, we
need to find a way to approximately compare the similarity of
the datasets distributions on two different devices.

As each device receives models that are trained to fit the
datasets on the neighboring devices, if the data distribution of
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Fig. 3. Overall framework of DistMatch. Each device evaluates its helper models on the local labeled dataset and generates a confidence table for helper models.
Then helper models predict the class for the unlabeled sample. These predictions are combined into a consensus pseudo-label according to the confidence table.
The pseudo label with a low consensus is eliminated, while the pseudo label with a high consensus is used to compute a cross-entropy loss to train the local model.

the neighboring dataset is quite different from the local dataset,
the supervised loss of the model on the local dataset will also
be relatively large. So each device can use the supervised loss
to distinguish the similarity of the dataset distribution. Since all
devices optimize their models with the cross-entropy loss on the
labeled datasets, the exponent of the negative cross-entropy loss
indicates how confident the model is about the correct class on
the labeled data. Thus, each device k computes the supervised
loss of the received model coming from up to h-hop neighboring
devices on the local labeled dataset and uses the exponent of
negative supervised loss as the confidence of the received model
output:

Ck(θj) = exp(−Lk
sup(θ

j ;Dk
s )), (6)

where j ∈ N(k, h). We name Ck as the confidence table because
it contains the confidence of the correct output for each helper
model.

Finally, each device k also exploits its local model to generate
pseudo-labels for the unlabeled dataset and compute the confi-
dence of the output Ck(θk) for its local model. Thus, we denote
the set of all helper models for each device k by Hk, which
contains the local model θk and all received models from up
to h-hop neighboring devices. The value of Ck(θi)/Ck(θk) can
approximately represent the data distribution similarity between
Di and Dk.

C. Consensus Consistency Loss

Consistency regularization [2] is a component that is currently
widely used in the field of semi-supervised learning. Consis-
tency regularization assumes that the class information of the
sample will not change after being perturbed. Thus the output

of the model to the perturbed sample should be consistent with
the original sample. For example, Π-Model [28] optimizes the
model with unlabeled data using the following loss:

μB∑
i=1

‖p(y|π(ui), θ)− p(y|π(ui), θ)‖22, (7)

whereπ(·) is a stochastic augmentation function. After introduc-
ing pseudo-labels [6] and strong data augmentation [31], [38],
FixMatch [3] uses cross-entropy to optimize the model such as

1

μB

μB∑
i=1

I(max(q) ≥ τ)�CE(q̂, p(y|A(ui), θ)), (8)

where α(·) and A(·) denote the weak and strong augmentation
functions respectively, q = p(y|α(ui), θ) is the output of model
for weakly augmented image ui, q̂ = argmax(q) is the gen-
erated pseudo-label for ui, and τ is a pre-defined threshold to
retain a pseudo-label.

Nevertheless, in DSSL, each device possesses too few data
in its local dataset to identify the classes of unlabeled sam-
ples by itself. Therefore, in DistMatch, each device also learns
pseudo-labels for unlabeled data using the received models
from neighboring devices. Instead of directly voting to generate
pseudo-labels for the unlabeled dataset, DistMatch believes that
models trained on datasets with similar data distributions will
produce more accurate pseudo-labels. Since each device k has
evaluated all helper models and computed Ck(θ) for each helper
model θ ∈ Hk, it can generate a pseudo-label for each unlabeled
sample uk ∈ Dk

u by properly averaging the predictions of each

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:32:59 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: DISTRIBUTED SEMI-SUPERVISED LEARNING WITH CONSENSUS CONSISTENCY ON EDGE DEVICES 315

Algorithm 1: DistMatch: Distributed Matching.

Input: the initialized model parameter {θi(1)}Ni=1 for each device, the number
of rounds for pre-training Rp, the total number of rounds for training R, the maximum number of hops for each device to
obtain neighbor model h, the learning rates η, the batch size of the labeled dataset Bs, and the batch size of the unlabeled
dataset Bu.

Output: The trained models {θi}Ni=1

1: for round r = 1 to R each device k parallel do
2: if r ≤ Rp then � Pre-Training Stage
3: for each local epoch e = 1 to E do
4: Randomly split the local labeled dataset Dk

s into batches Bk
s of size Bs

5: for each batch {(xk
r,i, y

k
r,i)}Bs

i=1 in Bk
s do

6: Optimize model using θ′k(r) = θk(r) − η∇LCE(θ
k
(r); {(xk

r,i, y
k
r,i)}Bs

i=1)
7: end for
8: end for
9: else � Self-Training Stage

10: Generate helper model list Hk
(r) with its confidence table Ck

(r+1)

11: for each local epoch e = 1 to E do
12: Randomly split the local labeled dataset Dk

s into batches Bk
s of size Bs

13: Randomly split the local unlabeled dataset Dk
u into batches Bk

u of size Bu

14: for each batch {(xk
r,i, y

k
r,i)}Bs

i=1 in Bk
s , {uk

r,j}Bu
j=1 in Bk

u do

15: Generate pseudo-labels {ŷkr,j}Bu
j=1 for {uk

r,j}Bu
j=1

16: Optimize model using θ′k(r) = θk(r) − η∇(LCE(θ
k
(r); {(xk

r,i, y
k
r,i)}Bs

i=1) + LCC(θ
k
(r); {uk

r,j}Bu
j=1))

17: end for
18: end for
19: end if
20: Synchronize with its h-hop neighbors
21: Exchange models {θ′i(r)}i∈N(k,h) with its h-hop neighbors

22: Aggregate the local model with received models using θk(r+1) =
∑

j∈N ′(k,h) |Dj |θ′j
(r)∑

i∈N ′(k,h) |Di|
23: end for
24: return all trained model parameters {θi(R+1)}Ni=1

helper model as follows:

ŷk =
1

Sk

∑
θ∈Hk

Ck(θ)I(max(q) ≥ τ)q̂, (9)

where q = p(y|α(uk), θ) is the output of the helper model
θ for the weakly augmented unlabeled instance uk, q̂j =
argmax(qj) is the predicted one-hot label, τ is a pre-defined
threshold to retain the prediction made by the helper model θ,
and

Sk =
∑
θ∈Hk

Ck(θ)I(max(q) ≥ τ) (10)

is the sum of the helper models’ confidence in generating the
pseudo-label.

After generating pseudo-labels for unlabeled samples, some
of these soft labels may have high entropy. This is because
helper models are too divergent when classifying these unlabeled
samples. If the device uses these pseudo-labels to train the
model, the convergence process of the model training will be
greatly disturbed. Therefore, DistMatch uses only those unla-
beled samples for which helper models have a high consensus
on the classification to promote self-training, resulting in the

following Consensus Consistency loss:

LCC(θ
k;Dk

u) =
1

Nk
u

∑
uk∈Dk

u

I(max(ŷk) ≥ T )�CE(ŷ
k, pk),

(11)
where pk = p(y|A(uk), θk) is the local model output for the
strongly augmented unlabeled instanceuk andT is a pre-defined
consensus threshold to eliminate the pseudo-labels with high en-
tropy. Here we use a strong augmentation function A(·) to force
the consistency between the model outputs and the consensus
pseudo-labels.

D. Model Aggregation

After each round of training, each device synchronizes with its
h-hop neighboring devices and communicates model parameters
across the network. Receiving models from its neighbors, each
device aggregates its model parameters with the neighboring
models by using the Model Averaging algorithm [39]. We use
the size of the dataset on each device as the weights to average
received models as below:

θk(r+1) =

∑
j∈N ′(k,h) |Dj |θj(r)∑

i∈N ′(k,h) |Di| . (12)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:32:59 UTC from IEEE Xplore.  Restrictions apply. 



316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

Here for convenience, we consider device k to be the 0-hop
neighbor of device k, that is k ∈ N ′(k, h). Thus we initialize
the local model for the next round of training.

E. Cost Analysis

While DistMatch is proposed to utilize unlabeled data for
training models on edge devices, network resources and com-
puting resources are critical in the edge computing environment.
Therefore, in this subsection, we briefly analyze the communi-
cation and computation costs for DistMatch.

1) Communication Cost: Since DistMatch uses a round-
based synchronous communication mechanism, each device
only communicates its model weights with their h-hop neigh-
boring devices on the network in each round. Thus, the com-
munication cost of DistMatch is proportional to the number of
transmitted models across the network per round. We denote
the size of each model by st and the number of the transmit-
ted models across the network in each round as Nh. When
h = 1, each device communicates with its directly connected
neighboring devices, it is easy to show that the communication
cost Ct(k) for each device k is Ct(k) = 2 ∗N(k, 1) ∗ st. The
coefficient 2 in this equation means that each device receives
models from its neighboring devices and sends the local model
to its neighbors. Noting that

∑
i∈V N(i, 1) = 2 ∗ |E|, thus in

this situation, the total communication cost of the network is
Ct =

1
2

∑
i∈V Ct(i) = 2 ∗ |E| ∗ st. When h ≥ 2, the communi-

cation cost of DistMatch is no longer a fixed value about |E| as the
communication cost is affected by the communication topology.
As the communication cost Ct = st ∗Nh, we approximate the
upper bound of Nh as follows:

Theorem 1: In a communication graphG = (V, E), assuming
the M = maxi∈V |N(i, 1)|, if each device in V only communi-
cates its model with its allh-hop neighbors, then the total number
of models transferred on the network Nh ≤ 2 ∗ Mh−1

M−1 |E|.
Proof 1: Note that

|N(k, h)| = |N(k, 1) ∪
∑

i∈N(k,1)

N(i, h− 1)|. (13)

According to the recursion, we have

Nh = 2 ∗
∑
k∈V

|N(k, h)| (14)

= 2 ∗
∑
k∈V

|N(k, 1) ∪
∑

i∈N(k,1)

N(i, h− 1)| (15)

≤ 2 ∗

⎛
⎝|E|+

∑
k∈V

∑
k∈N(k,1)

|N(i, h− 1)|

⎞
⎠ (16)

≤ 2 ∗

⎡
⎣(1 +M)|E|+

∑
k∈V

∑
i∈N(k,1)

∑
j∈N(i,1)

|N(j, h− 2)|

⎤
⎦

(17)

≤ . . . (18)

≤ 2 ∗ Mh − 1

M− 1
|E| (19)

�
Remark: According to the analysis, we obtain Ct = O(Mh)

when each device communicates with all its h-hop devices. To
reduce communication cost, as shown in Section V, DistMatch
restricts all devices to only communicating with their one-hop
neighbor devices. Note that for some particular network topolo-
gies, h has an up-bound less than N . For example, h ≤ 1 for a
fully connected network, h ≤ 2 for a star topology network. It
does not make sense when h exceeds the up-bound.

2) Computation Cost: We discuss the computation time cost
for each device. In DistMatch, the computation time cost can
be divided into the following three parts: time cost of gradient
computationTg , time cost of model inferenceTi, and time cost of
model aggregation Ta. Obviously, the gradient computation cost
Tg is constant as each device only computes gradients using the
loss function 4. For model aggregation time Ta, as each device
k aggregates with its all received models the number of which
is N(k, h), we obtain that Ta = O(N(k, h)). For the term Ti,
we only discuss the self-training stage in DistMatch.

To generate the confidence table Ck, each device k use the
labeled dataset to validate all its received models. Assuming the
computation time for each model to generate the output of each
sample is tinf and the time cost to compute the cross-entropy for
each output is tce. Thus the computation time cost for generating
Ck is Nk

s (tinf + tce) for each model. To generate pseudo-labels
forDk

u, the computation time for each model isNk
u ∗ tinf and the

cost of averaging the prediction is Nk
u ∗ |N(k, h)| ∗ tavg, where

tavg is the time cost for averaging two predicted one-hot labels.
To train its local model, the computation cost for forwarding
propagation is (Nk

s +Nk
u ) ∗ (tinf + tce). As tinf  tce and

tavg generally, the total time cost for model inference can
be approximated as (|N(k, h)|+ 1)(Nk

s +Nk
u )tinf . According

to the analysis of the communication cost, we can show that
|N(k, h)| = O(Mh). Thus limiting the value of h also reduces
the computation cost.

V. EXPERIMENTS

In this section, we first validate DistMatch on several com-
monly used image classification datasets by comparing its per-
formance with traditional learning approaches and analyzing the
impact of the accuracy of pseudo-labels generated for unlabeled
data. Then, we conduct ablation experiments to verify the effec-
tiveness of DistMatch components, followed by the impact of
other hyper-parameters on DistMatch.

A. Setup

1) Datasets: We validate DistMatch on three image classi-
fication datasets that are commonly used in semi-supervised
learning evaluations, including Fashion-MNIST [40], CIFAR-
10 [41], SVHN [42], and STL-10 [43]. Fashion-MNIST [40]
is a balanced image dataset obtained from fashion products on
Zalando’s website, which consists of 60,000 training instances
and 10,000 testing instances. CIFAR-10 [41] is a widely-used
balanced object classification dataset that contains 50,000 train-
ing instances and 10,000 testing instances across 10 classes.
SVHN [42] is a real-world image dataset obtained from house
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TABLE II
LENET4 ARCHITECTURE

TABLE III
RESNET10 ARCHITECTURE

numbers in Google Street View images, consisting of 73,257
training instances, 26,032 testing instances, and 202,353 extra
instances. STL-10 [43] is another dataset for unsupervised learn-
ing, which consists of 5,000 labeled training images, 100,000
unlabeled training images, and 8,000 testing images. As the
unlabeled dataset contains data that does not belong to any of
the ten categories of the labeled dataset, training on this dataset
is closer to the realistic settings and more challenging.

2) Emulation Settings: We conduct the experiments on our
self-developed EdgeTB [44], an open-source emulator designed
for distributed machine learning in edge computing. EdgeTB
can emulate arbitrary edge networks as demanded on high-
performance computers, allowing users to configure the re-
sources on edge devices and the network. For each set of exper-
iments, we randomly construct a connected network graph with
100 emulated device nodes and 1000 links in the EdgeTB, i.e.,
|V| = 100 and |E| = 1000. Besides, to reduce communication
costs, we restrict each device to communicating with its one-hop
neighbors only.

3) ML Model: Due to edge devices’ poor computing power,
we use the model architecture LeNet4 [45] for the Fashion-
MNIST dataset and ResNet-10 [37] for other datasets in ex-
periments for all baselines and our method. We show the archi-
tecture in Table II for LeNet4 and Table III for ResNet10. For
LeNet4, the first convolutional neural layers have 4 filters of
the same 5× 5 kernel sizes followed by 2× 2 average-pooling
layer. Next, the second convolutional neural layer has 6 filters
followed by 2× 2 average-pooling layer. Finally, we have a
fully-connected layer with 120 units, followed by adding a
softmax fully-connected layer as the classifier of the network.
For ResNet10, the first convolutional neural layers have 64 filters

and the same 3× 3 kernel sizes followed by 2× 2 max-pooling
layer, which is the stem block of the architecture. Then the
second and the third convolutional neural layers have 64 and
128 filters and the same 3× 3 kernel sizes followed by 2× 2
max-pooling layer. We add a skip connection between the two
convolution layers with 128 filters. Then, we add a downsample
convolution layer with 128 filters. Next, we repeat the previous
step but double the filter size, thus, we have the two convolution
layers and a downsample layer with 256 filters, respectively. We
repeat one more time and we have the two convolution layers
and a downsample layer with 512 filters. Finally, we use an
average pooling layer to reduce the kernel size from 4× 4 to
1× 1, followed by adding a softmax fully-connected layer as
the classifier of the network. All parameters are initialized by
the variance scaling method.

4) Data Preprocessing and Data Partition: Before dividing
data into each device, we preprocess each dataset to provide
similar data distribution settings. We do not preprocess Fashion-
MNIST and CIFAR-10 as they are balanced datasets. However,
as the SVHN is an imbalanced dataset across 10 classes, we
would like to construct a balanced dataset on SVHN like CIFAR-
10, which contains 50,000 training instances and 10,000 testing
instances across 10 classes. Therefore, we combine the training
set and testing set of the SVHN, and select 5,000 samples per
class for training and 1,000 samples per class for testing from this
large dataset. From this, we have a balanced SVHN dataset with
50,000 training instances and 10,000 test instances across 10
categories. STL-10 consists of images of 96× 96 resolutions. In
order to maintain a similar number of model parameters without
increasing the computational cost too much, we use a 3× 3
average pooling layer to downsample the image, so that the input
shape is reduced to 32× 32 which is identical to CIFAR-10 and
SVHN dataset.

After the dataset preprocessing, we generate each training set
for each device. The first step is splitting the dataset into the
labeled dataset and the unlabeled dataset with the size of |Ds|
and |Du|, respectively. As the training set of Fashion-MNIST,
CIFAR-10, and SVHN are all labeled, we randomly select |Ds|
samples as the labeled dataset and |Du| as the unlabeled dataset
using an identical distribution. We fix |Ds| = 6000 and |Du| =
54000 for Fashion-MNIST and |Ds| = 5000 and |Du| = 45000
for CIFAR-10 and SVHN in all experiments. For STL-10, we use
the total labeled dataset and the unlabeled dataset in all exper-
iments, i.e., |Ds| = 4000 and |Du| = 100000. Then, according
to the data distribution settings, we divide each dataset into each
device using the corresponding method. For the IID setting, to
generate a labeled training set for each device, we assign each
device |Ds|/(C × |V|) labeled samples per class, so each device
owns a labeled dataset of size |Ds|/|V|. To generate unlabeled
training sets, we assign each device |Du|/(C × |V|) unlabeled
samples per class for Fashion-MNIST, CIFAR-10 and SVHN,
and |Du|/|V| unlabeled samples for STL-10. Thus, for each
device k ∈ {1, . . ., 100}, we have |Dk

s | = 60 and |Dk
s | = 540

for Fashion-MNIST, |Dk
s | = 50 and |Dk

s | = 450 for CIFAR-10
and SVHN, and |Dk

s | = 40 and |Dk
s | = 1000 for STL-10. For the

non-IID settings, we only use the CIFAR-10 and SVHN as it is
difficult to control the unlabeled dataset distribution of STL-10.
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Fig. 4. Samples of non-IID data distribution on a device.

TABLE IV
HYPERPARAMETERS

We follow the settings in [9] to simulate a class-imbalanced
environment but make a few changes. As shown in Fig. 4,
datasets on each device are unbalanced, and different datasets
on the different devices are non-IID. Unlike the settings in [9],
we keep an identical data distribution of the labeled dataset and
the unlabeled dataset on the same device. We similarly generate
a labeled dataset of size |Ds|/|V| and an unlabeled dataset of
size |Du|/|V| for each device.

5) Baselines: Our baselines are listed below:
� Local SGD: Local supervised learning with only the la-

beled dataset Dk
s for each device k.

� Local FixMatch: Local semi-supervised learning using the
FixMatch algorithm [3] with both the labeled dataset Dk

s

and the unlabeled dataset Dk
u for each device k, where

each device uses a fixed high threshold to generate pseudo-
labels.

� D-SGD: Distributed SGD [13] with only the labeled dataset
Dk

s for each device k.
� D-FixMatch: Naive combination of Distributed SGD and

the FixMatch algorithm with both the labeled dataset Dk
s

and the unlabeled dataset Dk
u for each device k.

� D-Dash: Naive combination of Distributed SGD and the
Dash algorithm [4] with both the labeled datasetDk

s and the
unlabeled dataset Dk

u for each device k, where each device
uses an adaptive threshold to generate pseudo-labels.

6) Hyperparameters: We illustrate the parameters used in
the experimental section in Table IV. To ensure the fairness of
the experiments, we use the same values for all hyperparameters
except τ and T for the same set of experiments. While Bs are
shown in Table IV, the unlabeled dataset batch size is com-
puted as Bu = Nk

u

Nk
s
Bs. We use an identical model architecture,

ResNet-10, on each device for all experiments. For weak data
augmentation, we use a flip-and-shift strategy, which randomly

TABLE V
TOP-1 ACCURACY COMPARISON IN IID SETTINGS (IN %)

TABLE VI
TOP-1 ACCURACY COMPARISON IN NON-IID SETTINGS (IN %)

shifts the image horizontally and vertically by 12.5% of its length
and width for all datasets, and flip the images left and right
with a probability of 50% for all datasets except SVHN. We use
RandAugment [38] for strong data augmentation. For FixMatch
in baselines, we fix the threshold τ = 0.95 and use the same
data augmentation strategies. We use the Stochastic Gradient
Descent (SGD) to optimize each model with the learning rate η
and the Nesterov momentum β.

B. Performance Results

1) Experiment Results on IID Settings: We conduct Dist-
Match and other baselines in IID settings using four datasets,
Fashion-MNIST, CIFAR-10, SVHN, and STL-10. We calculate
the mean of the top-1 accuracy of the models on 100 devices
after 600 training rounds for datasets CIFAR-10, 200 training
rounds for dataset Fashion-MNIST and STL-10, and 150 train-
ing rounds for dataset SVHN, and show the results in Table V for
IID settings. Fig. 5 shows the change in the mean of validation
accuracy over 100 devices during training in IID settings. As
these results show, our method achieves the best performance on
datasets CIFAR-10 and SVHN. However, as shown in Table V,
because of some out-of-distribution data in the unlabeled dataset
of STL-10, the performance of models trained by DistMatch on
STL-10 is second only to the D-Dash method.

2) Experiment Results on Non-IID Settings: We conduct
DistMatch and other baselines in Non-IID settings using three
datasets, Fashion-MNIST, CIFAR-10, and SVHN, and show
the experimental results in the Table VI and Fig. 6. As these
results show, our method achieves the best performance on all
datasets in non-IID settings, which means that our method works
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Fig. 5. Average validation accuracy on 100 devices in IID settings.

under all settings. In addition, our approach can achieve higher
accuracy using fewer communication rounds. For example, in
training the model with the SVHN dataset to achieve 80%
accuracy in the non-IID setting, our method uses 98 rounds,
while the D-FixMatch method uses 114 rounds.

To explore what makes our method outperform all the base-
lines in non-IID settings, we conduct experiments to compare

Fig. 6. Average validation accuracy on 100 devices in Non-IID settings.

the accuracy of pseudo-labels generated by different methods
using the dataset CIFAR-10. Table VII shows the results of the
number of corrected and wrong-generated pseudo-labels at the
end of the training. According to Table VII, DistMatch generates
more correct pseudo-labels and fewer wrong pseudo-labels for

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 27,2024 at 10:32:59 UTC from IEEE Xplore.  Restrictions apply. 



320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

TABLE VII
ACCURACY OF PSEUDO-LABELS IN NON-IID SETTINGS ON CIFAR-10

TABLE VIII
COMPARISON WITH FSSL METHODS ON CIFAR-10 (IN %)

unlabeled datasets, which boosts the performance of models on
all devices after semi-supervised learning.

3) Comparasion With FSSL: In FSSL, the dataset settings of
the labels-at-server scenario [9] are similar to those in DSSL,
where each client trains the local model on both the labeled
dataset and unlabeled dataset, and the server averages the re-
ceived local models and generates the global model for training
in next round. Thus, to better illustrate the performance of
DistMatch, we conducted experiments to compare DistMatch
with FSSL methods. We can arbitrarily specify a device in the
network as the server and other devices as the client. Since the
server device also holds the dataset, we also consider it as a client.
Therefore, we can compare the performance of DistMatch with
FSSL methods. We evaluated their performance with 100 edge
devices under both IID and Non-IID settings, comparing their
model training accuracy and convergence quality at the same
number of 600 rounds for CIFAR-10.

As illustrated in Table VIII and Fig. 7, compared to Fed-
Sem [19], FedMatch [9] and RSCFed [24], DistMatch achieves
a significantly higher accuracy and convergence quality at the
same number of 600 rounds, while DistMatch consumes the
most communication cost in these methods. This is because
FSSL methods only need to transmit the model on a certain
spanning tree of the communication graph G, while DistMatch
needs to transmit the model on all edges E of the communication
graph G. However, to upload the model from client devices far
away from the server device, the model transmission needs to go
through a multi-hop network, resulting in higher communication
costs for links closer to the server device.

C. Ablation Study

To evaluate the effectiveness of the components in the Dist-
Match, we conduct ablation studies using CIFAR-10. In this
subsection, we evaluate the effectiveness of the helper model

Fig. 7. Average validation accuracy on 100 Devices on CIFAR-10.

TABLE IX
EFFECTIVENESS OF EACH COMPONENTS IN DISTMATCH IN NON-IID SETTINGS

ON CIFAR-10

evaluation and the consensus consistency loss. We also verified
the effect of different values of T on the accuracy of models.
We also discuss the impact on accuracy if the argmax function is
applied to the consensus pseudo-labels to generate hard labels.
Finally, we use different h in experiments to explore the influ-
ence of the number of neighbor nodes on the model accuracy.

1) Effectiveness of the Helper Model Evaluation: To evaluate
the effectiveness of the helper model evaluation, we conduct
experiments in the Non-IID settings. We eliminate the model
evaluation by setting the same value in the confidence table. We
show the experimental results in the Table IX. As these data
show, the accuracy has slightly dropped from the DistMatch,
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TABLE X
IMPACT OF T ON ACURACY IN IID SETTINGS ON CIFAR-10

TABLE XI
IMPACT OF h ON ACCURACY IN NON-IID SETTINGS ON CIFAR-10

which means that the helper model evaluation improves the
pseudo-labels’ accuracy so that DistMatch improves the gen-
eralization ability of models learned on these pseudo-labels.

2) Effectiveness of the Consensus Consistency Loss: To eval-
uate the effectiveness of the consensus consistency loss, we
conduct experiments in the Non-IID settings. We eliminate our
consensus consistency loss by only training the model with the
weakly augmented labeled dataset. In the Table IX, the accuracy
has dropped significantly from the DistMatch, which means
that the consensus consistency loss helps the model to learn the
consistency from the unlabeled dataset with the right knowledge.

3) Effectiveness of Consensus Pseudo-Labels: While our
method uses soft pseudo-labels for unlabeled data to optimize
models, we conduct experiments in the Non-IID settings to
examine whether the soft or hard labels are better. In this
experiment, we use an argmax function to generate one-hot
pseudo-labels and show the experimental results in the Table IX.
As shown in the table, the argmax function reduces the accuracy
of DistMatch, implying that the soft labels improve the model’s
generalization ability as the knowledge distillation.

4) Number of T : As the T is an important threshold to
retain the pseudo-labels, we conduct experiments in Non-IID
settings to explore the impact of T on performance. We try
T ∈ {0.4, 0.6, 0.8, 0.95} and show the experimental results in
the Table X. As shown by the results, compared to the lower
value and the higher value, the value of 0.8 is a proper parameter
for T . The reason for the accuracy reduction is clear: If the T is
too low, models will learn on more unlabeled data with wrong
pseudo-labels. Conversely, if the T is too high, models will learn
on less unlabeled data with the right pseudo-labels.

5) Number of h: While all the experiments described pre-
viously are performed with each device using only its one-hop
neighbors, we also conduct experiments in non-IID settings to
examine the influence of the number of neighboring devices on
the model accuracy. Let each device in the network fetch models
from its h-hop neighbors, where we try h ∈ {1, 2}. We show the
experimental results in Table XI. We see a 1.78 percentage point
improvement in the model’s accuracy, which implies that getting
helper models from more devices helps improve local model
accuracy. However, we also see a 13x increase in time cost as
the number of the fetched models increases, which cannot be
ignored for each device.

6) Number of Helper Models: While all the experiments
described previously are performed with each device using all

TABLE XII
IMPACT OF Nr IN NON-IID SETTINGS ON FASHION-MNIST

Fig. 8. Impact of Nr in Non-IID settings on Fashion-MNIST.

received models as its helper models, we also conduct exper-
iments in non-IID settings on Fashion-MNIST to examine the
influence of the number of helper models on the accuracy of the
local model. Let each device randomly select Nr helper models
from its received models, where we tryNr ∈ {1, 2, 4, 8, 16, all}.
We show the experimental results in Table XII and Fig. 8,
including the model accuracy and the computation cost for
model evaluation Tme, pseudo-label generation Tplg , model
training Tmt. As shown by these results, when using fewer
helper models, the model accuracy is lower, and Tplg + Tme

is also lower; when the number of helper models used is close
to that of all helper models, Tplg + Tme is longer and the model
accuracy is also higher. However, this is also a drawback of
DistMatch, which requires a lot of helper models to train the
local model to achieve higher accuracy, resulting in relatively
high computational overhead.

VI. CONCLUSION

In this article, we introduced a practical problem in the edge
computing environment, Distributed Semi-Supervised Learn-
ing, where each device learns a model collaboratively across the
network with mixed private labeled and unlabeled data. To tackle
this problem, we proposed a novel method, namely Distributed
Matching (DistMatch). In DistMatch, each device evaluates all
received models from neighboring devices to build a confidence
table, and generates pseudo-labels according to the confidence
table with the help of received models. To avoid self-training
with wrong pseudo-labels, each device trains its local model
with the Consensus Consistency Loss which forces the output of
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the trained local model to be consistent with pseudo-labels gen-
erated by helper models with high consensus. Experiments show
that our method outperforms all baselines on several commonly
used image classification benchmark datasets. In the future, we
plan to extend our methods to solve a more challenging problem
in the scenario where some devices in the network do not have
any labeled data.
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