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Abstract—Integrated Sensing and Communication (ISAC) is
gaining a tremendous amount of attention from both academia
and industry. Recent work has brought communication capability
to sensing-oriented mmWave radars, enabling more innovative
applications. These solutions, however, either require hardware
modifications or suffer from limited data rates. This paper
presents Talk2Radar, which builds a faster communication chan-
nel between smartphone speakers and mmWave radars, without
any hardware modification to either commodity smartphones or
off-the-shelf radars. In Talk2Radar, a smartphone speaker sends
messages by playing carefully designed sounds. A mmWave radar
acting as a data receiver captures the emitted sounds by detecting
the sound-induced smartphone vibrations, and then decodes
the messages. Talk2Radar characterizes smartphone speakers for
speaker-to-mmWave radar communication and addresses a series
of technical challenges, including modulation and demodula-
tion of extremely weak sound-induced vibrations, multi-speaker
concurrent communication and human motion suppression. We
implement and evaluate Talk2Radar in various practical settings.
Experimental results show that Talk2Radar can achieve a data
rate of up to 400bps with an average BER of less than 5%,
outperforming the state-of-the-art by approximately 33×.

I. INTRODUCTION

Millimeter wave (mmWave) radars are widely deployed in

robots, smart home appliances, vehicles, and road infrastruc-

ture to sense surrounding objects. Compared to other sensing

technologies, mmWave radars offer unprecedented sensing

resolution and can work in challenging weather conditions,

enabling various innovative applications, including object lo-

calization and tracking [1, 2], human activity recognition [3, 4]

and micro-vibration detection [5–7].

To explore more possibilities, recent work aims to inte-

grate additional communication capability to mmWave radars

which are primarily designed for wireless sensing. Such an

ISAC system efficiently reuses wireless spectrum as well as

hardware components for sensing and communication [8]. As

illustrated in Fig. 1, this integration holds immense potential

to expand the application scenarios of mmWave radars in

smart homes, smart factories and smart traffic environments.

With ISAC, a mmWave radar can receive messages while

sensing its surroundings. Moreover, each message inherently

carries the context information of the sensed object (e.g.,

location, trajectory, velocity, etc), thereby enhancing sup-

port for location-based services, human-machine interactions,

roadside-to-vehicle communication, and others. For example,

upon receiving messages from a user’s smartphone, an ISAC-
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Fig. 1. New applications enabled by ISAC mmWave radars.

enabled mmWave radar can leverage sensed information for

personalized interactions with more context information.

Previous works attempt to incorporate communication ca-

pability into these sensing-oriented radars by introducing extra

communication modules or designing dual-functional radio

waveforms [9–12]. For example, Sidense [12] exploits radio

side lobes for sensing while utilizing the main lobe for com-

munication. Other work introduces reconfigurable intelligent

surfaces to communicate with mmWave radars [13–15]. For

example, ROS [15] designs passive mmWave tags with differ-

ent layouts as road signs, thereby sending roadside information

to vehicles with mmWave radars. These solutions, however,

require hardware modifications or specialized mmWave tags.

mmRipple [16] communicates with mmWave radars by mod-

ulating smartphone vibra-motors to reflect incoming mmWave

signals with tiny propagation variations. Yet, the peak data

rate, limited by the narrow bandwidth and mechanical inertia

of vibra-motors, can only be tens of bps.

In this paper, we aim to empower mmWave radars with

communication capability and boost the data rate without any

hardware modification. To this end, we present Talk2Radar,

which builds a faster communication channel between smart-

phones and mmWave radars through a speaker that operates

in a higher and wider frequency band [17–20]. In particular, a

smartphone sends messages by playing modulated sounds with

on-board speakers, while a mmWave radar senses the sound-

induced vibrations and decodes the modulated messages. As

summarized in Table I, Talk2Radar provides a speaker-to-

mmWave radar communication channel with several unique

advantages. Compared to acoustic communication, Talk2Radar
utilizes a mmWave radar as a receiver to separate multiple

sound sources, which can better support multi-speaker scenar-



TABLE I
COMPARISON WITH RELATED WORKS.

Type Tx-Rx
No

Modif.

Multi-
Object
Comm.

Higher
Data
Rate

ISAC

Acoustic
Speaker to
Microphone [24]

� × � ×

Vibration

DC motor to
Microphone [25]

× � � ×
Vibra-motor to
mmWave radar [16]

� � × �
Speaker to
mmWave radar � � � �

ios, especially in noisy environments. ISAC radars can also

provide the context information about a sound source. In con-

trast to vibration-based communication, Talk2Radar achieves

much higher data rates without any hardware modification.

Turing the above basic idea of Talk2Radar into practical

systems is challenging. First, it is challenging to reliably mod-

ulate and send messages with extremely weak sound-induced

vibrations. To address this issue, Talk2Radar adopts chirp

spread spectrum (CSS) modulation and plays wideband audio

chirps with different initial frequencies to send messages.

The energy concentration effect of CSS demodulation [21–23]

benefits the detection and decoding of weak vibrations.

Second, the cross-modal communication between smart-

phone speakers and mmWave radars entails unique challenges.

i) Synchronization issues and hardware heterogeneity cause

unwanted offsets and decoding errors. Therefore, we design

a special preamble with a known initial frequency as a ref-

erence for offset correction. ii) The sound-induced vibrations

are weak and suffer from severe frequency-selective fading.

Consequently, the chirp signal recovered by mmWave radar

exhibits uneven energy distribution and becomes susceptible

to interference and noise. To address this issue, we propose

a shape-aware audio chirp refinement method, which utilizes

a wavelet synchrosqueezed transform (WSST) to reconstruct

clean and energy-uniform audio chirps for demodulation.

To further improve the practicality, we address a series

of challenges, such as multi-speaker concurrent communica-

tion by leveraging spatial and signal diversities. Moreover,

Talk2Radar suppresses the impact of human motion to im-

prove the system robustness.

We implement Talk2Radar and conduct comprehensive

experiments under different conditions. Talk2Radar achieves

400bps data rate at 1m communication range and 87.5bps at

3m, with a mean BER of < 5%. The contributions of this

paper can be summarized as follows.

• Talk2Radar builds a faster communication channel be-

tween smartphones and mmWave radars, outperforming

the state-of-the-art by approximately 33× in data rate.

• Talk2Radar addresses the practical challenges involved

in cross-modal communication between smartphones and

mmWave radars, including offset correction, modulation

and demodulation of the sound-induced vibrations. We

also develop novel algorithms to support concurrent

communication of multiple transmitters and mitigate the

impact of human motion.

• We implement Talk2Radar using commodity devices, and

conduct comprehensive experiments. We report lessons

learned in the development of Talk2Radar.

II. SOUND-INDUCED VIBRATION

Talk2Radar measures the sound-induced vibrations to build

the communication channel. Therefore, we conduct several

experiments to characterize the sound-induced vibrations.

A. Sound-induced Smartphone Vibration

Fig. 2(a) shows the structure of an electro-dynamic speaker

widely used in smartphones. Its maximum displacement of the

diaphragm η(f) at frequency f can be represented as [26, 27]:

η(f) =
e

2πf0BlQES
|γ(f)| (1)

where e is the voltage at the speaker, B is the magnetic field, l
is the length of voice coil, and QES is the electrical damping.

f0 represents the resonance frequency of the speaker, and γ(f)
is a dimensionless frequency response function given by:

γ(f) = 1/[1− (
f

f0
)2 + j

1

QTS
· f

f0
] (2)

where QTS represents the total damping effect, including the

electrical damping QES and the mechanical damping QMS .

Fig. 2(b) plots the normalized displacement with different

values of QTS . Due to the damping, the displacement of

diaphragm η(f) is non-linear over sound frequency and ap-

proximately reaches the peak at the resonance frequency f0.

Generally, the QTS of micro-speakers is greater than 0.4 with

resonance frequencies f0 between 500Hz and 1000Hz [28].

As the vibration follows a typical harmonic motion, the

sound-induced time-varying vibration displacement δ(t) can

be represented as δ(t) = η(f)cos(2πft). When we use a

mmWave radar to detect the smartphone emitting sounds in the

range bin r and the angle bin θ, the sound-induced vibration

will influence the range between the smartphone and radar,

leading to the phase changes of the received mmWave signal.

The phase measurement φr,θ(t) of the reflected signal from

the smartphone Sr,θ(t) can be represented as:

φr,θ(t) = 4πR(t)/λ = 4π[R0 + η(f)cos(2πft)︸ ︷︷ ︸
sound-induced vibration δ(t)

]/λ (3)

where R(t) is the range between smartphone and radar, i.e.,

R(t)=R0+δ(t). R0 is the initial range and λ is the wavelength.

From Eq. 3, we can see that the phase measurement φr,θ(t)
can capture sound-induced smartphone vibrations δ(t). Note

that we assume the vibrating direction of the smartphone aligns

with the sensing direction of the mmWave radar. The impact

of misalignment will be evaluated and discussed in §VI.

B. Characterizing the Sound-induced Smartphone Vibration

We use a TI AWR1642 mmWave radar to capture the sound-

induced vibrations when the smartphone speaker is playing

single tones. Each tested smartphone is fixed on a tripod at a

distance of 50cm from the radar.

Speakers in a smartphone. A smartphone typically has

two speakers, i.e., an earpiece at the top and a main speaker

at the bottom [29]. Fig. 3(a) plots the smartphone vibrations
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Fig. 2. Illustration of speaker structure.
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Fig. 3. The characteristics of sound-induced smartphone vibrations.

recovered by mmWave radar (§IV-B) where speakers are

playing a single tone at 800Hz. We see that mmWave radar can

capture smartphone vibrations generated by speakers within a

frequency error of 3Hz. The vibration effect is the strongest

when both speakers play the same sound simultaneously. The

earpiece produces a smaller vibration effect due to its smaller

size and lower power output. By default, we set the two

speakers to work simultaneously for better vibration effect.

Vibration amplitude. The vibration generated by speakers

is extremely weak, making it difficult to precisely measure

its vibration amplitude. To compare the vibration amplitude

induced by a smartphone speaker and a vibra-motor, we

control a smartphone (Samsung 9+) to play a single tone of

800Hz using a speaker and vibrate at 150Hz by triggering

a vibra-motor. As shown in Fig. 3(b), we see that the peak-

to-peak vibration amplitude of the speaker is approximately

3μm, much weaker than that triggered by the vibra-motor.

Frequency response. Fig. 3(c) plots the normalized sound-

induced vibration amplitudes measured by the mmWave radar

with different sound frequencies. We observe that the fre-

quency response is not flat, with the strongest vibrations

detected near the resonant frequency between 500Hz and

800Hz. This is because the vibration displacement of the

speaker varies nonlinearly with frequency, causing the sound-

induced vibrations to be heavily frequency selective. Note

that high-frequency vibrations (>2000Hz) are much weaker

because of attenuation and absorption [30–32].

Based on these observations, we see that although the

extremely weak sound-induced vibrations and non-flat fre-

quency responses pose significant challenges, mmWave radars

can potentially capture such weak vibrations generated by

smartphone speakers. Compared to the smartphone vibra-

motors, smartphone speakers operate in a higher and wider

frequency band, thus offering the possibility of increasing the

data rate between mmWave radars and smartphones.

III. TRANSMITTER DESIGN

Fig. 4 shows the workflow of Talk2Radar. In this section,

we focus on the transmitter design.

In Talk2Radar, a smartphone transmits messages using

modulated sound waves. Effective communication relies on

the careful modulation of sound waves. The following two

characteristics make the design of Talk2Radar unique and

challenging: i) Talk2Radar is a cross-modal communication

from speakers to mmWave radars through sound-induced vi-
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Fig. 4. Workflow of Talk2Radar.

brations; ii) The sound-induced vibrations are extremely weak

and suffer from severe frequency-selective fading.

CSS modulation. To overcome these challenges, we adopt

the Chirp Spread Spectrum (CSS) modulation, which can

effectively concentrate energy to improve the target signal

strength [24, 33–35] and mitigate the impact of frequency

selective fading. In particular, CSS uses a wideband linear

frequency modulated signal (i.e., chirp) to encode data. In

CSS modulation, a base chirp sweeps from fmin to fmax

within chirp duration Tc and can be denoted as C(t) =
cos[2π(fmin + μ

2 t)t], where μ denotes the chirp sweep rate

and fmax = fmin + μTc. CSS changes the initial frequency

of the base chirp to modulate different symbols. Hence, the

signal of a symbol x(t, f ′
i) is:

x(t, f ′
i) = cos[2π(fmin + f ′

i +
μ

2
t)t] (4)

where f ′
i is the frequency shift of the symbol x(t, f ′

i) and its

start frequency fi is equal to fmin + f ′
i .

Transmission capacity. The spreading factor (SF) is an

important parameter to control the chirp shape and data rate.

We have 2SF initial frequencies for encoding SF bits data.

The modulation bit rate Rb can be expressed as:

Rb = SF × BW

2SF
(5)

where BW is the chirp bandwidth. Based on the frequency

response in Fig. 3(c), we empirically set the chirp frequency

varying from 300Hz to 1900Hz (BW=1600Hz) to produce

better sound-induced vibrations. Table II illustrates the cor-

responding chirp duration (symbol duration) and bit rates at

different SFs. The maximum bit rate can be up to 600bps.

Note that as SF increases, the chirp duration becomes larger,

and the SNR of chirp signal gets better, implying a longer

communication range. On the other hand, the bit rate decreases

with the increase of SF. In practice, we can adjust the value of

SF to balance the communication range and data transmission



rate according to application requirements.

TABLE II
CSS MODULATION PROPERTIES (BW = 1600HZ)

SF 3 4 5 6 7

Tc(ms) 5 10 20 40 80
Rb(bps) 600 400 250 150 87.5

Preamble. To synchronize the transmitter and the receiver,

we add a preamble to each packet. In Talk2Radar, a basic

preamble is a base chirp followed by a down chirp (sweeping

from fmax to fmin) with the same SF as the subsequent

payload. This up-and-down chirp has a better self-correlation

[36, 37] and can indicate the SF value of the corresponding

transmitter. To increase the detection probability of the pream-

ble, the length of the preamble is configurable, with a default

length of three up-and-down chirps.

Coding scheme and error correction. We can also lever-

age several coding techniques to ensure reliable packet trans-

mission. We use Gray code for mapping payload bits to sym-

bols to reduce bit errors caused by adjacent misidentification.

In addition, forward error correction codes can be added to

correct bit errors.

IV. RECEIVER DESIGN

In this section, we present the technical detail of Talk2Radar
receiver. After capturing the reflected signals from the sur-

roundings, Talk2Radar receiver (mmWave radar) first identi-

fies the target transmitters, and then separates out the reflected

signals from each transmitter (§IV-A). Next, for each trans-

mitter, Talk2Radar extracts the sound-induced vibrations to

recover the transmitting sound waves (§IV-B). After that, the

sound waves are demodulated for decoding (§IV-C, §IV-D).

In the following, we conduct a feasibility study where

a mmWave radar is used to capture messages from two

smartphones, i.e., Phone A at (0.5m,−20◦) and Phone B at

(1m, 0◦). With the empirical results, we go through each key

component at the receiver side and describe our design.

A. Transmitter Identification and Signal Separation

Talk2Radar first performs the Range-FFT to resolve objects

in range and then conducts the Doppler-FFT to separate

objects in velocity [38]. Fig. 5(a) shows the obtained Range-

Doppler spectrogram, where the bright spots indicate higher

probabilities of the existence of objects. Unlike other objects,

we observe that the transmitters produce both positive and

negative velocities in the range of [−2m/s, 2m/s] due to

reciprocating vibrations. Therefore, we search all range bins

where candidate objects (bright spots) are detected, and then

locate the transmitters’ range bins by finding the symmetrical

velocity pattern within the target velocity range [5].

After obtaining the transmitters’ range bins, we perform

Angle-FFT on the received signals from multiple antennas to

get the location of each transmitter as shown in Fig. 5(b). After

that, Talk2Radar utilizes the spatial resolution of mmWave

radar to separate transmitters at different ranges and angles,

and further acquires the reflected signals Sr,θ(t) of each
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Fig. 5. Illustration of transmitter identification and localization.

transmitter located at the range bin r and angle bin θ, which

can be represented as:

s[n](t) = α[n] exp [j4π(fc +Kt)R[n](t)/c], n ∈ N
Range-FFT−−−−−−→

in range bin r
S[n]
r (t) = α[n] exp [j4πfcR

[n]
r (t)/c], n ∈ N

Angle-FFT−−−−−−→
in angle bin θ

Sr,θ(t) = α exp [j4πRr,θ(t)/λ]

(6)

where α is the path loss. fc, λ and K are the starting frequency,

wavelength, and the slope of the FMCW signal, respectively.

N is the number of receiver antennas and Rr,θ(t) is the

distance between the target smartphone and mmWave radar.

B. Sound Recovery

This step is to extract phase measurements of each trans-

mitter to recover the modulated sound waves.

Extracting phase measurement. Besides the target trans-

mitter, i.e., the vibrating smartphone, other static objects also

reflect signals that may fall in the same range bin and angle

bin as the target. Thus, the received signal 
Sr,θ from the

target smartphone location (r, θ) is a superposition of the target

smartphone signal 
Sphone and static interference 
S0.

�Sr,θ = α exp[j4πfcRr,θ(t)/c]︸ ︷︷ ︸
�Sphone

+
∑
i

α
[m]
0 exp[j4πfcR

[m]
r,θ /c]

︸ ︷︷ ︸
�S0

(7)

where α
[m]
0 and R

[m]
r,θ represent the signal strength and propa-

gation distance of the m-th background reflection, respectively.

To extract the phase measurements from the target component

Sphone, we first remove the static component 
S0 through circle

fitting [39]. Phase drifts and noises caused by hardware im-

perfections are mitigated by detrending the phase fluctuations

within each frame [30, 32]. Fig. 6(a) shows the extracted phase

measurements of Phone A in Fig. 5(b).

Recovering sound waves. As the transmitter plays the

modulated sounds, its phase measurements exhibit the sound-

induced vibrations in the pre-configured frequency band. As

shown in Fig. 6(b), the phase measurements of Phone A show

a higher frequency response from 300Hz to 1900Hz. Due to

the hardware characteristics of the speakers, the frequency

response is non-flat with the highest response around the

resonance frequency of 800Hz.

Based on this observation, we apply a band-pass filter (BPF)

on the phase measurements to extract the target sound-induced

vibrations and recover the corresponding sound waves, while

filtering out noise. The lower and upper stopping frequencies



0 200 400 600
Time (ms)

-5

0

5
P

ha
se

 (
ra

d)
10-3

(a) Raw phase

500 1000150020002500
Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

|N
or

m
. F

F
T

|
(b) FFT on phase

0 200 400 600
Time (ms)

-1

0

1

N
or

m
. A

m
pl

itu
de

(c) Recovered sound
Fig. 6. Illustration of sound recovery.

of the BPF filter are determined by the modulation frequency

band on the transmitter side. Fig. 6(c) shows the recovered

sound waves of Phone A. Unfortunately, the recovered sounds

have poor intelligibility because of weak vibrations and non-

flat frequency response. As such, we apply the short-time

Fourier transform (STFT) on the recovered sound waves to

display the time-localized frequency information. After that,

we can see in the upper panel of Fig. 7(a) where the recovered

data packet starts with a preamble including three up-and-

down chirps followed by multiple audio chirps.

C. Demodulation and Decoding

Next, we demodulate and decode the recovered sounds.

Preamble detection. We first locate the preamble embedded

at the start of each packet. As the preamble is pre-defined, we

calculate the correlation between the recovered sound waves

and a template, and then find the correlation peak for preamble

detection. Fig. 7(a) shows the edges of preambles detected

from the recovered sound waves of Phone A in Fig. 6(c).

Symbol demodulation. After locating the preamble, we

can determine the starting point of the payload. Then we

demodulate each symbol by measuring its initial frequency.

Based on Eq. 3 and Eq. 4, the extracted phase measurements

of the i-th audio chirp symbol can be expressed as:

φ(t, f ′
i) = 4π[R0 + η(fmin + f ′

i + μt) · x(t, f ′
i)]/λ (8)

After applying a band pass filter and eliminating constant

values, the recovered audio chirp for the i-th symbol is:

y(t, f ′
i) = η(f) · x(t, f ′

i) (9)

where η(f) denotes the vibration amplitude of the smartphone

speaker at frequency f and f = fmin + f ′
i + μt.

We demodulate the received audio chirps in two steps. First,

we de-spread the received symbol y(t, f ′
i) by multiplying it

with the base chirp C(t) based on cosA cosB = 1
2 (cos(A+

B)+cos(A−B)). By filtering the high-frequency part cos(A+
B), we obtain the de-chirped signal of the i-th symbol:

y(t, f ′
i)↓ =

1

2
η(f) · cos(2πf ′

i t) (10)

We observe that the de-chirped signal y(t, f ′
i)↓ is a single tone

with the frequency of f ′
i . Second, we apply FFT on the de-

chirped signal, i.e., Z(f) = |FFT(y(t, f ′
i)↓)| to find f ′

i :

f ′
i = argmax

fm
‖Z(fm)‖ (11)

where fm = m · BW
2SF denotes the frequency shift of the m-th

FFT bin (m = 0, 1, 2, ..., 2SF − 1). Hence, we can determine

f ′
i by finding the frequency bin with the maximum energy to

demodulate the recovered audio chirp.
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Fig. 7. CSS demodulation.

Fig. 7(b) shows the demodulation results of the recovered

symbol #1 in Fig. 7(a). The FFT peak is located at FFT bin #9,

indicating its initial frequency and data. After gray demapping,

we can finally obtain the messages from the transmitter. Note

that the demodulation concentrates the power of each chirp

symbol to a specific FFT bin, so that the audio chirp recovered

from tiny vibrations can still be detected and decoded.

D. Demodulation Enhancement

Adopting CSS modulation in cross-modal communication

between smartphone speakers and mmWave radars entails

some unique challenges.

Offset correction. In practice, the frequency of the recov-

ered packet is affected by synchronization issues, hardware

imperfections and differences in cross-modal communication,

resulting in some unwanted frequency offsets. To address

this issue, our basic idea is to estimate the frequency offset

from the known preamble. Since a preamble is composed of

several base up-and-down chirps, the FFT peak of each chirp

is located at the FFT bin #0 after demodulation. Hence, we

can determine the frequency offset Δf by searching possible

frequency offsets that can maximize the magnitude of the FFT

bin #0 after compensating Δf on the recovered signals [33].

Based on our observation that the frequency offset is within

±5Hz, we use binary search to find it in this range.

Shape-aware audio chirp refinement. Due to the inher-

ent non-flat frequency response of speaker, the recovered

audio chirp by mmWave radar is a multi-component signal

that comprises frequency-modulated and amplitude-modulated

components. Fig. 8(a) shows a recovered audio chirp in the T-F

domain. We can see that its amplitude and frequency vary with

time, resulting in signals at lower vibration amplitudes being

easily overwhelmed by noise. Hence, we propose a shape-

aware audio chirp refinement method with four steps:

1) Sharpening the audio chirp with WSST: Wavelet syn-

chrosqueezed transform (WSST) is a T-F analysis method,

which employs a wavelet transform to decompose the sig-

nal into different frequency bands and then squeezes them,

improving the T-F localization. Therefore, we utilize WSST

based on the analytic Morlet wavelet to transform the raw

audio chirp and generate the sharper audio chirp in Fig. 8(b).

We can see that WSST sharpens the T-F representation of raw

audio chirp along the frequency direction, making it easier to

isolate the target audio chirp from noise.

2) Identifying the audio chirp based on chirp shape: This

step aims to locate the region in the T-F plane that corresponds
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Fig. 8. Denoising and refinement.

to the target audio chirp. Specifically, we first identify the ridge

(local maxima) in the magnitudes of the WSST spectrogram in

Fig. 8(b). However, the ridge may jump as the region of the

highest energy in the T-F plane changes between the target

signal and noise. To address this issue, our basic idea is to

adjust the ridge in the T-F plane until it resembles a chirp with

maximum energy. After adjustment, we can accurately locate

the target chirp signal amid the noise and other components.

3) Reconstructing the audio chirp: WSST is invertible as

time information is preserved. Hence, we leverage inverse

WSST (IWSST) to extract target audio chirp from localized

regions in the T-F plane. Fig. 8(c) shows the reconstructed

signals, exhibiting lower noise levels compared to the raw

signal, especially at lower amplitudes.

4) Compensating for amplitude fluctuations: In Fig. 8(c),

we observe that the amplitude of the reconstructed chirp

signal still fluctuates with time due to the non-flat frequency

response of the speaker, which may cause some unwanted

side-lobes around the FFT peak after demodulation. To further

mitigate the impact of amplitude fluctuations, we first obtain

the envelope of the target signal, and then equalize and

compensate amplitude fluctuations. Fig. 8(d) shows the refined

chirp signal and its demodulation result. After compensation,

we observe that the amplitude of the refined signal is more

flattened compared to the raw signal. The side-lobes are further

dampened. As a result, these four steps can effectively mitigate

the impact of noise and amplitude fluctuations, generating

more stable and accurate demodulation outcomes.

V. IMPROVING ROBUSTNESS AND PRACTICALITY

A. Enabling Concurrent Communication

At the receiver side, Talk2Radar can support concurrent

transmissions of multiple smartphones by exploiting spatial

diversity and orthogonal parameter configuration.

Spatial diversity. The high spatial resolution of mmWave

radars allows Talk2Radar to separate multiple transmitters

at different locations (§IV-A). Fig. 9(a) plots the recovered

sounds from two transmitters in Fig. 5(b). The audio chirps

of Phone B with a larger SF present a lower rate of frequency

change over time. Note that the concurrent communication

based on location diversity is limited by the sensing resolution

of radar. When the spacing between two transmitters is less

than the resolution limits, it is challenging to separate them.

Transmission parameter diversity. Talk2Radar adopts

CSS modulation, which allows multiple signals with different

SFs to coexist in the same frequency band without significant
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Fig. 9. Concurrent transmission based on location diversity.

interference. Hence, the concurrent communication capability

of Talk2Radar can be improved by assigning different SFs to

different transmitters. Fig. 9(b) presents the recovered sound

waves from two smartphones whose spacing is below the

resolution limit. We can see that the recovered signals consist

of mixed packets and cannot be separated using location

diversity. To decode these two conflicting packets, we first

locate their respective preambles using the corresponding

preamble templates. As shown in the lower panel of Fig. 9(b),

we observe that the preamble detection result for each SF

has a correlation peak, implying that there is a preamble with

its corresponding SF. By doing so, two preambles belonging

to different transmitters are detected. Then, we decode the

payload for each transmitter using different demodulation

windows associating with the SF (§IV-C and §IV-D).

Talk2Radar allows multiple transmitters at different loca-

tions or different SFs to transmit signals simultaneously, fine-

grained range and angular resolution are first used to separate

objects, and then the difference in SF is further employed

for collision decoding. We believe these two dimensions are

sufficient for our target scenarios, as the distance between

users is usually larger than the limit of spatial resolution.

B. Suppressing the Impact of Human Motions

In practice, a smartphone is often carried by a user in hand.

Hand motion or other micro-motion from the human body will

interfere with the recovered target sound waves. To investigate

its impact, we ask a user to hold a smartphone and move

back and forth during communication. Fig. 10(a) shows the

extracted reflected signal from the smartphone on the I/Q plane

and the recovered sound wave. Compared to a static object

fixed on a tripod, the signal trajectory of the smartphone in

motion exhibits helical curves as both the amplitude and phase

of the reflected signal change with the hand motion, resulting

in evident artifacts on the recovered sound wave.

To mitigate this impact, our key idea is to split the received

signal into multiple short segments as the speed of human

motion v can be assumed to be constant within a short period

(e.g., 102.4ms in our setting). Hence, we first extract the phase

measurements of every short segment by removing the static

component (§IV-B). The extracted phase measurement is:

φ(t, f ′
t) =

4π

λ
[R0 + η(f) · x(t, f ′

i)︸ ︷︷ ︸
sound-induced vibration

+ vt︸︷︷︸
motion

]
(12)

We notice that the impact of motion can be removed by

taking the first-order derivative of phase measurement φ′(t),
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as vt associated with motion can be transformed into a DC

component v. In practice, we calculate the phase difference of

two consecutive measurements to approximate the first-order

derivative of the phase. Fig. 10(b) plots the obtained phase

difference and we observe that segment-based motion suppres-

sion results in a phase spike between two successive segments.

To address these issues, we first locate the phase spikes and

replace them with the linear interpolation of neighbouring. DC

component and lower frequency fluctuation associated with

human motion are then removed through a highpass filter with

a cutoff frequency of 200Hz. Finally, we reconstruct the phase

measurement from the refined phase difference and recover

the target sound waves. Compared with the raw sound waves

in Fig. 10(a), the proposed motion suppression method can

effectively mitigate the impact of human artifacts and produce

a clearer sound wave in Fig. 10(c).

VI. EVALUATION

A. Implementation and Methodology

Hardware and software. We implement Talk2Radar on

commodity devices. On the transmitter side, we test 6 smart-

phones from various vendors. The receiver in our prototype

is a TI AWR1642 mmWave radar board, operating in the

77GHz∼81GHz frequency band. Data processing algorithms

are implemented using Matlab and are executed on a computer

with an Intel Xeon E5-2620 v4 2.10GHz CPU.

Experiment setup. Fig. 11 shows our experiment setting.

By default, the smartphone is placed on a tripod playing

the modulated audio chirps at 80% of the maximum vol-

ume. The bandwidth of transmitting sound waves is 1600Hz

(300∼1900Hz) and SF is 6. On the receiver side, we let one

Tx antenna of mmWave radar send the FMCW signals with

the bandwidth of 3GHz and four Rx antennas receive the

reflected signals. In our setting, the range resolution is about

5cm, and the angular resolution is about 28.65◦. We set the

chirp duration to 100μs, resulting in a phase sampling rate of

10KHz. The communication range r, communication angle θ,

and smartphone orientation β are also defined in Fig. 11.

Metrics. We evaluate the performance in terms of bit error

rate (BER). The transmission data from senders are recorded

as ground truth. A BER of <10% is considered acceptable as

error correction codes can recover those errors [40].

B. Overall Performance

Transmission data rate. We first evaluate the data rate

of Talk2Radar. A smartphone (Samsung S9+) is placed in
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Fig. 11. Experiment setup of Talk2Radar.

3 4 5 6 7
SF

0

0.05

0.1

0.15

0.2

B
E

R

0

200

400

600

B
it 

ra
te

 (
bp

s)

Mean 
BER

(a) Data rate

1 2 3 4 5
Distance (m)

0.1

0.2

0.3

0.4

0.5

B
E

R

BER
=10%

SF=5
SF=6
SF=7

(b) Comm. range

BER 
=10%Mi 11

iPhone
14 Pro

vivo
iQOO 8

Google
Pixel 6

Meizu
18

0 0.1 0.2 0.3
BER

1m
3m

(c) Generalization

Fig. 12. Overall performance of Talk2Radar.

front of the radar at 1m and transmits the modulated sounds

at different SFs. Fig. 12(a) plots the BER and data rate. As

the SF increases, we can see that BER and bit rate gradually

decrease. This is because a larger SF results in a longer chirp

duration and higher SNR (Table II). The bit rate can reach

600bps with a mean BER of 7.67% at an SF of 3. When

the SF is greater than 3, the bit rate is ≤ 400bps and the

mean BER becomes less than 5%. Compared with the state-of-

the-art vibra-motor based method (12.12bps) [16], Talk2Radar
achieves 33× improvement in data rate. Moreover, it can

adjust the data rate according to different requirements.

Communication range. We place the smartphone at dif-

ferent positions to evaluate the communication range. As

expected, an increase in communication range leads to a

higher BER as shown in Fig. 12(b). In addition, larger SFs

achieve longer communication ranges. The communication

range can be 3m with a BER of <1% when SF is 7. We

believe such a communication capability can support our

target scenarios, as Talk2Radar aims to allow users to send

commands or messages to mmWave radars within their sights.

The enhancement of communication range and data rate is

worthy of further exploration.

Evaluation with different smartphones. We repeat the

experiments (SF=7) using different types of smartphones as

shown in Fig. 12(c). We observed that the BER of Talk2Radar
is less than 1% at 1m communication distance and 5.7% at

3m across different devices, which is below the BER threshold

of 10%. The results indicate that Talk2Radar can be readily

deployed in different smartphones.

C. Controlled Experiment

We place a smartphone (Samsung S9+) directly in front of

the radar at 1m and perform controlled experiments to further

evaluate our system under various conditions. By default, the

smartphone is fixed on a tripod and oriented towards the radar.

Communication angle. In practical scenarios, the commu-

nication angle θ between the smartphone and the mmWave
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Fig. 13. Result of controlled experiments in the lab environment.

radar can vary. To evaluate its impact, we conduct experiments

by changing the communication angle within a range of 0◦ to

40◦. Our experiment results from Fig. 13(a) demonstrate that

BER remains consistently below 5% within the radar’s field

of view (±40◦). However, as the smartphone approaches the

boundary of this field, the BER gradually increases. Hence,

within the sensing area of the mmWave radar, we can achieve

better communication performance.

Smartphone orientation. This experiment changes the

smartphone orientation related to the radar (β in Fig. 11) and

evaluates its impact. When β is 90◦, the phone screen directly

faces to the mmWave radar. In Fig. 13(b), we see that the BER

decreases as the orientation angle increases. This is because

when the smartphone screen faces the radar without misalign-

ment, the radar can capture stronger vibrations with larger RCS

and vibration displacement, resulting in a lower BER. Hence,

we suggest users maintain the smartphone orientation within

a range of 30◦ to 90◦ for better performance.

Speaker volume. A higher speaker volume increases di-

aphragm displacement and enhances smartphone vibration

effects. Hence, we repeat the experiments at different speaker

volumes. In Fig. 13(c), we see the speaker volume significantly

influences the BER. The BER is below 5% when the volume

is greater than 40% of the maximum volume.

Since a smartphone absorbs sound-induced vibrations at

higher frequency (> 2KHz) [30, 32], Talk2Radar utilizes au-

dible sounds with better vibration effects for communication.

As the speaker volume increases, communication performance

improves. In practice, we empirically set the speaker volume

within 60-80% of the phone’s maximum volume, which bal-

ances the performance and user experience. In this case, the

transmitted audible sounds are usually muffled by ambient

noises. In the future, we may explore a covert communication,

such as randomly shifting the phase of each frequency to

transform the emitted audio chirps into imperceptible white

noises [41].

D. Noisy Environment

To compare mmWave radars with microphones, we put them

together to capture the same sound from a smartphone speaker

at a distance of 1m. The smartphone plays an audio chirp

from 200Hz to 2000Hz, and two loudspeakers play music

noise at a distance of 50cm. As shown in Fig. 14(a), the

received signal by the microphone is heavily contaminated

by noise and harmonics caused by non-linear components,

making it challenging to extract the target signal. Conversely,

0 1 2 3
Time (s)

0

1

2

3

4

5

F
re

q
en

cy
 (

K
H

z)

(a) Microphone

0 1 2 3
Time (s)

0

1

2

3

4

5

F
re

q
en

cy
 (

K
H

z)

(b) Radar

0

0.2

0.4

0.6

0.8

B
E

R

BER = 5%

Traffic Waterflow Music Chat

 Microphone
 mmWave radar
mean BER

(c) BER under ambient noises.

Fig. 14. Noisy environment.

200 600
Time (ms)

300

1900

F
re

q
en

cy
 (

H
z)

(a) Microphone

O5

F
re

q.

O4

F
re

q.

O3

F
re

q.

O2

F
re

q.

O1

200 600
Time (ms)

F
re

q.

(b) Radar

O1 O2 O3 O4 O5
Object

0

0.05

0.1

0.15

0.2

B
E

R

Mean BER

BER = 5%

(c) BER under multi-speaker comm.

Fig. 15. Multi-speaker communication.

in Fig 14(b), the mmWave radar can accurately separate the

target signal from noise, as the sound is detected directly from

the source of vibrations.

We further evaluate the communication performance under

various noise conditions. When a smartphone is playing modu-

lated audio chirps with SF of 6 at distance of 1m (70 dB-SPL),

two loudspeakers are placed at 50cm playing four ambient

noises including traffic, waterflow, music and chatting with

corresponding typical SPL levels (60-80dB). We observe the

background noise degrades the performance of the microphone

based benchmark and its mean BER exceeds 10% even in

typical chatting conditions. In contrast, the BER of recovered

signal by the mmWave radar (<2%) is less affected.

E. Multiple Transmitters

This experiment evaluates the concurrent communication

performance of Talk2Radar. We place five smartphones in

an area of 2m×1m in front of the mmWave radar. For

performance comparison, a microphone is placed next to the

mmWave radar. With five smartphones playing modulated

sounds simultaneously, we observe that the microphone re-

ceives the mixed signals (Fig. 15(a)), while the mmWave radar

can separate them and extract the signals for each transmitter

(Fig. 15(b)). After decoding, Talk2Radar achieves a mean BER

of less than 5% for all five transmitters.

TABLE III
TRANSMISSION PARAMETER DIVERSITY.

Range diff. (cm) 0 5 10 15 20

BER of Phone 1 /% (SF=6) 4.67 3.97 0.83 0.25 0.13
BER of Phone 2 /% (SF=7) 0.5 0.32 0.11 0 0

Besides the location diversity, Talk2Radar can resolve mul-

tiple transmitters using transmission parameter diversity. To

evaluate it, we place two smartphones separated by a varied

distance. The two phones are approximately 1m away from the
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radar and assigned with different SFs. As shown in Table III,

we can see that Talk2Radar can still separate two objects (BER

<5%) even if they are very close in range (≤ 5cm of sensing

resolution). Hence, the transmission parameter can be used as

an additional dimension to enhance the concurrency.

Although Talk2Radar designs a many-to-one messaging, it

is a one-way uplink communication from smartphone speak-

ers to a mmWave radar. Fortunately, out-of-band downlink

channels (e.g., light, sound, and visual cues) can be used to

acknowledge smartphone users (e.g., blinking light).

F. Motion Artifacts

To evaluate Talk2Radar under human movement, we invite

four volunteers (two females and two males) to carry the

smartphone and conduct experiments in four motion scenarios:

(M1) sit: sitting while holding the smartphone; (M2) sit +

arm wiggles: sitting while holding the smartphone with arm

wiggles; (M3) stand: standing while holding the smartphone;

and (M4) stand + body wiggles: standing while holding the

smartphone with body wiggles. In Fig. 16, we can see that our

proposed motion suppression method can effectively mitigate

the impact of human motion with a BER of <5%.

G. Robustness in Practical Scenarios

To evaluate the robustness of Talk2Radar, we conduct

experiments in six practical scenarios as shown in Fig. 11.

In each scenario, the distance between the smartphone and

the mmWave radar is maintained between 1m to 1.5m, and

640 symbols with SF of 6 are collected. In Fig. 17, we can

see that Talk2Radar has good performance with BER below

5% across all tested scenarios with strong multipath effects.

That is because Talk2Radar can filter out interference signals

and accurately identify the target transmitters.

VII. RELATED WORK

Micro-vibration detection with mmWave radars. Ben-

efiting from the high-resolution, mmWave radars are used

for micro-vibration sensing. mmVib [5] uses mmWave radars

to detect micrometer-level industrial vibrations. GWaltz [6]

can measure sub-mm-level 2D orbits of rotating machinery.

Multi-Vib [7] achieves multi-point vibration monitoring by

placing physical markers. Unlike these works that aim to sense

vibrations, Talk2Radar modulates and demodulates vibrations

for the communication purpose.

Sound sensing with mmWave radars. mmWave radar

has also emerged as a potential radio microphone as it can

separate and recover multiple sound sources [31]. WaveEar

[42] captures the near-throat skin vibrations to recover the

human voice. mmMIC [43] extracts the multi-modal features

from lip motion and vocal-cords vibrations to improve speech

recognition performance. AmbiEar [44] exploits the surround-

ing objects as ears and implements mmWave-based voice

recognition in non-line-of-sight scenarios. RadioMic [31] con-

structs various types of sounds from both active sources

(e.g., human throat) and passive sources (e.g., paper bag).

Moreover, mmWave radars can eavesdrop remotely the sounds

from smartphone loudspeakers and headsets [30, 32, 45–48].

Talk2Radar builds on prior sensing techniques and empow-

ers mmWave radars with communication capability at much

higher data rates.

Vibration-based communication. Vibration is a common

modality of data communication. Ripple [49] utilizes vibra-

motors to modulate messages, which are then decoded us-

ing contact based IMU sensors. Bleep [50] leverages mo-

tor vibrations to enable UAVs to communicate with each

other. MotorBeat [25] connects small appliances to a smart

speaker by capturing vibrations from direct current motors.

Recent works [51, 52] use mmWave radars to sense water

surface vibrations caused by underwater sonars enabling cross-

media communication. mmRipple [16] modulates vibrations of

smartphone vibra-motors to send data to mmWave radars. The

narrow bandwidth of vibra-motors, however, limits its data

rate. Talk2Radar develops a new speaker-to-mmWave radar

communication channel with much higher data rates.

VIII. CONCLUSION

This paper presents Talk2Radar, which builds a speaker-to-

mmWave radar communication channel with sound-induced

vibrations. Without any hardware modification, Talk2Radar
empowers commodity mmWave radars with communication

capability. Talk2Radar substantially improves data rates com-

pared with the state-of-the-art vibration based methods. We

overcome several practical challenges involved in encoding

data with extremely weak and frequency-selective sound-

induced vibrations, supporting multi-speaker concurrent com-

munication, and suppressing hand and body motion.
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